Закрыть

Резонанс переменного тока – Резонанс токов: применение, принцип резонса тока, расчет контура

Резонанс токов: применение, принцип резонса тока, расчет контура

Знание физики и теории этой науки напрямую связано с ведением домашнего хозяйства, ремонтом, строительство и машиностроением. Предлагаем рассмотреть, что такое резонанс токов и напряжений в последовательном контуре RLC, какое основное условие его образования, а также расчет.

Что такое резонанс?

Определение явления по ТОЭ: электрический резонанс происходит в электрической цепи при определенной резонансной частоте, когда некоторые части сопротивлений или проводимостей элементов схемы компенсируют друг друга. В некоторых схемах это происходит, когда импеданс между входом и выходом схемы почти равен нулю, и функция передачи сигнала близка к единице. При этом очень важна добротность данного контура.

Соединение двух ветвей при резонансеСоединение двух ветвей при резонансе

Признаки резонанса:

  1. Составляющие реактивных ветвей тока равны между собой IPC = IPL, противофаза образовывается только при равенстве чистой активной энергии на входе;
  2. Ток в отдельных ветках, превышает весь ток определенной цепи, при этом ветви совпадают по фазе.

Иными словами, резонанс в цепи переменного тока подразумевает специальную частоту, и определяется значениями сопротивления, емкости и индуктивности. Существует два типа резонанса токов:

  1. Последовательный;
  2. Параллельный.

Для последовательного резонанса условие является простым и характеризуется минимальным сопротивлением и нулевой фазе, он используется в реактивных схемах, также его применяет разветвленная цепь. Параллельный резонанс или понятие RLC-контура происходит, когда индуктивные и емкостные данные равны по величине, но компенсируют друг друга, так как они находятся под углом 180 градусов друг от друга. Это соединение должно быть постоянно равным указанной величине. Он получил более широкое практическое применение. Резкий минимум импеданса, который ему свойствен, является полезным для многих электрических бытовых приборов. Резкость минимума зависит от величины сопротивления.

Схема RLC (или контур) является электрической схемой, которая состоит из резистора, катушки индуктивности, и конденсатора, соединенных последовательно или параллельно. Параллельный колебательный контур RLC получил свое название из-за аббревиатуры физических величин, представляющих собой соответственно сопротивление, индуктивность и емкость. Схема образует гармонический осциллятор для тока. Любое колебание индуцированного в цепи тока, затухает с течением времени, если движение направленных частиц, прекращается источником. Этот эффект резистора называется затуханием. Наличие сопротивления также уменьшает пиковую резонансную частоту. Некоторые сопротивление являются неизбежными в реальных схемах, даже если резистор не включен в схему.

Применение

Практически вся силовая электротехника использует именно такой колебательный контур, скажем, силовой трансформатор. Также схема необходима для настройки работы телевизора, емкостного генератора, сварочного аппарата, радиоприемника, её применяет технология «согласование» антенн телевещания, где нужно выбрать узкий диапазон частот некоторых используемых волн. Схема RLC может быть использована в качестве полосового, режекторного фильтра, для датчиков для распределения нижних или верхних частот.

Резонанс даже использует эстетическая медицина (микротоковая терапия), и биорезонансная диагностика.

Принцип резонанса токов

Мы можем сделать резонансную или колебательную схему в собственной частоте, скажем, для питания конденсатора, как демонстрирует следующая диаграмма:

схема для питания конденсатораСхема для питания конденсатора

Переключатель будет отвечать за направление колебаний.

переключатель резонансной схемы
Схема: переключатель резонансной схемы

Конденсатор сохраняет весь ток в тот момент, когда время = 0. Колебания в цепи измеряются при помощи амперметров.

ток в резонансной схеме равен нулюСхема: ток в резонансной схеме равен нулю

Направленные частицы перемещаются в правую сторону. Катушка индуктивности принимает ток из конденсатора.

Когда полярность схемы приобретает первоначальный вид, ток снова возвращается в теплообменный аппарат.

Теперь направленная энергия снова переходит в конденсатор, и круг повторяется опять.

В реальных схемах смешанной цепи всегда есть некоторое сопротивление, которое заставляет амплитуду направленных частиц расти меньше с каждым кругом. После нескольких смен полярности пластин, ток снижается до 0. Данный процесс называется синусоидальным затухающим волновым сигналом. Как быстро происходит этот процесс, зависит от сопротивления в цепи. Но при этом сопротивление не изменяет частоту синусоидальной волны. Если сопротивление достаточно высокой, ток не будет колебаться вообще.

Обозначение переменного тока означает, что выходя из блока питания, энергия колеблется с определенной частотой. Увеличение сопротивления способствует к снижению максимального размера текущей амплитуды, но это не приводит к изменению частоты резонанса (резонансной). Зато может образоваться вихретоковый процесс. После его возникновения в сетях возможны перебои.

Расчет резонансного контура

Нужно отметить, что это явление требует весьма тщательного расчета, особенно, если используется параллельное соединение. Для того чтобы в технике не возникали помехи, нужно использовать различные формулы. Они же Вам пригодятся для решения любой задачи по физике из соответствующего раздела.

Очень важно знать, значение мощности в цепи. Средняя мощность, рассеиваемая в резонансном контуре, может быть выражена в терминах среднеквадратичного напряжения и тока следующим образом:

R ср= I2конт * R = (V2конт / Z2) * R.

При этом, помните, что коэффициент мощности при резонансе равен cos φ = 1

Сама же формула резонанса имеет следующий вид:

ω0 = 1 / √L*C

Нулевой импеданс в резонансе определяется при помощи такой формулы:

Fрез = 1 / 2π √L*C

Резонансная частота колебаний может быть аппроксимирована следующим образом:

F = 1/2 р (LC) 0.5

Где: F = частота

L = индуктивность

C = емкость

Как правило, схема не будет колебаться, если сопротивление (R) не является достаточно низким, чтобы удовлетворять следующим требованиям:

R = 2 (L / C) 0.5

Для получения точных данных, нужно стараться не округлять полученные значения вследствие расчетов. Многие физики рекомендуют использовать метод, под названием векторная диаграмма активных токов. При правильном расчете и настройке приборов, у Вас получится хорошая экономия переменного тока.

www.asutpp.ru

Резонанс токов

Резонанс токов возникает в электрических цепях переменного тока при параллельном соединении ветвей с разнохарактерными (индуктивными и емкостными) реактивными сопротивлениями. В режиме резонанса токов реактивная индуктивная проводимость цепи оказывается равной ее реактивной емкостной проводимости, т.е. BL=BC.

Простейшей электрической цепью, в которой может наблюдаться резонанс токов, является цепь с параллельным соединением катушки индуктивности и конденсатора. Данная схема соответствует цепи, представленной на рис. 8,

а, для которойR2 = 0, а R1=Rк (здесьRк – активное сопротивление катушки индуктивности). Полная проводимость такой цепиY=.

Условие резонанса токов (BL=BC) можно записать через соответствующие параметры электрической цепи. Так как реактивная проводимость катушки, имеющей активное сопротивлениеRк, определяется выражениемBL=XL/=L/(Rк2+2L2), а проводимость конденсатора без учета его активного сопротивления (RC= 0)BC=XC/

= 1/XC=C, то условие резонанса может быть записано в виде

L/(+2L2) = C.

Из этого выражения следует, что резонанс токов в такой цепи можно получить при изменении одного из параметров Rк,L,Cипри постоянстве других. При некоторых условиях в подобных цепях резонанс может возникать и при одновременном изменении указанных параметров.

Простейшие резонансные цепи, состоящие из параллельно соединенных между собой катушки индуктивности и конденсатора, широко применяются в радиоэлектронике в качестве колебательных контуров, резонанс токов в которых достигается при некоторой определенной частоте поступающего на вход соответствующего устройства сигнала.

В лабораторных условиях наиболее часто резонанс токов достигается при неизменной индуктивности катушки

L, путем изменения емкостиСбатареи конденсаторов. С изменением емкостной проводимостиBC=C, пропорциональной емкости конденсатора, происходит изменение полной проводимостиY, общего токаIи коэффициента мощности cos. Указанные зависимости приведены на рис. 10,a. Анализ этих зависимостей показывает, что при увеличении емкости от нуля полная проводимость электрической цепи сначала уменьшается, достигает при (BL=BC) своего минимума, а затем возрастает с увеличениемС, в пределе стремясь к бесконечности. Общий токI=YU, потребляемый цепью, пропорционален полной проводимости. Поэтому характер его изменения подобен характеру изменения проводимости.

Коэффициент мощности cosс увеличением емкости сначала возрастает, а затем уменьшается, в пределе стремясь к нулю, так как cos=G/Y. В результате анализа указанных зависимостей можно установить, что резонанс токов характеризуется следующими явлениями.

a)б)

Рис. 10

1. При резонансе токов полная проводимость всей электрической цепи приобретает минимальное значение и становится равной активной ее составляющей:

Y = =G.

2. Минимальное значение проводимости обусловливает минимальное значение тока цепи:

I = YU = GU.

3. Емкостный ток ICи индуктивная составляющаяIL тока катушкиIкоказываются при этом равными по величине, а активная составляющая тока катушкиIа1 становится равной токуI, потребляемому из сети:

Iр1 = IL = BLU = BCU = IC = Iр2Iа = Iа1 =GU = YU =I.

При этом реактивные составляющие токов IL иICв зависимости от значений реактивных проводимостей могут приобретать теоретически весьма большие значения и намного превышать токI, потребляемый электрической цепью из сети.

4. Реактивная составляющая полной мощности цепи при BL=BCоказывается равной нулю:

Q = BLU2  BCU2 = QL  QC = 0.

При этом индуктивная и емкостная составляющие реактивной мощности также могут приобретать весьма большие значения, оставаясь равными друг другу.

5. Полная мощность цепи при резонансе равна ее активной составляющей:

S = YU 2 = GU 2 = P.

6. Коэффициент мощности всей цепи при резонансе:

cos = P/S = GU 2/YU 2 = 1.

Напряжение и ток электрической цепи при резонансе токов совпадают по фазе. Векторная диаграмма, построенная для условий резонанса токов и применительно к рассматриваемой цепи, представлена на рис. 10, б. В табл. 2 методических указаний по выполнению работы обозначениямIL, IK, IC соответствуют обозначенияIр1, I1, Iр2 на векторной диаграмме токов (рис. 10,б).

Резонанс токов находит широкое применение в силовых электрических цепях для повышения коэффициента мощности, так как это имеет большое технико-экономическое значение. Большинство промышленных потребителей переменного тока имеют активно-индуктивный характер; некоторые из них работают с низким коэффициентом мощности и потребляют значительную реактивную мощность. К таким потребителям могут быть отнесены асинхронные двигатели (особенно работающие с неполной нагрузкой), установки электрической сварки, высокочастотной закалки и т.д. Для уменьшения реактивной мощности и повышения коэффициента мощности параллельно потребителю включают батарею конденсаторов. Реактивная мощность конденсаторной батарей снижает общую реактивную мощность установки и тем самым увеличивает коэффициент мощности. Повышение коэффициента мощности приводит к уменьшению тока в проводах за счет снижения его реактивной составляющей и, соответственно, к уменьшению потерь энергии в генераторе и подводящих проводах.

studfile.net

Резонанс в цепи переменного тока

В данной статье рассказано о явлении резонанса в цепи переменного тока, состоящей из катушки, конденсатора и активного сопротивления, соединенных последовательно. Введены понятия резонансной частоты, добротности контура, а также разобраны соответствующие примеры задач из ЕГЭ по физике.

Явление резонанса в цепи переменного тока

Явление резонанса в контуре, состоящем из последовательно соединённых катушки индуктивности L, конденсатора C и активного сопротивления R, заключается в резком возрастании амплитуды вынужденных колебаний силы тока при совпадении циклической частоты \omega генерируемой источником переменной ЭДС e(t) с собственной циклической частотой \omega_0 электромагнитных колебаний в контуре:

Rendered by QuickLaTeX.com

Напомним, что частота переменного тока \nu связана с циклической частотой переменного тока \omega простым соотношением:

    \[ \omega = 2\pi\nu. \]

Цепь, состоящую из катушки индуктивности, конденсатора и активного сопротивления, соединённых последовательно, сокращенно называют RLC-цепью. Резонанс в RLC-цепи возникает при такой циклической частоте \omega_0, что реактивное сопротивление катушки X_L = \omega_0 L становится равным по модулю реактивному сопротивлению конденсатора X_C = \frac{1}{\omega_0 C}. Поскольку эти составляющие импеданса RLC-цепи отстоят друг от друга по фазе на \pi (колеблются в противофазе), то компенсируют друг друга, в результате полное сопротивление цепи Z = \sqrt{R^2+\left(X_L - X_C\right)^2 становится наименьшим, а действующее значение сила тока I = \frac{U}{Z} — наибольшим (здесь U — действующее значение напряжения, генерируемого источником переменной ЭДС):

    \[ \begin{cases} X_C = \frac{1}{\omega_0 C}, \\ X_L = \omega_0 L, \\ X_C = X_L, \\ Z = \sqrt{R^2+\left(X_L - X_C\right)^2}. \end{cases} \Leftrightarrow \begin{cases} \omega_0 = \frac{1}{\sqrt{LC}}, \\ Z = R. \end{cases} \]

Векторная диаграмма для случая резонанса в цепи переменного тока, состоящей из катушки, конденсатора и активного сопротивления, соединенных последовательно, имеет вид:

Rendered by QuickLaTeX.com

Добротность RLC-цепи

Резонансные цепи используют для того, чтобы выделить сигнал на нужной частоте, отфильтровав остальные сигналы на других частотах. Если отложить по вертикали действующее значение силы тока вынужденных колебаний в RLC-контуре, а по горизонтали — частоту генерируемой источником переменной ЭДС, то получится резонансная кривая данного RLC-контура, подобная той, что изображена на рисунке:

Rendered by QuickLaTeX.com

Если резонансная кривая имеет острый пик на резонансной частоте, говорят, что схема обладает высокой «селективностью». Параметр, характеризующий данное свойство, в физике называют добротностью Q. Добротность RLC-контура определяется как отношение его резонансной частоты \omega_0 к ширине резонансной полосы на полувысоте максимума \Delta\omega:

    \[ Q = \frac{\omega_0}{\Delta\omega}. \]

Добротность RLC-цепи зависит от величины активного сопротивления. Чем меньше активное сопротивление R, тем больше добротность при данных значениях индуктивности L и электроемкости C. Для RLC-контура добротность определяется по формуле:

    \[ Q = \frac{1}{R}\sqrt{\frac{L}{C}}. \]

Задача из ЕГЭ по физике про резонанс в цепи переменного тока

При под­клю­че­нии трех не­из­вест­ных эле­мен­тов A, B и C элек­три­че­ской цепи к вы­хо­ду ге­не­ра­то­ра пе­ре­мен­но­го тока с из­ме­ня­е­мой ча­сто­той гар­мо­ни­че­ских ко­ле­ба­ний при не­из­мен­ной ам­пли­ту­де ко­ле­ба­ний на­пря­же­ния, об­на­ру­же­ны следующие зависимости действующих значений силы тока от ча­сто­ты:

Rendered by QuickLaTeX.com

Установите соответствие между буквой графика и соответствующим элементом из списка, который был подключен:

1) активное сопротивление
2) кон­ден­са­то­р
3) ка­туш­ка
4) RLC-контур

  • Правильный ответ для графика A — 1 (активное сопротивление), поскольку из представленных в списке элементов лишь активное сопротивление не имеет зависимости от частоты в цепи переменного тока.
  • Правильный ответ для графика B — 2 (катушка), поскольку индуктивное сопротивление катушки возрастает пропорционально частоте переменного тока. Тогда действующее значение силы переменного тока уменьшается обратно пропорционально частоте.
  • Правильный ответ для графика B — 4 (RLC-контур), так как на кривой зависимости действующего значения силы переменного тока от частоты имеется ярко выраженный резонансный максимум, что является характерным признаком RLC-контура.

Материал подготовлен репетитором по физике на Юго-Западной, сергеем Валерьевичем

yourtutor.info

Резонанс токов — описание явления и области применения

токовый резонанс

Резонанс токов, хорошо известный как естественный токовый «параллельный резонанс» — процесс или явление, которое протекает в условиях параллельного типа колебательного контура и наличия напряжения.

В данном случае частота источника напряжения должна иметь совпадение с аналогичными резонансными показателями контура.

Что такое резонанс?

Токовым резонансом называется особый вид состояния цепи, когда общие токовые показатели совпадают по фазным параметрам с уровнем напряжения, а реактивная мощность равняется нулю и цепью потребляется исключительно активная мощность.

Данный вариант является характерным преимущественно для схем с переменными показателями токовых величин и обладает не только положительными свойствами, но и некоторыми совершенно нежелательными качествами, которые в обязательном порядке учитываются еще в процессе проектирования.

Положительное резонансное действие — явление из области радиотехники, автоматики и проволочной телефонии. Резонанс напряжений относится к категории нежелательных явлений, обусловленных перенапряжениями. При этом добротным электрическим контуром принято считать величину:

Достижение токового резонанса осуществляется подбором необходимого индуктивного или емкостного значения, а также показателей частотности питающих сетей.

Токовый резонанс получается подбором параметров электроцепи в условиях заданной частоты источника питания, а также посредством выбора обратных показателей.

Применение токового резонанса

Основная область активного применения широко востребованных резонансных токов сегодня представлена:

  • некоторыми видами фильтрующих систем, в которых току с определенными частотными параметрами оказываются значительные показатели сопротивления;
  • радиотехникой в виде приемников, выделяющих сигналы, предназначенные для конкретных точек радиостанций. Оказание значительного сопротивления току сопровождается снижением показателей контурного напряжения при максимальной частоте;
  • асинхронного типа двигателями, в особенности функционирующими в условиях неполной нагрузки;
  • установками высокоточной электрической сварки;
  • колебательными контурами внутри узлов генераторов электронного типа;
  • приборами, отличающимися высокочастотной закалкой;
  • снижением показателей генераторной нагрузки. При таких условиях в приемном трансформаторе с первичной обмоткой делается колебательный контур.
резонансный ток

Схема цепи

Особенно часто колебательные контуры или токовые резонансы применяются в производстве современного промышленного индукционного котлового оборудования, что позволяет в значительной степени улучшить стартовые показатели коэффициента полезного действия.

Стандартные колебательные контуры, функционирующие в условиях режима токового резонанса, массово применяются в качестве одного из наиболее важных узлов в современных электронных генераторах.

Принцип резонанса токов

Токовый резонанс наблюдается внутри электроцепи, обладающей параллельным катушечным, резисторным и конденсаторным подсоединением. Основной принцип работы стандартного резонанса токов не слишком сложен для понимания простого обывателя:

  • включение электропитания сопровождается накоплением заряда внутри конденсатора до номинальных показателей напряжения источника;
  • отключение питающего источника с последующим замыканием цепи в контур сопровождается процессом переноса разряда на катушечную часть прибора;
  • токовые показатели, проходящие по катушке, вызывают генерирование магнитного поля и создание электродвижущей силы самоиндукции, в направлении, встречном току;
  • максимальное значение токовых показателей достигается на стадии полного конденсаторного разряда;
  • весь объем накопленной энергетической емкости легко преобразуется в магнитное индукционное поле;
  • катушечная самоиндукция не провоцирует остановку заряженных частиц, а повторный этап зарядки с другим типом полярности обусловлен отсутствием конденсаторного противотока.
цепь переменного тока

Резонанс в параллельной цепи (резонанс токов)

Итогом данного цикла является повторяющееся преобразование всего катушечного поля в конденсаторный заряд. Определение стандартной резонансной частоты осуществляется аналогично расчетам резонанса напряжения.

Присутствующая внутренняя активная составляющая R вызывает постепенное угасание колебательного процесса, чем и обуславливается токовый резонанс.

Резонанс токов в цепи с переменным током

Протекание тока внутри электрической цепи с последовательным, параллельным или смешанным типом соединения элементов, вызывает получение различных режимов функционирования.

Таким образом, резонанс электрической цепи является режимом участка, который содержит элементы индуктивного и емкостного типа, а угол фазового сдвига между токовыми величинами и показателями напряжения нулевые.

В соединяемых параллельным способом конденсаторе и катушечной части наблюдается равное реактивное сопротивление, чем обусловлен резонанс.

Также должен учитываться тот факт, что для катушечной части и конденсатора характерно полное отсутствие активного сопротивления, а равенство реактивного сопротивления делает нулевыми общие токовые показатели внутри неразветвленной части электрической цепи и большие величины тока в ветвях.

В условиях параллельного соединения индуктивной катушки и конденсатора получается колебательный контур, который отличается наличием создающего колебания генератора, не подключенного в контур, что делает систему замкнутой.

Явление, сопровождающееся резким уменьшением амплитуды силы токовых величин внешней цепи, которая используется для питания параллельно включенного конденсатора и обычной индуктивной катушки в условиях приближения частоты приложенного напряжения к частоте резонанса, носит название токового или параллельного резонанса.

Расчет резонансного контура

Необходимо помнить, что явление, представленное токовым резонансом, нуждается в очень грамотном и тщательном расчете резонансного контура. Особенно важно выполнить правильный и точный расчет при наличии параллельного соединения, что позволит предотвратить развитие помех внутри системы. Чтобы расчет был правильным, требуется определиться с показателями мощности электрической сети. Среднюю стандартную мощность, которая рассеивается в условиях резонансного контура, можно выразить среднеквадратичными показателями тока и напряжения.

В условиях резонанса стандартный коэффициент мощности составляет единицу, а формула расчета имеет вид:

формула резонанса

Формула расчета

С целью правильного определения нулевого импеданса в условиях резонанса потребуется использовать стандартную формулу:

графики

Резонансные кривые

Резонанс колебательной частоты аппроксимируется по следующей формуле:

колебательный контур

Резонанс колебательного контура

Чтобы получить максимально точные данныепо формулам, все получаемые в процессе расчетов значения рекомендуется не подвергать округлению. Некоторыми физиками расчеты значений резонансного контура осуществляются в соответствии с методом векторной диаграммы активных токовых величин. В таком случае грамотный расчет и правильная настройка приборов гарантирует достойную экономию при условии переменного тока.

Резонансные цепи применяются преимущественно для выделения сигнала на нужных частотах в результате фильтрования других сигналов, поэтому самостоятельные расчеты контура должны быть предельно точными.

Заключение

Резонанс токовых величин в физике — это естественное явление, сопровождающееся резким возрастанием амплитуды колебания внутри системы, что обусловлено совпадением показателей собственных и внешних возмущающих частот.

Подобный вариант явлений характеризует электрические схемы с наличием элементов, представленных нагрузками активного, индуктивного и емкостного типа. Таким образом, токовый резонанс — один из наиважнейших параметров, широко используемых в настоящее время в целом ряде современных отраслей, включая промышленное электрическое снабжение и радиосвязь.

proprovoda.ru

Резонанс токов — это… Что такое Резонанс токов?

Резонанс токов — резонанс, происходящий в параллельном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.

Описание явления

Пусть имеется колебательный контур с частотой собственных колебаний a, и пусть он подключен к генератору переменного тока такой же частоты f.

В момент подключения конденсатор заряжается от источника. После чего он начинает разряжаться на катушку, причем разряжается с такой же скоростью, с какой убывает напряжение на генераторе. Через некоторое время энергия конденсатора полностью переходит в энергию магнитного поля катушки. Напряжение на клеммах генератора в этот момент равно нулю.

Далее магнитное поле катушки начинает убывать, так как не может существовать стационарно — на выводах катушки появляется ЭДС индукции, которое начинает перезаряжать конденсатор. В цепи колебательного контура течет ток, только уже противоположно току заряда, так как витки пересекаются полем в обратном направлении. Обкладки конденсатора перезаряжаются зарядами, противоположными первоначальным. Одновременно растет напряжение на генераторе, причем с той же скоростью, с какой катушка заряжает конденсатор. Но ток от генератора не может течь через колебательный контур — как только на клеммах генератора появляется напряжение, точно такое же напряжение появляется на выводах конденсатора вследствие перезаряда его катушкой. Напряжения конденсатора и генератора друг друга компенсируют.

Далее энергия магнитного поля катушки полностью переходит в энергию электрического поля конденсатора. Напряжение генератора в этот момент достигает максимума. Далее конденсатор разряжается на катушку, цикл повторяется в обратном направлении. В результате, в колебательном контуре циркулируют весьма большие токи, но за его пределы не выходят — выходить им мешает точно такое же, только противоположно направленное напряжение на генераторе. Большой ток от генератора течет через контур только короткое время после включения, когда заряжается конденсатор. Далее генератор работает почти вхолостую — как только на его клеммах появляется напряжение, точно такое же противоположно направленное напряжение появляется на конденсаторе и не пропускает ток от внешнего источника через контур.

Вышесказанное справедливо для контура с очень хорошей добротностью (низкими потерями энергии за цикл).

Ситуация изменится, если отбирать от контура во время его работы некоторую мощность. Тогда за цикл часть энергии контура будет теряться и конденсатор будет перезаряжаться контурной катушкой до меньшего напряжения, чем напряжение внешнего генератора. В этом случае генератор будет дозаряжать конденсатор, компенсируя таким образом потери за цикл. Через контур потечет переменный ток, который, однако, может быть меньше того, что циркулирует в самом контуре.

Замечания

  • Колебательный контур, работающий в режиме резонанса токов, не является усилителем мощности.

Большие токи, циркулирующие в контуре, возникают за счет мощного импульса тока от генератора в момент включения, когда заряжается конденсатор. При значительном отборе мощности от контура эти токи «расходуются», и генератору вновь приходится отдавать значительный ток подзарядки.

  • Если генератор слабый, большой ток подзарядки может сжечь его. Выйти из положения можно, постепенно повышая напряжение на клеммах генератора, «раскачивая» контур.
  • Колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией (образует короткое замыкание по катушке), что может привести к выходу из строя задающего генератора. Для повышения добротности колебательного контура нужно по возможности увеличить L и уменьшить C.

Если увеличить L с помощью увеличения витков катушки или увеличения длины провода не представляется возможным, используют ферромагнитные сердечники или ферромагнитные вставки в катушку; катушка обклеивается пластинками из ферромагнитного материала и т п.

Применение

  • Высокодобротный колебательный контур оказывает току определенной частоты f значительное сопротивление. Вследствие чего явление резонанса токов используется в полосовых фильтрах как электрическая «пробка», задерживающая определенную частоту.
  • Так как току с частотой f оказывается значительное сопротивление, то и падение напряжения на контуре при частоте f будет максимальным. Это свойство контура получило название избирательность, оно используется в радиоприемниках для выделения сигнала конкретной радиостанции.
  • Колебательный контур, работающий в режиме резонанса токов, является одним из основных узлов электронных генераторов.

См. также

Резонанс напряжений

Колебательный контур

Литература

  • Власов В. Ф. Курс радиотехники. М.: Госэнергоиздат, 1962. С. 928.
  • Изюмов Н. М., Линде Д. П. Основы радиотехники. М.: Госэнергоиздат, 1959. С. 512.

Ссылки

Резонанс токов

Circuits. A/C Circuits. Parallel Resonance

biograf.academic.ru

Резонанс токов и его последствия для цепей переменного тока

Помимо резонанса напряжения, который может возникнуть в цепи переменного напряжения при последовательном подключении R, L, C элементов, в этих же цепях может возникать и резонанс токов, но уже при параллельном подключении R, L, C элементов. Рассмотрим резонанс токов.

Принципиальная схема и векторная диаграмма при возникновении резонанса тока показана ниже:

Резонанс токов схема и векторная диаграмма

Условия для резонанса тока такие же, как для резонанса напряжения, а именно φ = 0, поскольку соединение параллельное, то Y = g – jb = ye, где:

Одно из условий токового резонанса

Из условия φ = 0 вытекает, что b = bL – bC = 0 или же (1/ωL) – ωC = 0; ω2LC = 1. Отсюда можно сделать вывод, достижение резонанса тока можно реализовать тремя способами, а именно:

  • Подобрать необходимое значение индуктивности;
  • Подобрать необходимое значение емкости;
  • Подобрать необходимое значение частоты питающей сети;

Исходя из этого, будут справедливы соотношения:

Соотношения для определения индуктивности, емкости и частоты для резонанса тока

Частота ω0 – резонансная частота.

При возникновении резонанса тока в цепи ее реактивная составляющая становится равной нулю. Из – за этого полная проводимость цепи снижается до минимального значения. Поэтому при постоянном напряжении на зажимах данной схемы ток общей ветви i становится минимален, в отличии от резонанса напряжения, когда ток максимален. При этом суммарный ток данной цепи будет равен векторной сумме всех трех токов, два из которых (а именно IL и IC) находятся в противофазе. Именно из – за того, что IL и IC находятся в противофазе в L-C контуре начинает протекать ток, который при резонансе может значительно превышать суммарный i. Условие, при котором ток в реактивных элементах будет больше сетевого, выглядит так:

Условие, при котором ток в реактивных элементах будет больше сетевого

Величина 1, для удобства расчета обозначена γ и имеет размерность проводимости. Данная величина называется волновой проводимостью контура.

Кратность тока в цепи с реактивными элементами и суммарным во всей цепи при резонансе может быть выражено:

Кратность тока в цепи с реактивными элементами и суммарным во всей цепи при резонансе

Где величина Q – добротность контура, а обратная добротности величина d = 1/Q – затухание контура.

Энергетический процесс при резонансе тока аналогичен процессу при резонансе напряжения. Теперь имеем pL = — pC, то есть pL+ pC = 0. Соответственно энергия будет переходить от конденсатора к индуктивности и наоборот, без участия внешнего источника напряжения. Внешний источник энергии перекрывает только потери, возникающие в элементе g.

elenergi.ru

Резонанс напряжений

Явление совпадения по фазе напряжения и тока в R,L,C-цепи называется электрическим резонансом.

В цепях переменного тока с последовательным соединением R,L,C- элементов при равенствевозникает резонанс напряжений.

При

т.е. резонанс напряжений наступает при равенстве реактивных сопротивлений.

Условием резонанса напряжений является равенство

(6-43)

или

(6-44)

Поэтому в цепи переменного тока резонанс напряжений может наступить:

  1. если при постоянных LиCчастота сигнала, подаваемого в цепь, изменяясь, становится равной ν ==; ()

  2. если при постоянной частоте входного сигнала и постоянной индуктивности емкость конденсатора меняется и становится равной: С = ;

  3. если при постоянной частоте входного сигнала и постоянной емкости меняется индуктивность и становится равной: L=;

  4. если при постоянной частоте входного сигнала изменение обеих величин LиCприводит к равенству:.

Таким образом, чтобы в цепи наступил резонанс напряжений, необходимо обеспечить определенное соотношение между величинами ν, L,C, т.е. резонанса в цепи можно добиться путем регулирования (подбора) параметров индуктивного и емкостного элементов, а также с помощью изменения частоты питающего тока. При резонансе частота тока (напряжения) равна частоте собственных колебаний цепи (контура).

Рис. 77 Графики и векторная диаграмма для резонанса напряжений.

При резонансе напряжений выражение

U==(6-45)

так как .

Полное сопротивление цепи

Z==R, (6-46)

так как =.

Полная мощность цепи

S==P, (6-47)

так как .

Фазовый сдвиг между током и напряжением

(6-48)

так как =следовательно.

Коэффициент мощности

= 1, (6-49)

так как Z=R

Таким образом, электрическая цепь переменного тока в режиме резонанса представляет собой чисто активную нагрузку.

Зависимость параметров цепи от частоты. Практический интерес представляют соотношения между параметрами цепи и их зависимость от частоты тока. На рис.78 а показаны

а б

Рис.78

кривые R=R(v). Т.к. активное сопротивление практически от частоты не зависит то графикR=R(v) представляет прямую параллельную оси абсцисс. Индуктивное сопротивлениепрямо пропорционально, а емкостное сопротивлениеобратно пропорционально частоте тока.

До резонанса , при резонансе, после резонанса. При резонансе полное реактивное сопротивление

=

Полное сопротивление цепи Z, также зависит от частоты. До и после резонанса оно растет за счет увеличенияили. При резонансеZ=R.

По закону Ома ток в последовательной R,L,C– цепи

. (6-50)

При резонансе (XL=XC) и ток равен максимальному значению, в то время как до (XL<XC) и после (XL>XC) резонанса он уменьшается. Приv=0,XC= ∞,I= 0. Аналогично приv=∞,XL=∞,I= 0. На рис. б показаны графикиI(v).

Кривая зависимости тока от частоты называется резонансной кривой. По характеру изменения тока в R,L,C– цепи легко установить состояние резонанса в ней – максимальное значение тока в цепи указывает на момент резонанса.

Рис. 79 Рис.80

Напряжение на резистивном элементе изменяется пропорционально току: При резонансе, когда ток максимален, напряжениеUaтакже максимально и равно напряжению источника питанияUист (рис. ). Приω= 0; ∞ токI= 0;Ua= 0. На рис.79а изображена зависимость

Напряжение на индуктивном элементе пропорционально токуIи частоте..

При увеличении частоты напряжение на индуктивном элементе растет и при частоте, близкой к резонансной, достигает максимального значения; по мере дальнейшего увеличения частоты ток, а следовательно, и индуктивное напряжение уменьшаются. При поэтому индуктивное напряжение равно напряжению источника питания. Криваяизображена на рис. 79а .

Напряжение на емкостном элементеследовательно, оно пропорционально токуIи обратно пропорционально частоте. ПриПоэтому емкостное напряжение компенсирует приложенное напряжение к цепи, т.е.При увеличении частоты напряжениерастет и при частоте, близкой к резонансной, достигает максимального значения; по мере дальнейшего увеличения частоты ток и емкостное напряжение уменьшаются. ПриКриваяизображена на рис. .

Сдвиг фаз определяется из выражения

При т.е., что соответствует.

При что соответствует

При т.е.График зависимостиизображен на рис. 80 .

studfile.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *