Закрыть

Роль конденсатора в дрели: алгоритм проверки эл/дрели — Электроинструмент

Содержание

Конденсатор вместо аккумулятора / Статьи и обзоры / Элек.ру

Для накопления электроэнергии люди сначала использовали конденсаторы. Потом, когда электротехника вышла за пределы лабораторных опытов, изобрели аккумуляторы, ставшие основным средством для запасания электрической энергии. Но в начале XXI века снова предлагается использовать конденсаторы для питания электрооборудования. Насколько это возможно и уйдут ли аккумуляторы окончательно в прошлое?

Причина, по которой конденсаторы были вытеснены аккумуляторами, была связана со значительно большими значениями электроэнергии, которые они способны накапливать. Другой причиной является то, что при разряде напряжение на выходе аккумулятора меняется очень слабо, так что стабилизатор напряжения или не требуется или же может иметь очень простую конструкцию.

Главное различие между конденсаторами и аккумуляторами заключается в том, что конденсаторы непосредственно хранят электрический заряд, а аккумуляторы превращают электрическую энергию в химическую, запасают ее, а потом обратно преобразуют химическую энерию в электрическую.

При преобразованиях энергии часть ее теряется. Поэтому даже у лучших аккумуляторов КПД составляет не более 90%, в то время, как у конденсаторов он может достигать 99%. Интенсивность химических реакций зависит от температуры, поэтому на морозе аккумуляторы работают заметно хуже, чем при комнатной температуре. Кроме этого, химические реакции в аккумуляторах не полностью обратимы. Отсюда малое количество циклов заряда-разряда (порядка единиц тысяч, чаще всего ресурс аккумулятора составляет около 1000 циклов заряда-разряда), а также «эффект памяти». Напомним, что «эффект памяти» заключается в том, что аккумулятор нужно всегда разряжать до определенной величины накопленной энергии, тогда его емкость будет максимальной. Если же после разрядки в нем остается больше энергии, то емкость аккумулятора будет постепенно уменьшаться. «Эффект памяти» свойственнен практически всем серийно выпускаемым типам аккумуляторов, кроме, кислотных (включая их разновидности — гелевые и AGM). Хотя принято считать, что литий-ионным и литий-полимерным аккумуляторам он не свойственнен, на самом деле и у них он есть, просто проявляется в меньшей степени, чем в других типах.

Что же касается кислотных аккумуляторов, то в них проявляется эффект сульфатации пластин, вызывающий необратимую порчу источника питания. Одной из причин является длительное нахождение аккумулятора в состоянии заряда менее, чем на 50%.

Применительно к альтернативной энергетике «эффект памяти» и сульфатация пластин являются серьезными проблемами. Дело в том, что поступление энергии от таких источников, как солнечные батареи и ветряки, сложно спрогнозировать. В результате заряд и разряд аккумуляторов происходят хаотично, в неоптимальном режиме.

Для современного ритма жизни оказывается абсолютно неприемлемо, что аккумуляторы приходится заряжать несколько часов. Например, как вы себе представляете поездку на электромобиле на дальние расстояния, если разрядившийся аккумулятор задержит вас на несколько часов в пункте зарядки? Скорость зарядки аккумулятора ограничена скоростью протекающих в нем химических процессов. Можно сократить время зарядки до 1 часа, но никак не до нескольких минут.

В то же время, скорость зарядки конденсатора ограничена только максимальным током, который дает зарядное устройство.

Перечисленные недостатки аккумуляторов сделали актуальным использование вместо них конденсаторов.

Использование двойного электрического слоя

На протяжении многих десятилетий самой большой емкостью обладали электролитические конденсаторы. В них одной из обкладок являлась металлическая фольга, другой — электролит, а изоляцией между обкладками — окись металла, которой покрыта фольга. У электролитических конденсаторов емкость может достигать сотых долей фарады, что недостаточно для того, чтобы полноценно заменить аккумулятор.

Сравнение конструкций разных типов конденстаторов (Источник: Википедия)

Большую емкость, измеряемую тысячами фарад, позволяют получить конденсаторы, основанные на так называемом двойном электрическом слое. Принцип их работы следующий. Двойной электрический слой возникает при определенных условиях на границе веществ в твердой и жидкой фазах. Образуются два слоя ионов с зарядами противоположного знака, но одинаковой величины. Если очень упростить ситуацию, то образуется конденсатор, «обкладками» которого являются указанные слои ионов, расстояние между которыми равно нескольким атомам.


Суперконденсаторы различной емкости производства Maxwell

Конденсаторы, основанные на данном эффекте, иногда называют ионисторами. На самом деле, этот термин не только к конденсаторам, в которых накапливается электрический заряд, но и к другим устройствам для накопления электроэнергии — с частичным преобразованием электрической энергии в химическую наряду с сохранением электрического заряда (гибридный ионистор), а также для аккумуляторов, основанных на двойном электрическом слое (так называемые псевдоконденсаторы). Поэтому более подходящим является термин «суперконденсаторы». Иногда вместо него используется тождественный ему термин «ультраконденсатор».

Техническая реализация

Суперконденсатор представляет собой две обкладки из активированного угля, залитые электролитом. Между ними расположена мембрана, которая пропускает электролит, но препятствует физическому перемещению частиц активированного угля между обкладками.

Следует отметить, что суперконденсаторы сами по себе не имеют полярности. Этим они принципиально отличаются от электролитических конденсаторов, для которых, как правило, свойственна полярность, несоблюдение которой приводит к выходу конденсатора из строя. Тем не менее, на суперконденсаторах также наносится полярности. Связано это с тем, что суперконденсаторы сходят с заводского конвейера уже заряженными, маркировка и означает полярность этого заряда.

Параметры суперконденсаторов

Максимальная емкость отдельного суперконденсатора, достигнутая на момент написания статьи, составляет 12000 Ф. У массово выпускаемых супероконденсаторов она не превышает 3000 Ф. Максимально допустимое напряжение между обкладками не превышает 10 В. Для серийно выпускаемых суперконденсаторов этот показатель, как правило, лежит в пределах 2,3 – 2,7 В.    Низкое рабочее напряжение требует использование преобразователя напряжения с функцией стабилизатора. Дело в том, что при разряде напряжение на обкладках конденсатора изменяется в широких пределах. Построение преобразователя напряжения для подключения нагрузки и зарядного устройства являются нетривиальной задачей. Предположим, что вам нужно питать нагрузку с мощностью 60 Вт.

Для упрощения рассмотрения вопроса пренебрежем потерями в преобразователе напряжения и стабилизаторе. В том случае, если вы работаете с обычным аккумулятором с напряжением 12 В, то управляющая электроника должна выдерживать ток в 5 А. Такие электронные приборы широко распространены и стоят недорого. Но совсем другая ситуация складывается при использовании суперконденсатора, напряжение на котором составляет 2,5 В. Тогда ток, протекающий через электронные компоненты преобразователя, может достигать 24 А, что требует новых подходов к схмотехнике и современной элементной базы. Именно сложностью с построением преобразователя и стабилизатора можно объяснить тот факт, что суперконденсаторы, серийный выпуск которых был начат еще в 70-х годах XX века, только сейчас стали широко использоваться в самых разных областях.


Принципиальная схема источника бесперебойного питания
напряжением на суперконденсаторах, основные узлы реализованы
на одной микосхеме производства LinearTechnology

Суперконденсаторы могут соединяться в батареи с использованием последовательного или параллельного соединения. В первом случае повышается максимально допустимое напряжение. Во втором случае — емкость. Повышение максимально допустимого напряжения таким способом является одним из способов решения проблемы, но заплатить за нее придется снижением емкости.

Размеры суперконденсаторов, естественно, зависят от их емкости. Типичный суперконденсатор емкостью 3000 Ф представляет собой цилиндр диаметром около 5 см и длиной 14 см. При емкости 10 Ф суперконденсатор имеет размеры, сопоставимые с человеческим ногтем.

Хорошие суперконденсаторы способны выдержать сотни тысяч циклов заряда-разряда, превосходя по этому параметру аккумуляторы примерно в 100 раз. Но, как и у электролитических конденсаторов, для суперконденсаторов стоит проблема старения из-за постепенной утечки электролита. Пока сколь-нибудь полной статистики выхода из строя суперконденсаторов по данной причине не накоплено, но по косвенным данным, срок службы суперконденсаторов можно приблизительно оценить величиной 15 лет.

Накапливаемая энергия

Количество энергии, запасенной в конденсаторе, выраженное в джоулях:

E = CU2/2,
где C — емкость, выраженная в фарадах, U — напряжение на обкладках, выраженное в вольтах.

Количество энергии, запасенной в конденсаторе, выраженное в кВтч, равно:

W = CU2/7200000

Отсюда, конденсатор емкостью 3000 Ф с напряжением между обкладками 2,5 В способен запасти в себе только 0,0026 кВтч. Как это можно соотнести, например, с литий-ионным аккумулятором? Если принять его выходное напряжение не зависящим от степени разряда и равным 3,6 В, то количество энергии 0,0026 кВтч будет запасено в литий-ионном аккумуляторе емкостью 0,72 Ач. Увы, весьма скромный результат.

Применение суперконденсаторов

Системы аварийного освещения являются тем местом, где использование суперконденсаторов вместо аккумуляторов дает ощутимый выигрыш. В самом деле, именно для этого применения характерна неравномерность разрядки. Кроме этого, желательно, чтобы зарядка аварийного светильника происходила быстро, и чтобы используемый в нем резервный источник питания имел большую надежность. Источник резервного питания на основе суперконденсатора можно встроить непосредственно в светодиодную лампу T8. Такие лампы уже выпускаются рядом китайских фирм.


Грунтовый светодиодный светильник с питанием
от солнечных батарей, накопление энергии
в котором осуществляется в суперконденсаторе

Как уже отмечалось, развитие суперконденсаторов во многом связано с интересом к альтернативным источникам энергии. Но практическое применение пока ограничено светодиодными светильниками, получающими энергию от солнца.

Активно развивается такое направление как использование суперконденсаторов для запуска электрооборудования.

Суперконденсаторы способны дать большое количество энергии в короткий интервал времени. Запитывая электрооборудование в момент пуска от суперконденсатора, можно уменьшить пиковые нагрузки на электросеть и в конечном счете уменьшить запас на пусковые токи, добившись огромной экономии средств.

Соединив несколько суперконденсаторов в батарею, мы можем достичь емкости, сопоставимой с аккумуляторами, используемыми в электромобилях. Но весить эта батарея будет в несколько раз больше аккумулятора, что для транспортных средств неприемлемо. Решить проблему можно, используя суперконденсаторы на основе графена, но они пока существуют только в качестве опытных образцов. Тем не менее, перспективный вариант знаменитого «Ё-мобиля», работающий только от электричества, в качестве источника питания будет использовать суперконденсаторы нового поколения, разработка которых ведется российскими учеными.

Суперконденсаторы также дадут выигрыш при замене аккумуляторов в обычных машинах, работающих на бензине или дизельном топливе — их использование в таких транспортных средствах уже является реальностью.

Пока же самым удачным из реализованных проектов внедрения суперконденсаторов можно считать новые троллейбусы российского производства, вышедшие недавно на улицы Москвы. При прекращении подачи напряжения в контактную сеть или же при «слетании» токосъемников троллейбус может проехать на небольшой (порядка 15 км/ч) скорости несколько сотен метров в место, где он не будет мешать движению на дороге. Источником энергии при таких маневрах для него является батарея суперконденсаторов.

В общем, пока суперконденсаторы могут вытеснить аккумуляторы только в отдельных «нишах». Но технологии бурно развиваются, что позволяет ожидать, что уже в ближайшем будущем область применения суперконденсаторов значительно расширится.

Алексей Васильев

Дрель. Виды и устройство. Применение и работа. Как выбрать

Электрическая дрель является востребованным строительным и монтажным инструментом, который выполняет сверлильные работы. На этом сфера ее использования не заканчивается. Благодаря массе насадок, инструмент может выполнять целый набор функций, начиная от размешивания строительных смесей, полировки и заканчивая заточкой сверл.

Устройство и принцип действия
Дрель представляет собой компактную и легкую конструкцию, основными частями которой являются:

Принцип работы дрели заключается в том, что электрический двигатель передает крутящий момент через редуктор на патрон, который фиксирует сверло. Благодаря применению понижающего обороты механизма, сверло крутится немного медленнее, чем сам двигатель, но при этом обладает увеличенной силой, поэтому не останавливается при сопротивлении.

Разновидности дрелей

Дрель является довольно простым инструментом, который имеет несложную конструкцию. Тем не менее существуют несколько ее разновидностей, которые отличаются по строению редуктора и имеют различные направления использования.

Дрели бывают следующих видов:
  • Обычные.
  • Ударные.
  • Миксерного типа.
  • Шуруповертного типа.

Каждый из этих инструментов имеет свои преимущества и недостатки. Все они пригодны для проведения сверлильных работ, но имеют различные дополнительные функции. При выборе инструмента нужно определиться, для каких задач он будет использован, что позволит облегчить дальнейшую эксплуатацию.

Обычная конструкция

Обычная дрель является очень компактной и легкой. Ее можно использовать для сверления древесины, пластика и металла. Она обеспечивает создание аккуратного отверстия. Такой инструмент зачастую имеет возможность регулировки оборотов, что бывает полезно при необходимости сверления специфических материалов, когда нежелательно доводить сверло до перегрева. Практически все модели обычных дрелей оснащены ресивером. При его переключении изменяется направление вращения патрона. Это позволяет выворачивать сверло, если оно застревает.

Ударная конструкция

Ударные дрели имеют слегка измененный редуктор, в который добавлено две шестерни. В результате вращения двигателя обеспечивается не только передача оборотов на патрон, но и его резкое возвратно-поступательное перемещение. Благодаря этому, сверление имеет эффект долота. Он необходим при работе с камнем, бетоном и кирпичом. Ударные модели позволяют сверлить стены, в то время как обычные дрели этого не могут.

При этом ударные дрели имеют два режима работы. В первом происходит простое вращение патрона, как в обычной конструкции, а во втором задействуются дополнительные шестерни, обеспечивающие возвратно-поступательное движение. На первый взгляд ударная конструкция похожа на перфоратор, но это не так. В перфораторе используется пневматический механизм, который более надежен и эффективен, благодаря чему пробивание отверстий происходит быстрее.

Миксерный тип

Миксерная дрель имеет более увеличенный редуктор. Благодаря этому она обладает значительной силой, но выдает низкие обороты. Такой инструмент тяжелее первых двух разновидностей и работает медленней. Несмотря на это, им вполне можно сверлить металл, пластмассу и дерево. Преимущество миксерной конструкции заключается в высокой тягловой силе редуктора. Установив в патрон специальную насадку с лопастями, можно проводить замешивание строительных смесей, таких как бетон, клей или штукатурка.

Шуруповертный тип

Дрель шуруповертного типа может быть использована для сверления как обычная, а также проводить вкручивание и выкручивание шурупов. Она имеет широкий диапазон регулировки скорости вращения. Кроме этого, в ее конструкции предусмотрена специальная трещотка. Ее задача заключается в отключении передачи вращения на патрон при определенном усилии, сила которого выставляется с помощью регулировочной шкалы. Это необходимо для предотвращения срывания резьбы в посадочном отверстии шурупа.

Рекомендации по выбору
При выборе инструмента следует обращать внимание на следующие характеристики:
Мощность электромотора

Что касается мощности электромотора, то для обычной дрели вполне достаточно 500 Вт. Более слабые инструменты пригодны только для работы с деревом. При сверлении металла они не могут противостоять трению и сверло останавливается. Оптимальная мощность для ударного инструмента 700 Вт и выше. Для дрелей миксерного типа нужно выбирать от 800-1000 Вт. Что касается шуруповертов, то лучше всего смотреть на инструменты мощностью от 450 Вт.

Количество оборотов в минуту

Количество оборотов в минуту играет важную роль, поскольку этот показатель указывает на скорость сверление и силу редуктора. Хорошие обычные и ударные дрели имеют показатель вращения от 3000 оборотов в минуту. Для миксеров этот показатель должен быть в районе 600 оборотов. При выборе шуруповерта лучше обращать внимание на инструменты с переключением режимов на сверление и закручивание шурупов. Оптимальная скорость на первом положении переключателя должна быть в пределах 400 оборотов, а на втором 1500 и выше. Если переключение невозможно, то стоит остановиться на 700 оборотах в минуту.

Вес

Вес дрели должен быть комфортным для работы. Если она будет эксплуатироваться постоянно, то лучше более легкая конструкция. Это позволит снизить нагрузку на руки. В случае, когда дрель будет использоваться изредка, можно взять и более тяжелую, но доступную модель. Нормальными считаются инструменты в пределах 1,2-1,7 кг. Для миксеров показатель гораздо выше и составляет 2,7-3 кг.

Наличие дополнительных регулировок

Особое внимание при выборе инструмента нужно обратить на наличие дополнительных регулировок. Желательна возможность изменения скорости оборотов. Для этого в конструкции может быть предусмотрен специальный регулятор, который изменяет параметры электрического питания двигателя. Также бывает переключатель для изменения настроек редуктора. Нередко дрели имеют оба режима регулировки. Еще одним важным моментом является наличие ресивера, для изменения направления вращения электромотора.

Тип патрона

Инструменты могут оснащаться двумя типами патронов – под ключ или быстрозажимным. Первый зажимает сверло с помощью специального ключа. Такая конструкция очень надежная, поскольку обеспечивается уверенная фиксация. Быстрозажимной патрон работает без ключа. Его нужно зажимать и разжимать только с помощью силы рук. При работе с ним можно быстро менять сверла и не нужно искать ключ, но прокручивание сверла при углублении в жесткий материал не редкость.

Источник питания

Также нужно обратить внимание на источник питание дрели. Она может работать от сети или аккумулятора. Сетевые модели стоят дешевле, но для них нужно искать розетку и использовать удлинитель. Аккумуляторные инструменты таких недостатков не имеют, но все же, если их забыть зарядить, то просверлить даже одно отверстие не получится. Нужно отметить, что выбирая автономный инструмент, стоит обратить внимание на тип батареи. Она не должна иметь «эффекта памяти». Это позволит проводить подзарядку даже если батарея еще не села полностью.

Полезные насадки

Применение дрели не ограничивается только сверлением, закручиванием шурупов или замешиванием строительного раствора. Существует масса полезных насадок, которые расширяют ее возможности. Их использование позволяет заменить целый арсенал инструментов. Одним из самых интересных является помпа. С ее помощью можно проводить перекачивание воды. Это очень удобно, особенно если использовать аккумуляторную дрель, что позволяет превращать ее в насос даже там, где нет электричества.

Также весьма интересной насадкой являются ножницы для резки тонкого листового металла. Они обеспечивают аккуратный срез любой формы. При этом отсутствует шум и искры, как при работе угловой шлифовальной машины типа «болгарка». Кроме этого ножницы не перегревают металл, что очень важно, если нужно раскроить сайдинг или металлопрофиль, который покрыт краской. В таком случае защитный полимерный слой не обгорает, благодаря чему края выглядят аккуратно и не ржавеют.

На дрель возможна установка даже насадки для затягивания заклепок. Такое усовершенствование инструмента позволяет повысить эффективность труда, что особенно важно в тех случаях, когда нужно работать быстро и долго. Такая насадка будет незаменимой для закрепления сайдинга или металлопрофиля. Она обеспечивает очень надежное затягивание и аккуратный обрыв ножки заклепки.

На этом перечень насадок не заканчивается. Существует еще масса интересных приспособлений, которые работают совместно с дрелью. К ним можно отнести спрут для снятия рыбной чешуи, бильные пальцы для ощипывания перья птиц и даже конструкцию для заточки сверл.

Похожие темы:

Конденсатор трамблера. зачем нужен? | Twokarburators.ru

На трамблере (распределителе зажигания) «классических» автомобилей ВАЗ с контактной системой зажигания устанавливается конденсатор.

Разберемся, что это такое, зачем он нужен и как работает. В качестве примера используем конденсатор, установленный на трамблер автомобилей ВАЗ 2104, 2105, 2107 с контактной системой зажигания карбюраторного двигателя.

Что такое конденсатор?

Конденсатор это устройство, позволяющее накапливать, а затем отдавать электрический заряд.

Своего рода маленькая аккумуляторная батарея. Состоит из двух электродов разделенных диэлектриком. Если на него подать электрический ток, то он начнет скапливаться на электродах конденсатора. Основное свойство конденсатора- это емкость.

В трамблере он подключен параллельно контактам прерывателя.

Зачем нужен конденсатор в контактной системе зажигания?

Если коротко — для повышения напряжения выдаваемого катушкой на свечи зажигания.

Подробнее о работе конденсатора. Как известно контактная система зажигания работает за счет принудительного размыкания контактов прерывателя в трамблере. Каждое размыкание — это прерывание электрического тока, протекающего через первичную обмотку катушки зажигания. После чего магнитное поле в катушке зажигания резко сокращается и пересекая витки вторичной и первичной обмоток индуктирует ЭДС порядка 14000-24000 В. Что выливается в мощную искру на свечах. Двигатель при этом работает ровно, хорошо тянет, свечи коричневые. Чем быстрее сокращение магнитного поля тем выше ЭДС и сильнее искра и лучше работа двигателя.

Но тут возникают проблемы, так как индуктируемая в первичной обмотке ЭДС  (ЭДС самоиндукции) пытается поддержать исчезающий электрический ток и замедляет сокращение магнитного поля. Напряжение снижается, искра становится недостаточно мощной. Двигатель вдруг «затроил» или вообще заглох. В качестве бонуса ЭДС самоиндукции вызывает сильное искрение между контактами прерывателя, что ускоряет их износ.

Чтобы не допустить такие негативные явления, в электрическую цепь включен конденсатор (установленный на трамблере). В начальный момент размыкания контактов ток самоиндукции заряжает конденсатор, что уменьшает прохождение тока между контактами прерывателя и снижает искрение между ними. Затем конденсатор разряжается через первичную обмотку катушки зажигания, причем ток разряда направлен против тока самоиндукции, благодаря чему исчезновение магнитного поля в катушке происходит быстрее и она выдает ток высокого напряжения в высоковольтную цепь. Работа двигателя восстанавливается до нормы.

Если бы не было конденсатора, то катушка выдавала бы всего 4000-5000 В.

Большое значение имеет емкость конденсатора. При слишком большой емкости искрение между контактами прерывателя будет незначительным, но увеличится время заряда и разряда конденсатора, что уменьшит ЭДС индуктируемую во вторичной обмотке. При малой емкости конденсатора искрение будет больше, но ЭДС так же уменьшится так ток его разряда будет низкий и не сможет противодействовать замедлению исчезновения магнитного поля в катушке зажигания. В результате снижение напряжения в высоковольтной цепи системы зажигания и слабая искра.

Неисправности конденсатора трамблера ВАЗ 2101, 2102, 2103, 2106, 2121

Основной неисправностью конденсатора в контактной системе зажигания является его «пробой» на «массу». При этом двигатель автомобиля может не запуститься вовсе или будет запускаться и глохнуть, либо внезапно заглохнет во время движения. Характерными внешними признаками неисправности являются: сильное искрение между контактами прерывателя при пуске двигателя и очень слабая искра или полное ее отсутствие.

Конденсатор можно проверить и в случае обнаружения неисправности заменить новым.

Примечания и дополнения

— Параметры работы конденсатора автомобилей ВАЗ 2105, 2107: емкость конденсатора замеряется в диапазоне частоты 50 – 1000 Гц и находится в пределах 0,20-0,25 мкФ, сопротивление изоляции при температуре (100±2)ºС и напряжении постоянного тока 100 В должно быть более 1 МОм/мкФ.

TWOKARBURATORS VK -Еще информация по теме в нашей группе ВКонтакте

Еще статьи по электрооборудованию автомобилей ВАЗ 2104, 2105, 2107

— Центробежный регулятор опережения зажигания трамблера ВАЗ 2101-2107

— Схема контактной системы зажигания автомобилей ВАЗ 2101, 2102, 2103, 2106, 2121

— Катушка зажигания Б-117А

— Свеча зажигания А17ДВ, характеристики, применяемость

— Проверка катушки зажигания ВАЗ 2101-2107

— Свечи зажигания NGK на «классику» ВАЗ

Однофазный двигатель с конденсатором — советы электрика

Однофазные электродвигатели 220в: особенности подключения

В наше время трудно найти человека, который бы не знал что такое однофазный электродвигатель. Однофазные электродвигатели 220 в выпускаются серийно уже довольно много лет. Они востребованы в сельском хозяйстве, быту человека, на производстве, в частных и государственных мастерских. Однофазные двигатели 220 В пользуются высокой популярностью.

Общие понятия

Асинхронный двигатель 220 вольт, однофазный, требует питания переменным электрическим током, сеть для подключения такого агрегата должна быть однофазной. Однофазные двигатели 220 в работают при напряжении в сети 220 вольт, частоте 50 герц.

Эти электрические величины поддерживаются во всех бытовых электрических сетях, в домах, квартирах, дачах, коттеджах, по всей территории России, а в США напряжение в бытовой электрической сети составляет 110 вольт.

На производстве же в нашей стране сетевое напряжение имеется однофазное, трёхфазное, и другие виды электрических сетей.

Применение однофазных моторов

Такой тип моторов применяют для работы устройств с малой мощностью.

  1. Бытовая техника.
  2. Вентиляторы небольшого размера.
  3. Электронасосы.
  4. Станки, предназначенные для обработки сырья.

Заводы производят электродвигатели однофазные 220 В малой мощности различных моделей, с разным числом оборотов и мощностью. Стоит отметить, что однофазные моторы уступают трёхфазным в нескольких параметрах.

  1. Эти моторы имеют меньшие значения КПД.
  2. Пускового момента.
  3. Мощности.
  4. Способность выдерживать перегрузку у трёхфазных электромоторов выше, чем у однофазных.

Эти параметры меньше при условии, когда трёхфазные моторы имеют такой же размер.

Устройство электродвигателя

Однофазные двигатели 220 В имеют две фазы, но основная работа выполняется одной, и такие моторы стали называть однофазными. В состав мотора входят следующие детали.

  1. Статор, или неподвижная часть мотора.
  2. Ротор, или подвижная (вращающаяся) часть мотора.

Однофазный электромотор можно охарактеризовать как асинхронный электрический мотор, в котором имеется рабочая обмотка на его неподвижной части, она подключается к сети переменного однофазного тока.

Пусковая катушка

Для того чтобы однофазный мотор мог самостоятельно запускаться и начинать вращение, на них устанавливается ещё одна катушка. Она разработана для запуска двигателя.

Пусковая катушка устанавливается по отношению к рабочей со смещением на 90 градусов. Для того чтобы получить сдвиг токов, следует установить в цепь звено, которое будет сдвигать фазы.

В качестве фазосдвигающего звена могут выступать несколько средств.

  1. Активный резистор.
  2. Конденсатор.
  3. Катушка индуктивности.

Ротор и статор мотора металлические. Для того чтобы изготовить ротор или статор, нужна специальная электротехническая сталь марки 2212.

Двух и трёхфазные моторы

Существует возможность 2 или 3-фазный мотор подключить к однофазному источнику питания. Иногда по ошибке такие моторы называют однофазными. Это заблуждение, правильно будет называть это «двух (или трёх) фазный электромотор, подключённый в однофазную сеть питания переменного тока». Просто подключить двух или трёхфазный мотор в однофазную сеть не получится. Нужна схема согласования.

Таких схем есть несколько, согласование можно реализовать при помощи конденсаторов. После подключения к мотору конденсаторов согласно схеме, мотор будет работать, причём все фазы мотора будут работать, они всё время будут находиться под напряжением и выполнять работу по вращению ротора.

Принцип действия

Переменный электроток создаёт магнитное поле в статоре, которое имеет два поля, они одинаковы по амплитуде, частоте, но разнонаправленны.

Эти поля воздействуют на неподвижный ротор, и, вследствие того, что поля разнонаправленны, ротор начинает вращение. При отсутствии в моторе пускового механизма, то ротор будет стоять на месте.

Ротор, начав вращение в одну сторону, будет вращаться далее в этом же направлении.

Запуск мотора

Посредством магнитного поля производится запуск мотора, магнитное поле, воздействуя на ротор, принуждает его вращаться. Создают магнитное поле главная и дополнительная катушки, пусковая имеет меньший размер, подключается она к дополнительной через конденсатор, катушку индуктивности или активный резистор.

Если мотор низкой мощности, пусковая фаза замкнута. Чтобы запустить такой двигатель, подключать электричество к пусковой катушке можно лишь временно, не более чем на три секунды. Для этого существует пусковая кнопка. Кнопка вставлена в пусковое устройство.

Когда происходит нажатие пусковой кнопки, происходит подача электроэнергии на рабочую и на пусковую катушку одновременно, двигатель в эти первые секунды запуска работает как двухфазный, но через три секунды ротор уже набрал обороты, мотор запустился, и кнопка отпускается. Прекращается подача электроэнергии на пусковую катушку, но подача электричества на рабочую обмотку не прекращается, так устроено пусковое устройство, затем устройство работает уже как однофазное.

Важно помнить, что не следует долго держать пусковую кнопку, так как пусковая катушка может перегреться и выйти со строя, она рассчитана на работу несколько секунд. Для обеспечения безопасности в корпусе однофазного силового агрегата может быть встроено тепловое реле, центробежный выключатель.

Центробежный выключатель устроен таким образом, что когда ротор набрал обороты, центробежный выключатель выключается сам, без вмешательства человека. Пусковой ток однофазного двигателя выше рабочего, после запуска ток снижается до уровня рабочего.

Схему подключения однофазного двигателя смотрите здесь.

Тепловое реле

Тепловое реле действует следующим образом: при нагревании обмоток до установленного на реле предела, реле производит прекращение подачи электроэнергии на обе фазы, таким образом, исключается выход из строя при перегрузке или другой причине, это не даст возникнуть пожару.

Достоинства

К положительным качествам такого мотора можно отнести простоту его устройства, ротор в этой конструкции короткозамкнутый, обмотка статора не представляет собой большой сложности.

Недостатки

Кроме достоинств, в этом моторе имеются и некоторые недостатки.

  1. Невысокий пусковой момент мотора.
  2. Низкий КПД электродвигателя.
  3. Электродвигатель не способен генерировать магнитное поле, которое выполняет вращение.

По этой причине такой двигатель сам не может начать вращение. Дело в том что для того, чтобы мотор начал вращение, он должен иметь не менее двух обмоток, а следовательно, и двух фаз, но мотор имеет одну фазу изначально, таково его устройство. Кроме наличия двух фаз, требуется чтобы одна обмотка была смещена по отношению к другой на определённый угол.

Подключение двигателя

Подключать двигатель нужно в однофазную сеть переменного напряжения 220 вольт, частотой 50 герц. Эти номиналы электроэнергии имеются во всех жилых помещениях нашей страны, и вследствие этого однофазные моторы имеют огромную популярность. Они установлены во всей бытовой технике, такой как.

  1. Холодильник.
  2. Пылесос.
  3. Соковыжималка.
  4. Триммер.
  5. Кусторез электрический.
  6. Швейная машинка.
  7. Электродрель.
  8. Миксер кухонный.
  9. Вентилятор.
  10. Насос водяной.

Разновидности подключения

  1. Подключение с пусковой катушкой.
  2. Подключение с рабочим конденсатором.

Электродвигатели однофазные 220 В малой мощности с пусковой катушкой имеют включённый в цепь конденсатор во время старта. После разгона ротора катушка отключается. Если мотор сделан с рабочим конденсатором, цепь пуска не размыкается, идёт постоянная работа пусковой обмотки через конденсатор.

Существует возможность использовать один электромотор для разных целей. Один и тот же мотор можно снять с одной техники и установить на другую. Включать однофазный двигатель можно тремя схемами.

  1. Происходит временное включение электричества на пусковую обмотку через конденсатор.
  2. Происходит кратковременная подача напряжения на пусковое устройство через резистор, без конденсатора.
  3. Электричество подаётся через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.

При использовании в цепи пуска резистора, обмотка будет иметь активное сопротивление выше. Произойдёт сдвиг фаз, достаточный для начала вращения. Можно использовать пусковую обмотку, в которой большее сопротивление и меньшая индуктивность. Чтобы обмотка соответствовала своим параметрам, она должна иметь меньше витков, тоньше провод.

Конденсаторный пуск представляет собой подключение конденсатора к пусковой обмотке и временную подачу электроэнергии.

Обратите внимание

Чтобы достичь максимального значения момента пуска, нужно круговое магнитное поле, оно должно выполнить вращение. Для этого нужно расположение обмоток под углом 90 градусов. Такого сдвига резистором добиться невозможно.

Если ёмкость конденсатора рассчитать правильно, то удастся сдвинуть обмотки под угол 90 градусов.

Вычисление принадлежности проводов

Чтобы вычислить провода, подключающие пусковую обмотку и рабочую, нужно иметь прибор, измеряющий омы или тестер. Нужно замерять сопротивления обмоток.

Сопротивление рабочей обмотки должно быть меньше, чем пусковой. Например, если замеры показали у одной обмотки 12 Ом, а у другой 30 Ом, то первая из них рабочая, а вторая пусковая.

Рабочая обмотка будет иметь большее сечение чем пусковая.

Подборка ёмкости конденсатора

Чтобы подобрать ёмкость конденсатора, нужно знать, какой ток потребляет электромотор. Если он потребляет ток 1,4 ампера, то нужен конденсатор, ёмкость которого составляет 6 микрофарад.

Проверка работоспособности

Начать проверку следует с визуального осмотра.

  1. Если у агрегата была отломана опора, то вследствие этого он тоже мог работать плохо.
  2. В случае если потемнел корпус посередине, это говорит о том что он чрезмерно перегревался.
  3. Возможно, что в разрез корпуса попали разные посторонние вещи, это будет замедлять его и способствовать перегреву.
  4. Если подшипники загрязнены, будет происходить перегревание.
  5. Износ подшипников будет причиной перегревания.
  6. Если к пусковой обмотке 220v подключён конденсатор завышенной ёмкости, то он будет перегреваться. При подозрении на конденсатор нужно отключить его от пусковой обмотки, включить двигатель в сеть, вручную прокрутить вал, произойдёт запуск и начнётся вращение. Нужно дать мотору поработать около пятнадцати минут, затем проверить, не нагрелся ли он. Если мотор не нагрелся, то причина была в повышенной ёмкости конденсатора. Нужно установить конденсатор меньшей ёмкости.

Электродвигатели однофазные 220 в малой мощности выпускаются совершенно разных моделей и для разных целей, и, прежде чем купить изделие, нужно чётко понимать, какова нужна мощность, тип крепления, количество оборотов в минуту, и прочие характеристики.

Источник: https://obrabotkametalla.info/elektrik/odnofaznye-elektrodvigateli-220v

Схема подключения однофазного двигателя с пусковой обмоткой

Как определить рабочую и пусковую обмотки у однофазного двигателя

Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

А теперь несколько примеров, с которыми вы можете столкнуться:

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в.

Важно

И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку.

Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов.

Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет.

Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только.

В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя.

также осуществляется через конденсатор.

Источник: http://studvesna73.ru/07/23/5772/

Трехфазный асинхронный двигатель – подключение на 220 вольт

Бытовых ситуаций много, особенно у тех, кто проживает в своем собственном частном доме. К примеру, необходимо установить в гараже точильный станок с асинхронным электродвигателем, который работает от трехфазной сети переменного тока.

А на участок проведена лишь однофазная сеть на 220 В. Что делать? В принципе, это не проблема, потому что любой трехфазный электрический движок можно подключить и к однофазной сети, главное знать, как это сделать.

Итак, наша задача в этой статье разобраться в позиции – асинхронный двигатель подключение на 220 вольт.

Совет

Существуют две классические схемы такого подключения, в которых присутствуют конденсаторы. То есть, сам электродвигатель становится не асинхронным, а конденсаторным. Вот эти схемы:

Конечно, это не единственные варианты, но в этой статье будем говорить именно о них, как о самых простых и часто используемых.

На схемах хорошо видно, что в них установлены конденсаторы: рабочий и пусковой, которые в свою очередь называются фазосдвигающими. А так как в данной схеме эти элементы являются основными, то самый важный момент – это правильно подобрать конденсатор по емкости, которая бы соответствовала мощности мотора.

Выбираем конденсаторы

Существует формула, по которой емкость можно рассчитать. Правда, для схемы звезда и треугольника она отличается коэффициентом. Для схемы звезда формула вот такая:

С=2800*I/U, где I – это ток, который можно замерить в питающем проводе клещами, U – это напряжение однофазной сети – 220 В.

https://www.youtube.com/watch?v=Ne4ccjbUY9M

Формула для треугольника:

С=4800*I/U.

Здесь загвоздка может быть только в определение силы тока, просто клещей может не оказаться под рукой, поэтому предлагаем упрощенный вариант формулы:

С=66*Р, где Р – это мощность электродвигателя, которая наносится на шильдик мотора или в его паспорте. По сути, получается так, что емкость рабочего конденсатора в размере 7 мкФ должно хватить на 0,1 кВт мощности двигателя.

Обычно электрики берут именно это соотношение, когда перед ними ставиться вопрос, как подключить асинхронный двигатель с 380 на 220 В. И еще один момент – конденсатор контролирует силу тока, поэтому так важно правильно подобрать его емкость.

И самое главное в подключении двигателя добиться того, чтобы значение тока при эксплуатации электродвигателя не поднималось выше номинальной величины.

Что касается пускового конденсатора, то его обязательно устанавливают в схему, если при пуске мотора действует хотя бы минимальная нагрузка. Включается он обычно буквально на пару секунд, пока ротор не наберет свои обороты. После чего он просто отключается. Если по каким-то причинам пусковой конденсатор не отключится, то произойдет перекос фаз, и двигатель перегреется.

Есть еще один показатель, на который необходимо обратить внимание при выборе. Это напряжение. Правило здесь одно: напряжение конденсатора должно быть больше напряжения в однофазной сети на 1,5.

Тип конденсаторов

Специалисты рекомендуют в качестве пускового и рабочего конденсаторов использовать одинаковые модели. Самый простой вариант – это бумажные конструкции в герметичном металлическом корпусе.

Правда, есть у них один существенный недостаток – большие габаритные размеры.

Поэтому если перед вами стоит вопрос, как подключить небольшой мощности двигатель 380 на 220 вольт, то количество таких конденсаторов будет приличным, и вся конструкция будет смотреться не очень.

Можно использовать для этих целей электролитические приборы, но их схема подключения отличается от предыдущей, потому что в нее придется установить резисторы и диоды. К тому же эти конденсаторы при пробое взрываются. Есть более современные виды – это полипропиленовые модели металлизированного типа. Себя они зарекомендовали хорошо, претензий к ним сейчас у специалистов нет.

Полезные советы

  • Обращаем ваше внимание на тот факт, что при подключении трехфазного двигателя к однофазной сети можно говорить и снижении мощности электрического агрегата. В общем, его фактический показатель не будет превышать номинальный 70-80%. При этом скорость вращения ротора не уменьшится.
  • Если используемый движок имеет схему переключения 380/220, это обязательно указывается на шильдике, то в однофазную сеть его надо подключать только треугольником.
  • В том случае, если на шильдике указаны схема подключения звездой и только трехфазное подключение на 380 вольт, то вам придется вскрыть клеммную коробку и добраться до соединения концов обмоток двигателя. Потому что внутри агрегата уже установлена схема звезда, ее-то и придется разобрать и вывести наружу шесть концов обмотки статора.

Установка реверса

Иногда возникает необходимость провести подключение так, чтобы трехфазный двигатель, подсоединенный к однофазной сети, вращался то в одну, то в другую стороны. Для этого необходимо установить в схему любой управляющий прибор. Это может быть тумблер, кнопка или ключи управление. Но здесь есть два основных требования:

  1. Обращайте внимание на силу тока, которую этот управляющий прибор может выдержать. Чтобы он был больше нагрузки, создаваемой электродвигателем.
  2. В конструкции управляющего прибора должно быть две пары контактов: нормально замкнутые и нормально разомкнутые.

Вот схема, по которой подключается этот элемент в питание электродвигателя:

Здесь видно, что реверс осуществляется подачей электроэнергии на разные полюса конденсаторов.

Заключение по теме

Схема трехфазного асинхронного двигателя с подключением к 220 вольт – дело реальное. Проблем с ним быть не должно. Здесь главное, и это было показано в статье, правильно подобрать конденсаторы (рабочие и пусковые) и правильно выбрать схему подключения. Особое внимание придется уделить правилам соединения, где в основе будет лежать сам двигатель, а, точнее, его возможности.

Источник: http://OnlineElektrik.ru/eoborudovanie/edvigateli/trexfaznyj-asinxronnyj-dvigatel-podklyuchenie-na-220-volt.html

Как подключить однофазный электродвигатель через конденсатор – особенности разных схем

Главная » Электрооборудование » Электродвигатели » Однофазные » Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения

Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения

В технике нередко используются двигатели асинхронного типа. Такие агрегаты отличаются простотой, хорошими характеристиками, малым уровнем шума, легкостью эксплуатации. Для того, чтобы асинхронный двигатель вращался, необходимо наличие вращающегося магнитного поля.

Такое поле легко создается при наличии трехфазной сети. В этом случае в статоре двигателя достаточно расположить три обмотки, размещенные под углом 120 градусов друг от друга и подключить к ним соответствующее напряжение. И круговое вращающееся поле начнет вращать статор.

Однако бытовые приборы обычно используются в домах, в которых чаще всего имеется только однофазная электрическая сеть. В этом случае обычно применяются однофазные двигатели асинхронного типа.

Почему применяют запуск однофазного двигателя через конденсатор?

Если на статоре двигателя поместить одну обмотку, то при протекании переменного синусоидального тока в ней образуется пульсирующее магнитное поле. Но это поле не сможет заставить ротор вращаться. Чтобы запустить двигатель надо:

  • на статоре разместить дополнительную обмотку под углом около 90° относительно рабочей обмотки;
  • последовательно с дополнительной обмоткой включить фазосдвигающий элемент, например, конденсатор.

В этом случае в двигателе возникнет круговое магнитное поле, а в короткозамкнутом роторе возникнут токи.

Взаимодействие токов и поля статора приведет к вращению ротора. Стоит напомнить, что для регулировки пусковых токов — контроль и ограничение их величины — используют частотный преобразователь для асинхронных двигателей .

Варианты схем включения — какой метод выбрать?

  • пусковым,
  • рабочим,
  • пусковым и рабочим конденсаторами.

Наиболее распространенной методом является схема с пусковым конденсатором .

В этом случае конденсатор и пусковая обмотка включаются только на момент старта двигателя. Это связано со свойством продолжения агрегатом своего вращения даже после отключения дополнительной обмотки. Для такого включения чаще всего используется кнопка или реле .

Поскольку пуск однофазного двигателя с конденсатором происходит довольно быстро, то дополнительная обмотка работает небольшое время.

Это позволяет для экономии выполнять ее из провода с меньшим сечением, нежели основная обмотка. Для предупреждения перегрева дополнительной обмотки в схему часто добавляют центробежный выключатель или термореле.

Обратите внимание

Эти устройства отключают её при наборе двигателем определенной скорости или при сильном нагреве.

Схема с пусковым конденсатором имеет хорошие пусковые характеристики двигателя. Но рабочие характеристики при таком включении ухудшаются.

Это связано с принципом работы асинхронного двигателя. когда вращающееся поле является не круговым, а эллиптическим. В результате этого искажения поля возрастают потери и падает КПД.

Есть несколько вариантов подключения асинхронных двигателей под рабочее напряжение. Соединение звездой и треугольником (а также комбинированный способ) имеют свои преимущества и недостатки. Выбранный метод включения влияет на пусковые характеристики агрегата и его рабочую мощность.

Принцип действия магнитного пускателя основан на возникновении магнитного поля при прохождении электричества через втягивающую катушку. Подробнее об управлении двигателем с реверсированием и без читайте в отдельной статье.

Более хорошие рабочие характеристики можно получить при использовании схемы с рабочим конденсатором .

В этой схеме конденсатор после запуска двигателя не отключается. Правильным подбором конденсатора для однофазного двигателя можно компенсировать искажение поля и повысить КПД агрегата. Но для такой схемы ухудшаются пусковые характеристики.

Необходимо также учитывать, что выбор величины емкости конденсатора для однофазного двигателя производится под определенный ток нагрузки.

Важно

При изменении тока относительно расчетного значения поле будет переходить от круговой к эллиптической форме и характеристики агрегата ухудшатся.

В принципе, для обеспечения хороших характеристик необходимо при изменении нагрузки двигателя менять величину емкости конденсатора. Но это может слишком усложнить схему включения.

Компромиссным решением является выбор схемы с пусковым и рабочим конденсаторами. Для такой схемы рабочие и пусковые характеристики будут средними по сравнению с рассмотренными ранее схемами.

В общем, если при подключении однофазного двигателя через конденсатор требуется большой пусковой момент, то выбирается схема с пусковым элементом, а при отсутствии такой необходимости – с рабочим.

Подключение конденсаторов для запуска однофазных электродвигателей

Перед подключением к двигателю можно проверить конденсатор мультиметром на работоспособность.

При выборе схемы у пользователя всегда есть возможность выбрать именно ту схему, которая ему подходит. Обычно все выводы обмоток и выводы конденсаторов выведены в клеммную коробку двигателя.

Наличие трехжильной проводки в частном доме предполагает использование системы заземления. которую можно сделать своими руками. Как заменить электропроводку в квартире по типовым схемам, можно узнать здесь .

При необходимости модернизировать схему или самостоятельно сделать расчет конденсатора для однофазного двигателя можно, исходя из того, что на каждый киловатт мощности агрегата требуется емкость в 0,7 — 0,8 мкФ для рабочего типа и в два с половиной раза большая емкость для пускового.

При выборе конденсатора необходимо учитывать, что пусковой должен иметь рабочее напряжение не меньше 400 В.

Это связано с тем, что при пуске и остановке двигателя в электрической цепи из-за наличия ЭДС самоиндукции возникает всплеск напряжения, достигающий 300-600 В.

  1. Однофазный асинхронный двигатель широко используется в бытовых приборах.
  2. Для запуска такого агрегата необходима дополнительная (пусковая) обмотка и фазосдвигающий элемент — конденсатор.
  3. Существуют различные схемы подключения однофазного электродвигателя через конденсатор.
  4. Если надо иметь больший пусковой момент, то используется схема с пусковым конденсатором, при необходимости получения хороших рабочих характеристик двигателя используется схема с рабочим конденсатором.

Подробное о том, как подключить однофазный двигатель через конденсатор

http://elektrik24.net

Источник: http://legkoe-delo.ru/remont-avtomobilya/avto/82223-kak-podklyuchit-odnofaznyj-elektrodvigatel-cherez-kondensator-osobennosti-raznykh-skhem

Подключение однофазного двигателя

Прежде чем приступить к подключению любого электродвигателя, необходимо быть полностью уверенным, что двигатель рабочий. Провести полную ревизию для проверки качества подшипников, отсутствия люфтов на посадочных местах ротора и в крышках двигателя. Провести проверку обмоток на замыкание между собой и на корпус.

Так-же при подключении необходимо соблюдать технику безопасности, быть предельно внимательным и работать без спешки.

Для подключения однофазного электродвигателя с пусковой обмоткой нам понадобится включатель с пусковым контактом – ПНВС. Число после букв означает силу тока на которую рассчитан данный выключатель.

Совет

В предыдущей статье я рассказал как определить тип двигателя, трёхфазный он или однофазный.

И если вы сомневаетесь в том, конденсаторный это двигатель или с пусковой обмоткой, то вам необходимо сначала подключить двигатель как с пусковой обмоткой и если он не запустится значит он конденсаторный.

Для того, чтобы узнать какая из двух обмоток является рабочей, необходимо измерить их сопротивление. Та катушка, которая будет иметь меньшее сопротивление является рабочей. Исключение составляет очень небольшой процент конденсаторных двигателей, у которых и рабочая обмотка и конденсаторная одинаковы и имеют одно сопротивление.

Пусковая обмотка подключается только для запуска двигателя и после того как двигатель набрал обороты – отключается. В работе остаётся только рабочая обмотка. Правильно намотанный двигатель, с проведённой ревизией без нагрузки на валу выходит на положенные обороты не больше чем за несколько секунд, но чаще – мгновенно. Поэтому при пробном пуске двигатель должен быть надёжно закреплён.

Чтобы запустить двигатель с пусковой обмоткой необходимо подключить его по такой схеме:

Один конец рабочей и пусковой соединяем вместе и подключаем к одной из крайних клейм кнопки. Это будет общий провод. Второй конец рабочей обмотки подключаем ко второй крайней клейме кнопки. А оставшийся провод пусковой катушки соединяем со средней клеймой кнопки.

При этом мы задействуем клеймы только с одной стороны кнопки. Три клеймы с другой стороны пока остаются свободными. К двум крайним из них подключаем сетевой шнур. А к центральной клейме подводим перемычку от той крайней клеймы, напротив которой подсоединён один рабочий провод.

Закрываем крышку кнопки, закрепляем двигатель, делаем пробное включение-выключение кнопки чтобы убедится в её работоспособности и знать что она находится в выключенном состоянии. Включаем вилку в розетку, нажимаем кнопку пуск и удерживаем до набора двигателем оборотов.

Но не более нескольких секунд. Затем кнопку отпускаем. Если двигатель гудит, но вращаться не начинает, значит двигатель конденсаторный и подключать его нужно по другой схеме.

Для подключения конденсаторного двигателя пусковая кнопка не нужна.

Обратите внимание

Поэтому подойдёт любой подходящий по мощности пускатель, тумблер или выключатель который может смыкать и размыкать одновременно два контакта.

Соединяем один конец рабочей и один конец пусковой обмоток вместе и подводим к одной из клейм выключателя. Вторые концы обмоток подключаем к разным выводам конденсатора и при этом провод от рабочей катушки подводим ещё и к второй клейме выключателя. На противоположенные клеймы выключателя подключаем сетевой шнур.

 Переключаем тумблер в положение выключено, проверяем надёжность закрепления двигателя, включаем вилку в розетку и включаем тумблер. Двигатель без нагрузки на валу должен запуститься мгновенно.

Для того, чтобы однофазный двигатель вращался в другую сторону, необходимо поменять выводы одной из обмоток местами.

Если нам необходимо чтобы двигатель вращался и в одну и в другую стороны, то необходимо поставить тумблер реверса. Причём поставить его так, чтоб мы не могли переключить его во время работы двигателя. Это касается конденсаторного двигателя. Тумблер должен быть на 2 или 3 положения и иметь шесть выводов.

 В одном положении два средних вывода замыкаются с двумя крайними, а в другом с двумя другими крайними. Подключаем два провода одной из катушек двигателя к центральным клеймам переключателя, а крайнии клеймы соединяем по диагонали и отводим от них два провода которые подключаем туда, откуда отключили концы обмотки. Теперь при переключении тумблера двигатель будет запускаться в другую сторону.
Схема реверса однофазного двигателя с пусковой обмоткой и кнопкой ПНВ.

О том как подобрать конденсатор к конденсаторному двигателю я расскажу в одной из следующих статей.

Источник: http://shenrok.blogspot.com/p/blog-page_18.html

Как подключить однофазный электродвигатель

Электричество сегодня является основным источником, обеспечивающим работу большого количества механизмов. Для выполнения таких процессов применяют несколько видов двигателей.

Они могут быть, как одно-, так и трехфазными и отличаться принципом подключения. Более подробно узнать о подобных конструкциях можно на сайте http://ovk.dp.ua/odnofaznyye-elektrodvigateli/.

Варианты подключения

Пуск однофазных асинхронных двигателей зачастую осуществляется с помощью конденсатора. Для таких целей можно использовать несколько основных вариантов, которые отличаются способом подключения ранее указанного элемента:

  1. Пусковая схема предполагает применение конденсатора в качестве системы для запуска. Следует отметить, что такой способ, хотя и обеспечивает неплохие пусковые параметры, но рабочие характеристики при этом несколько ухудшаются.
  2. Схемы с рабочим конденсатором. Отличительной особенностью такой конструкции является то, что он не отключается после запуска двигателя. Данный вариант запуска уже наоборот снижает пусковые показатели.
  3. Оптимальной схемой подключения является применение пускового и рабочего конденсатора. Это позволит добиться усредненных показателей, как при запуске, так и рабочей мощности.

Подключение конденсатора

Следует понимать, что такой способ подключения не является единственным. Существуют и другие варианты, зависящие в основном от типа двигателя.

Но если все же вы выбрали схемы с конденсаторами, тогда вам следует выполнить несколько простых рекомендаций:

  • В первую очередь следует произвести расчеты всех параметров подобных конструкций. Выполняется это согласно определенным схемам, которые желательно тщательно изучить, чтобы понимать весь принцип расчета.
  • Затем покупается конкретный конденсатор, который желательно проверять на работоспособность с помощью специальных мультиметров.
  • Также ранее следует определить конкретную схему, которая может меняться в зависимости от ваших потребностей. Обратите внимание, что из обмотки двигателя может выходить несколько проводов, что и позволяет варьировать все параметры и способы соединения.

Не следует выполнять подобные операции, если вы не разобрались с работой двигателя. Это может привести к выходу его из строя (перегорание обмотки и т.д.). Альтернативным вариантом подключения является доверие подобных работ опытному электрику, который сделает все качественно и надежно.

Источник: http://stroybud.com/kak-podklyuchit-odnofaznyiy-elektrodvigatel/

Подключение трёхфазного двигателя к однофазной сети

Автор: admin, 31 Мар 2013

В этой статье рассмотрим подключение трёхфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего конденсатора, а также расчёт ёмкости пускового и рабочего конденсаторов, подключение трёхфазного двигателя «звездой» и «треугольником».

 Самый простой пуск трёхфазного двигателя в однофазной цепи возможен с помощью фазосдвигающего конденсатора, включённого в третью обмотку двигателя. КПД(коэффициент полезного действия) двигателя в этом случае будет около 60% (по сравнению с трёхфазным включением).

При пуске маломощного асинхронного электродвигателя ( до 500 Вт), или при пуске двигателя без нагрузки на его вал, можно ограничится использованием только, так называемого, рабочего конденсатора.

При пуске более мощных двигателей нужно использовать ещё и пусковой конденсатор, необходимый для разгона двигателя.

Схема включения двигателя в однофазную сеть

Подключение трёхфазного двигателя

В схеме обозначено:

  • FU1, FU2 — предохранители.
  • S1 — двухполюсный выключатель.
  • S2 — переключатель направления движения вала двигателя (реверс).
  • S3 — кнопка подключения пускового конденсатора (разгон двигателя).
  • Сп — пусковой конденсатор.
  • Ср — рабочий конденсатор.
  • R1 — разрядный резистор.
  • М — электродвигатель.

После включения выключателя S1 необходимо сразу нажать кнопку S3, после разгона двигателя (2-3 сек) кнопку отпустить.

Расчёт элементов схемы включения двигателя

Ёмкость рабочего конденсатора для данной схемы (соединение обмоток электродвигателя «треугольником») рассчитывается по следующей формуле:

Ср = 4800*I/U,  где

Ср — ёмкость рабочего конденсатора в мкФ;
I — ток электродвигателя, А;
U — сетевое напряжение(220 В).

При соединении обмоток электродвигателя «звездой» ёмкость рабочего конденсатора определяется по формуле:

Ср = 2800*I/U , обозначения те же.

Если неизвестен ток электродвигателя, но известна мощность, то ток можно рассчитать по формуле:

I = P/(√3*U*ɳ*cosφ) , где

P — мощность электродвигателя, Вт;
ɳ — КПД электродвигателя;
cosφ — коэффициент мощности.

Важно

Приблизительно можно принять ɳ=0,6, cosφ = 0,8. Тогда формула упростится и примет вид:

I = P/(0,83*U).

Ёмкость пускового конденсатора должна быть в 2-3 раза больше ёмкости рабочего.

Нужную ёмкость конденсатора можно собрать из нескольких, имеющихся в наличии конденсаторов, как это сделать описано здесь. Лучше всего применять металлобумажные или плёночные конденсаторы. Рабочее напряжение конденсаторов не ниже 300В.

  В некоторых статьях предлагают использовать электролитические конденсаторы, соединив пару конденсаторов минусовыми выводами и зашунтировав их диодами.

Я не рекомендую этого делать, так как при выходе из строя диода (при его электрическом пробое), через электролитический конденсатор потечёт переменный ток и он скорее всего взорвётся из-за нагрева.

Разрядный резистор R1 служит для разряда пускового конденсатора после его отключения. Можно обойтись и без него, но тогда следует помнить, что на устройстве может остаться опасное напряжение, даже после его выключения. Можно взять резистор сопротивлением 0,5 — 1 мОм, на мощность рассеяния не ниже 0,5 Вт.

Все выключатели и предохранители должны выдерживать рабочий ток электродвигателя.

Советы: лучше всего использовать соединение «треугольником», при соединении обмоток «звездой» значительная часть мощности двигателя теряется.

На шильдике двигателя указывается схема соединения обмоток, возможность её изменения и  рабочее напряжение обмоток. Например:  ∆/Ү  220/380 обозначает, что обмотки электродвигателя могут быть подсоединены либо «треугольником» на 220 В, либо «звездой» на напряжение 380В.

Обозначение Ү  380 — говорит о том, что обмотки подсоединены по схеме «звезда» и рассчитаны на 380 В и в распредкоробку двигателя выведено всего три провода. Тут придётся подключать по схеме «звезда», потеряв мощность.

Можно конечно залезть внутрь двигателя и вывести недостающие концы в распредкоробку, но это работа уже для специалиста.

Совет

Ёмкость рабочего конденсатора (в мкФ) можно приблизительно рассчитать умножив мощность двигателя (в кВт) на 100. Ёмкость пускового конденсатора можно уменьшить, подобрав экспериментальным путём.

Если вам помогла эта статья, то вы можете поделиться ей со своими друзьями, нажав кнопки социальных сетей, расположенные ниже.

Источник: https://elektricvdome.ru/podklyuchenie-tryokhfaznogo-dvigatelya/

Схема подключения болгарки с конденсатором

Об инструменте

История происхождения этого уникального приспособления для нарезки металла начиналась еще в советские времена. 50 лет назад было мечтой каждого гражданина нашей страны иметь болгарку дома. Название произошло от завода изготовителя, явившегося разработчиком и производителем устройства – «Элтос-Болгарка». Инструмент изготавливался в Болгарии, поэтому и постепенно к нему «приросло» такое название. Несмотря на значительные усовершенствования этой техники на сегодняшний день в основе болгарки остались те же конструктивные элементы.

Электрическая часть болгарки

За последнее время изменений существенных в конструкции инструмента не было. Корпус продолговатый, внутри находится редуктор с двигателем, на боку ручка и защитный кожух поверх абразивного круга.

Не всегда инструмент работает бесперебойно, да и бывают обстоятельства, когда появляется необходимость его просто разобрать и смазать маслом некоторые элементы в качестве профилактики. Для этого необходимо знать конструкцию и уметь пользоваться чертежами, в их числе и электросхема болгарки. Умение правильно читать технические документы и понимать, как оборудование работает, помогут выполнить любого вида ремонтные работы.

Электрическая схема болгарки содержит следующие элементы, обеспечивающие приведение ее в движение:

  • коллектор;
  • редуктор;
  • ручки-держатели;
  • якорь;
  • электрощетки;
  • статор;
  • кабель для подачи электроэнергии.

У каждого из этих элементов имеется свое предназначение, из-за поломки любого из них инструмент не будет работать.

Назначение каждого элемента электроснабжения болгарки УШМ 125

Схема болгарки включает в себя несколько элементов, обеспечивающих ее бесперебойную работу.

Назначение элементов для энергоснабжения:

  1. Якорь. Эта часть способствует движению абразивного круга для резки металлических изделий и заготовок. Необходимо создание большей скорости по отношению к дискам для обеспечения их вращательных движений. И, соответственно, при большей скорости якоря показатели мощности инструмента выше.
  2. Коллектор. Это площадка, размещенная на якоре, к которой подсоединяются все силовые линии. Его основная функция заключается в передаче сигналов по обмоткам на двигатель и блок управления таким образом, чтобы элементы правильно восприняли эту информацию. Элемент сразу бросается в глаза при снятии крышки с корпуса, так как обладает отполированной поверхностью, и его размеры довольно большие.
  3. Электрощетки. Предназначение этих элементов для подвода электротока к кабелю. При нормальном рабочем размещении через отверстие, предназначенное для вентиляции, будет наблюдаться свечение, исходящее от них. Если же отмечается, что таковое отсутствует, проходит слабо либо почти незаметно, то это показатель того, что с электрощетками проблемы.
  4. Редуктор. Основная конструктивная деталь для электросхемы и для всего технического устройства в целом. Его функция заключается в передаче электроэнергии от якоря к абразивному диску. Таким образом обеспечивается вращение, которое создает работу. По факту только редуктор способствует увеличению скоростных и мощностных характеристик углошлифовальных машин.
  5. Статор. Это самый сложный узел, дополняющий устройство болгарки. Именно в нем находятся обмотки и якоря, и ротора, которые являются первичными механизмами, обеспечивающими движение. Обмотки катушки статора четко рассчитаны до последнего витка. Если этот элемент выйдет из строя, то вряд ли не опытному рабочему удастся восстановить обмотку. Это бывает, но в исключительных случаях. Лучше всего обратиться в специализированную мастерскую по вопросу перемотки статора.

Как прочитать электросхему

Чтобы болгарку правильно отремонтировать или провести техническое обслуживание, нужно, прежде всего, научиться читать схемы электроинструмента, в их числе – электрическую. В целом она кажется не столь сложной, но бывает, простому рабочему сложно разобраться в ней, поэтому приходится обращаться к профессионалам. Схема подключения технического устройства читается следующим образом:

  • 2 статорные обмотки последовательно подключены через силовой кабель со стандартным напряжением 220 В, при этом они не взаимосвязаны между собой. Включаются и выключаются они при помощи выключателя, работа которого обеспечивается за счет нажатия пусковой кнопки. У каждой обмотки имеется защита через контакт щеткой из графита;
  • две параллельно подключенные к графитовым обмоткам щетки замыкаются на коллекторе. Несмотря на то что якорная обмотка состоит из нескольких, только две имеют подсоединение к графитовым щеткам. Устройство болгарки выходит из строя в 9 случаях из 10 при размыкании электрической цепи.

Чтобы правильно произвести оценку работы электроинструмента, используется специализированный прибор – электронный мультиметр. Это уникальный тестер, который можно использовать не только для определения неисправности в болгарке, но и в других энергоинструментах. Для начала диагностируется неисправность на вводе тока, затем производится последовательное прозванивание всего технического устройства. Для проверки проводимости необходимо выставить положение минимального уровня сопротивления.

Как производить ремонт

Если болгарка не запускается при включении пусковой кнопки, то имеются основания полагать, что здесь причина не столь серьезная, и несложно выполнить ремонтные работы самостоятельно. Всего несколько рекомендаций по выполнению ремонтных работ, чтобы начинать с простого и заканчивать более сложным.

  1. При разрыве электрической цепи устройства УШМ 1100 Э следует произвести снятие защитного кожуха и проверить тестером на предмет наличия напряжения в пусковом механизме. Если отсутствует пусковой ток, то проблема заключается в неисправности электропровода. В этом случае необходимо заменить провод на новый. Так будет произведен простейший ремонт в устройстве 1100 Э.
  2. Если при включении кнопки «пуск» ток есть, а далее ток в устройство не поступает, то сама проблема заключается именно в кнопке, поэтому следует заменить ее на новую. Не нужно спешить в этом деле, для начала следует произвести разборку механизма, поочередно маркируя детали, чтобы при сборке не допустить ошибки. Для замены забракованного элемента можно подобрать другой, подходящий по параметрам. Особое внимание необходимо уделить контактам: если они неправильно будут подключены, то, возможно, перегорела обмотка или заклинило якорь.
  3. Если при полной исправности провода и пусковой кнопки ток не поступает на щетки, то следует произвести зачистку пластин щеткодержателей. Если механизм 1100Э не работает и дальше, то необходимо произвести замену старых щеток на новые.

О том, как подключить техническое устройство, в том числе угловую машинку, можно прочитать в инструкции по эксплуатации или в интернете.

Как заменить графитовые щетки

На основании практических данных установлено, что наиболее уязвимой частью в техническом устройстве, в том числе и в 1100Э, являются графитовые щетки. Их срок службы составляет не более 2 лет. Чтобы произвести замену старых щеток на новые, не нужно обладать опытом. Такая манипуляция не составит большого труда даже для неопытного человека. Для изучения состояния щеток нужно открыть корпус инструмента, в том числе 1100Э.

При этом устройство должно быть обесточено, а щеткодержатели, установленные на коллекторе, аккуратно отодвинуты в сторону. Использование отвертки для этой операции обязательно.

Если техническое устройство изготовлено специализированной фирмой, то щетки могут удерживаться с помощью пружины. Чтобы произвести извлечение щетки, нужно эти пружины прижать отверткой. Если же изготовителем инструмента является Китай, то в этих местах расположены заглушки, которые тоже убираются с помощью отвертки, и только после этого щетка легко снимается. Чтобы определить, какую щетку нужно приобрести, рекомендуется взять снятую деталь с собой в магазин и соответственно в нем подобрать аналогичную, четко по заданным параметрам. При вставке щетки в болгарку необходимо эти действия выполнять плавно, не спеша. Важно при этом обратить внимание, что она ни за что не цепляется и ровно устанавливается в гнездо.

По образу и подобию установки первой щетки, можно поставить и вторую. После этого необходимо проверить расположение проводов в техническом устройстве, чтобы они нигде не пережимались. Теперь корпус можно закрыть и включить машинку в тестовом режиме.

В любом электроинструменте с коллекторным двигателем (дрели болгарки и прочие), есть конденсатор довольно большой емкости (0.2 – 0.5 мF). Даже китайский дешевый инструмент содержит в себе этот элемент. Поиск ответа в Интернете ничего не дал, кроме как он нужен «для уменьшения помех создаваемых искрением щеток». Я думаю его роль – гасить искрение щеток, уменьшая нагрев коллектора и щеточного узла. А уменьшение искрения ведет к уменьшению помех. Кто знает точный ответ?

Этот конденсатор из китайской болгарки мощностью 600 Ват.

Конденсатор устанавливается в устройства с коллекторным двигателем именно для гашения высокочастотных помех, которые возникают в процессе работы двигателя. Сопротивление конденсатора обратно пропорционально частоте переменного тока, протекающего через него. Для переменного тока частотой 50 Гц сопротивление конденсатора с небольшой ёмкостью настолько велико, что током, протекающим через него, можно пренебречь.

Другое дело высокочастотные помехи от искрения коллектора. Для них сопротивление конденсатора мало. И ток с частотой помех в основном протекает через конденсатор не по падая в питающую сеть.

В более дорогих устройствах еще в разрыв цепи питания ставят индуктивность, сопротивление которой для ВЧ тока велико. Вместе конденсатор и индуктивность (-ти) представляют собой классический ВЧ-фильтр.

После определенного срока пользования, для болгарки характерны такие поломки как износ графитовых щеток, перегорание обмоток статора и далее. Конечно же сам износ имеет место и по части механики. Для полного ознакомления темы: «Как отремонтировать болгарку»,- рассмотрим электрическую схему коллекторного двигателя переменного тока, так как в болгарке установлен именно такой электродвигатель.

Схема коллекторного двигателя переменного тока

В схеме (рис. 1) показаны электрические соединения обмоток статора, ротора и графитовых щеток. Графитовые щетки в электродвигателе установлены в щеткодержателях. Щетки соприкасаются с ламелями коллектора. Одни концы обмоток статора подключаются к внешнему источнику энергии. Другие концы обмоток статора соединены с графитовыми щетками, электрическая цепь замыкается на обмотках ротора.

Регулятор оборотов болгарки соединяется проводами со схемой коллекторного электродвигателя последовательно. Схема подключения регулятора оборотов должна быть указана на самом корпусе регулятора, либо в руководстве по эксплуатации болгарки.

как подключить кнопку, заменить щётки, проверить ротор, починить якорь, инструкция с фото и видео

Когда выходит из строя электроинструмент, не стоит спешить его выбрасывать. Познакомившись с устройством и разобравшись в основных механизмах, можно самостоятельно заменить испортившийся узел или деталь. Разборка и сборка требует внимания и аккуратности. Но при выполнении этого несложного условия не придётся покупать новый дорогостоящий инструмент. Знание — сила. Продлить жизнь своему помощнику по хозяйству не так уж сложно, как это кажется на первый взгляд.

Устройство электродрели

Электродрель состоит из двух взаимосвязанных частей: механической и электрической. Понять устройство и принцип работы проще, если рассмотреть эти две составляющие по отдельности.

Современная электродрель состоит из нескольких узлов, каждый из которых относится к механической или электрической системе

Электрическая часть

Основой привода электродрели является электрический ток, который поступает в инструмент из бытовой сети через шнур питания. От него работает двигатель (обычно коллекторного типа), расположенный внутри центральной части корпуса. Электромотор состоит из двух элементов:

  • статора. Он изготавливается из электротехнической стали с повышенной магнитной проницаемостью. В технологических пазах располагаются обмотки — витки медной проволоки, которые индуцируют магнитное поле. Статор жёстко вмонтирован в корпус инструмента;
  • ротора. В отличие от статора он вращается на опорных подшипниках. Ротор — это рабочий вал, на котором расположены ответные обмотки. Вращение якоря обусловлено электромагнитным взаимодействием рамок (обмоток), уложенных в специально проточенных канавках. В хвостовой части якоря расположен коллектор, выполняющей функцию распределения тока по обмоткам. Непосредственно за это отвечают графитовые щётки, на которые подаётся напряжение сети. Непрерывный контакт щёток с коллектором якоря поддерживается пружинами, давящими на графитовый (или угольный) электрод. Вращательное движение ротора мотора передаётся к патрону, в котором зажато сверло или другой рабочий инструмент.

Управление режимами вращения осуществляет кнопка включения, расположенная между двигателем и сетевым шнуром. В самой кнопке (или над ней) установлено регулировочное колесо оборотов и реверсный переключатель. Для удобства управления в регулировке количества оборотов ротора применена симисторная схема плавного изменения напряжения. Благодаря микроплёночной технологии регулятор имеет настолько миниатюрные размеры, что его можно вмонтировать в спусковой крючок кнопки.

В кнопку включения встраивается регулятор оборотов, управлять которым можно с помощью выведенного на поверхность колеса

Переключение направления движения двигателя производится реверсным переключателем, имеющим два положения. Одно соответствует движению по часовой стрелке (основной режим). Другое — движению вала против часовой стрелки, которое используется при откручивании шурупов или при заклинивании сверла. Схема подключения реверса электродрели, как правило, изображена на самом механизме.

Схема подключения реверса изображена на корпусе устройства

Для экранирования электродвигателя от помех в электросети и гашения обратной ЭДС (электродвижущей силы) на щётках во входной части цепи установлен конденсатор. Он обычно располагается в нижней части рукоятки дрели рядом со входом шнура питания.

В некоторых моделях для сглаживания частотных составляющих устанавливаются индукционные кольца.

Индукционное кольцо сглаживает пульсации тока за счёт наводимого магнитного поля

Механическая часть

Задача электродрели — вращать рабочий инструмент. Для этого служит патрон, который может быть кулачковым, быстрозажимным или конусным.

Быстрозажимной патрон позволяет заменить рабочий инструмент за несколько секунд без помощи ключа

Непосредственную передачу вращения от двигателя к патрону осуществляет редуктор. Его основная задача — понижать обороты электромотора, так как последний развивает скорость до нескольких десятков тысяч оборотов в минуту. С этим справляется червячно-планетарный механизм. Одновременно с понижением оборотов происходит повышение мощности вращения. Существуют дрели, в которых наряду с плавным набором оборотов добавлены фиксированные скорости, обычно две. Принцип действия переключателя скоростей подобен работе коробки передач автомобиля.

Первые электрические дрели появились в середине XIX века. Этому способствовало изобретение электродвигателя и массовое внедрение его в производство. К 80-м годам позапрошлого столетия на заводах и судоверфях они появились как самостоятельный инструмент. Широкое применение в быту электродрель получила лишь в конце XX века.

В тех моделях электродрелей, которые оснащены функцией долбления, редуктор дополнительно содержит храповой механизм. С его помощью осуществляется поступательно-возвратное движение патрона, которое можно рассматривать как ударный механизм. При перескакивании зубьев храповика возникает вибрация, которая применяется при работе с бетоном, кирпичом и камнем. Обработка деревянных и металлических деталей производится без применения этого режима. Включение «трещотки» осуществляется специальной кнопкой, расположенной на корпусе.

Ударный режим дрели включается переводом специального переключателя в положение, обозначенное молоточком

Фактически ударная система представляет собой две волнистые поверхности, установленные на рабочем валу. В обычном режиме они не участвуют в процессе сверления, их разделяет пружина. Но когда под действием переключателя они соприкасаются и трутся между собой, возникает дополнительная вибрация. При этом сверло должно быть рассчитано на такую работу — обычно применяют инструмент с усиленной режущей кромкой, победитовой напайкой и т. д.

При сверлении с ударом применяются специальные свёрла с усиленной кромкой

Симптомы неполадок электродрели

Каждая система электрической дрели может выйти из строя. Определить причины неисправности можно, зная их основные симптомы.

Дефекты механической части

О том, что проблема заключается в одном из механических устройств, свидетельствуют следующие признаки:

  • заклинивание патрона, невозможность провернуть его руками;
  • металлический стук и скрежет во время работы;
  • хруст пластика внутри корпуса;
  • гул выработанных подшипников, повышенная вибрация;
  • не включается ударный механизм;
  • патрон слетает с рабочего вала.

Поломка механики может привести к сбоям в работе, которые проявляются периодически. Не стоит надеяться, что она исправится сама собой. Как только обнаружены первые признаки проблемы, необходимо прекратить работу и устранить дефект. В противном случае стоимость ремонта значительно увеличится.

Признаки неисправности электрики

Электрическая часть также имеет свои характерные признаки неправильной работы:

  • дрель не запускается, не вращается мотор;
  • мотор гудит, но не работает;
  • щётки сильно искрят;

    Щётки находятся в плотном контакте с коллектором, при возникновении неисправности они начинают сильно искрить

  • не работает регулятор скорости, обороты не изменяются;
  • не срабатывает реверс, патрон вращается только в одну сторону;
  • двигатель работает неустойчиво, иногда срываясь на повышенные обороты;
  • имеется характерный запах тлеющей проводки;
  • корпус дрели нагревается.

Большим преимуществом двигателя коллекторного типа, применяемого в большинстве электродрелей, является то, что при выходе из строя управляющей электроники мотор продолжает функционировать. Однако запускается он при этом без плавного разгона и сразу на максимальные обороты. В сравнении с асинхронным двигателем УКД имеет более компактные размеры, что позволяет изготавливать дрели карманных размеров.

Ремонт электродрели своими руками: описание проблем и их решение

Все неполадки электродрелей обычно обусловлены неправильной эксплуатацией, износом отдельных узлов и механизмов инструмента или применением некачественных комплектующих. Чтобы произвести правильную диагностику, необходимы определённый опыт и измерительные электротехнические инструменты. Ниже мы рассмотрим наиболее распространённые неполадки и способы их устранения.

Необходимые инструменты и материалы

Для самостоятельного ремонта электродрели необходимо подготовить:

  • набор крестовых и плоских отвёрток различных размеров и конфигураций шлицов;
  • плоскогубцы, пинцет;
  • мультиметр или тестер напряжения.

    Для разборки и сборки электродрели потребуется набор электротехнических отвёрток

В некоторых старых моделях применялось гаечно-винтовое соединение. В этом случае для разборки корпуса дрели дополнительно понадобится набор ключей.

Что касается замены деталей, нужно помнить, что универсальным для всех видов дрелей на сегодняшний день является только патрон. Остальные запчасти, как правило, оригинальные. Переставить их с одной дрели на другую не удастся, если только они не одной модели. Для замены необходимо приобретать запчасти по каталогу фирмы-производителя для соответствующей модификации прибора.

Ремонт рекомендуется производить в хорошо освещённом и проветриваемом помещении, стол не должен быть захламлён. Если надежды на память нет, можно фотографировать этапы разборки и зарисовывать схему подключения проводов. Перед началом демонтажа нужно в обязательном порядке отключить инструмент от электрической сети.

Как разобрать дрель

Разборка корпуса электродрели занимает несколько минут. Процедура заключается в отвинчивании 4–6 (в зависимости от модели и марки) саморезов. После этого корпус разъединяется на две половины, между которыми установлен двигатель и остальные механизмы прибора. Если требуется дальнейшая разборка, последовательно выкручиваются все доступные шурупы и освобождаются крепления сетевого шнура, кнопки «Пуск», переключателя реверса. Двигатель и редуктор отсоединяются от корпуса в последнюю очередь.

Правильная разборка начинается со снятия крышки корпуса и заканчивается извлечением редуктора

При разборке важно запомнить не только последовательность работы, но и точное расположение проводов, соединяющих детали между собой.

Видео: как разобрать электродрель

Дрель не включается и не работает

Если подключённая к сети дрель не работает при нажатии на кнопку «Пуск» и при этом не подаёт никаких признаков жизни, нужно проверить следующие узлы.

  1. Сетевой шнур. Сначала кабель осматривается визуально на предмет разрывов или переломов. Если таковых не обнаружено, вторым этапом шнур нужно проверить мультиметром или пробником. Для этого снимается защитный корпус. В некоторых моделях необязательно откручивать кожух целиком — достаточно снять только пластиковую защиту рукояти. После того как доступ к контактам шнура будет открыт, проверяется наличие напряжения на конце провода. На исправном шнуре мультиметр покажет напряжение 220 В. На пробнике при касании к фазовому проводнику загорается красный светодиод.

    Целостность кабелей и наличие напряжения в определённых частях электрической схемы удобнее проверять мультиметром

  2. Если шнур исправен, производится последовательная проверка напряжения на кнопке и электродвигателе.
  3. Далее проверяется работа конденсатора и реверсного переключателя. Зачастую дефект можно обнаружить при внимательном осмотре. Повреждённая деталь изменяет цвет или форму. Например, пластмассовый корпус кнопки, внутри которого расположена микросхема, при длительной перегрузке часто оплавляется. При вскрытии кожуха это сразу бросается в глаза. Пробои проводки двигателя также видны невооружённым глазом — часто причиной сбоя является обрыв кабелей или межвитковое замыкание. Первое сопровождается подгоревшими клеммами или контактами, разрывами или спеканием проводников. Второе — неприятным запахом и пятнами синего цвета на обмотках. Конденсатор при повреждениях может деформироваться и принимать бочкообразную форму.

    Разъединение контактов электропроводки приводит к прекращению работы дрели

Дрель трещит, но патрон не вращается

Если инструмент оснащён функцией удара, характерный треск издают при трении зубчатые поверхности храповика. Причиной тому может быть как поломка самого храповика, так и заклинивание патрона, вернее, вала, на котором он закреплён. Для устранения неполадки необходимо разобрать корпус дрели, чтобы получить доступ к редуктору. Внимательный осмотр поможет уточнить причину проблемы и принять правильное решение. Часто такие симптомы сопровождают заклинивший подшипник.

Дрель, которая эксплуатировалась в условиях повышенной влажности и запылённости, необходимо время от времени вскрывать и очищать от пыли двигатель и подшипники. Кроме того, после удаления пыли и стружек подшипник необходимо смазывать. Но в меру — избыток смазки способствует налипанию мелкого мусора и приводит в итоге к повреждениям.

Для профилактики редуктор нужно разобрать и смазать

Не работает кнопка включения

При помощи кнопки «Пуск» происходит управление работой дрели. Нажатием курка запускается электрический двигатель и регулируется скорость его вращения. Как уже отмечалось выше, внутреннее устройство пусковой кнопки представляет собой симисторную (или тиристорную) схему, напечатанную на микроплёнке.

Кнопка состоит из нескольких мелких деталей: 1-пусковые контакты, 2-регулятор оборотов двигателя, 3-электронная схема, 4-колесо управления скоростью вращения, 5 — возвратная пружина кнопки

Разбирать и ремонтировать её в домашних условиях невозможно. Поэтому при повреждении она полностью заменяется. Схема подключения кнопки обычно изображена на корпусе в виде пиктограммы.

Если в схеме дрели не используется конденсатор, к кнопке подключаются только два провода от розетки и два провода внутренней цепи. В противном случае к ней подходят отдельные провода от конденсатора.

В зависимости от вида электрической схемы к кнопке может подходить от четырёх до шести проводов

Видео: замена кнопки дрели

Не работает плавный пуск

Система плавного пуска электродвигателя является важной составляющей в схеме инструмента. Все современные дрели оснащены этой функцией. Благодаря ей увеличивается ресурс двигателя, износ трущихся частей в моторе значительно сокращается, а работа с дрелью становится комфортнее. Основным элементом плавного пуска является симистор. Если он перегорает, функция перестаёт работать. Лучшим вариантом устранения проблемы считается замена кнопки целиком. Но если такой возможности нет, можно заменить симистор. Для этого нужно разобрать кнопку, выпаять сгоревшую деталь из платы и установить новую.

Если новую кнопку найти не удаётся, можно снять с неё плату, управляющую функцией плавного пуска, и заменить в ней сгоревший симистор

Перед обратной сборкой кнопки внутреннее пространство тщательно продувается и очищается.

Не работает регулятор оборотов, его устройство и замена

Кроме системы плавного пуска в дрели предусмотрена система ручной регулировки оборотов. Колесо, при помощи которого осуществляется изменение скорости, может располагаться на кнопке или в другом месте на корпусе. Современные модели совмещают функцию плавного пуска и ручную регулировку оборотов в одном электронном устройстве, которое было описано выше. Частота вращения регулируется резистором с переменным сопротивлением.

Если система управления скоростью вращения вышла из строя, а заменить её не получается, можно воспользоваться наружным устройством. Например, включив в разрыв цепи питания диммер. Или собрать устройство самостоятельно из недорогих радиодеталей.

Простейший диммер для управления оборотами электродрели можно собрать из недорогих и доступных радиодеталей

Замена щёток в дрели

Замена графитовых щёток в коллекторе электродвигателя бывает плановой или аварийной. Предпочтительнее, конечно, первый вариант. Эксплуатация чрезмерно истёртых щёток приводит к быстрому износу коллектора на роторе. Вслед за этим может сгореть мотор. Выработка щёток более чем на 40% является сигналом к плановой замене. При достижении порога пригодности щётки начинают искрить, причём искрение происходит настолько интенсивно, что разогревается корпус. Доводить дрель до такого состояния нельзя.

Заменить щётки даже в старых моделях электродрелей довольно просто: доступ к ним появляется сразу после снятия защитного кожуха

На разных моделях предусмотрены различные способы замены щёток. Но в большинстве современных инструментов на корпусе оставляют окошко, через которое щётки меняются без разборки защитного кожуха.

Видео: замена щёток в электродрели

Не работает переключатель реверса дрели

Начинающие пользователи часто путают регулятор оборотов и реверс дрели. Тем не менее это два разных устройства. И хотя они расположены рядом, всё же заключены в отдельные корпуса. Принцип действия реверса (изменения направления движения ротора) довольно прост. Если поменять фазу и ноль на щётках электромотора, изменится направление вращения.

Механизм управления реверсом часто расположен в верхней части корпуса кнопки

Следует обратить внимание, что у реверса бывает 3 положения (а не только 2). В одном ротор вращается по часовой стрелке. В другом — против часовой. И третье положение — нейтральное, в котором двигатель вращаться не будет вообще.

Если реверс не работает, необходимо извлечь его из дрели и разобрать пластиковый корпус. Фактически устройство состоит из простого переключателя контактов, поэтому ломаться там нечему. Могут быть лишь механические повреждения в виде отломанного рычага переключения или подгоревшие медные контакты. В последнем случае клеммы зачищаются и прибор продолжает функционировать. Повреждения пластмассы исправить сложнее. Проще купить новую деталь и произвести замену. Схема подключения реверса изображена, как правило, на его корпусе. Но лучше в процессе ремонта запомнить (или зарисовать, сфотографировать) исходное расположение проводов.

Дрель вращается только в одну сторону

Иногда встречается такая поломка — дрель не подчиняется «приказам» переключателя реверса и отказывается менять направление вращения. Для восстановления функции устройства нужно вскрыть крышку переключателя и внимательно осмотреть внутренний механизм. Если прибор имеет два рабочих положения, необходимо зачистить все контакты мелкой наждачной бумагой и проконтролировать степень прижатия клемм. В случае если контакты недостаточно жёсткие — подогнуть медные пластины. Перед сборкой рекомендуется очистить внутренность пластиковой коробки от пыли и другого возможного мусора.

Замена подшипника

Механическая поломка подшипника сопровождается гулом и вибрацией дрели во время работы. Износ происходит из-за попадания крупной абразивной пыли или стружки внутрь защитного кожуха, а также из-за перегревов во время эксплуатации и несоблюдения условий хранения. Особенно чувствительны подшипники к повышенной влажности.

Во время заводской сборки подшипник напрессовывается на вал

Для замены придётся полностью разобрать дрель, отсоединить статор и извлечь ротор, на котором подшипник установлен. При сборке на заводе его напрессовывают на ось вала. Теперь его нужно снять. Наиболее верный способ — использовать специальный съёмник, при помощи которого подшипник сходит без перекосов. Можно выбивать его, зажав якорь в тисках, но делать это нужно очень осторожно. Неловким движением можно повредить обмотку ротора и тогда его придётся полностью менять или перематывать.

Подшипник с вала вращения проще всего снять при помощи специального приспособления

Видео: замена подшипника в дрели

Как проверить якорь дрели мультиметром и отремонтировать его

Если мотор гудит, но патрон не вращается совсем или вращается очень медленно, велика вероятность того, что повреждён якорь двигателя. Это случается при перегреве мотора, когда изолирующий лак на проводниках обмоток плавится и возникает короткое межвитковое замыкание. Чтобы абсолютно точно провести диагностику, необходимо разобрать кожух инструмента и получить доступ к обмоткам якоря и коллектору. Мультиметром последовательно измеряется сопротивление рамок в обмотке. Для этого щуп прибора устанавливают на соседних ламелях и записывают показания омметра. Если на какой-либо паре значения отклоняются от нормы, значит, налицо короткое замыкание.

Мультиметром последовательно прозванивают пары расположенных рядом ламелей

Если раньше в случае повреждения обмоток якоря мастерам приходилось перематывать их самостоятельно, то сегодня практически никто этим не занимается. Особенно если речь идёт о бытовой технике. На рынке электроинструмента достаточно легко и без большого ущерба для кошелька можно приобрести испортившуюся деталь и произвести замену самостоятельно. Кроме того, гарантировать качество при самостоятельной перемотке достаточно сложно. Выдержать все параметры под силу далеко не каждому. Чем меньше габариты дрели, тем сложнее перематывать обмотку, поскольку для этого требуется специальное оборудование.

Видео: проверка якоря коллекторного двигателя

Как прозвонить статор электродрели

Статор проверяется аналогичным способом — при помощи мультиметра. По сравнению с проверкой якоря процедура более простая и соответственно более быстрая. Ведь в статоре обмоток меньше — обычно это 2 или 3 катушки.

При обнаружении пробоя в катушке её заменяют. Перемотка в домашних условиях практикуется лишь энтузиастами «очумелых ручек» и любителями всё делать самостоятельно. Для перемотки нужно оборудование в виде паяльника и шаблона для правильной укладки проводника.

Видео: как проверить якорь и статор электродвигателя в домашних условиях

Дрель не работает на малых оборотах (дрель не набирает обороты и греется)

Оборотистость двигателя зависит от устройства, которое рассмотрено выше, — регулятора оборотов электромотора. Если в процессе эксплуатации произошёл сбой работы регулятора, ничто не сможет заставить работать двигатель быстрее или медленнее. Замена регулятора — единственно правильный выход из неприятной ситуации.

Бывают случаи, когда нарушение оборотов происходит по вине редуктора. К примеру, сильно засорённая планетарная передача может значительно уменьшить скорость вращения, особенно если на ось «намоталось» большое количество засохшего в масле мусора. Сломанные зубья большой шестерни и грязь на червячной передаче также отрицательно влияют на скорость вращения ротора. При этом двигатель будет работать в режиме перегрузки, а это чревато перегревами и — в итоге — межвитковыми замыканиями. Поэтому напрашивается простой вывод. Редуктор, как и все остальные узлы механизма, подлежит профилактическому обслуживанию и очистке. Обычно рекомендуется производить профилактику не реже одного раза в два года, а при интенсивной эксплуатации — каждый год.

Замена ударного механизма дрели

При возникновении проблем с ударным механизмом дрели оптимальным решением является замена изношенной шестерни «трещотки». Храповой механизм непосредственно связан с редуктором, поэтому для того чтобы получить к нему доступ, придётся произвести полную разборку дрели. Другого способа восстановления храповика пока не изобрели. После замены шестерни следует тщательно очистить картер редуктора от старой смазки, так как в ней остались металлические стружки от предыдущего храповика. Новую смазку добавляют уже после сборки, её марка должна соответствовать техническим характеристикам редуктора.

Видео: ремонт ударной дрели

Исследуя неполадки дрели, нельзя забывать, что электрический ток опасен для здоровья человека. Поэтому прежде чем вскрыть защитный кожух инструмента, желательно отсоединить сетевой шнур из розетки. При проверке работы дрели под напряжением нужно плотно закручивать винтовое крепление корпуса. Несоблюдение этого правила приводит к травмам рук и лица.

Оцените статью: Поделитесь с друзьями!

Какова роль конденсатора в цепях переменного и постоянного тока? Электрические технологии

Какова роль конденсатора в цепях переменного и постоянного тока?

Роль конденсатора в цепях переменного тока:

В цепи переменного тока конденсатор меняет свои заряды на противоположные по мере того, как ток изменяется и создает запаздывающее напряжение (другими словами, конденсатор обеспечивает опережающий ток в цепях и сетях переменного тока)

Роль конденсатора в цепях постоянного тока:

В цепи постоянного тока конденсатор, заряженный приложенным напряжением, действует как размыкающий переключатель.

Роль конденсатора в системах переменного и постоянного тока

Давайте объясним подробно, но сначала мы вернемся к основам конденсатора, чтобы обсудить этот вопрос.

Что такое конденсатор?

Конденсатор представляет собой электрическое устройство с двумя выводами, используемое для хранения электрической энергии в виде электрического поля между двумя пластинами. Он также известен как конденсатор, а единица измерения его емкости в системе СИ — Фарад «Ф», где Фарад — это большая единица емкости, поэтому в настоящее время используются микрофарады (мкФ) или нанофарады (нФ).

Конденсатор похож на батарею, поскольку оба накапливают электрическую энергию. Конденсатор — гораздо более простое устройство, которое не может производить новые электроны, но накапливает их. Внутри конденсатора клеммы соединены с двумя металлическими пластинами, разделенными диэлектрическим материалом (например, вощеной бумагой, слюдой и керамикой), которые разделяют пластины и позволяют им удерживать противоположные электрические заряды, поддерживая электрическое поле.

Конденсаторы

могут пригодиться для накопления заряда и быстрой разрядки в нагрузку.Проще говоря, конденсатор также работает как небольшая перезаряжаемая батарея. Символ электрического эквивалента различных типов конденсатора приведен ниже:

Теперь мы знаем концепцию зарядки конденсатора и его структуру, но знаете ли вы, что такое емкость? емкость — это способность конденсатора накапливать в нем заряд. Есть несколько факторов, которые влияют на емкость.

  • Площадь пластины
  • Зазор между пластинами
  • Проницаемость изоляционного материала

Соответствующий пост: Конденсатор и типы конденсаторов | Фиксированный, переменный, полярный и неполярный

Конденсатор имеет широкий спектр применений в электронике , таких как накопление энергии, регулирование мощности, коррекция коэффициента мощности, генераторы и фильтрация.

В этом руководстве мы объясним вам, как можно использовать конденсатор в электронной схеме. Есть три способа подключения конденсатора к электронной схеме:

  • Последовательный конденсатор
  • Параллельный конденсатор
  • Конденсатор в цепях переменного тока
  • Конденсатор в цепях постоянного тока

Связанная публикация: Конденсаторы MCQ с пояснительными ответами

Как работает конденсатор?
Работа и конструкция конденсатора

Всякий раз, когда на его клеммы подается напряжение (также известный как зарядка конденсатора), начинает течь ток и продолжается до тех пор, пока напряжение не появится как на отрицательном, так и на положительном (анодном и положительном) контактах. Катод) пластины становятся равными напряжению источника (Applied Voltage).Эти две пластины разделены диэлектрическим материалом (таким как слюда, бумага, стекло и т. Д., Которые являются изоляторами), который используется для увеличения емкости конденсатора.

Когда мы подключаем заряженный конденсатор к небольшой нагрузке, он начинает подавать напряжение (накопленную энергию) на эту нагрузку, пока конденсатор полностью не разрядится.

Конденсаторы бывают разных форм, и их значение измеряется в фарадах (Ф). Конденсаторы используются как в системах переменного, так и постоянного тока (мы обсудим это ниже).

Емкость (C):

Емкость — это количество электрического заряда, перемещаемого в конденсаторе (конденсаторе), когда источник питания на один вольт подключен к его клемме.

Математически,

Уравнение емкости:

C = Q / V

Где,

  • C = емкость в фарадах (F)
  • Q = электрический заряд в кулонах В = Напряжение в вольтах

Мы не будем вдаваться в подробности, потому что наша основная цель этого обсуждения — объяснить роль и применение / использование конденсаторов в системах переменного и постоянного тока.Чтобы понять эту базовую концепцию, мы должны понимать основные типы конденсаторов, относящиеся к нашей теме (поскольку существует много типов конденсаторов, и мы обсудим типы конденсаторов позже в другом посте, потому что это не связано с вопросом).

Похожие сообщения:

Серийные конденсаторы

Как последовательно соединить конденсаторы?

Последовательно ни один конденсатор не подключен напрямую к источнику. Чтобы соединить их последовательно, вам необходимо соединить их встык, как показано на рисунке ниже,

При последовательном соединении конденсаторов общая емкость уменьшается.Следовательно, соединение выполняется последовательно, поэтому ток через конденсаторы будет одинаковым. Кроме того, заряд, накопленный пластиной конденсатора, будет таким же, потому что он исходит от пластины соседнего конденсатора.

Следовательно,

I T = I 1 + I 2 + I 3 +… + I n

и

Q Q T 33 + Q 2 + Q 3 +… + Q n

Теперь, чтобы найти значение емкости вышеуказанной схемы, мы применим закон Кирхгофа по напряжению (KVL), тогда у нас будет

V T = V C1 + V C2 + V C3

Как мы знаем, Q = CV

И V = Q / C

Итак,

(Q / C T ) = (Q / C 1 ) + (Q / C 2 ) + (Q / C 3 )

Следовательно,

1 / C T = (1 / C 1 ) + (1 / C 2 ) + (1 / C 3 )

Для n th no.конденсатора, подключенного последовательно,

Для двух последовательно соединенных конденсаторов формула будет иметь вид

C T = (C1 x C2) / (C1 + C2)

Теперь вы можете найти емкость приведенная выше схема, используя формулу,

Здесь C1 = 10 мкФ и C2 = 4,7 мкФ

Итак, C T = (10 x 4.7) / (10 + 4.7)

C T = 47 / 14,7

C T = 3,19 мкФ

Конденсаторы, подключенные параллельно

Как подключить конденсаторы параллельно?

Параллельно каждый конденсатор напрямую подключается к источнику, как вы можете видеть на изображении ниже,

При параллельном подключении конденсаторов общая емкость равна сумме всех емкостей конденсаторов.Поскольку верхняя и нижняя пластины всех конденсаторов соединены вместе, из-за этого площадь пластины также увеличивается.

Общий ток в параллельной цепи будет равен току на каждом конденсаторе.

Применяя закон Кирхгофа,

I T = I 1 + I 2 + I 3

Теперь ток через конденсатор выражается как,

I = C (dV / dt)

Итак,

Решив приведенное выше уравнение

C T = C 1 + C 2 + C 3

And, для n th no.конденсатора, соединенного последовательно,

C T = C 1 + C 2 + C 3 +… + C n

Теперь вы можете определить емкость цепи, используя приведенную выше формулу,

Здесь C 1 = 10 мкФ и C 2 = 1 мкФ

Итак, C T = 10 мкФ + 1 мкФ

C T = 11 мкФ

Связанные сообщения:

Полярный и неполярный конденсатор

Неполярный конденсатор: (Используется в системах переменного и постоянного тока)

Неполярные конденсаторы могут использоваться как в системах переменного, так и постоянного тока.Их можно подключать к источнику питания в любом направлении, и их емкость не зависит от смены полярности.

Полярный конденсатор: (используется только в цепях и системах постоянного тока)

Конденсаторы этого типа чувствительны к их полярности и могут использоваться только в системах и сетях постоянного тока. Конденсаторы Polar не работают в системе переменного тока из-за смены полярности после каждого полупериода питания переменного тока.

Типы конденсаторов: полярные и неполярные конденсаторы с символами

Роль конденсаторов в цепях переменного тока

Конденсатор имеет множество применений в системах переменного тока, и ниже мы обсудим несколько вариантов использования конденсаторов в сетях переменного тока.

Бестрансформаторный источник питания:

Конденсаторы используются в бестрансформаторных источниках питания. В таких схемах конденсатор включен последовательно с нагрузкой, потому что мы знаем, что конденсатор и катушка индуктивности в чистом виде не потребляют мощность. Они просто берут мощность в одном цикле и возвращают ее в другом цикле на нагрузку. В этом случае он используется для снижения напряжения с меньшими потерями мощности.

Асинхронные двигатели с расщепленной фазой:

Конденсаторы также используются в асинхронных двигателях для разделения однофазного источника питания на двухфазный источник питания для создания вращающегося магнитного поля в роторе для захвата этого поля.Этот тип конденсатора в основном используется в бытовых водяных насосах, вентиляторах, кондиционерах и многих устройствах, которым для работы требуется как минимум две фазы.

Коррекция и улучшение коэффициента мощности:

Есть много преимуществ улучшения коэффициента мощности. В трехфазных системах питания конденсаторная батарея используется для подачи реактивной мощности на нагрузку и, следовательно, для повышения коэффициента мощности системы. Конденсаторная батарея устанавливается после точного расчета. По сути, он вырабатывает реактивную мощность, которая ранее передавалась из энергосистемы, поэтому снижает потери и повышает эффективность системы.

Конденсаторы в цепи переменного тока

Как подключить конденсатор в цепи переменного тока?

В цепи постоянного тока конденсатор заряжается медленно, пока напряжение зарядки конденсатора не сравняется с напряжением питания. Кроме того, в этом состоянии конденсатор не позволяет току проходить через него после полной зарядки.

И, когда вы подключаете конденсатор к источнику переменного тока, он непрерывно заряжается и разряжается из-за постоянного изменения уровней напряжения.Емкость в цепях переменного тока зависит от частоты подаваемого входного напряжения. Кроме того, если вы видите векторную диаграмму идеальной цепи конденсатора переменного тока, вы можете заметить, что ток опережает напряжение на 90 °.

В цепи конденсатора переменного тока ток прямо пропорционален скорости изменения подаваемого входного напряжения, которая может быть выражена как:

I = dQ / dt

I = C (dV / dt)

Теперь мы рассчитаем емкостное реактивное сопротивление в цепи переменного тока .

Как мы знаем, I = dQ / dt и Q = CV

И входное напряжение переменного тока в приведенной выше схеме будет выражено как,

V = V m Sin wt

Итак, I м = d (CV м Sin wt ) / dt

I м = C * V м Cos wt * w (после дифференцирования)

I м = wC V m Sin (wt + π / 2)

At, w = 0, Sin (wt + π / 2) = 1

Следовательно,

I m = wCV m

V m / I м = 1 / wC (где w = 2π f и V м / I м = X C )

Емкостное реактивное сопротивление (X C ) =

Теперь, для расчета емкостного реактивного сопротивления вышеуказанной схемы

X C = 1 / [2π (50 Гц) (10 -6 F)]

XC = 3183.09 Ом

Связанный пост: В чем разница между батареей и конденсатором?

Роль конденсаторов в цепях постоянного тока

Кондиционирование питания:

В системах постоянного тока конденсатор используется в качестве фильтра (в основном). Его наиболее распространенное использование — преобразование источника переменного тока в постоянный при выпрямлении (например, в мостовом выпрямителе). Когда мощность переменного тока преобразуется в колеблющуюся (с пульсациями, то есть не в устойчивом состоянии с помощью схем выпрямителя) мощность постоянного тока (пульсирующая мощность постоянного тока), чтобы сгладить и отфильтровать эти пульсации и колебания, используется полярный конденсатор постоянного тока.Его значение рассчитано точно и зависит от напряжения в системе и тока нагрузки.

Конденсатор развязки:

Конденсатор развязки используется, где мы должны развязать две электронные схемы. Другими словами, шум, создаваемый одной схемой, заземляется разделительным конденсатором и не влияет на работу другой схемы.

Конденсатор связи:

Как мы знаем, Конденсатор блокирует постоянный ток и позволяет переменному току проходить через него (мы обсудим это в следующем сеансе, как это происходит).Таким образом, он используется для разделения сигналов переменного и постоянного тока (также используется в схемах фильтров для той же цели). Его значение рассчитывается таким образом, что его реактивное сопротивление минимизируется на основе частоты, которую мы хотим передать через него. Конденсатор связи также используется в фильтрах (схемах устранения пульсаций, таких как RC-фильтры) для разделения сигналов переменного и постоянного тока и удаления пульсаций из пульсирующего напряжения питания постоянного тока для преобразования его в чистое переменное напряжение после выпрямления.

Вы также можете прочитать:

Capacitor Theory

Конденсаторы

широко используются в электротехнике для таких функций, как накопление энергии, коррекция коэффициента мощности, компенсация напряжения и многие другие.Емкость также присуща любой системе распределения электроэнергии и может играть ключевую роль в ее работе.

Для полного понимания конденсаторов и их использования важно, чтобы практикующие электрики хорошо разбирались в теории конденсаторов.

Емкость

Используемые символы

C — конденсатор, с единицей измерения Фарад (Ф)
R — резистор, с единицей измерения Ом (Ом)
V — d.c. напряжение источника в вольтах (В)
в c — напряжение конденсатора в вольтах (В)
I — пиковый ток заряда или разряда в амперах (A)
i — мгновенный ток в амперах (A)
Q — электрический заряд (Кл)
E — напряженность электрического поля (В / м)
D — плотность электрического потока (Кл / м2)
ε o — диэлектрическая проницаемость свободного пространства (ф / м) — постоянная: 8.854 187 817 … x 10−12
ε r — относительная диэлектрическая проницаемость диэлектрика

Конденсаторы состоят из проводящих поверхностей, разделенных диэлектриком (изолятором). Эффект этого заключается в том, что при приложении напряжения заряд течет в конденсатор и сохраняется. Когда к конденсатору подключена внешняя цепь, этот накопленный заряд будет течь из конденсатора в цепь.

Емкость — это величина заряда, который может храниться в конденсаторе.Единица измерения емкости в системе СИ — фарад ( F ). Фарад — это отношение электрического заряда, накопленного в конденсаторе, к приложенному напряжению:

Величина емкости зависит от используемых материалов и геометрии конденсатора.

Формально емкость находится путем решения уравнения Лапласа ∇2φ = 0, где φ — постоянный потенциал на поверхности проводника. Более простые геометрические формы также могут быть решены с использованием других методов (в этом примере показан пример конденсатора с параллельными пластинами).

Пример — емкость параллельных пластин


Конденсатор параллельных пластин
(щелкните, чтобы увеличить изображение)

Показан конденсатор; предполагается, что диэлектрик представляет собой вакуум. Электростатическая теория предполагает, что отношение плотности электрического потока к напряженности электрического поля является диэлектрической проницаемостью свободного пространства:

Плотность электрического потока и напряженность электрического поля определяются по формуле:

D = QA и E = Vd

С емкостью, определенной как:

Приведенные выше уравнения можно объединить и решить, чтобы получить емкость конденсатора с параллельными пластинами (с диэлектриком на свободном воздухе) как:

фарад

емкость будет увеличиваться прямо пропорционально относительной диэлектрической проницаемости и определяется по формуле:

фарад

Зарядка и разрядка конденсаторов

Заряд (и разряд) конденсаторов следует экспоненциальному закону.Рассмотрим схему, которая показывает конденсатор, подключенный к постоянному току. источник через переключатель. Резистор представляет собой сопротивление утечки конденсатора, сопротивление внешних проводов и соединений, а также любое намеренно введенное сопротивление.


Напряжение зарядки конденсатора

Напряжение зарядки конденсатора

Когда переключатель замкнут, начальное напряжение на конденсаторе (C) равно нулю, а ток (i) определяется по формуле:


— из теории конденсатора основной энергии

Напряжение на резисторе — это ток, умноженный на его значение, что дает:

Согласно закону Кирхгофа о напряжении d.c. Напряжение источника (В) равно сумме напряжения конденсатора (v c ) и напряжения на резисторе:

Что при перестановке дает:

и

Интегрируя обе стороны, мы получаем:

at, что дает

Путем перестановки

, который идет на

и

Напряжение на конденсаторе увеличится от нуля до d.c. источник как экспоненциальная функция.

Ток зарядки конденсатора


Зарядка конденсатора и разрядка

Из приведенного выше:

Предоставление:

Допустим, начальный ток (I) будет сопротивлением источника постоянного тока. :

дает

Постоянная времени

Произведение сопротивления и емкости (RC) в секундах и обозначается как постоянная времени цепи (обозначается греческой буквой Тау, τ).

Используя это, уравнения напряжения и зарядного тока на конденсаторе записываются как:

Примечание: , увеличивая значение сопротивления R, увеличивает постоянную времени, что приводит к более медленному заряду ( или разряд) конденсатора.

Разряд конденсатора

При разрядке ток ведет себя так же, как и при зарядке, но в противоположном направлении.Напряжение на конденсаторе экспоненциально спадет до нуля. Уравнения для разряда как по току, так и по напряжению могут быть определены аналогично тому, как показано выше, и суммируются следующим образом:

Накопитель энергии

Чем больше емкость, тем больше энергии он может хранить.

Ток в конденсаторе определяется по формуле:

Мгновенная мощность внутри конденсатора является произведением тока и напряжения:

Вт

В течение интервала dt подводимая энергия составляет:

джоулей

Интегрируя мгновенную энергию при повышении напряжения конденсатора, мы можем найти общую запасенную энергию:

джоулей

Стоит отметить, что при последовательном соединении конденсаторов общая емкость уменьшается, но номинальное напряжение увеличивается.При параллельном подключении номинальное напряжение остается неизменным, но увеличивается общая емкость. В любом случае общий запас энергии любой комбинации — это просто сумма накопительной емкости каждого отдельного конденсатора.

Потери в резисторе

При зарядке идеального конденсатора потерь нет. Однако, если конденсатор заряжается через резистор, следует понимать, что половина энергии заряда будет потеряна и рассеиваться в виде тепла через конденсатор.

Рассмотрим приведенную выше схему с зарядным током:

Мгновенная потеря мощности на резисторе составляет:

Следовательно, общая потеря мощности составляет:

Работа через решение дает:

∫0∞V2Re − 2tRCdt = [V2R (−RC2) e − 2tRC] 0∞ = [0] — [- CV22]

= 12CV2 джоулей

Видно, что потеря энергии то же самое, что хранится в конденсаторе.При разряде в резисторе также будет потеряна половина запасенной энергии.

См. Также

Энергия, накопленная в конденсаторе

Проблема «энергии, хранящейся в конденсаторе» — классическая, потому что в ней есть некоторые нелогичные элементы. Разумеется, аккумулятор выделяет энергию QV b в процессе зарядки конденсатора до равновесия при напряжении аккумулятора V b . Но половина этой энергии рассеивается в виде тепла в сопротивлении пути зарядки, и только QV b /2 в конечном итоге сохраняется на конденсаторе в состоянии равновесия.Противоинтуитивная часть начинается, когда вы говорите: «Это слишком большие потери, чтобы их терпеть. Я просто собираюсь снизить сопротивление пути зарядки, чтобы получить больше энергии на конденсаторе». Это не работает, потому что скорость потерь энергии в сопротивлении I 2 R резко возрастает, даже если вы заряжаете конденсатор быстрее. В этом процессе экспоненциальной зарядки отнюдь не интуитивно понятно, что вы все равно будете терять половину энергии в тепло, поэтому эта классическая задача становится отличным примером ценности исчисления и интеграла как инженерного инструмента.

Часть интуитивной части, которая входит в настройку интеграла, заключается в том, что получение первого элемента заряда dq на пластинах конденсатора требует гораздо меньше работы, потому что большая часть напряжения батареи падает на сопротивлении R и только крошечная энергия dU = dqV хранится на конденсаторе. Переход к интегралу, который принимает квадратичную форму по q, дает суммарную энергию на конденсаторе Q 2 / 2C = CV b 2 /2 = QV b /2, где здесь V b напряжение аккумулятора.Итак, суть в том, что вам нужно потратить 2 джоуля из батареи, чтобы поместить 1 джоуль на конденсатор, при этом другой джоуль безвозвратно теряется из-за тепла — 2-й закон термодинамики снова кусает вас, независимо от вашей скорости зарядки. Неинтуитивный характер этой проблемы является причиной ценности интегрального подхода.

Хотя здесь это не будет показано, если вы продолжите решение этой проблемы, сделав сопротивление зарядки настолько малым, что начальный зарядный ток будет чрезвычайно высоким, значительная часть энергии зарядки фактически излучается в виде электромагнитной энергии.Это пересекает порог теории антенн, потому что не все потери при зарядке были термодинамическими, но все же потери в процессе составляли половину энергии, поставляемой батареей при зарядке конденсатора.

Таким образом, энергия, поставляемая батареей, равна E = CV b 2 , но только половина энергии находится на конденсаторе — другая половина была потеряна на нагрев или, в случае чрезвычайно низкого зарядного сопротивления, на нагрев и электромагнитная энергия.

Обобщение импеданса для распространения закона Ома на конденсаторы и индукторы

  1. Образование
  2. Наука
  3. Электроника
  4. Обобщение импеданса для распространения закона Ома на конденсаторы и индукторы

Автор Джон Сантьяго

Использование концепции импеданса для увеличения сопротивления Закон Ома в векторной форме, поэтому вы можете применить его и расширить на конденсаторы и катушки индуктивности.После описания импеданса вы используете векторные диаграммы, чтобы показать разность фаз между напряжением и током. Эти диаграммы показывают, как соотношение фаз между напряжением и током различается для резисторов, конденсаторов и катушек индуктивности.

Закон Ома и импеданс

Для схемы, состоящей только из резисторов, закон Ома гласит, что напряжение равно току, умноженному на сопротивление, или В = IR . Но когда вы добавляете в схему устройства хранения, связь i-v становится немного сложнее.Резисторы избавляются от энергии в виде тепла, а конденсаторы и катушки индуктивности накапливают энергию.

Конденсаторы сопротивляются изменениям напряжения, а катушки индуктивности — изменениям тока. Импеданс обеспечивает прямую зависимость между напряжением и током резисторов, конденсаторов и катушек индуктивности, когда вы анализируете схемы с векторными напряжениями или токами.

Подобно сопротивлению, вы можете думать об импедансе как о константе пропорциональности, которая связывает векторное напряжение В и векторный ток I в электрическом устройстве.В терминах закона Ома можно соотнести В , I и импеданс Z следующим образом:

V = I Z

Импеданс Z — это комплексное число:

Z = R + jX

Вот что означают действительная и мнимая части Z :

  • Реальная часть R — это сопротивление от резисторов . Вы никогда не вернете энергию, потерянную при протекании тока через резистор.Когда у вас есть резистор, подключенный последовательно с конденсатором, начальное напряжение конденсатора постепенно уменьшается до 0, если к цепи не подключена батарея.

    Почему? Потому что резистор использует начальную накопленную энергию конденсатора в виде тепла, когда через цепь протекает ток. Точно так же резисторы заставляют начальный ток катушки индуктивности постепенно снижаться до 0,

    .
  • Мнимая часть X — это реактивное сопротивление , которое возникает в результате воздействия конденсаторов или катушек индуктивности .Всякий раз, когда вы видите воображаемое число для импеданса, речь идет о запоминающих устройствах. Если мнимая часть импеданса отрицательна, тогда в мнимой части импеданса преобладают конденсаторы. Если он положительный, в импедансе преобладают индукторы.

Когда у вас есть конденсаторы и катушки индуктивности, импеданс изменяется с частотой. Это большое дело! Почему? Вы можете разрабатывать схемы, чтобы принимать или отклонять определенные диапазоны частот для различных приложений. Когда в этом контексте используются конденсаторы или катушки индуктивности, цепи называются фильтрами.Вы можете использовать эти фильтры для таких вещей, как создание необычных рождественских дисплеев с мигающими разноцветными огнями и танцами под музыку.

Величина, обратная импедансу Z , называется проводимостью Y :

Действительная часть G называется проводимостью , а мнимая часть B называется проводимостью .

Диаграммы и резисторы, конденсаторы и катушки индуктивности

Фазорные диаграммы объясняют различия между резисторами, конденсаторами и катушками индуктивности, где напряжение и ток либо совпадают по фазе, либо не совпадают по фазе на 90 o .Напряжение и ток резистора совпадают по фазе, потому что мгновенное изменение тока соответствует мгновенному изменению напряжения.

Но для конденсаторов напряжение не изменяется мгновенно, поэтому даже если ток изменяется мгновенно, напряжение будет отставать от тока. Для катушек индуктивности ток не изменяется мгновенно, поэтому при мгновенном изменении напряжения ток отстает от напряжения.

Вот векторные диаграммы этих трех устройств.Для резистора ток и напряжение совпадают по фазе, потому что векторное описание резистора составляет В R = I R R . Напряжение конденсатора отстает от тока на 90 o из-за — j / (ω C) , а напряжение индуктора опережает ток на 90 o из-за j ω L .

Положить закон Ома для конденсаторов в векторной форме

Для конденсатора емкостью C у вас будет следующий ток:

Поскольку производная вектора просто умножает вектор на j ω , описание вектора для конденсатора составляет

Описание вектора для конденсатора имеет форму, аналогичную закону Ома, из которого видно, что полное сопротивление конденсатора равно

.

Ранее вы видели векторную диаграмму конденсатора.Напряжение конденсатора отстает от тока на 90 90 209 o 90 210, как видно из формулы Эйлера:

Представьте себе мнимое число j как оператор, который поворачивает вектор на 90, o против часовой стрелки. A –j вращает вектор по часовой стрелке. Следует также отметить, что j 2 поворачивает вектор на 180, o и равен –1.

Мнимая составляющая конденсатора отрицательна.По мере увеличения радианной частоты ω сопротивление конденсатора падает. Поскольку частота батареи равна 0, а напряжение батареи постоянное, сопротивление конденсатора бесконечно. Конденсатор действует как разомкнутая цепь для источника постоянного напряжения.

Положите закон Ома для индукторов в векторной форме

Для индуктора с индуктивностью L напряжение равно

Соответствующее описание вектора для индуктора —

Импеданс катушки индуктивности

Z L = jωL

Ранее вы видели векторную диаграмму индуктора.Напряжение катушки индуктивности опережает ток на 90 o по формуле Эйлера:

Мнимая составляющая для индукторов положительна. По мере увеличения радианной частоты ω сопротивление катушки индуктивности увеличивается. Поскольку радианная частота для батареи равна 0, а батарея имеет постоянное напряжение, импеданс равен 0. Катушка индуктивности действует как короткое замыкание для источника постоянного напряжения.

Об авторе книги

Джон М.Сантьяго-младший, доктор философии, , прослужил в ВВС США (USAF) 26 лет. В течение этого времени он занимал различные руководящие должности в области управления техническими программами, развития закупок и поддержки операционных исследований. Находясь в Европе, он возглавлял более 40 международных научных и технических конференций / семинаров.

Конденсатор

А —

Конденсатор — один из основных элементов схемы.Он используется для хранения электрической энергии. Конденсатор накапливает электрическую энергию при условии, что к нему подключен источник напряжения.

Основными частями конденсатора являются металлические пластины и изоляторы. Изоляторы предназначены для изоляции металлических пластин и, таким образом, предотвращения короткого замыкания.

В настоящее время используются два распространенных типа конденсаторов: конденсатор постоянной емкости и конденсатор переменной емкости. Пластины конденсатора постоянной емкости нельзя перемещать; по этой причине его емкость не меняется.Пластины переменного конденсатора двигаются; его емкость меняется. Чем больше расстояние между пластинами, тем меньше емкость конденсатора.

.

1. Для чего нужен конденсатор?

2. Какие основные части конденсатора?

3. Какие бывают основные типы конденсаторов?

2. Найдите правильный вариант.

Изоляторы — это материалы, имеющие

а) низкое сопротивление

б) низкое сопротивление

Ток проходит через проводники

а) легко

б) с большим трудом

Медь и серебро

а) общие провода

б) изоляторы общие

Воздух, бумага и пластик

а) изоляторы общие

б) общие жилы

При подаче высокого напряжения на изолятор

а) не проводит ток

б) проводит ток

3.Составляйте предложения, используя слова и словосочетания.

Постоянный ток, переменный ток, расход, изменение, виды тока, частота, направление, проводящая цепь, источник напряжения

Дополнительный материал к карточке 7

1. Прочтите текст, переведите его и ответьте на вопросы.

Проводники

Проводники — это материалы с низким сопротивлением, поэтому ток легко проходит через них.Чем ниже сопротивление материала, тем больше тока может пройти через него.

Самыми распространенными проводниками являются металлы, а лучшие из них — серебро и медь. Преимущество меди в том, что она намного дешевле серебра. Таким образом, медь широко используется для производства проводов. Одна из общих функций проводников — подключение источника напряжения к сопротивлению нагрузки. Поскольку проводники из медной проволоки имеют очень низкое сопротивление, в них создается минимальное падение напряжения.Таким образом, все приложенное напряжение может создавать ток в сопротивлении нагрузки. Следует учитывать, что большинство материалов меняют значение сопротивления при изменении температуры.

1. Что такое проводник?

2. В чем преимущества медных проводников?

3. Какие типы проводов вы знаете?

2. Найдите правильный вариант.

1.1. d.c. это ток, который

а) Меняет направление потока

б) Одностороннее течение


: 324

Измерительный трансформатор напряжения 1

БЛОК 1

Задание 1. Изучите новые слова и словосочетания

приложение [ˌæplɪ’keɪʃn]
наука [‘saɪəns]
феномен [fɪ’nɔmɪnən]
устройство [d’vaɪs]
поток электронов [fləu ov ɪ’lektrɔnz]
твердый [‘sɔlɪd]
жидкость [‘lɪkwɪd]
полупроводник [ˌsemɪkən’dʌktə]
недвижимость [‘prɔpətɪ]
закон [lo:]
строительство [kən’strʌkʃn]
движение [‘məuʃn]
электронная лампа [ɪ’lektrɔn tjuːb]
технология [tek’nɔləʤɪ]
техник [tek’nɪʃn]
поле [поле]
промышленность [‘ɪndəstrɪ]
усилить [‘æmplɪfaɪə]
филиал [brɑːnʧ]
дизайн [dɪ’zaɪn] , г.
физический [‘fɪzɪkl]
промышленное [ɪn’dʌstrɪəl]
описать [dɪ’skraɪb]
применить [ə’plaɪ]
излучать [‘mɪt]
исследование [‘stʌdɪ]
включают [ɪn’kluːd]
увеличение [‘nkriːs], [n’kris] , г.
делить [dɪ’vaɪd]
процесс [‘prəuses], [prəu’ses] , г.
дело с [diːl wɪð]
мера [‘меняʒə]
разработать [dɪ’veləp]
содержат [kən’teɪn]

ЗАДАЧА 2.Изучите следующие суффиксы и используйте их для образования новых слов.

Глагол + ment : измерять, развивать, заменять.

Глагол + с / ция : строить, применять, перемещать, разделять, информировать, выделять, изобретать, соединять.

Глагол + er / или (человек, устройство): обрабатывать, конструировать, усиливать, содержать, исследовать.

Существительное + ist : наука, физика.

ЗАДАНИЕ 3. Измените правила образования множественного числа существительных и написания множественного числа существительных из таблицы выше:

1) + s: заявки

2) s, -sh, -tch, -ch, -o, -x + es: процессов

3) согласный + y → гг: этюдов

ЗАДАЧА 4.Изучите существующую форму глагола to be и переведите предложения с русского на английский. Сделайте их отрицательными и вопросительными.

Я утра Я утра не Я Я?

He is He is not Is he?

Она это Она это не Она ?

Это это Это это , а не Это это?

Мы — это Мы — это , а не Мы ?

Вы Вы не Вы ?

Они — это Они — это , а не Это ?

1.. 2.. 3. 4.. 5.. 6.. 7.. 8.. 9.. 10.. 11.. 12..

ЗАДАНИЕ 5. Изучите прошедшую форму глагола to be и переведите приведенные выше предложения с русского на английский. Сделайте их отрицательными и вопросительными.

Я был Я был не Был Я?

He было He было не Было he?

Она была Она была не Была она?

Это было Было было не Было это?

Мы были Мы были не Были мы?

Вы были Вы были не Были вы?

Они были Они были не Были они?

ЗАДАЧА 6.Изучите следующую таблицу Present Simple и правила ее использования. Заполните пробелы в предложениях ниже. Сделайте их отрицательными и вопросительными.

Мы используем когда мы говорим о:

1) Привычки (каждый день играю в компьютерные игры)

2) Постоянные действия (изучаю Электронику.)

3) Законы и правила (Катод излучает электроны при нагревании.)

4) Спортивные комментарии (Сычев пасует на Аршавина, Аршавин забивает.)

5) Будущее: расписания (английский язык начинается в 8:00 завтра)

Временные ссылки : всегда, обычно, часто, редко, иногда, никогда, каждый день (неделя), раз в неделю, время от времени и т. Д.

Настоящее простое

? +
какая когда где Почему Как Сколько Сколько Как часто Который Делать Do es я ты мы Oни он она Это играть в? я Мы Ты играешь Oни Он Она играет с Это я Мы Ты не играешь Oни Он Она делает es не играет Это

1.Будущие радиоинженеры (учатся) на радиотехническом факультете. 2. Электроника (быть) молодой наукой. 3. Электронные устройства (играют) большую роль в радиооборудовании. 4. Станция приема (приема) радиоволн. 5. Передающие станции (излучать) радиоволны. 6. Передающая станция (иметь) радиопередатчик и антенну. 7. Радиопередатчик (быть) устройством для излучения электромагнитных волн. 8. Основные части передатчика (быть) высокочастотного генератора, заземления и антенны.9. Необходимые компоненты радиосвязи (быть) передатчиком и приемником. 10. Широкое применение радиоустройств (вести) для дальнейшего развития науки.

ЗАДАНИЕ 7. Прочитать первую часть текста.

ЭЛЕКТРОНИКА

Электроника — это наука об электронных явлениях, устройствах и системах. Он описывает и применяет поток электронов, испускаемых твердыми телами или жидкостями, проходящими через вакуум, газы или полупроводники.Электроника как наука изучает свойства электронов, законы их движения и законы преобразования различных видов энергии через среду электронов. Основными элементами электроники являются электронная лампа и транзистор.

Хотя электроника по праву считается только частью электротехники, электронные методы применяются во многих областях, включая промышленность, связь, оборону и развлечения. Из-за его универсальности становится все труднее провести четкие границы между электроникой и другими отраслями электронной техники.

В то время как физическая электроника — это наука об электронных процессах, промышленная электроника занимается технологиями проектирования, изготовления и применения электронных устройств. Промышленные применения электроники включают контрольно-измерительные приборы, счет и измерения, регулирование скорости и многие другие.

ЗАДАНИЕ 8. Ответьте на следующие вопросы, перескажите текст и придумайте еще 5 вопросов.

1.Что такое электроника? 2. Что изучает? 3. Какие основные элементы в электронике? 4. Где применяются электронные методы? 5. Чем занимается промышленная электроника?

ЗАДАНИЕ 9. Прослушайте запись и заполните пробелы.

Электроника — это новая 1) физика, которая играет все более 2) роль в нашей жизни. Он связан с использованием 3) для производства 4) носителей информации и управления 5) таких как компьютеры.Эти устройства 6) электрические цепи, по которым проходит электрический ток 7). Управляющие части в цепи называются 8), а эти 9) диодами и транзисторами. Компоненты могут 10) токи, включать и выключать их или менять направление.

БЛОК 2

Задание 1. Изучите новые слова и словосочетания

изобретение [ɪn’venʃ (ə) n]
важное [ɪm’pɔːt (ə) nt]
разработка [dɪ’veləpmənt]
инженерное дело [ˌenʤɪ’nɪərɪŋ]
увеличить [ɪn’lɑːʤ], [en’lɑːʤ]
назначение [‘pɜːpəs] , г.
вакуум [‘vækjuːm]
вещание [‘brɔːdkɑːstɪŋ]
телевещание [‘telɪˌkɑːstɪŋ]
исследования [rɪ’sɜːʧ]
радар [‘reɪdɑː]
заменить [rɪ’pleɪs]
уменьшить [rɪ’djuːs]
размер [сааз]
аванс [əd’vɑːn (t) s] , г.
считать [kən’sɪdə] , г.
подключение [kə’nekt]
внешний вид [ə’pɪər (ə) n (t) s]
использовать [juz]
введение [ˌɪntrə’dʌkʃ (ə) n] , г.
диапазон [reɪnʤ]
предположим [sə’pəuz]
микроэлектроника [ˌmaikrəiˌlek’troniks]
свинец [li: d]
крупномасштабная интегральная схема [lɑːʤ skeil integreitid ‘sɜːkɪt]
кв. [skwɛə]
дюймов [ɪnʧ]
магнитофон [‘teɪprɪˌkɔːdə]
инструмент [тюль]

ЗАДАЧА 2.Изучите следующие суффиксы и используйте их для образования новых слов.

СУЩЕСТВИТЕЛЬНЫЕ: Глагол + -ence, -ance : появляется → внешний вид: применять, сопротивляться, конденсатор.

НАСЛОВИЯ: Прилагательное + — ly : обычный → обычно: возрастающий, вроде, недавний, распространенный, значительный.

ГЛАГОЛЫ: En / em + прилагательное: большой → увеличить: сила, способность, круг.

ПРИЛАГАЮЩИЕ:

Глагол + -able : вычислить → вычислимый: настроить, варьировать, изменить, примечание.

Существительное + -ant (-ent) : импорт → важно;

Глагол, существительное + — ive : эффект → эффективный: проводить, сопротивляться, предотвращать, защищать.

Существительное + — ic : электрон → электроника: наука.

ЗАДАНИЕ 3. Изучите следующие предлоги и заполните пробелы в тексте предлогами. Прослушайте запись и проверьте ответы.

из : поток электронов из : Я из России.С по : пройти через в : Я живу в России. С по : я хожу в школу между : провести грань между двумя объектами с : разобраться с за : подарок тебе на : компьютер на столе в : преобразовать в

ИСААК НЬЮТОН

Английский физик и математик Исаак Ньютон был одним 1) … величайшие ученые 2) … все время. Его теории произвели революцию в научном мышлении и заложили основы 3) … современной физики. Его книга Principia Mathematica — это одна 4) … важнейшие работы 5) … история 6) … современная наука. Ньютон открыл закон 7) … гравитации и разработал три закона 8) … движения, которые все еще 9) … используются сегодня. Он был первым, кто разделил белый свет 10) … цвета 11) … спектр, и его исследования 12) … света привели его к созданию отражающего телескопа.Ньютон тоже был одним 13) … первопроходцами 14) … новой ветвью 15) … математикой под названием исчисление.

ЗАДАНИЕ 4. Изучите следующую структуру инфинитива, прочтите предложения ниже и переведите их с английского на русский язык.

Изобретение электронных устройств , как известно, имеет новый важный этап в развитии электротехники.

, ..

1. Сообщается, что ученые уже работают над искусственным интеллектом, и следующее поколение компьютеров, вероятно, будет понимать человеческие языки. 2. Сейчас известно множество материалов, которые становятся сверхпроводниками при низких температурах. 3. Недавно было обнаружено, что некоторые керамические материалы являются сверхпроводниками. 4. Ожидалось, что Международная космическая станция станет постоянным внепланетным продолжением человеческой цивилизации. 5. Известно, что машинный код содержит двоичный код единиц и нулей, которые обрабатываются процессором.

ЗАДАЧА 5. Преобразуйте предложения по модели: Известно, что транзисторы выполняют функции, аналогичные клапанам. → Известно, что транзисторы выполняют функции клапанов.

1. Известно, что звук в твердых телах распространяется быстрее, чем в жидкостях. 2. Доказано, что электронное оборудование экономит миллионы человеко-машинных часов. 3. Считается, что электроника — наиболее прогрессивная технология современной индустриальной эпохи.4. Очевидно, что электроника внесла большой вклад в автоматизацию. 5. Известно, что изобретение электронного устройства стало новым важным этапом в развитии электротехники.

ЗАДАНИЕ 6. Прочтите вторую часть текста.

ЭЛЕКТРОНИКА

Известно, что изобретение электронного устройства стало новым важным этапом в развитии электротехники. Это значительно расширяет область применения электроэнергии в различных промышленных целях.Изобретение электронной лампы сделало возможным радиовещание, а затем и телевещание. Исследования в области электроники дали нам радары, компьютеры, магнитофоны, бетатрон и множество медицинских инструментов. Полупроводниковые приборы, заменившие электронные лампы, уменьшают размер инструментов.

Считается, что большой прорыв в электронике связан с появлением транзистора. Использование транзистора, вероятно, станет первым шагом к миниатюризации электронных устройств и расширит диапазон их применения.Введение транзистора в 1948 году должно стать началом эволюции микроэлектроники, которая в конце 1970-х годов привела к разработке крупномасштабных интегральных схем (БИС). Теперь сотни схем можно разместить на одном квадратном дюйме, и, похоже, этому нет предела. Лучшим доказательством этого предположения является технология так называемой молекулярной эпитаксии.

Электроника, очевидно, внесла большой вклад в автоматизацию. Это расширило диапазон автоматического управления крупномасштабными промышленными операциями и ускорило обработку информации.Электронно-вычислительные машины послужили основой для строительства автоматических линий, автоматизированных агрегатов, цехов и целых заводов, инструментов с программным управлением, роботов и манипуляторов.

Электроника проникла во все сферы деятельности человека от бытовой техники до искусственного интеллекта и поиска космических цивилизаций. Таким преимуществам электронных устройств, как микроскопические размеры, высокая скорость, низкая стоимость и надежность, скорее всего, нет конкурентов. Неудивительно, что электронная технология является наиболее динамичной технологией современной индустриальной эпохи.В ближайшем будущем электроника обязательно сделает еще больший прогресс и поможет человечеству одержать новые победы в науке и технике.

ЗАДАНИЕ 7. Ответьте на следующие вопросы и перескажите текст.

1. Что сделало возможным радиовещание и телевещание? 2. Что может уменьшить размер инструмента? 3. С чем связан большой прорыв в электронике? 4. Какие основные элементы в электронике? 5. Какие преимущества есть у электронных устройств? 6.Когда был изобретен первый транзистор? 7. Когда началась разработка схем LSI? 8. Какой вклад внесла электроника в автоматизацию?

БЛОК 3

Задание 1. Изучите новые слова и словосочетания.

вещество [‘sʌbstəns]
состоит из [kəm’pəuzd]
орбита [‘bɪt]
зависит от [d’pend]
заряд [ʧɑːʤ] , г.
переезд [muːv]
составляют [‘kɔnstɪtjuːt]
электрический ток [‘kʌrənt]; [‘kɜːrənt]
проводник [kən’dʌktə]
разрешить [ə’lau]
провод [‘waɪə]
покрыть
изоляционный материал [‘ɪnsjəleɪtɪŋ mə’tɪərɪəl]
проводимость [ˌkɔndʌk’tɪvətɪ]
примесь [ɪm’pjuərətɪ]
сопротивляться
постоянный ток (DC)
переменный ток (AC) [‘ɔːltəneɪtɪŋ]
изменить [ʧeɪnʤ]
включение / выключение /
частота [‘friːkwənsɪ]
напряжение [‘vəultɪʤ], [‘ vɔltɪʤ]
вольт (В)
ампер (А) [‘æmpɛə]
кулон (C) [‘kuːlɔm]
мощность
Ватт (Вт) [вес]
равняться [‘iːkwəl] , г.
потребляют [kən’sjuːm]

Задача 2.Прочтите текст о веществах и элементах, из которых они состоят.

Все вещества, твердые, жидкие или газообразные, состоят из одного или нескольких химических элементов. Каждый элемент состоит из одинаковых атомов. Каждый атом состоит из небольшого центрального ядра, состоящего из протонов и нейтронов, вокруг которых вращаются оболочки электронов. Эти электроны намного меньше протонов и нейтронов. Электроны в самой внешней оболочке называются валентными электронами, и электрические свойства вещества зависят от количества этих электронов.Нейтроны не имеют электрического заряда, но протоны имеют положительный заряд, а электроны — отрицательный. В некоторых веществах, обычно в металлах, валентные электроны могут свободно перемещаться от одного атома к другому, и именно это составляет электрический ток.

ЗАДАНИЕ 3. Прочтите текст еще раз и дополните предложения недостающей информацией.

1. Составные элементы. 2. Идентичные атомы. 3. Атомы состоят из, и. 4. Внутри есть и, а снаружи.5. Снаряды. 6. Валентные электроны. 7. Нейтронов нет. 8. Электричество вырабатывается, когда.

ЗАДАНИЕ 4. Прослушайте и дополните текст недостающей информацией.

Электричество состоит из 1) свободных электронов по проводнику. Для создания этого потока тока , на конце проводника помещается генератор для перемещения 2).

Проводники

Электричество нуждается в материале, который позволяет току легко проходить через него, 3) мало что дает потоку и полон свободных электронов.Этот материал называется проводником и может иметь форму стержня, трубки или листа. Чаще всего используются провода 4) разных размеров и толщин. Они покрыты изоляционными материалами, например пластиком.

Полупроводники

Полупроводники, такие как кремний и германий, используются в транзисторах, и их проводимость находится на полпути между проводником и 5). Небольшие количества других веществ, называемых примесями , , вводятся в материал для 6) проводимости.

Изоляторы

Материал, содержащий 7) электронов, называется изолятором. Стекло, резина, сухое дерево и 8) противостоят току электрического заряда, и поэтому они являются хорошими изоляционными материалами.

ЗАДАЧА 5. Прочтите текст еще раз и решите, верны ли следующие утверждения (T) или неверны (F), затем исправьте ложные.

1. Поток электронов, движущихся внутри проводника, создает электрический ток.

2. Генератор используется для перемещения зарядов.

3. Электроны могут легко проходить через любой материал.

4. Любой материал — хороший проводник.

5. Жилы покрыты изоляторами.

6. Наличие свободных электронов влияет на проводимость материалов.

7. Внесены примеси для увеличения проводимости.

8. Изоляционные материалы противостоят потоку электронов.

ЗАДАЧА 6.Прочтите текст и заполните таблицу недостающей информацией.

Существует два типа тока: постоянный ток (DC) и переменный ток (AC). Постоянный ток — это непрерывный поток электронов в одном направлении, и он никогда не меняет своего направления до тех пор, пока питание не будет остановлено или отключено.

Переменный ток постоянно меняет свое направление из-за того, как он генерируется. Термин «частота» используется для обозначения того, сколько раз ток меняет свое направление за одну секунду.

Переменный ток имеет большое преимущество перед постоянным, потому что он может передаваться на очень большие расстояния через небольшие провода, создавая высокое напряжение и низкий ток.

Есть несколько величин, которые важны, когда мы говорим об электрическом токе. Вольт (В), названный так в честь итальянского физика Алессандро Вольта, измеряет разность электрического потенциала между двумя точками на проводящем проводе. Амперы (А) измеряют количество тока, протекающего по проводнику, то есть количество электронов, проходящих через точку в проводнике за одну секунду.

Coulomb (C) измеряет количество заряда, переносимого за одну секунду постоянным током в один ампер. Мощность — это скорость выполнения работы, которая измеряется в ваттах (Вт). Киловатт (кВт), равный одной тысяче ватт, используется для измерения количества используемой или доступной энергии. Количество электроэнергии, потребляемой за один час при постоянной скорости в один киловатт, называется киловатт-часом.

Единица измерения Что измеряет?
(1) количество электронов, проходящих через заданную точку в проводнике за одну секунду
(2) количество электроэнергии, передаваемое постоянным током в один ампер
(3) количество использованной электроэнергии
(4) разность потенциалов между двумя точками проводника
(5) скорость выполнения работ

ЗАДАЧА 7.

Добавить комментарий

Ваш адрес email не будет опубликован.