Закрыть

Схема контактора переменного тока: Страница не найдена

Содержание

Принцип работы контактора переменного тока схема подключения

Главная страница » Электрический контактор – устройство и принцип работы

Электрический контактор (магнитный пускатель) – коммутационный прибор, по сути, представляющий собой реле больших размеров. Традиционно контактор используется для переключения тока, питающего электродвигатели либо иную нагрузку большой мощности. Нередко мощные электрические контакторы для электродвигателей и прочего оборудования, дополняются защитой от перегрузки по току и другим критериям. Для этого в конструкции прибора используются чувствительные биметаллические реле и блокировочные группы.

Исполнение электрических классических контакторов

Электрические классические контакторы – они же магнитные пускатели, обычно имеют группы контактов – основную и вспомогательную.

Контактные группы (чаще всего) находятся в нормально разомкнутом состоянии. Только при условии подачи напряжения питания на индукционную катушку прибора, контактные группы прибора изменяют своё состояние.

Три верхних клеммы основной группы служат для подключения входного трехфазного переменного тока, как правило, напряжением не менее 380 вольт. Эта контактная группа оснащена усиленными винтовыми зажимами под маркировкой «L1», «L2», «L3».

Назначения терминалов: 1 — подвод линейного напряжения; 2, 11 — выход под нагрузку; 3, 5 — питание катушки; 4, 6 — вспомогательный; 7 — чувствительность; 8, 9 — кнопки отключения и сброса вручную; 10 — вспомогательная группа

Вторая основная группа клемм, назначенная под питание нагрузки (электродвигателя или другой), расположена в нижней части конструкции прибора и также имеет винтовые зажимы, маркированные «T1», «T2», «T3».

Каждый прибор традиционно маркируется буквенно-цифровой комбинацией символов. Маркировка располагается на корпусе прибора и несёт базовую информацию об устройстве. Например:

А – 26 – 30 – 10

Здесь символом «А» обозначается серия устройства. Далее цифра «26» отмечает номинальный ток (26А) для нагрузки в виде асинхронного электродвигателя.

Цифра «30» обозначает число нормально открытых и нормально закрытых силовых контактов (соответственно 3 и 0). Цифра «10» указывает на число вспомогательных «NO» и «NC» контактов (1 и 0).

Назначение вспомогательной коммутации

Вспомогательные контакты часто используется в составе логической цепи реле или применяются в составе какой-либо другой части схемы управления нагрузкой. Типичное напряжение коммутации здесь 220В переменного тока.

Схема подключения (классика): 1 — магнитный пускатель; 2 — токовое защитное реле; 3 — электродвигатель; 4 — кнопка «СТОП»; 5 — кнопка «ПУСК»; 6 — кнопка сброса аварии

Вспомогательные контактные группы могут иметь разную конфигурацию, в зависимости от модели прибора и производителя. Состояние контактов возможно как нормально закрытое, так и нормально открытое. Обычно имеет место комбинация состояний.

Терминальный набор вспомогательного интерфейса обычно рассчитан под номинальный ток существенно ниже, чем пропускают основные контакты.

Однако механизм вспомогательной группы действует в единой связке с главным механизмом коммутации электрического контактора.

Как правило, маркировка вспомогательных клемм выполняется цифровым кодом. Например, «13» и «14», «82» и «83» и т.п. К этой же категории в какой-то степени относятся и клеммы питания индуктивной катушки электромагнитной системы прибора.

Контактные клеммы питания катушки традиционно имеют маркер «А1» и «А2». На эти клеммы подводится напряжение управления электромагнитным механизмом, обычно по классической схеме (см. выше).

Дополнительный защитный модуль

Часто конструкцию электрического контактора дополняет защитный модуль. Есть конструкции электрических контакторов, где тепловое реле является неотъемлемой частью.

Правда, современные варианты электрических контакторов предусматривают, скорее, модульное наращивание.

Защитный модуль, часто используемый в паре с магнитным пускателем может иметь разную конфигурацию. Так выглядит один из классических вариантов для нагрузки относительно небольшой мощности

Биметаллическое реле перегрузки состоит из чувствительных к теплу элементов, соединенных последовательно с цепями питания двигателя.

Тепловые элементы располагаются в непосредственно близости от биметаллической полосы, которая используется в качестве рычага отключения.

Биметалл имеет плавную характеристику теплового расширения, поэтому изгибается с заданной скоростью при нагреве. В нормальных рабочих условиях выделяемого нагревательным элементом тепла недостаточно прогиба биметалла и отключения реле перегрузки.

Однако если ток в цепи питания электродвигателя повышается, биметаллический элемент прогревается больше и в конечном итоге воздействует механически на контакты реле.

Так осуществляется простейшая защита электродвигателя по току. После остывания биметалла, реле включают в рабочий режим вручную кнопкой сброса.

Принцип действия защиты: 1 — электромотор; 2 — тепловой элемент; 3 — биметаллическая пластина; 4 — механизм отсечки; 5 — тепловой поток; А, В — включение в схему

Реле перегрузки обычно работают по закону обратного отсчёта, когда время отключения уменьшается по мере увеличения тока. Эти защитные модули характеризуются классом отсечки.

Согласно классу отсечки определяется время, которое потребуется для срабатывания реле в состоянии перегрузки.

Наиболее распространёнными считаются контакторные релейные модули классов 5, 10, 20, 30. Соответственно значения: 5, 10, 20, 30 указывают на время срабатывания (5, 10, 20, 30 секунд). Класс 5, как правило, применяется на контакторах двигателей, требующих моментального отключения.

Электрические контакторы специального назначения

Управление электрическими цепями при больших значениях токов (до 5000А) осуществляется при помощи контакторов повышенной мощности. Также приборы специального исполнения используются для управления асинхронными двигателями с фазным ротором.

Специальное исполнение: 1 — верхний силовой коннектор; 2 — два основных коннектора с дугогасительной камерой; 3 — рама прибора; 4 — вывод под нагрузку; 5 — вспомогательные клеммы; 6 — рама для периферии; 7 — питание катушки; 8 — электромагнит

Параметр номинальной коммутируемой мощности для приборов такого типа достигает значения 1500 кВт. Рабочий ток может составлять 1520А при питающем напряжении 440 вольт.

Электрические контакторы серии R для управления цепями постоянного или переменного тока применяются там, где требуется:

  • распределение электрической энергии,
  • управление индукционными печами,
  • коммутация систем альтернативной энергетики,
  • поддержка работы оборудования гидроэлектростанций,
  • обслуживание объектов горнодобывающей промышленности.

Электрические специальные контакторы серий FOR, NOR, JOR, AMA, AME и другие, конечно же, уже не входят в группу магнитных пускателей. Однако работа механизмов переключения осуществляется на тех же принципах – благодаря магнитным или механическим защёлкам.

Прописные истины для магнитных пускателей

Магнитный пускатель — устройство, отвечающее за бесперебойную и соответствующую требованиям стандартов работу оборудования. С его помощью осуществляют распределение питающего напряжения и управляют работой подключенных нагрузок.

Чаще всего через него подают питание на электродвигатели. И через него же осуществляют реверс двигателя, его остановку. Все эти манипуляции позволит осуществить правильная схема подключения магнитного пускателя, которую можно собрать и самостоятельно.

В этом материале мы расскажем об устройстве и принципах работы магнитного пускателя, а также разберемся в тонкостях подключения устройства.

Отличие магнитного пускателя от контактора

Часто при подборе коммутационного устройства возникает путаница между магнитными пускателями (МП) и контакторами. Эти устройства, несмотря на свою схожесть во многих характеристиках, все же разные понятия. Магнитный пускатель объединяет в себе ряд приборов, они соединены в одном управляющем узле.

В МП может быть включено несколько контакторов, плюс защитные устройства, специальные приставки, управляющие элементы. Все это заключено в корпус, имеющий какую-то степень влаго- и пылезащиты. С помощью этих устройств в основном управляют работой асинхронных двигателей.

Контактор — моноблочный прибор с набором функций, предусмотренных конкретной конструкцией. Тогда как пускатели применяют в схемах достаточно сложных, контакторы в основном присутствуют в простых схемах.

Устройство и назначение прибора

Сравнив подключение МП и контактора, можно сделать заключение, что первое устройство отличается от второго тем, что его применяют для запуска электродвигателя. Можно даже сказать, что МП — тот же контактор, с помощью которого управляют электродвигателем.

Отличие это настолько условно, что в последнее время многие производители называют МП контакторами переменного тока, но с малыми габаритами. Да и постоянное усовершенствование контакторов сделало их универсальными, потому они стали многофункциональными.

Назначение магнитного пускателя

Встраивают МП и контакторы в силовые сети, транспортирующие ток с переменным или постоянным напряжением. Действие их базируется на электромагнитной индукции.

Устройство оснащено контактами сигнальными и теми, через которые питание подается. Первые названы вспомогательными, вторые — рабочими.

МП дистанционно управляют электроустановками, в том числе и электродвигателями. Их роль, как защиты, нулевая — только исчезает напряжение или хотя бы падает до предела ниже 50%, силовые контакты размыкаются.

После остановки оборудования, в схему которого вмонтирован контактор, оно никогда не включится самостоятельно. Для этого придется нажать клавишу «Пуск».

Для безопасности это очень важный момент, поскольку полностью исключены аварии, спровоцированные самопроизвольным включением электроустановки.

Пускатели, в схему которых включены тепловые реле, охраняют электродвигатель или другую установку от длительных перегрузок. Эти реле могут быть двухполюсными (ТРН) либо однополюсными (ТРП). Срабатывание наступает под воздействием тока перегрузки двигателя, протекающего по ним.

Конструкция и функционирование прибора

Для корректной работы МП необходимо придерживаться определенных правил монтажа, иметь понятие об основах релейной техники, грамотно выбрать схему питания оборудования.

Поскольку устройства предназначены для функционирования на протяжении небольшого временного промежутка, наиболее популярными являются МП с обычно разомкнутыми контактами. Наибольшим спросом пользуются МП серий ПМЕ, ПАЕ.

Первые встраивают в сигнальные цепи для электродвигателей мощностью 0,27 – 10 кВт. Вторые — мощностью 4 – 75 кВт. Рассчитаны они на напряжение 220, 380 В.

Вариантов исполнения четыре:

  • открытый;
  • защищенный;
  • пылеводозащищенный;
  • пылебрызгонепроницаемый.

Пускатели ПМЕ включают в свою конструкцию двухфазное реле ТРН. В пускателе серии ПАЕ количество встраиваемых реле зависит от величины.

При напряжении около 95% от номинального катушка пускателя способна обеспечить надежную работу.

Состоит МП из следующих основных узлов:

  • сердечника;
  • электромагнитной катушки;
  • якоря;
  • каркаса;
  • механических датчиков работы;
  • групп контакторов — центральной и дополнительной.

Также в конструкцию могут включать в качестве дополнительных элементов, защитное реле, электропредохранители, добавочный комплект клемм, пусковое устройство.

По сути, это реле, но отключающее гораздо больший ток. Поскольку электромагниты у этого устройства довольно мощные, оно отличается большой скоростью срабатывания.

Электромагнит в виде катушки с большим числом витков рассчитан на напряжение 24 – 660 В. Которая размещена на сердечнике, большая мощность нужна для преодоления усилия пружины.

Последняя предназначена для быстрого рассоединения контактов, от скорости которого зависит величина электрической дуги. Чем быстрее произойдет размыкание, тем меньше дуга и в тем лучшем состоянии будут сами контакты.

Нормальное состояние, когда контакты разомкнуты. Пружина при этом удерживает в приподнятом состоянии верхний участок магнитопровода.

Когда на магнитный пускатель поступает питание, через катушку проходит ток и формирует электромагнитное поле. Оно привлекает мобильную часть магнитопровода посредством сжатия пружины. Контакты замыкаются, на нагрузку поступает питание, в результате, она включается в работу.

В случае отключения питания МП электромагнитное поле исчезает. Выпрямляясь, пружина делает толчок, и верхняя часть магнитопровода оказывается вверху. Как следствие, расходятся контакты, и пропадает питание на нагрузку.

Некоторые модели пускателей оснащены ограничителями перенапряжений, которые применяют в полупроводниковых управляющих системах.

Питание катушки управления после подключения магнитного пускателя реализуется от переменного тока, но для этого устройства род тока не имеет значения.

Пускатели, как правило, оснащены двумя видами контактов: силовыми и блокировочными. Посредством первых подключается нагрузка, а вторые предохраняют от неправильных действий при подключении.

Силовых МП может быть 3 или 4 пары, все зависит от конструкции устройства. В каждой из пар есть как мобильные, так и неподвижные контакты, соединенные с клеммами, находящимися на корпусе, посредством металлических пластин.

Первые отличаются тем, что на нагрузку постоянно поступает питание. Вывод из рабочего состояния происходит только после срабатывания пускателя.

На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.

Нормально замкнутые отличаются тем, что на нагрузку постоянно поступает питание, а отсоединение наступает исключительно после срабатывания пускателя. На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.

Особенности монтажа пускателя

Неправильный монтаж магнитного пускателя, может иметь последствия в виде ложных срабатываний. Чтобы избежать этого, нельзя выбирать участки, подверженные вибрации, ударам, толчкам.

Конструкционно МП устроен так, что его можно монтировать в электрощите, но с соблюдением правил. Устройство будет работать надежно, если местом его установки будет поверхность прямая, плоская и расположенная вертикально.

Тепловые реле не должны подвергаться подогреву от посторонних источников тепла, что отрицательно скажется на функционировании устройства. По этой причине их нельзя размещать в местах, подверженных нагреву.

Устанавливать магнитный пускатель в помещении, где смонтированы устройства с током от 150 А, категорически нельзя. Включение и выключение таких устройств провоцирует быстрый удар.

Чтобы не допустить перекоса пружинных шайб, находящихся в контактном зажиме пускателя, конец проводника загибают П-образно или в кольцо. Когда нужно подключить 2 проводника к зажиму, нужно чтобы их концы были прямыми и находились по две стороны зажимного винта.

Включению в работу пускателя должен предшествовать осмотр, проверка исправности всех элементов. Подвижные детали должны перемещаться от руки. Электрические соединения нужно сверить со схемой.

Популярные схемы подключения МП

Наиболее часто используют монтажную схему с одним устройством. Чтобы соединить ее основные элементы используют 3-жильный кабель и два разомкнутых контакта в случае, если устройство выключено.

В нормальных обстоятельствах контакт реле Р замкнут. При нажатии клавиши «Пуск» цепь замыкается. Нажатие кнопки «Стоп» разбирает схему. В случае перегрузки тепловой датчик Р сработает и разорвет контакт Р, машина остановится.

При этой схеме большое значение имеет номинальное напряжение катушки. Когда усилие на ней 220 В, двигателя 380 В, в случае соединения в звезду, такая схема не подходит.

Для этого применяют схему с нейтральным проводником. Применять ее целесообразно в случае соединения обмоток двигателя треугольником.

Тонкости подключения устройства на 220 В

Независимо от того, как решено подключить магнитный пускатель, в проекте обязательно присутствуют две цепи — силовая и сигнальная. Через первую подают напряжение, посредством второй управляют работой оборудования.

Особенности силовой цепи

Питание для МП подключают через контакты, обычно обозначаемые символами А1 и А2. На них попадает напряжение 220 В, если сама катушка рассчитана на такое напряжение.

Удобнее «фазу» подключать к А2, хотя принципиальной разницы в подключении нет. Источник питания подключают к контактам, находящимся ниже на корпусе.

Тип напряжения не имеет значения, главное, чтобы номинал не выходил за пределы 220 В.

Минусом этого варианта подключения является тот момент, что для ее включения или отключения нужно совершать манипуляции с вилкой. Схему можно усовершенствовать путем установки перед МП автомата. С его помощью включают и отключают питание.

Изменение цепи управления

Эти изменения не касаются силовой цепи, модернизируется в этом случае лишь цепь управления. Вся схема в целом претерпевает незначительные изменения.

Клавиши встраивают последовательно перед МП. Первая — «Пуск», за ней идет «Стоп». Контактами магнитного пускателя манипулируют посредством управляющего импульса.

Источником его является нажатая пусковая кнопка, открывающая путь для подачи напряжения к управляющей катушке. «Пуск» не обязательно удерживать во включенном состоянии.

Оно поддерживается по принципу самозахвата. Заключается он в том, что параллельно кнопке «Пуск» подключаются добавочные самоблокирующиеся контакты. Они и снабжают напряжением катушку.

После их замыкания, катушка самоподпитывается. Разрыв этой цепи приводит к отключению МП.

Отключающая клавиша «Стоп» обычно красная. Стартовая кнопка может иметь не только надпись «Пуск», но и «Вперед», «Назад». Чаще всего она зеленого цвета, хотя может быть и черного.

Подсоединение к 3-фазной сети

Возможно подключение 3-фазного питания через катушку МП, функционирующей от 220 В. Обычно схему применяют с асинхронным двигателем. Сигнальная цепь при этом не изменяется.

Силовая цепь имеет отличия, но не очень существенные. Три фазы подают на входы, обозначенные на плане, как L1, L2, L3. Трехфазную нагрузку подключают к T1, T2, T3.

Ввод в схему теплового реле

В промежутке между магнитным пускателем и асинхронным электродвигателем последовательно подсоединяют тепловое реле. Выбор его осуществляют в зависимости от типа мотора.

Подключают реле к выводу с магнитным пускателем. Ток в нем проходит к мотору последовательно, попутно нагревая реле. Верх реле оснащен придаточными контактами, объединенными с катушкой.

Нагреватели реле рассчитывают на предельную величину тока, протекающего через них. Делают это для того, чтобы, когда двигатель окажется в опасности из-за перегрева, реле смогло бы отключить пускатель.

Также рекомендуем прочесть другую нашу статью где мы рассказали о том как выбрать и подключить электромагнитный пускатель на 380 В. Подробнее – переходите по ссылке.

Запуск мотора с реверсным ходом

Для функционирования отдельного оборудование необходимо, чтобы двигатель мог вращаться как влево, так и вправо.

Схема подключения для такого варианта содержит два МП, кнопочный пост либо отдельные три клавиши — две стартовые «Вперед», «Назад» и «Стоп».

От к.з. силовую цепь защищают контакты нормально замкнутые КМ1.2, КМ2.2.

Подготовку схемы к работе осуществляют следующим образом:

  1. Включают АВ QF1.
  2. На силовые контакты МП КМ1, КМ2 поступают фазы А, В, С.
  3. Фаза, которая снабжает цепь управления (А) через SF1 (автомат защиты сигнальных цепей) и клавишу SB1 «Стоп» подается на контакт 3 (клавиши SB2, SB3), контакт 13НО (МП КМ1, КМ2).

Далее схема работает по алгоритму, зависящему от направления вращения мотора.

Управление реверсом двигателя

Вращение начинается при задействовании клавиши SB2. При этом фаза А через КМ2.2 подается на катушку МП КМ1. Начинается включение пускателя с замыканием нормально разомкнутых контактов и размыканием нормально замкнутых.

Замыкание КМ1.1 провоцирует самоподхват, а за смыканием контактов КМ1 следует подача фаз А, В, С на идентичные контакты обмоток двигателя и он начинает вращение.

Предпринятое действие разъединит цепь, на дроссель КМ1 перестанет подаваться управляющая фаза А, а сердечник с контактами, посредством возвратной пружины, восстановится в исходном положении.

Контакты разъединятся, на двигатель М прекратится подача напряжения. Схема будет пребывать в ждущем режиме.

Запускают ее путем нажатия на кнопку SB3. Фаза А через КМ1.2 поступит на КМ2, МП, сработает и через КМ2.1 окажется на самоподхвате.

Далее, МП посредством контактов КМ2 поменяет фазы местами. В результате двигатель М изменит направление вращения. В это время соединение КМ2.2, находящееся в цепи, питающей МП КМ1, рассоединится, не допуская включения КМ1 пока функционирует КМ2.

Работа силовой схемы

Ответственность за переключение фаз для перенаправления вращения двигателя возложена на силовую схему.

При срабатывании контактов МП КМ1 на первую обмотку поступает фаза А, на вторую обмотку — фаза В, а на третью — фаза С. При этом мотор вращается влево.

Когда срабатывает КМ2, передислоцируются фазы В и С. Первая попадает на третью обмотку, вторая — на вторую. Изменений по фазе А не происходит. Двигатель начнет вращаться вправо.

Выводы и полезное видео по теме

Подробности об устройстве и подключении контактора:

Практическая помощь в подключении МП:

По приведенным схемам можно подключить магнитный пускатель своими руками как к сети 220, так и 380 В.

Необходимо помнить, что сборка не отличается сложностью, но для реверсивной схемы важно наличие двухсторонней защиты, делающей невозможным встречное включение. При этом блокировка может быть как механической, так и посредством блокировочных контактов.

Если у вас появились вопросы по теме статьи, пожалуйста, оставляйте свои комментарии в расположенном ниже блоке. Там же вы можете сообщить интересную информацию или дать совет по подключению магнитных пускателей посетителям нашего сайта.

Контактор как электромеханическое устройство

Контактор (ударение на букве «а») – это электромагнитный прибор, предназначенный для очень частого включения и выключения силовых цепей в нормальном режиме работы. Наиболее распространены модели одно- и двухполюсные постоянного тока, а также трёхполюсные для переменного тока.

Подключенный к определенному тепловому реле контактор в обязательном порядке образует электромагнитный защитный пускатель для защиты силовой цепи от перегрузки. Его широко используют для многократных запусков и управления электродвигателем преимущественно переменного тока. Неисправность контактора легко устранить, если вызвать электрика .

Конструктивные элементы

Контакторы, работающие с постоянным и переменным током, конструктивно состоят из систем: электромагнитной, дугогасительной, контактной, системы блок-контактов, также в составе присутствуют подвижные и неподвижные контакты. В отличии от автоматов, призваны коммутировать лишь номинальные токи, то есть они не выполнены для отключения напряжения от короткого замыкания.

Техническое управление выполняют с помощью вспомогательной цепи электрического тока, который проходит вдоль его катушек. В это время величина так называемого оперативного тока на порядок ниже величины обычного рабочего напряжения в нормально коммутируемых цепях. Типовой контактор не оснащен механическими возможностями для удержания своих контактов в подключенном положении. Если отсутствует управляющее напряжение на катушке, то он размыкает контакты. Схема подключения контактора обычно не вызывает затруднений. Эти аппараты коммутируют силовые цепи при номинальном напряжении до 660 вольт.

Конструктивно контактор сходен со строением электромагнитного реле. Можно перечислить его основные части: сердечник, катушка управления, якорь, дугогасительное устройство, контакты главные, вспомогательные. Магнитная система устройства для работы с постоянным током сделана из сплошной полоски и округлого сердечника, а контакторы переменного тока состоят из разделенных стальных пластинок.

Принцип работы контактора

Главные контакты аппарата помещают в дугогасительную камеру сделанную из пластмассы или асбоцемента. Камера состоит из двух параллельных пластин. Щель между пластинами бывает узкой или широкой, с краями ровными или ребристыми. С целью усиления свойств дугостойкости их оснащают металлокерамическими напайками с серебром.

Основание контактора – это стальная скоба с пластмассовой колодкой, где размещен сердечник магнитопровода с катушкой и расположены выводные зажимы катушки. Аппаратная головка прикрепляется к основанию винтами, с помощью которых крепятся и колодка с сердечником и катушкой.

При возникновении напряжения сердечник притягивает якорь, тот в свою очередь прижимает подвижные контакты к другим неподвижным. Стальной сердечник опирается на пружинах, смягчая удары якоря. После якорь возвращается в исходное положение.

Как подключить магнитный пускатель

Контакторы — назначение и принцип работы

Назначение контакторов

Контактор – это двухпозиционный электромагнитный аппарат, используется для частого дистанционного включения, выключения электрических силовых цепей при нормальной работе. Контактор может разорвать токовую цепь не в 1 месте сразу. Приборы бывают 2 типов – напряжением в 220 и 440В; и напряжением в 380 и 660В. Имеют от 1 до 5 полюсов.

Область применения контакторов

Приборы используют для управления электрическим двигателем с высокими мощностями, для того, чтобы коммутировать цепь реактивной мощности. Широко распространены они в сфере электрического транспорта, для иной транспортной инфраструктуры.

Принцип работы контакторов

Принцип работы контактора заключаются в следующем. На катушку управления поступает напряжения, сердечник притягивается к якорю, замыкая контактную группу или размыкая ее. Это зависимо от изначального состояния отдельно взятого контакта. При отключении происходят обратные действия. Система дугогашения гасит дугу, появившуюся при размыкании главных контактов. При помещении на 2 контакторах механизма для механической блокировки можно получить обратимый контактор. Вспомогательные модули установлены для расширения возможностей устройства для применения в автоматизированной системе, с ними можно усовершенствовать эксплуатацию электроустановки, упростить монтажные работы.

Характеристики контакторов

Как правило, эти устройства должны иметь такие характеристики:

Предельное, номинальное значение показателя в главной цепи.

Характеристики, тип реле, расцепителей.

Соотношение с защитными аппаратами от коротких замыканий.

Типы, параметры регуляторов ускорений, автоматических переключателей.

Тип, параметр автотрансформаторов для пускателей 2-ступенчатых трансформаторных.

Тип, характеристика пусковых сопротивлений в реостатных роторных пускателях.

По наличии определенного количества полюсов, можно выделить контакторы однополюсные, двухполюсные, трехполюсные. Они все, за исключением трехполюсных, применяются в своем большинстве в сетях с постоянными токами, трехполюсные же – в трехфазных сетях. Есть также и четырех полюсные и пяти полюсные механизмы. Состоит прибор с неподвижного и подвижного контакта, что зависимо от назначения в определенном электрическом механизме. Для подключения вспомогательных устройств, – как например, сигнализационной цепи, индикации, цепи определенных автоматических и защитных устройств, в контакторах расположены блок-контакты.

Электромагнитная система, как одна из важных составляющих, включает в себя сердечники, электромагниты, якори, а также другие механизмы, замыкающие контакты электроаппарата.

Дугогасительная система гасит появившуюся электродугу во время коммутации токов. Дуга гасится при помощи поперечных магнитных полей в камерах с удлиненным отверстием или в камерах, имеющих деионные решетки.

Если вас заинтересовала ценовая политика на контакторы, и где их можно купить по Украине, то не сидите долго в интернет-магазинах и не ищите, просто зайдите к нам на сайт. чтобы ознакомиться с широким ассортиментом товаров и остановить свой выбор на том, что подойдет именно вам.

Комментарии:

Хорошая статья, помогла в подборе

Насос (помпа) – важнейшая деталь любой стиральной машины, задействованная во всех основных циклах работы агрегата (стирка и полоскание, отжим и сушка и так далее). Без этой детали попросту не осуществляется …

Покрывать дороги брусчаткой(тротуарной плиткой) начали еще в древние времена. Обычно ею выкладывают тропинки во дворе и саду. Смотрятся такие дорожки очень красиво. О свойствах брусчатки можно сказать следующее: тротуарная плитка …

Недавно в сети Интернет появился видеоролик, демонстрирующий работоспособность автоматики для ворот, а также шлагбаумов ТМ «Comunello» в условиях сильного мороза. Стоит отметить, что это очень актуальный вопрос для жителей стран …

Что такое контактор?

Контактор – это своего рода выключатель, который управляется электричеством. Он состоит из катушки медных проводов, внутри которой находится цилиндр (сердечник) из мягкого железа.

Этот цилиндр механически подсоединен к одному или нескольким электрическим контактам, которые могут быть контактами замыкания (они замыкают цепь, и по ней течет ток) или контактами размыкания (они размыкают цепь, и ток не течет).

Схема контактора 1

Тот же самый контактор может иметь несколько контактов для размыкания и замыкания сети.

Когда катушка получает питание (в нашем примере током напряжения 230 В), благодаря электромагнитному эффекту сердечник движется вверх и контакт замыкается (цепь работает).

Схема контактора 2

Цепь, позволяющую катушке получать питание, называют цепью управления. Напряжение в этой цепи не обязательно 230 В. Встречаются катушки с напряжением 12 или 24 В.

Цепь, где замыкается контакт, называют силовой цепью, поскольку она позволяет пропускать ток более значительной силы, чем в цепи управления, от которой она зависит в части получения электричества.

Когда питание больше не поступает, сердечник возвращается в свое первоначальное положение (благодаря системе пружин), и цепь оказывается разомкнута.

Схема контактора 3

Подобный контактор, называемый также реле, когда он управляется слабыми токами, имеет многочисленные области применения в автоматических системах (автоматически открывающиеся ворота гаража, лифты и т.д.).

Реле обеспечивает возможность дистанционного управления электроприборами.

Оцените качество статьи. Нам важно ваше мнение:

В чем разница между контактором, магнитным пускателем и реле ?

По сути своей, все это устройства, способные замыкать / размыкать цепь. Реле — более обширное понятие.
Различные названия — от роли, в которой они применяются.
Электромагнитное реле, пускатель, и контактор — по своей принципиальной конструкции — практически одно и то же, и устроены одинаково.
Но если контактор (он же пускатель) служат в основном, для замыкания цепи, то реле, помимо электромагнитного, бывают, к примеру тепловые, которые, служат по своей роли как раз для обратного — для экстренного размыкания.
Либо к примеру — оптореле, применяются в принципиальных схемах.
А по своему устройству — одно и то же, по сути дела — цепь с большим током, контролируется цепью с меньшим током.

Наконец-то. Хоть одно внятное объяснение. Еще и с картинками! Теперь я имею хотя бы приблизительное представление о том, что такое магнитный контактор. Спасибо автору огромнейшее!

Контакторы и магнитные пускатели | Электрические аппараты

Страница 8 из 18

11 ЭЛЕКТРОМЕХАНИЧЕСКИЕ КОММУТАЦИОННЫЕ АППАРАТЫ

КОНТАКТОРЫ И МАГНИТНЫЕ ПУСКАТЕЛИ

Контактор – это двухпозиционный аппарат с самовозвратом, предназначенный для частых коммутаций токов, не превышающих токи перегрузки, и приводимый в действие приводом. Этот аппарат имеет два коммутационных положения, соответствующие включенному и отключенному его состояниям. В контакторах наиболее широко применяется электромагнитный привод. Возврат контактора в отключенное состояние (самовозврат) происходит под действием возвратной пружины, массы подвижной системы или при совместном действии этих факторов.

Пускатель – это коммутационный аппарат, предназначенный для пуска, остановки и защиты электродвигателей без выведения и введения в их цепи сопротивлений резисторов. Пускатели осуществляют защиту электродвигателей от токов перегрузки. Распространенным элементом такой защиты является тепловое реле, встраиваемое в пускатель.
Токи перегрузки для контакторов и пускателей не превышают (8-20)-кратных перегрузок по отношению к номинальному току. Для режима пуска двигателей с фазовым ротором и торможения противотоком характерны (2.5-4)-кратные токи перегрузки. Пусковые токи электродвигателей с короткозамкнутым ротором достигают (6-10)-кратных перегрузок по сравнению с номинальным током.
Электромагнитный привод контакторов и пускателей при соответствующем выборе параметров может осуществлять функции защиты электрооборудования от понижения напряжения. Если электромагнитная сила, развиваемая приводом, при снижении напряжения в сети окажется недостаточной для удержания аппарата во включенном состоянии, то он самопроизвольно отключится и осуществит таким образом защиту от понижения напряжения. Как известно, понижение напряжения в питающей сети вызывает протекание токов перегрузки по обмоткам электродвигателей, если механическая нагрузка на них будет оставаться неизменной.
Контакторы предназначены для коммутации силовых цепей электродвигателей и других мощных потребителей. В зависимости от рода коммутируемого тока главной цепи различают контакторы постоянного и переменного тока. Они имеют главные контакты, снабженные системой дугогашения, электромагнитный привод и вспомогательные контакты.Как правило, род тока в цепи управления, которая питает электромагнитный привод, совпадает с родом тока главной цепи. Однако известны случаи, когда катушки контакторов переменного тока получают питание от цепи постоянного тока.

Рисунок 1 — Конструктивная схема контактора
На рис. 1 изображена конструктивная схема контактора, отключающего цепь двигателя. В этом случае напряжение на катушке 12 отсутствует и его подвижная система под действием возвратной пружины 10, создающей силу Fв, придет в нормальное состояние.Возникающая при расхождении главных контактов дуга Д гасится в дугогасительной камере 5.
Быстрое перемещение дуги с контактов в камеру обеспечивается системой магнитного дутья. В цепь главного тока включена последовательная катушка 1, которая размещена на стальном сердечнике 2. Стальные пластины – полюса 3, расположенные по бокам сердечника 2, подводят создаваемое катушкой 1 магнитное поле к зоне горения дуги в камере. Взаимодействие этого поля с током дуги приводит к появлению сил, которые перемещают дугу в камеру.
Контактор включит цепь с током I0, если подать напряжение U на катушку 12 приводного электромагнита. Поток Ф, созданный током, протекающим через катушку электромагнита, разовьет тяговую силу и притянет якорь 9 электромагнита к сердечнику, преодолев силы противодействия возвратной 10 и Fk контактной 8 пружин.
Сердечник электромагнита оканчивается полюсным наконечником 11, поперечное сечение которого больше поперечного сечения самого сердечника. Установкой полюсного наконечника достигается некоторое увеличение силы, создаваемой электромагнитом, а также видоизменение тяговой характеристики электромагнита (зависимости электромагнитной силы от величины воздушного зазора).
Соприкосновение контактов 4 и 6 друг с другом и замыкание цепи при включении контактора произойдет раньше, чем якорь электромагнита полностью притянется к полюсу. По мере движения якоря подвижный контакт 6 будет как бы «проваливаться», упираясь своей верхней частью в неподвижный контакт 4. Он повернется на некоторый угол вокруг точки А и вызовет дополнительное сжатие контактной пружины 8. Появится провал контактов, под которым подразумевается величина смещения подвижного контакта на уровне точки его касания с неподвижным контактом в случае, если неподвижный будет удален.
Провал контактов обеспечивает надежное замыкание цепи, когда толщина контактов уменьшается вследствие выгорания их материала под. действием электрической дуги. Величина провала определяет запас материала контактов на износ в процессе работы контактора.
После соприкосновения, контактов происходит перекатывание подвижного контакта по неподвижному. Контактная пружина создает определенное нажатие в контактах, поэтому при перекатывании происходит разрушение окисных пленок и других химических соединений, которые могут появиться на поверхности контактов. Точки касания контактов при перекатывании переходят на новые места контактной поверхности, не подвергавшиеся воздействию дуги и являющиеся поэтому более «чистыми». Все это уменьшает переходное сопротивление контактов и улучшает условия их работы. В то же время перекатывание повышает механический износ контактов (контакты изнашиваются).
В момент соприкосновения подвижный контакт 6 сразу же оказывает на неподвижный контакт 4 давление, обусловленное предварительным натяжением контактной пружины 8. Вследствие этого переходное сопротивление контактов в момент их касания будет небольшим и контактная площадка не разогреется при включении до значительной температуры. Кроме того, предварительное контактное нажатие, созданное пружиной 8, позволяет снизить вибрацию (отскоки) подвижного контакта при ударе его о неподвижный контакт. Все это предохраняет контакты от приваривания при включении электрической .цепи. На контактах имеются контактные накладки, выполненные из специального материала, например серебра, чтобы улучшить условия длительного прохождения тока через замкнутые контакты во включенном состоянии. Иногда применяются накладки из дугостойкого материала для уменьшения износа контактов под воздействием электрической дуги (металлокерамика «серебро-окись кадмия» и др. ). Гибкая связь 7 (для подвода тока к подвижному контакту) изготовляется из медной фольги (ленты) или тонкой проволоки.
Раствором контактов называется расстояние между подвижным и неподвижным контактами в отключенном состоянии контактора. Раствор контактов обычно лежит в пределах от 1 до 20 мм. Чем ниже раствор контактов, тем меньше ход якоря приводного электромагнита. Это приводит к уменьшению в электромагните рабочего воздушного зазора, магнитного сопротивления, намагничивающей силы, мощности катушки электромагнита и его габаритов. Минимальная величина раствора контактов определяется: технологическими и эксплуатационными условиями, возможностью образования металлического мостика между контактами при разрыве цепи тока, условиями устранения возможности смыкания контактов при отскоке подвижной системы от упора при отключении аппарата. Раствор контактов также должен быть достаточным для обеспечения условий надежного гашения дуги при малых токах.


Рисунок 2 — Прямоходовой пускатель
Изображенная на рис. 1 схема контактора поворотного типа довольно типичная. Обычно такие контакторы предназначаются для тяжелого режима работы (большая частота циклов коммутационных операций, индуктивные цепи) при относительно высоких значениях номинального тока (десятки и сотни ампер). Другой распространенный тип контакторов и пускателей — прямоходовой; он рассчитывается преимущественно на меньшие номинальные токи (десятки ампер) и более легкие условия работы. Прямоходовой пускатель (рис. 2) имеет мостиковые контакты 2 и 3, с которых дуга выдувается в дугогасительные камеры 1. Сила Fk контактной пружины создает нажатие в замкнутых контактах, возвратная пружина Fп возвращает подвижную систему аппарата в отключенное состояние, когда будет снято напряжение с катушки. Аппарат включается электромагнитом при подаче напряжения на его катушку 5. На полюсах электромагнита переменного тока устанавливаются короткозамкнутые витки 4, устраняющие вибрацию якоря во включенном положении аппарата.
В отличие от контактора постоянного тока в контакторе переменного тока для уменьшения потерь на вихревые токи применяют шихтованные магнитопроводы и короткозамкнутые витки на полюсах для устранения вибрации якоря. Контакторы переменного тока чаще изготовляют трехполюсными, постоянного тока — однополюсными и двухполюсными. В качестве дугогасительного устройства в контакторах на постоянном токе чаще применяются щелевые камеры, на переменном — чаще дугогасительная решетка.
Для гашения дуги применяют также камеры с дугогасительной решеткой. Дугогасительная решетка представляет собой пакет тонких металлических пластин 5 (рис. 1). Под действием электродинамических сил, создаваемых системой магнитного дутья, электрическая дуга попадает на решетку и рвется на ряд коротких дуг. Пластины интенсивно отводят тепло от дуги и гасят ее, но пластины дугогасительной решетки обладают значительной термической инерционностью — при большой частоте включений они перегреваются и эффективность дугогашения падает.
Мощные контакторы переменного тока имеют главные контакты, снабженные системой дугогашения — магнитным дутьем и дугогасительной камерой с узкой щелью или дугогасительной решеткой, как и контакторы постоянного тока. Конструктивное отличие заключается в том, что контакторы переменного тока выполняют многополюсными; обычно они имеют три главных замыкающих контакта. Все три контактных узла работают от общего электромагнитного привода клапанного типа, который поворачивает вал контактора с установленными на нем подвижными контактами. На том же валу устанавливают вспомогательные контакты мостикового типа. Контакторы имеют достаточно большие габаритные размеры. Их применяют для управления электродвигателями значительной мощности.
Для увеличения срока службы конструкция контакторов допускает смену контактов.
Существуют комбинированные контакторы переменного тока, в которых параллельно главным замыкающим контактам включают два тиристора. Во включенном положении ток проходит через главные контакты, поскольку тиристоры находятся в закрытом состоянии и ток не проводят. При размыкании контактов схема управления открывает тиристоры, которые шунтируют цепь главных контактов и разгружают их от тока отключения, препятствуя возникновению электрической дуги. Поскольку тиристоры работают в кратковременном режиме, их номинальная мощность невелика и они не нуждаются в радиаторах охлаждения.
Наша промышленность выпускает комбинированные контакторы типа КТ64 и КТ65 на номинальные токи, превышающие 100 А, выполненные на базе широко распространенных контакторов КТ6000 и снабженные дополнительным полупроводниковым блоком.
Коммутационная износостойкость комбинированных контакторов в режиме нормальных коммутаций составляет не менее 5 млн. циклов, а коммутационная износостойкость полупроводниковых блоков примерно в 6 раз выше. Это позволяет многократно использовать их в системах управления.
Для управления электродвигателями переменного тока небольшой мощности применяют прямоходовые контакторы с мостиковыми контактными узлами. Двукратный разрыв цепи и облегченные условия гашения дуги переменного тока позволяют обойтись без специальных дугогасительных камер, что существенно уменьшает габаритные размеры контакторов.
Прямоходовые контакторы обычно выпускаются промышленностью в трехполюсном исполнении. При этом главные замыкающие контакты разделяются пластмассовыми перемычками 1.
Наряду со слаботочными герконами, созданы герметичные силовые магнитоуправляемые контакты (герсиконы), способные коммутировать токи в несколько десятков ампер. На этой основе были разработаны контакторы для управления асинхронными электродвигателями мощностью до 1.1 кВт. Герсиконы отличаются увеличенным раствором контактов (до 1.5 мм) и повышенным контактным нажатием. Для создания значительной силы электромагнитного притяжения используют специальный магнитопровод.
Область применения электромагнитных контакторов достаточно широка. В машиностроении контакторы переменного тока применяют чаще всего для управления асинхронными электродвигателями. В этом случае их называют магнитными пускателями. Магнитный пускатель представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.
На рисунке 1 (а, б) показаны соответственно монтажная и принципиальная схемы соединений нереверсивного магнитного пускателя. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.

а)                                        б)
Рисунок 1 — Схемы нереверсивного пускателя
На принципиальной схеме все элементы одного аппарата имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.
Нереверсивный магнитный пускатель имеет контактор KM с тремя главными замыкающими контактами (Л1-С1, Л2-С2, Л3-С3) и одним вспомогательным замыкающим контактом (3-5).
Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки контактора (или цепи управления) с наибольшим током – тонкими линиями.
Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки контактора потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 – 5,
что создаст параллельную цепь питания катушки контактора. Если теперь кнопку «Пуск» отпустить, то катушка контактора будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то контактор отключается и его вспомогательный контакт размыкается. После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита превращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.
Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют контакторное управление.
Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки контактора.
В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рисунке 2, а. Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки. В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой. Если после нажатия кнопки SВ3 «Вперед» и включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

 


Рисунок 2 — Схемы реверсивного пускателя
Аналогичная схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рисунке 2, б. В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.
В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.
Магнитные пускатели открытого исполнения монтируют в шкафах электрооборудования. Пускатели пылезащищенного и пылебрызгонепроницаемого исполнения снабжают кожухом и монтируют на стене или стойке в виде отдельного аппарата.
Электромагнитные контакторы выбирают по номинальному току электродвигателя с учетом условий эксплуатации. ГОСТ 11206-77 устанавливает несколько категорий контакторов переменного и постоянного тока. Контакторы переменного тока категории АС-2, АС-3 и АС-4 предназначены для коммутации цепей питания асинхронных электродвигателей. Контакторы категории АС-2 используют для пуска и отключения электродвигателей с фазным ротором. Они работают в наиболее легком режиме, поскольку эти двигатели обычно пускаются при помощи роторного реостата. Категории АС-3 и АС-4 обеспечивают прямой пуск электродвигателей с короткозамкнутым ротором и должны быть рассчитаны на шестикратный толчок пускового тока. Категория АС-3 предусматривает отключение вращающего асинхронного электродвигателя. Контакторы категории АС-4 предназначены для торможения противотоком электродвигателей с короткозамкнутым ротором или отключения неподвижных электродвигателей и работают в наиболее тяжелом режиме.
Контакторы, предназначенные для работы в режиме АС-3, могут быть использованы в условиях, соответствующих категории АС-4, но номинальный ток контактора при этом снижается в 1.5-3 раза. Аналогичные категории применения предусмотрены для контакторов постоянного тока.
Контакторы категории ДС-1 применяют для коммутации малоиндуктивной нагрузки. Категории ДС-2 и ДС-3 предназначены для управления электродвигателями постоянного тока с параллельным возбуждением и позволяют коммутировать ток, равный . Категории ДС-4 и ДС-5 применяют для управления электродвигателями постоянного тока с последовательным возбуждением.
Указанные категории определяют режим нормальных коммутаций, в котором контактор может непрерывно работать длительное время. Кроме того, различают режим редких (случайных) коммутаций, когда коммутационная способность контактора может быть увеличена примерно в 1.5 раза.
Если асинхронный электродвигатель работает в повторно-кратковременном режиме, то выбор контактора осуществляется по величине среднеквадратичного тока. На выбор контактора влияет степень защиты контактора. Контакторы защищенного исполненияимеют худшие условия охлаждения, и их номинальный ток снижается примерно на 10% по сравнению с контакторами открытого исполнения.

КОНТАКТНО – ДУГОГАСИТЕЛЬНЫЕ СИСТЕМЫ КОНТАКТОРОВ

В контакторах обычно используются рычажные (рис. 1, а) и мостиковые (рис. 1, б) контакты. В рычажных контактах образуется при отключении один разрыв (одна дуга), в мостиковых – два (две дуги). Поэтому при прочих равных условиях возможности для отключения электрических цепей у аппаратов с мостиковыми контактами выше, чем у аппаратов с рычажными (пальцевыми) контактами.

Рисунок 1 – Рычажные и мостиковые контакты
Мостиковые контакты по сравнению с рычажными имеют тот недостаток, что в замкнутом состоянии в них создается два контактных перехода тока, в каждом из которых должно быть создано надежное касание. Поэтому сила контактной пружины  должна быть удвоенной (по сравнению с рычажными контактами), что в конечном итоге увеличивает мощность электромагнитного привода контактора.
В контакторах переменного тока на отключаемые токи до 100 А при напряжении сети до 100-200 В можно не применять дугогасительные камеры, так как дуга гасится за счет растяжения ее в атмосферном воздухе (открытый разрыв). Для предотвращения перекрытия электрических дуг на соседних полюсах применяются изоляционные перегородки. Контакторы с открытым разрывом дуги существуют также и на постоянном токе, но отключаемые токи для них существенно меньше.
При высоких значениях отключаемых токов и напряжений аппараты снабжаются дугогасительными камерами, из которых наиболее распространены щелевые камеры и дугогасительные решетки. Щелевая камера (рис. 2, а) образует внутри узкий просвет (щель) между стенками из дугостойкого изоляционного материала (асбестоцемент и др.). В него загоняется электрическая дуга 1 и там она гасится за счет усиленного отвода тепла при тесном соприкосновении со стенками.
Дугогасительная решетка (рис. 2, б) представляетсобой пакет из тонких (мм) металлических пластин 2, на которые выдувается дуга. Пластины выполняют роль радиаторов, интенсивно отводящих тепло от столба дуги и способствующих ее гашению.
Наиболее важной характеристикой дугогасительной камеры является вольт – амперная характеристика. Используя ее, можно рассчитать процессы гашения дуги при отключении цепи.

 


Рисунок 2 – Дугогасительные камеры
Как показал опыт эксплуатации, дугогасительная решетка непригодна для частых отключений цепи при сравнительно больших токах. При большой частоте отключений ее пластины разогреваются до высоких температур и не успевают остыть. Они оказываются неспособными охлаждать столб дуги, и решетка отказывает в работе. Для режима частых отключений цепи более пригодны щелевые дугогасительные камеры.
Система магнитного дутья предназначена для того, чтобы создать дополнительные силы для схода дуги с контактов и вхождения ее в дугогасительную камеру (рис. 3, а). Катушка 1 магнитного дутья включена последовательно в цепь отключаемого тока. Созданный ею магнитный поток Ф с помощью деталей 2 и 3 магнитопровода подводится к зоне горения дуги у входа в дугогасительную камеру 4.
Рисунок 3 – Система магнитного дутья
Взаимодействие тока дуги (А) с магнитным полем напряженностью (А/м) приводит к появлению действующей на дугу электродинамической силы (Н), которая загоняет дугу длиной  (м) в камеру:
,                                          (*)где Гн/м.
В зоне горения дуги (в воздушном зазоре , м, между пластинами 3 на рис. 3, а) в соответствии с законом полного тока для однородного поля (HL=Iw) напряженность поля (А/м)
.
Подставив это значение в (*), получим:
,
где  – число витков катушки.
Так как в системе с катушкой последовательного магнитного дутья сила пропорциональна квадрату тока, то целесообразно использовать этот вид дутья в контакторах, рассчитанных на сравнительно большие номинальные токи. Для сокращения расхода меди на изготовление катушки, сечение которой должно выбираться по номинальному току контактора, желательно иметь возможно меньшее число витков катушки. Однако это число витков должно обеспечивать такую напряженность магнитного поля в зоне его взаимодействия с током дуги, которая создаст условия для надежного гашения дуги в заданном диапазоне отключаемых токов. Обычно оноизмеряется единицами при номинальных токах в сотни ампер, а при токах в десятки ампер достигает десяти и выше.
Преимущество систем с катушкой последовательного магнитного дутья заключается в том, что направление силы  не зависит от направления тока . Это позволяет применять указанную систему не только на постоянном, но и на переменном токе. Однако на переменном токе вследствие появления вихревых токов в магнитопроводе может возникнуть сдвиг по фазе между током дуги и результирующей напряженностью магнитного поля в зоне горения дуги, что может вызвать обратное «забрасывание» дуги в камеру.
Недостаток системы с катушкой последовательного магнитного дутья – малая напряженность магнитного поля, создаваемая ею при небольших отключаемых токах. Поэтому параметры этой системы надо выбирать так, чтобы в области этих токов обеспечить максимально возможную напряженность магнитного поля в зоне горения дуги, не прибегая к значительному увеличению числа витков катушки магнитного дутья, чтобы не вызывать излишнего расхода меди на её изготовление. При небольших токах магнитопровод этой системы не должен насыщаться. Тогда почти вся намагничивающая сила катушки компенсируется падением магнитного потенциала в воздушном зазоре и напряженность магнитного поля в нем окажется максимально возможной. При больших токах магнитопровод, наоборот, целесообразно вводить в насыщение, когда его магнитное сопротивление становится большим. Это снизит напряженность магнитного поля в зоне расположения дуги, уменьшит силу  и интенсивность гашения дуги, снизит перенапряжения при её гашении.
Существует система с катушкой параллельного магнитного дутья, когда катушка 1 (см. рис. 3), содержащая сотни витков из тонкого провода и рассчитываемая на полное напряжение источника питания, создает в зоне горения дуги напряженность магнитного поля (А/м)
.
Действующая на дугу электродинамическая сила (Н) (см. рис. 3, б)
,
где
В этой системе сила, действующая на дугу, пропорциональна току в первой степени. Поэтому она оказывается более целесообразной для контакторов на небольшие токи (примерно до 50 А).
Контактор с параллельной катушкой магнитного дутья реагирует на направление тока. Если направление магнитного поля сохраняется неизменным, а ток изменит свое направление, то сила  будет направлена в противоположную сторону. Дуга будет перемещаться не в дугогасительную камеру, а в противоположную сторону – на катушку магнитного дутья, что может привести к аварии в контакторе. Это – недостаток рассматриваемой системы. Недостатком этой системы является также необходимость повышения уровня изоляции катушки в расчете на полное напряжение сети. Понижение напряжения сети приводит к уменьшению намагничивающей силы катушки и ослаблению интенсивности магнитного дутья, что снижает надежность дугогашения.
В системе магнитного дутья вместо катушки напряжения можно применять постоянный магнит. По свойствам такая система аналогична системе с параллельной катушкой магнитного дутья. Замена катушки напряжения постоянным магнитом исключит расход меди и изоляционных материалов, которые потребовались бы на создание катушки. При этом в системе не должны нарушаться свойства постоянного магнита в процессе эксплуатации.
Системы с катушкой параллельного магнитного дутья и постоянными магнитами на переменном токе не применяются, так как практически невозможно согласовать направление магнитного потока с направлением тока дуги, чтобы получить одно и то же направление силы  в любой момент времени.
С увеличением напряженности поля магнитного дутья улучшаются условия схода дуги с контактов на дугогасительные рога и облегчается её вхождение в камеру. Поэтому с ростом  уменьшается также износ контактов от термического воздействия дуги, но до определенного предела.
Большие напряженности поля создают значительные силы, воздействующие на дугу и выбрасывающие расплавленные металлические мостики из межконтактного промежутка в атмосферу. Это повышает износ контактов . При оптимальной напряженности поля  износ контактов минимален.
Износ контактов – важный технический фактор. Поэтому принимаются серьезные меры, например уменьшение вибрации контактов при включении аппарата, чтобы уменьшить износ и увеличить срок службы контактов.
Важной характеристикой дугогасительного устройства переменного тока является закономерность роста восстанавливающейся прочности межконтактного промежутка за переходом тока через нуль.

Схема подключения контактора abb esb 20-20 через выключатель — RozetkaOnline.COM

Контактор, который управляется выключателем, используется для включения и выключения энергоёмого оборудования. Наиболее наглядный пример работы такой связки – система включения и выключения всего света в квартире из одного места.

Такой главный выключатель обычно устанавливается у выхода из квартиры. Уходя из дома, с его помощью, вы сможете выключить сразу всё освещение. Обратная процедура вас ждет при возвращении, нажав клавишу выключателя, вы зажигаете весь свет, который работал до ухода.

Для реализации такой логики работы освещения, потребуется контактор и выключатель. Например, модульный контактор ABB ESB 20-20, в паре с обычным одноклавишным выключателем света.

Прежде чем подробно рассмотрим схему подключения, несколько слов об этой модели контактора.

Каждый символ в названии контакторов АББ, имеет определенное значение.

Обычно маркировка имеет следующий вид:

ABB  series  xx-yz

Amperage voltage, где

ABB – название компании производителя

series — Серия оборудования XX — ток, на который рассчитаны контакты Y — Количество замыкаемых контактов (нормально разомкнутных/открытых НО) Z – Количество размыкаемых контактов (нормально замкнутых/закрытых НЗ)

amperage — Номинальная сила тока, voltage – Рабочее напряжение

О том, как контактор обозначают на однолинейных схемах, мы подробно рассказывали ЗДЕСЬ.

 

Выбранный нами модульный контактор АББ 20-20:

— относится к серии ESB, считающейся «бытовой»;

— Номинальный ток, на который рассчитаны контакты – 20А;

— содержит 2 независимых замыкаемых контакта, которые, до получения сигнала, нормально разомкнуты;

 

Такая логика работы контактора (нормально открытые контакты) при управлении выключателем наиболее предпочтительна в большинстве случаев и позволяет оперировать нагрузкой до 40А (2 пары контактов по 20А каждый).

Удобнее использовать модульный контактор с катушкой 220В переменного тока (на корпусе устройства напряжение катушки указано, в нашем случае это 250 Вольт «~» переменного тока).

Схема подключения контактора ABB esb 20-20 на 220В через выключатель

 

Ниже показана наглядная схема работы контактора через выключатель.

Собирается она следующим образом:

На выключатель подводится «Фаза», которая, пройдя через него, возвращается на управляющую клемму А2 контактора. На второй клемме А1 постоянно подключен «Ноль».
К клемме 1 контактора, подключена так же фаза, а к клемме 2 подсоединен проводник идущий к нагрузке.

Принцип работы прост: как только вы нажимаете клавишу выключателя, электрический ток попадает на клемму контактора А1, а значит и на катушку. Далее, по принципу электромагнита, замыкаются внутренние контакты, которые в нормальном состоянии разомкнуты, и электрический ток поступает к потребителям — электрооборудованию. Стоит щелкнуть клавишей выключателя еще раз, электрическая цепь разрывается, и контакты внутри модульного контактора размыкаются, обесточивая оборудование. Всё довольно просто.

Ко вторым клеммам 3-4, вы сможете подключить еще нагрузку до 20А, например, вторую группу светильников. Соответственно суммарно, контактор выдержит порядком 9 кВт (ток — 40А) мощности.

Если собирать подобную схему без использования контактора, просто пропустив фазу общего питающего кабеля всех групп освещения через выключатель, сразу возникают проблемы:

— Вы ограничены максимальным током, который выдерживает выключатель, редко эта величина больше 10А.

— Так как выключателе отсутствуют любые системы защиты контактов – он бы быстро выйдет из строя, подгорят контактные площадки или расплавится корпус. Возможно возникновение пожара.

Как видите, в подключении контактора через выключатель нет ничего сложного. И теперь, понимая логику работы и порядок подключения, вы сможете самостоятельно разработать и реализовать интересные, а главное полезные в хозяйстве схемы управления оборудованием, с использованием контакторов.

Если же столкнетесь с какой-то проблемой или сложностью, обязательно задавайте вопросы здесь, в комментариях к статье. Постараюсь помочь.

Контактор переменного тока КТ-5000

 

Назначение:

 Контактор электромагнитный переменного тока КТ-5000 предназначен для применения в стационарных установках для дистанционного включения и отключения приемников электрической энергии на напряжение до 660 В переменного тока 50 и 60 Гц.      

 Основные технические характеристики:

Основные технические характеристики и режимы работы контакторов КТ 5000 электромагнитных.

 

НаименованиеКТ-5012 Б

КТ-5013 Б

КТ-5014 Б

КТ-5022 Б

КТ-5023 Б

КТ-5024 Б

КТ-5032 Б

КТ-5033 Б

КТ-5034 Б

КТ-5042 Б

КТ-5043 Б

КТ-5044 Б

КТ-5052 Б

КТ-5053 Б

КТ-5054 Б

Номинальный ток контактов главной цепи, Iн, А100160250400630
Род тока главной цепиПеременный, 50 Гц
Количество дополнительных контактовЗз+3р
Номинальное напряжение главной цепи, Uн, В400
Число главных полюсов2; 3;4
Номинальное напряжение катушки управления, Uс, В36, 110, 127,220, 380
Напряжение срабатывания, Uс, В0,85~110
Напряжение отпускания, Uс, В0,20~0,75
Номинальное напряжение изоляции, Ui, В660
Допустимая частота включений, циклов/час600600600300300
Механическая износостойкость, циклов ВО3 000 0001 400 000
Коммутационная (электрическая) износостойкость, циклов ВО150 000100 000
Режим работы по ГОСТ 18311-80Прерывисто-продолжительный, продолжительный, повторно-кратковременный, кратковременный
Категории примененияАС-4, АС-3, АС-2
Климатического исполнения и категория размещенияУЗ (Температура окружающей среды от -25 °С до +55 °С, относительная влажность воздуха 98%, высота над уровнем моря до 2000м. )
Степень защитыIP00

 

Структура условного обозначения

  

Пример заказа: Контактор электромагнитный КТ-5033Б У3 220В.

 Параметры дополнительных контактов

Количество дополнительных контактовЗз+Зр (5з+1р, 4з+2р, 2з+4р, 1з+5р)
Номинальный ток дополнительных контактов в режиме АС-15, Iн, А10
Номинальное напряжение, Uн, В

400 (АС-15)

230 (DС-15)

Номинальный тепловой ток, Ith, А10
Номинальный рабочий ток, Iн, А

5 (АС-15)

3 (ОС-15)

Условный ток короткого замыкания, Iнс, А1000
Сечение присоединяемых проводников, мм21,5-4.0
Крутящий момент при затягивании винтов, Нм1,2
Коммутационная износостойкость доп. контактов, циклов ВО1 000 000

 

Принципиальная электрическая схема контактора

 

 

Внешний вид основных контактов

 Характеристики используемых контактов

Тип контактораРасстояние разомкнутых контактов D, ммДопустимое отклонение Е, ммНачальное давление, НКонечное давление, Н
КТ-5013Б9-125-613.24-16.1818.63-26.48
КТ-5023Б10-135-621.08-25.9928.44 — 38.25
КТ-5033Б12-155-635.3-43.149-64.7
КТ-5043Б13-167.5-8.552.96-64.7279.43-104.93
КТ-5053Б15-189. 5-10.583.3-102.9118.6-154.8
Вспомогательные контакты7.5-9.22-3.8>0.98>2.45

Основные преимущества

Габаритные размеры

Схема контактора, габаритные и установочные размеры. Схема подключения контактора серии КТ5000

Габаритные, установочные размеры, масса, схема контактора серии КТ 5000, схема подключения контакторов

НаименованиеНоминальный ток, АЧисло полюсовL1, ммL, ммс, ммн, ммв, ммм, ммF, ммДиаметр монтажного болтаНЕТТО изделия кг.БРУТТО транспортной упаковки, кг.Объем транспортной упаковки, куб.м.
КТ-5012БУЗ1002350380151651805080М106,77,20,023
КТ-5013БУЗ3350380151651805080М107,88,30,023
КТ-5014БУЗ4450480151651805080М108,490,025
КТ-5022Б УЗ1602350380181902137070М121010,70,032
КТ-5023Б УЗ3350380181902137070М1211,812,50,032
КТ-5024Б УЗ4450480151902137070М121414,80,036
КТ-5032Б УЗ2502450480182502138070М1214,415,20,041
КТ-5033Б УЗ3450480182502138070М1216,617,40,041
КТ-5034Б УЗ4550580152502138070М1220210,047
КТ-5042Б УЗ40023654002028527580100М1223,827,30,06
КТ-5043Б УЗ34404852028527580100М1228,532,50,06
КТ-5044Б УЗ45205652028527580100М1233,538,60,068
КТ-5052Б УЗ630240445424310303150120М1442,747,20,075
КТ-5053Б УЗ350055024310303150120М1447520,088
КТ-5054Б УЗ459664624310303150120М1458,764,70,102

Пакинг

Наименование  НЕТТО изделия, кг.БРУТТО изделия, кг.Кол-во в единичной упаковке, шт.Кол-во в транспортной упаковке, шт.Объем транспортной упаковки, куб.м.БРУТТО транспортной упаковки, кг.

Контакторы КТ 5000, 3-х полюсные

КТ-5013Б У3, 100А, 110В, 3з+3р, 3 полюса, контактор электромагнитный (ЭТ)          7.98.4110.0238.4
КТ-5013Б У3, 100А, 220В, 3з+3р, 3 полюса, контактор электромагнитный (ЭТ)7.98.4110.0238.4
КТ-5013Б У3, 100А, 380В, 3з+3р, 3 полюса, контактор электромагнитный (ЭТ)7.98.4110.0238.4
КТ-5023Б У3, 160А, 110В, 3з+3р, 3 полюса, контактор электромагнитный (ЭТ)11.812.5110.03212.5
КТ-5023Б У3, 160А, 220В, 3з+3р, 3 полюса, контактор электромагнитный (ЭТ)11. 8812.52110.03112.52
КТ-5023Б У3, 160А, 380В, 3з+3р, 3 полюса, контактор электромагнитный (ЭТ)11.8812.526110.03112.526
КТ-5033Б У3, 250А, 110В, 3з+3р, 3 полюса, контактор электромагнитный (ЭТ)16.617.4110.04117.4
КТ-5033Б У3, 250А, 220В, 3з+3р, 3 полюса, контактор электромагнитный (ЭТ)16.4417.226110.04217.226
КТ-5033Б У3, 250А, 380В, 3з+3р, 3 полюса, контактор электромагнитный (ЭТ)16.4417.26110.04217.26
КТ-5043Б У3, 400А, 110В, 3з+3р, 3 полюса, контактор электромагнитный (ЭТ)28.532.5110.0632.5
КТ-5043Б У3, 400А, 220В, 3з+3р, 3 полюса, контактор электромагнитный (ЭТ)27. 1431.74110.0731.74
КТ-5043Б У3, 400А, 380В, 3з+3р, 3 полюса, контактор электромагнитный (ЭТ)27.1431.8110.0731.8
КТ-5053Б У3, 630А, 110В, 3з+3р, 3 полюса, контактор электромагнитный (ЭТ)4752110.08852
КТ-5053Б У3, 630А, 220В, 3з+3р, 3 полюса, контактор электромагнитный (ЭТ)45.2851.28110.10251.28
КТ-5053Б У3, 630А, 380В, 3з+3р, 3 полюса, контактор электромагнитный (ЭТ)45.2852.02110.10252.02

Контакторы КТ 5000, 2-х полюсные

КТ-5012Б У3, 100А, 110В, 3з+3р, 2 полюса, контактор электромагнитный (ЭТ)      
КТ-5012Б У3, 100А, 220В, 3з+3р, 2 полюса, контактор электромагнитный (ЭТ)6. 77.2110.0237.2
КТ-5012Б У3, 100А, 380В, 3з+3р, 2 полюса, контактор электромагнитный (ЭТ)6.77.2110.0237.2
КТ-5022Б У3, 160А, 110В, 3з+3р, 2 полюса, контактор электромагнитный (ЭТ)1010.7110.03210.7
КТ-5022Б У3, 160А, 220В, 3з+3р, 2 полюса, контактор электромагнитный (ЭТ)1010.7110.03210.7
КТ-5022Б У3, 160А, 380В, 3з+3р, 2 полюса, контактор электромагнитный (ЭТ)1010.7110.03210.7
КТ-5032Б У3, 250А, 110В, 3з+3р, 2 полюса, контактор электромагнитный (ЭТ)14.415.2110.04115.2
КТ-5032Б У3, 250А, 220В, 3з+3р, 2 полюса, контактор электромагнитный (ЭТ)14. 415.2110.04115.2
КТ-5032Б У3, 250А, 380В, 3з+3р, 2 полюса, контактор электромагнитный (ЭТ)14.415.2110.04115.2
КТ-5042Б У3, 400А, 110В, 3з+3р, 2 полюса, контактор электромагнитный (ЭТ)23.827.3110.0627.3
КТ-5042Б У3, 400А, 220В, 3з+3р, 2 полюса, контактор электромагнитный (ЭТ)23.827.3110.0627.3
КТ-5042Б У3, 400А, 380В, 3з+3р, 2 полюса, контактор электромагнитный (ЭТ)23.827.3110.0627.3
КТ-5052Б У3, 630А, 110В, 3з+3р, 2 полюса, контактор электромагнитный (ЭТ)      
КТ-5052Б У3, 630А, 220В, 3з+3р, 2 полюса, контактор электромагнитный (ЭТ)42. 747.2110.07547.2
КТ-5052Б У3, 630А, 380В, 3з+3р, 2 полюса, контактор электромагнитный (ЭТ)42.747.2110.07547.2

Контакторы КТ 5000, 4-х полюсные

КТ-5014Б У3, 100А, 220В, 3з+3р, 4 полюса, контактор электромагнитный (ЭТ)8.49110.0259
КТ-5014Б У3, 100А, 380В, 3з+3р, 4 полюса, контактор электромагнитный (ЭТ)8.49110.0259
КТ-5024Б У3, 160А, 220В, 3з+3р, 4 полюса, контактор электромагнитный (ЭТ)1415.1110.03615.1
КТ-5024Б У3, 160А, 380В, 3з+3р, 4 полюса, контактор электромагнитный (ЭТ)1415.1110.03615.1
КТ-5034Б У3, 250А, 220В, 3з+3р, 4 полюса, контактор электромагнитный (ЭТ)2021110. 04721
КТ-5034Б У3, 250А, 380В, 3з+3р, 4 полюса, контактор электромагнитный (ЭТ)2021110.04721
КТ-5044Б У3, 400А, 220В, 3з+3р, 4 полюса, контактор электромагнитный (ЭТ)33.538.6110.06838.6
КТ-5044Б У3, 400А, 380В, 3з+3р, 4 полюса, контактор электромагнитный (ЭТ)33.538.6110.06838.6
КТ-5054Б У3, 630А, 110В, 3з+3р, 4 полюса, контактор электромагнитный (ЭТ)      
КТ-5054Б У3, 630А, 220В, 3з+3р, 4 полюса, контактор электромагнитный (ЭТ)58.664.7110.10264.7
КТ-5054Б У3, 630А, 380В, 3з+3р, 4 полюса, контактор электромагнитный (ЭТ)58.664.7110. 10264.7

КТ 5000, вспомогательные блок-контакты

Вспомогательный блок-контакт на 10А для КТ-5000, 100А — 630А (ЭТ)0.280.2951850.0429.5

КТ 5000, дугогасительные камеры

Дугогасительная камера для КТ-5000 100А (ЭТ)0.320.331501.4316.5
Дугогасительная камера для КТ-5000 160А (ЭТ)0.50.5221370.20419.714
Дугогасительная камера для КТ-5000 250А (ЭТ)0.5590.5861280.1116.692
Дугогасительная камера для КТ-5000 400А (ЭТ)0.80.861100.1438.6
Дугогасительная камера для КТ-5000 630А (ЭТ)2. 162.17180.10215.5

КТ 5000, изоляторы контактов

Изоляторы контактов к КТ-5000, 100А (комплект) (ЭТ)0.08 11  
Изоляторы контактов к КТ-5000, 160А (комплект) (ЭТ)0.16 11  
Изоляторы контактов к КТ-5000, 250А (комплект) (ЭТ)0.22 11  
Изоляторы контактов к КТ-5000, 400А (комплект) (ЭТ)0.43 11  
Изоляторы контактов к КТ-5000, 630А (комплект) (ЭТ)0.61 11  

КТ 5000, катушки управления

Катушка управления 110В/50Гц для КТ-5000Б 100А (ЭТ)0. 7 1480.0331
Катушка управления 110В/50Гц для КТ-5000Б 160А (ЭТ)0.65 1400.0326.9
Катушка управления 110В/50Гц для КТ-5000Б 250А (ЭТ)1.1 1320.03736.3
Катушка управления 110В/50Гц для КТ-5000Б 400А (ЭТ)1.8 1160.0330.6
Катушка управления 110В/50Гц для КТ-5000Б 630А (ЭТ)2.1 1160.0332.4
Катушка управления 220В/50Гц для КТ-5000Б 100А (ЭТ)0.7 1480.0331
Катушка управления 220В/50Гц для КТ-5000Б 160А (ЭТ)0.65 1400.0326.9
Катушка управления 220В/50Гц для КТ-5000Б 250А (ЭТ)1. 1 1320.03736.3
Катушка управления 220В/50Гц для КТ-5000Б 400А (ЭТ)1.8 1160.0330.6
Катушка управления 220В/50Гц для КТ-5000Б 630А (ЭТ)2.1 1160.0332.4
Катушка управления 380В/50Гц для КТ-5000Б 100А (ЭТ)0.7 1480.0331
Катушка управления 380В/50Гц для КТ-5000Б 160А (ЭТ)0.65 1400.0326.9
Катушка управления 380В/50Гц для КТ-5000Б 250А (ЭТ)1.1 1320.03736.3
Катушка управления 380В/50Гц для КТ-5000Б 400А (ЭТ)1.8 1160.0330.6
Катушка управления 380В, 50Гц для КТ-5000Б 630А (ЭТ)2. 1 1160.0332.4

КТ 5000, контакты комплект

Контакты комплект 100А для КТ5000 ( непод. + подвиж. ) (ЭТ)0.08 11  
Контакты комплект 160А для КТ5000 ( непод. + подвиж. ) (ЭТ)0.1 11  
Контакты комплект 250А для КТ5000 ( непод. + подвиж. ) (ЭТ)0.172 11  
Контакты комплект 400А для КТ5000 ( непод. + подвиж. ) (ЭТ)0.244 11  
Контакты комплект 630А для КТ5000 ( непод. + подвиж. ) (ЭТ)0.486 11  

КТ 5000, кронштейны оси подв. контактов

Кронштейн оси подв. контактов КТ-5000, 100А, ( левый + правый ) (ЭТ)0.1 1   
Кронштейн оси подв. контактов КТ-5000, 160А, ( левый + правый ) (ЭТ)0.1 1   
Кронштейн оси подв. контактов КТ-5000, 250А, ( левый + правый ) (ЭТ)0.14 1   
Кронштейн оси подв. контактов КТ-5000, 400А, ( левый + правый ) (ЭТ)0.58 1   
Кронштейн оси подв. контактов КТ-5000, 630А, ( левый + правый ) (ЭТ)0.76 1   

КТ 5000, механические блокировки

Механическая блокировка для КТ-5000 100А (ЭТ)
0.4
 
1
1
 
 
Механическая блокировка для КТ-5000 160А (ЭТ)
0.46
 
1
1
 
 
Механическая блокировка для КТ-5000 250А (ЭТ)
0.72
 
1
1
 
 
Механическая блокировка для КТ-5000 400А (ЭТ)
0.98
 
1
1
 
 
Механическая блокировка для КТ-5000 630А (ЭТ)
1.1
 
1
1
 
 

КТ 5000, гибкие шины

Шина гибкая медная к КТ-5000 на 100А (ЭТ)
0.04
 
1
 
 
 
Шина гибкая медная к КТ-5000 на 160А (ЭТ)
0.07
 
1
 
 
 
Шина гибкая медная к КТ-5000 на 250А (ЭТ)
0.1
 
1
 
 
 
Шина гибкая медная к КТ-5000 на 400А (ЭТ)
0.24
 
1
 
 
 
Шина гибкая медная к КТ-5000 на 630А (ЭТ)
0.4
 
1
 
 
 

Купить контактор переменного тока КТ-5000


Оборудование для промышленной установки TDM

Пакетные выключатели ПВ

Пакетные выключатели предназначены для работы в электрических цепях напряжением до 380В переменного тока частотой 50, 60Гц и 400Гц и до 220В постоянного тока в качестве вводных выключателей в цепях управления электроустановок распределения энергии, коммутационных аппаратов с ручным приводом для нечастых включений и отключений. а так же для ручного управления асинхронными электродвигателями в электрических цепях переменного тока.

Катушки управления для контакторов КМН и КТН

Катушки служат для управления контакторами при помощи подачи тока по цепи управления.

Механизмы блокировки для реверсивной схемы КМН предназначены для механической блокировки реверсивных контактов, исключая их одновременное включение.

Электромагнитные пускатели серии ПМ12

Электромагнитные пускатели серии ПМ12 примененяются в схемах управления электроприводами на напряжение до 660 В переменного тока с частотой 50 Гц для защиты управляемых электродвигателей от перегрузок недопустимой продолжительности и от токов, возникающих при обрыве одной из фаз (при наличии тепловых реле ), в стационарных установках для дистанционного пуска непосредственным подключением к сети, остановки и реверсирования трехфазных асинхронных электродвигателей с короткозамкнутым ротором.

Электрическая и механическая износостойкость магнитных пускателей ПМ12 TDM ЕLECTRIC аналогичны параметрам магнитных пускателей ПМ12 других российских производителей, но при этом пускатели ПМ12 TDM ЕLECTRIC снабжены более мощной контактной системой с эффективным дугогашением, имеют существенно меньшие тепловые потери на контактных переходах, высокое быстродействие при отключении, имеется большее количество дополнительных контактов, не требуется заземление основания корпуса.

Реле электротепловое серии РТН

Реле электротепловое серии РТН предназначено для защиты электродвигателей от перегрузки, ассиметрии фаз, затянутого пуска и заклинивания ротора. Применяется как дополнительное устройство контактора КМН.

Конструктивной особенностью является возможность пломбирования прозрачной крышки, защищающей диск регулировки уставки, исключает несанкционированный доступ к регулировкам рабочих значений тока уставки. Процесс повторного включения может происходить в двух режимах: ручном и автоматическом.

О текущем состоянии размыкающих и замыкающих контактов информирует индикатор на передней панели. Наличие кнопки «Тест» позволяет проверить работоспособность реле до его подключения в силовую цепь. Существует возможность принудительной остановки контактора.

Приставки контактные серии ПКН

Приставки контактные серии ПКН на 2 и 4 группы контактов предназначены для расширения возможности использования контакторов в системах автоматизации технологических процессов.

Приставки выдержки времени серии ПВН

ПВН является механическим устройством, без собственного потребления электроэнергии, коммутирующим своими контактами электрические цепи с заданной выдержкой времени. Пневматические приставки выдержки времени серии ПВН позволяют получить задержку замыкания или размыкания вспомогательной цепи от 0,1 до 180 с.

Одни и те же приставки контактные ПКН и пневматические приставки выдержки времени ПВН могут использоваться как на контактор серии КМН, так и на контактор серии КТН.

Реле серии РЭК

Реле серии РЭК предназначены для передачи команд управления исполнительным элементам путем коммутации их электрических цепей переключающими контактами.

Применяются для управления нагрузками небольшой мощности, требующими большого количества коммутаций и для дистанционного управления нагрузкой путем подачи управляющего напряжения на катушку реле, в автоматике инженерного оборудования зданий, насосов, систем вентиляции, отопления, освещения и т.д., а так-же коммутации электрических цепей переменного и постоянного тока.

Светосигнальные индикаторы, кнопки управления и переключатели

Светосигнальные индикаторы, кнопки управления и переключатели применяются в электрощитах, в промышленном оборудовании и на объектах энергоснабжения. Светосигнальные индикаторы предназначены для индикации состояния электрических цепей.

Кнопки управления предназначены для оперативного управления контакторами (магнитными пускателями) и реле автоматики в электрических цепях переменного тока частотой 50 Гц, напряжением до 660 В или постоянного тока напряжением до 400 В.

Использование разнообразных цветовых вариантов съемных светофильтров позволяет наиболее эффективно компоновать щиты и панели. Подключение подводящих проводников производят винтовыми зажимами с тарельчатыми шайбами, которые обеспечивают надежную фиксацию проводов.

Использование в индикаторе светодиодной матрицы обеспечивает более мощный световой поток по сравнению с неоновой лампой и увеличенный срок службы (6000 часов).

Съемная неоновая лампа и съемная светодиодная матрица имеют различные цветовые исполнения. Светодиодная матрица может быть на напряжение 12 В, 24 В, 36 В, 110 В как переменного, так и постоянного тока. Возможна замена неоновой лампы светодиодной матрицей.

Быстросъемная головка позволяет производить замену светофильтров и ламп. Удобство монтажа контактного модуля, который присоединяется к блоку кнопки за счет фиксации пластмассовым флажком. Упрощенное конструктивное исполнение позволяет осуществлять быстрый монтаж и демонтаж изделия на щит или на панель.

Посты кнопочные серии КП

Светосигнальные индикаторы, кнопки управления и переключатели удобно монтируются в корпуса постов КП.

Светосигнальные индикаторы, кнопки управления и переключатели, установленные в корпуса КП желтого цвета, предназначены для дистанционного управления оборудованием, требующим повышенного внимания персонала и управления оборудованием в аварийных ситуациях. Корпуса позволяют установить от одного до шести светосигнальных индикаторов, кнопок управления, переключателей.

Степень защиты корпуса КП – IP54, если установить кнопки и переключатели с соответствующей степенью защиты.

Пульты кнопочные серии ПКТ

Пульты кнопочные серии ПКТ предназначены для коммутации электрических цепей управления подъемными механизмами. Содержат от 4 до 6 кнопок управления.

Кулачковые переключатели серии КПУ

Кулачковые переключатели серии КПУ предназначены для управления и коммутации электрической нагрузки, схем управления и др.

Применяются как коммутационный элемент в щитах постоянного и переменного токов, в щитах управления АВР, двигательной нагрузкой, управления освещением, аварийного выключения, управление режимами для ТП.

Применяются для правления агрегатами и всевозможными приводами секционных выключателей, разъединителей, заземлителей на подстанциях, переключениями режимов работы трансформатора в сварочном оборудовании, управления режимами работы ТЭНов в нагревательном оборудовании.

Контакторы малогабаритные промышленного назначения серии КМН

Контакторы КМН служат для пуска, остановки и реверсирования асинхронных электродвигателей с короткозамкнутым ротором на напряжение до 660 В. Дистанционное управление цепями освещения, нагревательными цепями и различными индуктивными нагрузками (категория применения АС-1).

Присоединительные зажимы специальной овальной формы обеспечивают надежную фиксацию проводников. Насечки на присоединительных контактах снижают нагрев проводов благодаря надежной фиксации в местах присоединения. Возможность установки на DIN-рейку. Возможность получения реверсивного варианта с использованием механизма блокировки

Контакторы на ток нагрузки до 40 А имеют один дополнительный контакт (замыкающий или размыкающий), контакторы на ток нагрузки свыше 40 А имеют два дополнительных контакта (замыкающий и размыкающий).

Контакторы малогабаритные промышленного назначения в оболочке серии КМН

Назначение КМН в оболочке: дистанционный пуск и остановка трехфазных асинхронных электродвигателей с короткозамкнутым ротором на напряжение переменного тока до 400 В. Защита электродвигателей от перегрузок недопустимой продолжительности и сверхтоков, возникающих при обрыве одной из фаз.

Контакторы КМН в сборе с электротепловым реле в защитной оболочке являются комплектным устройством, состоящим из малогабаритного контактора КМН, теплового реле РТН, оболочки с сальниками и кнопок управления.

Оболочка со степенью защиты IP54 позволяет использовать контактор на строительных площадках, в лакокрасочных, термических и гальванических цехах, в сельскохозяйственном производстве (при условии помещения аппаратуры под защитный навес).

Контакторы КМН 10910 – КМН 23211 применяются в пластиковой оболочке, контакторы КМН 34012 – КМН 49512 – в металлической.

Контакторы электромагнитные серии КТН

Контакторы КТН используются в схемах управления трехфазными асинхронными электродвигателями с короткозамкнутым ротором в электрических сетях с номинальным напряжением до 660 В переменного тока.

Служат для включение и выключение освещения, нагревательных установок и различных индуктивных нагрузок, управления вентиляторами, насосами, подъемно-транспортным оборудованием, в системах автоматического ввода резерва (АВР).

В конструкции реализована возможность демонтажа катушки управления без специального инструмента. Наличие индикатора положения контактной системы. Возможность монтажа двух дополнительных приставок.

Контакторы электромагнитные серии КТ

Контакторы электромагнитные серии КТ предназначены для включения и отключения приемников электрической энергии с номинальным напряжением до 660 В переменного тока частотой 50 Гц.

Контакторы применяются для включения мощных электрических машин и в аппаратуре автоматического включения резерва (АВР). Изготавливаются открытого исполнения с естественным воздушным охлаждением.

Конструкция блока дополнительных контактов позволяет с минимальными затратами рабочего времени изменить вид и количество дополнительных контактов. Гибкие соединения подвижных частей исключают обрыв проводов в результате длительной эксплуатации. Конструкция крышек дугогасительных камер обеспечивает свободный доступ к силовым контактам. Возможность регулировки раствора и провала силовых контактов с целью настройки оптимального режима функционирования.

Принцип работы контактора — Всё о электрике

Электромагнитные контакторы

Контакторы – это аппараты дистанционного действия, предназначенные для частых включений и отключений силовых электрических цепей при нормальных режимах работы.

Электромагнитный контактор представляет собой электрический аппарат, предназначенный для коммутации силовых электрических цепей. Замыкание или размыкание контактов контактора осуществляется чаще всего с помощью электромагнитного привода.

Классификация электромагнитных контакторов

Общепромышленные контакторы классифицируются:

  • по роду тока главной цепи и цепи управления (включающей катушки) -постоянного, переменного, постоянного и переменного тока;
  • по числу главных полюсов – от 1 до 5;
  • по номинальному току главной цепи – от 1,5 до 4800 А;
  • по номинальному напряжению главной цепи: от 27 до 2000 В постоянного тока; от 110 до 1600 В переменного тока частотой 50, 60, 500, 1000, 2400, 8000, 10 000 Гц;
  • по номинальному напряжению включающей катушки: от 12 до 440 В постоянного тока, от 12 до 660 В переменного тока частотой 50 Гц, от 24 до 660 В переменного тока частотой 60 Гц;
  • по наличию вспомогательных контактов – с контактами, без контактов.

Контакторы также различаются по роду присоединения проводников главной цепи и цепи управления, способу монтажа, виду присоединения внешних проводников и т.п.

Указанные признаки находят отражение в типе контактора, который присвоен предприятием-изготовителем.

Нормальная работа контакторов допускается

  • при напряжении на зажимах главной цепи до 1,1 и цепи управления от 0,85 до 1,1 номинального напряжения соответствующих цепей;
  • при снижении напряжения переменного тока до 0,7 от номинального включающая катушка должна удерживать якорь электромагнита контак­тора в полностью притянутом положении и при снятии напряжения не удерживать его.

Выпускаемые промышленностью серии электромагнитных контакторов рассчитаны на применение в разных климатических поясах, работу в различных условиях, определяемых местом размещения при эксплуатации, механическими воздействиями и взрывоопасностью окружающей среды и, как правило, не имеют специальной защиты от прикосновений и внешних воздействий.

Конструкция электромагнитных контакторов

Контактор состоит из следующих основных узлов: главных контактов, дугогасительной системы, электромагнитной системы, вспомогательных контактов.

Главные контакты осуществляю замыкание и размыкание силовой цепи. Они должны быть рассчитаны на длительное проведение номинального тока и на производство большого числа включений и отключений при большой их частоте. Нормальным считают положение контактов, когда втягивающая катушка контактора не обтекается током и освобождены все имеющиеся механические защелки. Главные контакты могут выполняться рычажного и мостикового типа. Рычажные контакты предполагают поворотную подвижную систему, мостиковые – прямоходовую.

Дугогасительные камеры контакторов постоянного тока построены на принципе гашения электрической дуги поперечным магнитным полем в камерах с продольными щелями. Магнитное поле в подавляюще большинстве конструкций возбуждается последовательно включенной с контактами дугогасительной катушкой.

Дугогасительная система обеспечивает гашение электрической дуги, которая возникает при размыкании главных контактов. Способы гашения дуги и конструкции дугогасительных систем определяются родом тока главной цепи и режимом работы контактора.

Электромагнитная система контактора обеспечивает дистанционное управление контактором, т. е. включение и отключение. Конструкция системы определяется родом тока и цепи управления контактора и его кинематической схемой. Электромагнитная система состоит из сердечника, якоря, катушки и крепежных деталей.

Электромагнитная система контактора может рассчитываться на включение якоря и удержание его в замкнутом положении или только на включение якоря. Удержание же его в замкнутом положении в этом случае осуществляется защелкой.

Отключение контактора происходит после обесточивания катушки под действием отключающей пружины, или собственного веса подвижной системы, но чаще пружины.

Вспомогательные контакты. Производят переключения в цепях управления контактора, а также в цепях блокировки и сигнализации. Они рассчитаны на длительное проведение тока не более 20 А, и отключение тока не более 5 А. Контакты выполняются как замыкающие, так и размыкающие, в подавляющем большинстве случаев мостикового типа.

Контакторы переменного тока выполняются с дугогасительными камерами с деионной решеткой. При возникновении дуга движется на решетку, разбивается на ряд мелких дуг и в момент перехода тока через ноль гаснет.

Электрические схемы контакторов , состоящие из функциональных токопроводящих элементов (катушки управления, главных и вспомогательных контактов), в большинстве случаев имеют стандартный вид и отличаются лишь количеством и видом контактов и катушек.

Важными параметрами контактора являются номинальные рабочие ток и напряжения .

Номинальный ток контактора – это ток, который определяется условиями нагрева главной цепи при отсутствии включения или отключения контактора. Причем, контактор способен выдержать этот ток три замкнутых главных контактах в течение 8 часов, а превышение температуры различных его частей не должно быть больше допустимой величины. При повторно-кратковременном режиме работы аппарата часто пользуются понятием допустимого эквивалентного тока длительного режима.

Напряжение главной цепи контактора – наибольшее номинальное напряжение, для работы при котором предназначен контактор. Если номинальные ток и напряжения контактора определяют для него максимально-допустимые условия применения в длительном режиме работы, то номинальные рабочий ток и рабочее напряжение определяются данными условиями эксплуатации. Так, номинальный рабочий ток – ток, который определяет применение контактора в данных условиях, установленных предприятием-изготовителем в зависимости от номинального рабочего напряжения, номинального режима работы, категории применения, типоисполнения и условий эксплуатации. А номинальное рабочее напряжение равно напряжению сети, в которой в данных условиях может работать контактор.

Контакторы должны выбираться по следующим основным техническим параметрам:

1) по назначению и области применения;

2) по категории применения;

3) по величине механической и коммутационной износостойкости;

4) по числу и исполнению главных и вспомогательных контактов;

5) по роду тока и величинам номинального напряжения и тока главной цепи;

6) по номинальному напряжению и потребляемой мощности включающих катушек;

7) по режиму работы;

8) по климатическому исполнению и категории размещения.

Контакторы постоянного тока предназначены для коммутации цепей постоянного тока и, как правило, приводятся в действие электромагнитом постоянного тока. Контакторы переменного тока предназначены для коммутации цепей переменного тока. Электромагниты этих цепей могут быть как переменного, так и постоянного тока.

Контакторы постоянного тока.

В настоящее время применение контакторов постоянного тока и соответственно новые их разработки их поэтому сокращаются. Контакторы постоянного тока выпускаются в основном на напряжение 22 и 440 В., токи до 630 А., однополюсные и двухполюсные.

Контакторы серии КПД 100Е предназначены для коммутирования главных цепей и цепей управления электроприводом постоянного тока напряжением до 220В.

Контакторы выпускаются на номинальные токи от 25 до 250 А.

Контакторы серии КПВ 600 предназначены для коммутации главных цепей электроприводов постоянного тока. Контакторы этой серии имеют два исполнения: с одним замыкающим главным контактом (КПВ 600) и с одним размыкающим главным контактом (КПВ 620).

Управление контакторами осуществляется от сети постоянного тока.

Контакторы выпускаются на номинальные токи от 100 до 630 А. Контактор на ток 100 А имеет массу 5,5 кг, на 630 А – 30 кг.

Контакторы переменного тока : КТ6000, КТ7000

КТ (КТП) – Х1 Х2 Х3 Х4 С Х5

Х1 – номер серии, 60, 70.

Х2 – величина контактора: 0, 1, 2, 3, 4, 5, 6.

Х3 – число полюсов: 2, 3, 4, 5.

Х4 – дополнительное значение специфических особенностей сери: Б – модернизированные контакты; А – повышенная коммутационная способность при напряжении 660В.

С – контакты с металлокерамическими накладками на основе серебра. Отсутствие буквы означает, что контакты медные.

Х5 – климатическое исполнение: У3, УХЛ, Т3.

Контаткторы переменного тока строятся, как правило, трехполюсными с замыкающими главными контактами. Электромагнитные системы выполняются шихтованными, т. е. набранными из отдельных изолированных друг от друга пластин толщиной до 1 мм. Катушки низкоомные с малым числом витков. Основную часть сопротивления катушки составляет ее индуктивное сопротивлние, которое зависит от величины зазора. Поэтому ток в катушке контактора переменного тока при разомкнутой системе в 5-10 раз превышает ток при замкнутой магнитной системе. Электромагнитная система контакторов переменного тока имеет короткозамкнутый виток на сердечнике для устранения гудения и вибрации.

В отличии от контакторов постоянного тока режим включения контакторов переменного тока более тяжел, чем режим отключения из за пускового тока асинхронных электродвигателей с короткозамкнутым ротором. Кроме этого наличие дребезга контактов при включении приводит в этих условиях к большому износу контактов. Поэтому борьба с дребезгом при включении здесь приобретает первостепенное значение.

Электромагнитные контакторы

Контактор представляет собой двухпозиционный электрический аппарат, предназначенный для частых коммутаций силовых электрических цепей с током, не превышающим тока перегрузки. Замыкание (размыкание) контактов контактора осуществляется электромагнитным приводом.

Различают контакторы постоянного и переменного тока.

Контакторы постоянного токапредназначены для коммутации силовых электрических цепей постоянного тока и приводятся в действие электромагнитом постоянного тока.

Контакторы переменного токапредназначены для коммутации силовых электрических цепей переменного тока и приводятся в действие электромагнитом постоянного или переменного тока.

Основные узлы контактора:

Контактная системаобеспечивает включение и отключение силовой электрической цепи.

Дугогасительная системаобеспечивает гашение электрической дуги на главных контактах при размыкании электрической цепи.

Электромагнитный механизмприводит в движение подвижные контакты, осуществляет замыкание главных контактов.

Вспомогательные контакты (блок-контакты) предназначены для коммутации цепей сигнализации и контроля.

Принцип действия контактора:

Включение контакторапроисходит при подаче напряжения на обмотку электромагнитного привода. Якорь электромагнита притягивается к сердечнику. Одновременно с якорем подвижный контакт притягивается к неподвижному и происходит замыкание силовой электрической цепи.

Отключение контактора происходит при снятии напряжения с катушки электромагнита. Подвижные контакты отпадают от неподвижных под действием силы тяжести подвижных частей и усилия отключающей (возвратной) пружины.

число главных контактов:

для контакторов постоянного тока 1-2;

для контакторов переменного тока 2-5).

номинальный ток главной цепи;

предельная коммутационная способность – максимальный ток, который способен отключить контактор и быть пригодным для дальнейшей эксплуатации;

номинальное напряжение главной цепи – до 660В;

номинальное напряжение цепи управления – 12, 24, 48, 110, 220В;

коммутационная износостойкость – это способность аппарата выдерживать определенное число коммутаций при наличии тока в главной цепи и быть пригодным для дальнейшей эксплуатации. До 2 млн. циклов;

механическая износостойкость– это способность аппарата выдерживать определенное число коммутаций без тока в главной цепи и быть пригодным для дальнейшей эксплуатации. Для контакторов 10÷20 млн. циклов;

частота включения в часдля различных серий контакторов составляет 150, 300, 600, 1200, 3600 циклов в час;

собственное время включения– отрезок времени с момента подачи команды на включение до полного замыкания контактов;

собственное время отключения– отрезок времени с момента подачи команды на отключение до погасания дуги;

напряжение и ток вспомогательных контактов;

число вспомогательных контактов и их вид(размыкающие, замыкающие).

Контакторы постоянного тока

Серии контакторов постоянного тока: КП, КМК, КПМ, КПВ.

Контакторы постоянного тока имеют пять категорий применения: ДС-1; ДС-2; ДС-3; ДС-4; ДС-5.

Контакторы серии КПВ имеют два исполнения:

Замыкание главных контактов при подаче управляющего напряжения.

Размыкание главных контактов при подаче управляющего напряжения.

Контактная системавключает неподвижный контакт, подвижный контакт, гибкая связь с выводом. Подвижный контакт выполнен в виде толстой пластины поворотного типа и может перекатываться и скользить по поверхности неподвижного контакта. При этом в месте контактирования стираются окисные пленки, и уменьшается переходное сопротивление. Вывод соединяется с подвижным контактом гибкой связью. Контактное нажатие создается контактной пружиной. В контакторах постоянного тока широко распространена мостиковая система контактов с двумя разрывами на полюс, что значительно облегчает условия дугогашения.Под номинальным током контакторы могут находиться не более 8 часов.По истечении этого времени необходимо провести несколько операций включение-отключение для удаления с поверхности контактов окисной пленки. При нахождении под током более 8 часов, номинальный ток необходимо снизить до. У контакторов, установленных в закрытых объемах, номинальный ток уменьшается до.

Дугогасительная система: дугогасительная камера, катушка магнитного дутья. При отключении контактора, магнитное поле дугогасительной катушки, взаимодействуя с током дуги, вызывает движение последней в сторону дугогасительной камеры. Обеспечивается механическое растяжение, охлаждение и гашение дуги. При токах ниже, эффективность работы дугогасительной системы уменьшается за счет ослабления магнитного поля, длительность горения дуги при этом возрастает.

Электромагнит. В контакторах постоянного тока наибольшее распространение получили электромагниты клапанного типа. Якорь вращается на призме. Такая конструкция обеспечивает механическую износостойкость узла вращения до 20 млн. циклов при частоте включения до 1200 включений в час. Катушка электромагнита наматывается на изолированную стальную гильзу для обеспечения механической прочности и улучшения условий охлаждения. Сила, развиваемая электромагнитом, должна проходить выше характеристики противодействующих пружин при напряжении на катушке не нижев нагретом состоянии. Наибольшее напряжение на катушке не должно превышать. К важным параметрам контактора относится коэффициент возврата, равный отношению напряжения отпускания к напряжению срабатывания. Для большинства контакторов этот коэффициент равен 0.2, что не позволяет использовать контакторы для защиты электроустановок от пониженного напряжения.

Блок-контакты.Все контакторы выпускаются со вспомогательными контактами. Вспомогательные контакты обеспечивают подключение дополнительных схем (сигнализация состояния цепи).

Контакторы переменного тока

Контакторы переменного тока имеют четыре категории применения: АС-1; АС-2; АС-3; АС-4. Контакторы переменного тока выпускаются на токи от 100 до 1000А. Наибольшее распространение получили 3-х полюсные контакторы серии КТ-6000.

Контактная система. Из-за облегченных условий гашения дуги, раствор главных контактов уменьшен по сравнению с контакторами постоянного, что позволяет уменьшить габариты электромагнита.

Дугогасительная системасостоит из катушки магнитного дутья, включенной последовательно в токовую цепь, сердечника, полюсных пластин и керамической дугогасительной камеры. Принцип работы дугогасительной системы аналогичен контакторам постоянного тока. В контакторах переменного тока серии КТ-7000 широкое распространение получили дугогасительные решетки, которые не требуют магнитного дутья и более эффективны в качестве дугогасительных устройств. К недостаткам такой системы можно отнести значительный нагрев дугогасительных пластин решетки, что не позволяет применять такие контакторы при большой частоте включения.

Электромагнит.В качестве привода контакторов переменного тока могут использоваться электромагниты переменного тока (серии КТ 6000, КТ 7000) и электромагниты постоянного тока (серии КТП 6000).

С целью устранения вибрации якоря в притянутом положении на полюсах магнитной системы АС расположены короткозамкнутые витки, эффективность работы которых увеличивается при уменьшении зазора между якорем и сердечником, что требует тщательной шлифовки опорных поверхностей магнитопровода. Из-за изменяющейся индуктивности катушки, ток в начальном положении якоря значительно больше тока в конечном положении. В среднем можно считать, что пусковой ток в 10 раз превышает ток в конечном положении якоря. Из данного положения следует недопустимость подачи напряжения на катушку при заторможенном якоре. Допускается питание катушек от сети постоянного тока с обязательной установкой дополнительного резистора. Тяговая характеристика электромагнитов такова, что при уменьшении воздушного зазора сила растет, не так быстро, как у электромагнитов постоянного тока и тяговая характеристика близка к противодействующей. Это обеспечивает высокий коэффициент возврата 0.6÷0.7, что позволяет использовать контакторы переменного тока для защиты электрооборудования от пониженного напряжения.

Электромагниты обеспечивают работу контактора в диапазоне напряжений 0,85-1,05 номинального.

Блок-контакты предназначены для коммутации цепей сигнализации и контроля. В качестве контактного материала вспомогательных контактов применяется серебро или биметалл.

Вакуумные контакторы предназначены для коммутации силовых электрических цепей переменного тока и приводятся в действие электромагнитом постоянного тока. Вакуумные контакторы имеют герметичное дугогасительное устройство (вакуумную камеру), с помощью которого отклю­чение коммутируемой цепи происходит в вакуумной среде. Трехфазные вакуумные контакторы выпускаются на номинальные токи 160, 250, 400 и 630А и номинальное напряжение 660 и 1140 В. Контакторы предназначены для работы в режимах АС-3 и АС-4 при числе цик­лов 600 и 1200 в час с высокой износостойкостью.

Зазор между главными контактами 1,2 мм и увеличивается в процессе работы до 2 мм. Возможна однократная регулировка зазо­ра. Малый ход контактов обеспечивает малую вибрацию и высокую износостойкость до 2·10 6 циклов в режиме АС-3 при напряжении 1140 В.

Вакуумная дугогасительная камера (дугогасительное устройство) обладает высокими изоляционными и дугогасительными свойствами, а также высоким пробивным напряжением между контактами, высокой скоростью восстановления электрической прочности межконтактного промежутка.

Модульный контактор (КМ)

Модульный контактор дает возможность дистанционно управлять электроустановками и оборудованием. Он имеет компактные размеры, отлично сочетается с другими модульными устройствами. Например, однофазный контактор легко установить на ДИН-рейку в электрическом щитке. Во время работы отсутствует вибрация и шум, поэтому такие контакторы применяются не только на производстве, но и в жилых и общественных зданиях.

Что такое модульный контактор и для чего он нужен

По своему функциональному назначению контактор модульный КМ относится к коммутационной аппаратуре дистанционного управления мощными нагрузками, работающими при постоянном или переменном токе. Они выполняют разрыв токовых цепей сразу в нескольких местах, и этим отличаются от электромагнитных реле, разрывающих цепь лишь в одной точке.

Довольно часто модульные контакторы работают совместно со вспомогательными устройствами – приставками, тепловыми реле, средствами блокировки и другими приборами модульного типа. В результате таких сочетаний получается аппаратура, обладающая особыми свойствами и способная выполнять заданные функции. Так, при установке модуля задержки, получается контактор с функцией задержки, а тепловое реле перегрузки переводит контактор в категорию магнитного пускателя.

С помощью вспомогательных элементов существенно расширяются возможности основных приборов, улучшаются их эксплуатационные характеристики, упрощается монтаж.

По своей сути контакторные устройства считаются модифицированными разновидностями пускателя, в котором дополнительно присутствуют тепловое реле и контактная группа для запуска электродвигателя. Электромагнитные пускатели низкого напряжения реверсивными и нереверсивными. Первый вариант включает в себя два одинаковых контактора, с одним и тем же номинальным током. В нем установлена блокировка механического или электрического типа, предотвращающая одновременное замыкание главных контактов.

Защитные функции в этих приборах выполняют электротепловые токовые реле и другие аналогичные устройства. Электрический контактор малой мощности, используется в качестве промежуточного реле. Он предназначен для слаботочных цепей и отличается большим числом коммутаций. С помощью этого прибора удается подключить множество дополнительных участков и контролировать их включение-выключение.

Конструкция и принцип действия

Стандартная конструкция контактора включает в себя несколько основных деталей. Прибор состоит из корпуса (1), выводной клеммы катушки управления (2), клеммы силового контакта (3), неподвижного магнитопровода (4), подвижной части – сердечника (5), катушки управления (6), короткозамкнутого кольца магнитопровода (7), неподвижного и подвижного контактов (8 и 9), индикаторного рычага включения-выключения (10).

Катушка является основным элементом, создающим магнитный ток. Если она используется еще и в качестве дросселя, то с ее помощью возникает движущая сила, обеспечивающая работу приборов. Натяжение контактов фиксируется при помощи контактной пружины. Во время стыковки подвижный и неподвижный контакты соединяются между собой. Они постоянно находятся в движении и совершают определенные действия. Неподвижные контакты закрепляются на корпусе, а подвижные соединяются с сердечником.

Работа контактора происходит следующим образом:

  • После подачи напряжения на управляющую катушку, происходит притягивание якоря к сердечнику. В результате, наступает замыкание или размыкание контактной группы, в соответствии с исходным положением того или иного контакта.
  • После отключения питания все действия происходят в обратном порядке. Электрическая дуга, возникающая в момент размыкания, гасится при помощи дугогасительной системы.
  • После прекращения подачи напряжения, электромагнитное поле исчезает и перестает удерживать якорь или сердечник.
  • Возвратная пружина переводит контакты в исходное положение, полностью размыкая цепь. Таким образом, модульный контактор выполняет свою основную работу в периоды подачи и отключения напряжения.

Классификация контакторных устройств

Существуют различные типы контакторов, отличающихся друг от друга по различным показателям. Среди них можно выделить следующие параметры.

В первую очередь, они классифицируются по назначению. Сюда входят следующие виды и категории:

  1. Приборы для дистанционной коммутации. Большинство из них работает под ручным управлением оператора, используя кнопки или выключатели. В нужное время подается сигнал, и устройство приводится в действие. В другом способе несколько контакторов соединяются в общую автоматизированную систему питания, в которой для подачи команд используется электронная схема. На случай аварийной ситуации предусмотрена система защиты, размыкающая контакты.
  2. Включение мощного электрооборудования при помощи слаботочных линий. Возникает вопрос, для чего нужен контактор в таких случаях? Не лучше ли воспользоваться традиционной кнопкой? Это, конечно, можно сделать, но тогда понадобится очень массивная и громоздкая аппаратура, а сам процесс включения потребует значительных усилий. То же самое касается и выключения. Поэтому для этих целей используются компактные слаботочные устройства, позволяющие с высокой частотой выполнять циклы включения-выключения. Таким образом, слабый ток подается на катушку, а уже потом осуществляется запуск мощного электродвигателя.

Каждый контактор модульный разделяется по типу привода его в действие. В этом случае также можно отметить различные варианты:

  • Электромагнитный привод считается основным, именно он заложен в принципе действия большинства устройств. При подаче напряжения происходит включение, а при отсутствии напряжения прибор отключается. После полного отключения, включение нужно выполнять повторно, что обеспечивает дополнительную безопасность при работе с электроустановками.
  • Контактная группа может быть приведена в движение с помощью пневматических устройств. Такая система, предназначенная для коммутации, не требует электромагнитного привода. Управляющая команда подается импульсом высокого давления. Подобные системы применяются для локомотивов железных дорог, и других установках с пневматикой.

Любой контактор модульный КМ в зависимости от модификации, может быть смонтирован разными способами:

  • Специализированные устройства, в том числе и без корпусов, не имеют каких-либо дизайнерских ограничений и устанавливаются исключительно с позиций нормальной функциональности и безопасной эксплуатации.
  • Существуют конструкции, создаваемые в индивидуальном порядке под конкретную электроустановку. Они не подходят для бытовых условий, поскольку размещаются в специально отведенных местах.
  • При стандартном монтаже модульный контактор и его подключение осуществляются на ДИН-рейку в щитке, вместе с другими устройствами.

Существуют различия и в соответствии с номинальным напряжением основной цепи. В этом случае контактор КМ может входить в группу устройств, работающих с напряжением 220 и 440 вольт или в группу с напряжением 380 и 660 В. Прибор, бывает однополюсный, а также двухполюсный и с большим количеством полюсов – до 5 единиц.

Схемы подключения потребителей и модульных контакторов

В соответствии с типом используемого электрооборудования, в каждом случае предусмотрена индивидуальная схема подключения модульного контактора. Наибольшее распространение получил стандартный вариант, где используется всего один прибор, а также схемы – реверсивная и с подключением однофазных потребителей. Каждую из них следует рассмотреть подробнее.

Самая популярная схема – подключение трехфазного электродвигателя через контактор модульный КМ (рис. 1). Для управления используются обычные кнопки ПУСК и СТОП. Защита от перегрузок осуществляется с помощью теплового реле. На случай коротких замыканий электрическая цепь оборудуется автоматическим выключателем.

Другая схема – реверсивная (рис. 2), используется при подключение модульного контактора к электродвигателю, чтобы появилась функция реверса. Она постоянно необходима в различных подъемных механизмах, станках и другом оборудовании. В этом случае выполняется подсоединение еще одного коммутирующего устройства. Оно участвует в изменении мест двух фаз, что приводит и к изменению направления вращения вала. Данная схема также дополнена защитными средствами – тепловым реле и автоматическим выключателем.

Основное назначение контакторов в третьей схеме, заключается в работе с однофазными потребителями. Как правило, это системы освещения, электрические насосы и другое оборудование, функционирующее с одной фазой.

Технические характеристики

Основные параметры и технические характеристики наносятся на корпус прибора, в том числе и контактора АВВ. Прежде всего, это величина номинального тока, тип и количество контактов. На каждой модели и модификации присутствуют собственные показатели.

Чаще всего коммутационные приборы, работающие с различным электрооборудованием, обладают следующими характеристиками:

  • Величина номинального рабочего напряжения переменного тока, составляющая 230, 400 и 600 вольт.
  • Значение номинального рабочего тока, с категорией использования АС-3 – 12 А.
  • Показатели условного теплового тока с категорией использования АС-1 – 25 А.
  • Номинальная мощность при коммутации для напряжения 230 В по категории АС-3 – 3 кВт.
  • Номинальная мощность при коммутации для напряжения 400 В по категории АС-3 – 5,5 кВт.
  • Номинальная мощность при коммутации для напряжения 660 В по категории АС-3 – 7,5 кВт.

Отдельно следует отметить характеристики управляющих цепей в самом контакторе:

  • Величина номинального напряжения в управляющих катушках составляет 24, 36, 110, 230 и 400 вольт.
  • При срабатывании катушка потребляет мощность в размере 60 ВА.
  • В положении удержания катушка потребляет мощность, величиной 7 ВА.
  • Контакты замыкаются в течение 12-22 миллисекунд.
  • Размыкание контактов происходит в течение 4-16 мс.
  • Катушка управления обладает мощностью рассеяния – 3 Вт.

Благодаря этим показателям данные приборы широко используются в электрике, промышленности и других областях.

{SOURCE}

20. Контакторы и магнитные пускатели

Глава 20

КОНТАКТОРЫ  И МАГНИТНЫЕ   ПУСКАТЕЛИ

§ 20.1. Назначение контакторов и магнитных пускателей

Наиболее   распространенным   потребителем   электриче­ской энергии является электродвигатель. Примерно 2/3 всей выра­батываемой в стране электроэнергии потребляется электродвига­телями. Основным коммутационным аппаратом, осуществляющим подключение электродвигателя  к  питающей  сети,  является  кон­тактор. Электромагнитный контактор представляет собой выклю­чатель, приводимый в действие с помощью электромагнита. По сути дела, это мощное электромагнитное реле, контактный узел которого способен замыкать и размыкать силовые цепи с токами в десятки и сотни ампер при напряжениях в сотни вольт. При та­ких электрических нагрузках необходимо принятие специальных мер по гашению дуги. Поэтому по сравнению с обычными элект­ромагнитными реле электромагнитные контакторы имеют дугогасительные устройства и более мощные электромагнит и контакт­ные узлы. Кроме силовых (мощных) контактов! имеются и блоки­ровочные контакты, используемые в цепях управления для целей автоматики.   Различают  контакторы   постоянного   и   переменного тока. Для автоматического пуска, остановки и реверса электродви­гателей применяют магнитные пускатели.  Они представляют со­бой   комплектные электрические  аппараты,   включающие  в  себя электромагнитные контакторы, кнопки управления, реле защиты и блокировки.

Контакторы и магнитные пускатели используются и для вклю­чения других мощных потребителей электроэнергии: осветительпых и нагревательных установок,  преобразовательного и техно­логического электрического оборудования.

К этой же группе электрических силовых аппаратов следует отнести автоматические выключатели, которые также предназна­чены для подключения к питающей сети мощных электропотре­бителей. Замыкание их контактов производится не с помощью электромагнита, а вручную. Автоматически они производят лишь выключение нагрузки, защищая ее от перегрузок по току. Если контакторы и магнитные пускатели способны работать при час­тых включениях и отключениях, то автоматические выключатели обычно применяют при включениях па продолжительное время. В типовые схемы электропривода обычно входят автоматический выключатель (питающий и силовые, и управляющие цепи) и маг­нитный пускатель (осуществляющий непосредственную коммута­цию для пуска, остановки и реверса электродвигателя).

§ 20.2. Устройство и особенности контакторов

Принцип действия контакторов такой же, как и у эле­ктромагнитных реле. Поэтому и устройство их во многом сходно. Главное отличие заключается в том, что контакты контакторов коммутируют большие токи. Поэтому они выполняются более мас­сивными, требуют больших усилий, между ними при разрыве воз­никает дуга, которую необходимо погасить.

Основными узлами контактора являются электромагнитный механизм, главный (силовой) контактный узел, дугогасительная система, блокировочный контактный узел.

Электромагнитный механизм осуществляет замыкание и раз­мыкание контактов. При подаче напряжения на втягивающую катушку электромагнита якорь притягивается к сердечнику, а ме­ханически связанные с ним подвижные контакты замыкают сило­вую цепь и выполняют необходимые переключения в цепи управ­ления.

Магнитные системы контакторов в зависимости от характера движения якоря и конструкции различают на поворотные и пря-моходовые. Магпитопровод контактора поворотного типа устроен аналогично клапанному реле. Для устранения залипапия якоря используют немагнитные прокладки. Для замыкания силовых кон­тактов требуются значительно большие усилия, чем развиваемые в реле. Поэтому электромагнитный механизм контактора выполня­ется более мощным и массивным. При срабатывании контактора происходит довольно значительный удар якоря о сердечник. Час­тично этот удар принимает на себя немагнитная прокладка; кро­ме того, магнитную систему амортизируют пружиной, которая так­же уменьшает вибрацию контактов.

Магнитопровод контактора   прямоходного  типа  имеет обычно Ш-образпую форму. В этом случае для устранения заливания яко­ря делают зазор между средними стержнями сердечника и якоря. Втягивающая катушка    обычно    обеспечивает    включение    и удержание якоря в притянутом положении. Но иногда использу­ют две катушки: мощную включающую и менее мощную удержи­вающую. В этом случае контактор во включенном состоянии по­требляет меньше электроэнергии, поскольку включающая катушка находится под током только короткое время. Размыкание контак­тов происходит за счет отключающей пружины при снятии напря­жения с катушки контактора. Втягивающая катушка должна обе­спечивать надежное срабатывание контактора при снижении на­пряжения до 0,85. По нагреву катушка должна выдерживать повышение напряжения до 1,05

В контакторах с поворотным якорем наибольшее распростра­нение получили линейные перекатывающиеся контакты (см. рис. 16.5). В примоходных контактах применяются мостиковые кон­тактные системы (см. рис. 16.4). Контактный мостик имеет не­большую массу и выполняется самоустанавливающимся, что сни­жает вибрацию контактов. Для предотвращения вибрации кон­тактная пружина создает предварительное нажатие, равное при­мерно половине конечной силы нажатия.

У контакторов для длительного режима работы на поверх­ность медных контактов обычно напаивается металлокерамическая или серебряная пластинка. Контакты иногда могут выпол­няться из меди, если образующаяся пленка окисла па рабочей поверхности контактов периодически снимается их самоочисткой. Дугогасительная система контакторов постоянного тока обыч­но выполняется в виде камеры с продольными щелями, куда дуга вытесняется с помощью магнитной силы. Дугогасительная систе­ма контакторов переменного тока обычно имеет вид камеры со стальными дугогасительными пластинами и двойным разрывом дуги в каждой фазе.

Блокировочные или вспомогательные контакты применяются для переключений в цепях управления и сигнализации, поэтому они имеют такое же конструктивное выполнение, как и контакты реле.

§ 20.3. Конструкции контакторов

Как правило, род тока в цепи управления, которая пи­тает катушку контактора, совпадает с родом тока главной цепи. Поэтому контакторы постоянного тока, предназначенные для включения двигателей постоянного тока, имеют электромагнитный механизм, питаемый постоянным током. Соответственно контак­торы переменного тока, предназначенные для включения двигате­лей (или другой нагрузки) переменного тока, имеют электромагнитный механизм, питаемый переменным током. Бывают и исклю­чения. Известны, например, случаи, когда катушки контакторов переменного тока получают питание от цепи постоянного тока.

Устройство контактора постоянного тока показано на рис. 20.1. Электромагнитный механизм поворотного типа состоит из сердеч­ника / с катушкой 2, якоря 3 и возвратной пружины 4. Сердеч­ник 1 имеет полюсный наконечник, необходимый для увеличения

Рис. 20.1. Контактор посто-                 Рис.   20.2.   Дугогасительная

янного тока                                  камера     с     электромагнит-

ным дутьем

магнитной проводимости рабочего зазора электромагнита. Немаг­нитная прокладка 5 служит для предотвращения залипания яко­ря. Силовой контактный узел состоит из неподвижного 6 и по­движного 7 контактов. Контакт 7 шарнирно закреплен на рычаге 8, связанном с якорем 8 и прижатом к нему нажимной пружиной 9.  Подвод тока к подвижному контакту 7 выполнен гибкой медной
лентой 10. Замыкание главных контактов 6 и 7 происходит с проскальзыванием и перекатыванием, что обеспечивает очистку кон­тактных поверхностей от окислов и нагара. При срабатывании электромагнитного механизма кроме главных контактов переклю­чаются вспомогательные контакты блокировочного контактного уз­ла 11. При размыкании главных контактов 6 и 7 между ними возникает электрическая дуга, ток которой поддерживается за счет ЭДС самоиндукции в обмотках отключаемого электродвига­теля. Для интенсивного гашения электрической дуги служит ду­гогасительная камера 12. Она имеет дугогасительную решетку в виде тонких металлических пластин, которые разрывают дугу на короткие участки. Пластины интенсивно отводят теплоту от дуги и гасят ее. Однако при большой частоте включения  контактора пластины   не  успевают остывать  и  эффективность дугогашения падает.

Для вытеснения дуги в сторону дугогасителыюй решетки мож­но использовать электромагнитную силу, так называемое магнит­ное дутье. На рис. 20.2 показана дугогасительная камера с уз­кой щелью и магнитным дутьем. Щелевая камера образована дву­мя стенками /, выполненными из изоляционного материала. Си­стема магнитного дутья состоит из катушки 2, включенной после­довательно с главными контактами и размещенной на сердечнике 3. Для подвода магнитного поля в зону образования дуги служат ферромагнитные щеки 4. В результате взаимодействия электриче­ского тока дуги с магнитным полем появляется сила F, которая растягивает дугу и вытесняет ее в щелевую камеру между стенками 1. За счет усиленного отвода теплоты стенками камеры дуга быстро гаснет.

При последовательном включении главных контактов и катуш­ки магнитного дутья направление силы F остается постоянным при любом направлении тока в силовой цепи, поскольку сила F пропорциональна квадрату тока (ведь магнитное поле создается этим же током). Поэтому магнитное дутье можно использовать и в контакторах переменного тока.

Контакторы переменного тока отличаются от контакторов по­стоянного тока, прежде всего тем, что они, как правило, выпол­няются трехполюсиыми. Основное назначение контакторов пере­менного тока — включение трехфазных асинхронных электродви­гателей. Поэтому они имеют три главных (силовых) контактных узла. Все три главных контактных узла работают от общего эле­ктромагнитного приводного механизма клапанного типа, который поворачивает вал с установленными на нем подвижными контак­тами. С этим же приводом связаны вспомогательные контакты. Главные контактные узлы имеют систему дугогашения с магнит­ным дутьем и дугогасителной щелевой камерой или дугогаси­телной решеткой. В контакторах быстрее всего изнашиваются главные контакты, поскольку они подвергаются интенсивной эро­зии (как говорится, контакты выгорают). Для увеличения общего срока службы контакторов предусматривается возможность сме­ны контактов.

Наиболее сложным и трудным этапом работы контактов является процесс их размыкания. Именно в этот момент контакты оп­лавляются, между ними возникает дуга. Для облегчения работы главных контактов при размыкании выпускаются контакторы пе­ременного тока с полупроводниковым блоком. В этих контакторах параллельно главным замыкающим контактам включают по два тиристора (управляемых полупроводниковых диода). Во включен­ном положении ток проходит через главные контакты, поскольку тиристоры находятся в закрытом состоянии и ток не проводят. При размыкании контактов схема управления на короткое время открывает тиристоры, которые шунтируют цепь главных контак­тов и разгружают их от тока, препятствуя возникновению элект­рической дуги. Такие комбинированные тиристорные контакторы выпускаются на токи в сотни ампер. Поскольку тиристоры рабо­тают в кратковременном режиме, они не перегреваются и не нуж­даются в радиаторах охлаждения.

Коммутационная износостойкость комбинированных контакто­ров составляет несколько миллионов циклов, в то время как глав­ные контакты обычных контакто­ров постоянного и переменного то­ка выдерживают обычно 150—200 тыс. включений.

Для управления электродвига­телями переменного тока неболь­шой мощности применяют прямоходовые контакторы с мостиковыми контактными узлами. Благодаря двукратному разрыву цепи и облег­ченным условиям гашения дуги пе­ременного тока в этих контакторах не требуются специальные дугогасительные камеры с магнитным дутьем, что существенно уменьшает их габаритные размеры.

Рис. 20.3.  Контактор переменного тока

Электромагнитный привод контактора переменного тока малой мощности (рис. 20.3) имеет Ш-образный сердечник 1 и якорь 2, собранные из пластин электротехнической стали. Часть полюсов сердечника охвачена короткозамкнутым витком, что предотвра­щает вибрацию якоря, вызванную снижением силы электромаг­нитного притяжения до нуля при прохождении переменного сину­соидального тока через нуль. Катушка 3 контактора охватывает сердечник и якорь, она и создает намагничивающую силу в маг­нитной системе контактора. На якоре 2 закреплены подвижные контакты 4 мостикового типа, что повышает надежность отклю­чения за счет двукратного размыкания. В пластмассовом корпусе установлены неподвижные контакты 5 и 6. Пружина 7 возвраща­ет контакты 4 в исходное положение. В трехфазном контакторе — три контактные пары, отделенные друг от друга пластмассовыми перемычками 8. Главные контакты имеют металлокерамические накладки и защищены крышкой. Вспомогательные контакты на рис. 20.3 не показаны.

§ 20.4. Магнитные пускатели

Магнитный пускатель — это комплектное устройство, предназначенное главным образом для пуска трехфазных асин­хронных двигателей. Основной составной частью магнитного пускателя является трехполюсный контактор переменного тока. Кро­ме того, контактор имеет кнопки управления и тепловые реле.

Схема включения трехфазного асинхронного двигателя с короткозамкнутым ротором показана на рис. 20.4. Для пуска элект­родвигателя М нажимается кнопка SB1 («Пуск»). Через катушку контактора КМ проходит ток, электромагнит контактора срабатывает, и замыкаются все его контакты, которые на схеме обоз­начаются теми же буквами КМ. Силовые контакты КМ подклю-

Рис. 20.4. Схема включения трех-           Рис.   20.5.   Конструкция   неревер-

фазного     асинхронного     электро-       сивного магнитного пускателя

двигателя   с   магнитным   пускате­лем

чают на трехфазное напряжение обмотку электродвигателя М. Параллельно кнопке SB1 подсоединены блокировочные контак­ты КМ. Так как они замкнулись, то после отпускания кнопки SB1 катушка контактора получает питание по этим контактам. Сле­довательно, для включения электродвигателя не надо все время держать кнопку нажатой: достаточно ее один раз нажать и от­пустить. Для остановки электродвигателя служит кнопка SB2 («Стоп»), при нажатии которой разрывается цепь питания кон­тактора КМ. Для защиты электродвигателя от перегрева служат тепловые реле FP1 и FP2, чувствительные элементы которых включаются в две фазы электродвигателя, а размыкающие кон­такты, обозначенные теми же буквами, включены в цепь пита­ния катушки контактора КМ. Для защиты самой схемы управле­ния служат плавкие предохранители FV. На схеме показан также рубильник Р, который обычно замкнут. Его размыкают лишь в том случае, когда собираются проводить ремонтные работы. По­добная схема является типовой, она применяется во всех случаях, когда не требуются изменение направления вращения (реверс) электродвигателя и интенсивное (принудительное) торможение.

На рис. 20.5 показана конструкция нереверсивного магнитно­го  пускателя, который  смонтирован в ящике с открывающейся крышкой. Электромагнитный механизм 1 контактора при сраба­тывании перемещает три подвижных контакта 2, размещенных в дугогасительных камерах. Одновременно переключаются блокиро­вочные контакты 3. Последовательно с двумя главными контакт­ными узлами включены тепловые реле 4.

Кнопки «Пуск» и «Стоп» обычно находятся вне ящика пуска­теля, они размещены на пульте управления под рукой у рабочего. Кнопка «Стоп» имеет красный цвет. Реверсивная схема включе-

Рис. 20.6. Схема  включения трехфазного асинхронного элек­тродвигателя с реверсивным магнитным пускателем

ония трехфазного асинхронного двигателя показана на рис. 20.6. Для того чтобы реверсировать (изменить направление вращения) трехфазный асинхронный двигатель, необходимо изменить поря­док чередования фаз на обмотке статора. Например, если для прямого вращения фазы подключались в последовательности ABC, то для обратного вращения необходима последовательность АСВ. Поэтому в состав реверсивного магнитного пускателя входят два контактора: KB для вращения вперед и КН для вращения назад. Кроме того, реверсивный магнитный пускатель имеет три кнопки управления и тепловые реле. В ряде случаев в комплект магнит­ного пускателя входят пакетный переключатель и плавкие предохранители. Схема (рис. 20.6) работает следующим об­разом.

Для включения электродвигателя М в прямом направлении не­обходимо нажать кнопку SB1 («Вперед»). При этом срабатывает контактор KB и своими силовыми контактами подключает к трех­фазной  сети обмотки электродвигателя. Одновременно  блокировочные контакты KB разрывают цепь питания катушки контакто­ра КН, чем исключается возможность одновременного включения обоих контакторов. Для включения электродвигателя в обратном направлении необходимо нажать кнопку SB2 («Назад»). В этом случае срабатывает контактор КН и своими силовыми контактами подключает к трехфазной сети обмотки электродвигателя. После­довательность соединения фаз теперь иная, чем при срабатывании контактора KB: две фазы из трех поменялись местами. При сра­батывании контактора КН его блокировочные контакты разрыва­ют цепь питания катушки контактора КВ. Нетрудно видеть, что при одновременном включении контакторов KB и КН произошло бы короткое замыкание двух линейных проводов трехфазной сети друг на друга. Для того чтобы исключить такую аварию, и нуж­ны блокировочные размыкающиеся контакты контакторов KB и КН. Следовательно, если подряд нажать обе кнопки (SB1 и SB2), то включится только тот контактор, кнопка которого была нажа­та раньше (пусть даже на мгновение).

Для реверса электродвигателя надо предварительно нажать кнопку SB3 («Стоп»). В этом случае блокировочные контакты подготавливают цепь управления для нового включения. Для на­дежной работы необходимо, чтобы силовые контакты контактора разомкнулись раньше, чем произойдет замыкание блокировочных контактов в цепи другого контактора. Это достигается соответст­вующей регулировкой положения блокировочных контактов по хо­ду якоря электромагнитного механизма контактора. Для блоки­ровки кнопок SB1 и SB2 используются замыкающиеся блокиро­вочные контакты соответствующего контактора, подключенные па­раллельно кнопке.

Необходимо исключить одновременное срабатывание обоих контакторов, для чего используют двойную или даже тройную блокировку. Для этой цели в схеме рис. 20.6 применяют двухцепные кнопки SB1 и SB2. Например, кнопка SB1 при нажатии за­мыкает свои контакты в цепи контактора KB и разрывает свои контакты в цепи контактора КН. Аналогично работает двухцепная  кнопка SB2. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препят­ствующим одновременному срабатыванию электромагнитов кон­такторов. Контакты тепловых реле FP1 и FP2, включенные в две фазы обмотки электродвигателя, отключают цепь питания катушек обоих контакторов при длительном протекании большого тока, чтобы не допустить перегрева обмоток. Для защиты схемы уп­равления служат плавкие предохранители FV.

Магнитные пускатели и контакторы выбирают по номинально­му току электродвигателя с учетом условий эксплуатации. В про­мышленности применяются магнитные пускатели серий ПМЕ и ПМЛ с прямоходовыми контакторами и серии ПАЕ с подвижной системой поворотного типа.

§ 20.5. Автоматические выключатели

Автоматический выключатель предназначен для вклю­чения и отключения электрических цепей и электрооборудования, а также для защиты от больших токов, возникающих при корот­ких замыканиях и перегрузках. В отличие от магнитного пускате­ля автоматический выключатель не может использоваться для автоматических систем, использующих электрические управляющие сигналы. Он также не обеспечивает ре­верса электродвигателя. Автоматический выключатель часто используют для про­должительного включения нереверсируемых электродвигателей. Может он также использоваться вместо рубильника в схе­мах с магнитным пускателем (см. рис. 20.4 и 20.6).

Устройство автоматического воздуш­ного выключателя (автомата) показано на рис. 20.7. С помощью рукоятки / про­изводится включение и отключение ав­томата. В состоянии, показанном на ри­сунке, автомат отключен, и подвижный контакт 2 не замкнут с неподвижным контактом 3. Для включения автомата следует взвести пружину 6, при этом ру­коятка / перемещается вниз и повора­чивает деталь 4, которая своим нижним концом входит в зацепление с зубом удерживающего рычага 5.

Рис.20.7.     Автоматический выключатель

Теперь авто­мат готов к включению. Для его вклю­чения    рукоятку  1  перемещают    вверх.

Пружина 6 займет такое положение, что шарнирно соединенные рычаги 7 и 8 перемещаются вверх по отношению к тому положе­нию, когда они находятся на одной прямой. Автомат включится: цепь тока создается через контакты 2 и 3, разделители 9 и 10.

Автоматическое отключение автомата происходит при сраба­тывании разделителей. При длительных токовых перегрузках сра­батывает тепловой биметаллический расцепитесь 10, свободный конец, которого перемещается вниз, поворачивая рычаг 5 по часо­вой стрелке. Зуб рычага расцепляется с деталью 4, которая пово­рачивается, а рычаги 7 и 8 проходят мертвое положение. Усилие пружины 6 направлено вниз, под его действием размыкаются кон­такты 2 и 3. Отключение при максимально допустимом токе про­исходит под действием электромагнитной силы , выводящей зуб рычага 5 из зацепления с деталью 4. Если произошло автомати­ческое отключение нагрузки, то рукоятка 1 остается в верхнем положении. Ручное отключение автомата происходит при перемещении ру­коятки 1 вниз. Возникающая при размыкании контактов 2 и 3 электрическая дуга гасится с помощью дугогасительной решет­ки 11.

Автоматы могут снабжаться расцепителями минимального на­пряжения, отключающими автомат при напряжении в сети ниже допустимого значения. Для дистанционного управления автомати­ческим выключателем могут использоваться специальные их кон­струкции, дополненные электромагнитным  приводом рукоятки 1.

Выпускаемые промышленностью автоматические выключатели типов АК, АП, АЕ имеют от 1 до 3 пар силовых контактов. Они предназначены для цепей с напряжением от 110 до 500 В при то­ках в десятки ампер. Время автоматического отключения состав­ляет 0,02—0,04 с.

【Что такое контакторы】 | Все, что нужно знать о подрядчиках

Что такое контактор?

По сути, контактор — это электрическое переключающее устройство. Он используется для включения и выключения электрической цепи. Это особый тип реле, но между контактором и реле есть принципиальная разница. Контактор в основном используется в приложениях, где требуется более высокая допустимая нагрузка по току, в то время как реле используются для приложений с низким током.Контакторы компактны и легко монтируются в полевых условиях. Обычно эти устройства имеют несколько контактов. Контакты в большинстве случаев нормально разомкнутые, и они обеспечивают рабочее питание нагрузки всякий раз, когда катушка контактора находится под напряжением. Контакторы широко используются с электродвигателями.

Существуют разные типы контакторов, и разные типы имеют свои собственные наборы функций, приложений и возможностей. Контакторы могут принимать на себя широкий диапазон токов от нескольких до тысяч ампер и напряжение от 25 В постоянного тока до тысяч вольт.Кроме того, эти устройства бывают разных размеров, от небольших портативных до больших, размером до метра или ярда с одной стороны.

Что такое контактор / контактор ABB-Mini

Контакторы

чаще всего используются с сильноточной нагрузкой из-за их способности выдерживать ток более 5000 ампер и высокую мощность более 100 кВт. При прерывании сильных токов двигателя возникают дуги. Для уменьшения и регулирования этих дуг можно использовать контактор.

Принцип работы контактора:

Принцип действия контактора довольно прост; ток, протекающий через контактор, возбуждает электромагнит.Электромагнит под напряжением создает магнитное поле. Это заставляет сердечник контактора перемещать якорь. Затем цепь замыкается между неподвижным и подвижным контактами с помощью нормально замкнутого (NC) контакта, позволяющего току проходить через контакты к нагрузке. Когда ток перестает проходить, катушка обесточивается и размыкает цепь. Контакты контакторов могут быстро размыкаться и замыкаться, поэтому они способны выдерживать большие нагрузки. Поскольку контакторы предназначены для быстрого размыкания и замыкания контактов, движущиеся контакты могут отскакивать, поскольку они быстро сталкиваются с неподвижными контактами.Во многих контакторах используются раздвоенные контакты, чтобы избежать дребезга.

Токовый вход на катушку контактора может быть постоянным или переменным (доступен в различных диапазонах напряжения от 12 В переменного тока или 12 В постоянного тока до 690 В переменного тока или 440 В постоянного тока). Катушка контактора потребляет небольшое количество энергии во время работы. Чтобы уменьшить количество энергии, потребляемой катушкой контактора во время работы, используются схемы экономайзера.

Контакторы с катушками переменного тока оснащены экранирующими катушками. В противном случае контактор будет дребезжать каждый раз, когда переменный ток пересекает ноль.Затеняющие катушки могут задерживать размагничивание магнитопровода, чтобы избежать дребезга. Катушки постоянного тока не нуждаются в затенении, поскольку создаваемый поток всегда постоянный.

Функции контактора

Когда электрический ток проходит через контактор, электромагнит создает сильное магнитное поле. Это магнитное поле втягивает якорь в катушку, и это создает электрическую дугу. Электрические токи проходят через один контакт и попадают в устройство, в которое встроен контактор.Следовательно, функция контактора состоит в том, чтобы включать или выключать электрическую цепь. Перегрузку цепи можно предотвратить, добавив тепловое реле перегрузки.

Для отключения контактор можно вынуть из родительского устройства, в которое он встроен и работает. При отсутствии электрического тока пружина толкает якорь, тем самым разрывая соединение.

Типы контакторов

Магнитные контакторы

Это наиболее распространенные типы, доступные и не зря, поскольку они более эффективны, чем ранее упомянутые типы.Эти контакторы работают электромеханически и не требуют вмешательства человека. Благодаря передовым технологиям ими можно управлять удаленно, что делает их более безопасными и эффективными, поскольку им не нужно управлять вручную. Магнитному контактору требуется лишь небольшое количество тока для размыкания и замыкания цепи, поэтому он также является энергоэффективным.

Магнитный контактор SC5-1 — ElectGo

Подробнее о: Магнитный контактор: значение — Функции — Детали — Типы

Ножевой переключатель

Контакторы с ножевым переключателем были представлены в конце 1800-х годов.Можно с уверенностью предположить, что они, вероятно, были первыми использовавшимися контакторами. В основном они применялись для управления электродвигателями. Они состояли из металлической полосы, которая должна входить в контакт при работе. Переключатель был снабжен рычагом для его подъема или опускания. Тогда контакторы были такими большими; нужно было встать рядом с ножевым переключателем, чтобы установить переключатель в закрытое положение. Однако, как и в случае со старыми технологиями, этот метод переключения был недостаточно эффективным, и с ним возникали функциональные проблемы.Основная проблема заключалась в том, что из-за этого контакты быстро изнашивались. Было сложно вручную открыть или замкнуть выключатель достаточно быстро, чтобы предотвратить искрение; в результате мягкие медные переключатели подверглись коррозии, что сделало их более уязвимыми для грязи и влаги, что привело к ржавчине. Шли годы, и технологии начали развиваться, были разработаны более крупные двигатели. Чем больше двигатели, тем больше токов им требуется для работы. Но работать с такими сильноточными переключателями крайне опасно, поэтому контакторы такого типа перестали быть эффективными.Несмотря на то, что технология постоянно совершенствовалась, ножевые переключатели не могли быть полностью разработаны из-за проблем и рисков, связанных с эксплуатационными рисками и коротким сроком службы контактов

Ручной контроллер

После обнаружения опасностей, связанных с использованием ножевого переключателя, инженеры и исследователи придумали еще одно контакторное устройство, которое предлагало лучшую безопасность и ряд функций, которые не были доступны в ножевом переключателе. Новый дизайн получил название «Ручной контроллер».Новые добавленные функции включают:

  • Обшивка для агрегата
  • Уменьшенные размеры, упрощающие эксплуатацию
  • Двойные размыкающие контакты заменяют одиночные размыкающие контакты.
  • И, наконец, устройство намного безопаснее в эксплуатации.

Среди добавленных новых функций, помимо функции безопасности, следующей наиболее важной особенностью этой новой конструкции является добавление двойных размыкающих контактов. Эти новые контакты предназначены для размыкания цепи одновременно в двух местах.Таким образом, даже в небольшом пространстве он позволяет вам работать с большим током. Как следует из названия, контакты с двойным разрывом разрывают соединения, образуя два набора контактов. Кнопка или переключатель ручного контроллера прикреплены к контроллеру, поэтому им нельзя управлять дистанционно.

При активации ручного регулятора включается силовая цепь, и по ней проходят электрические токи к нагрузке. Из-за большей эффективности и безопасности работы ручные контакторы заменили ножевые выключатели и даже сегодня; они все еще используются, хотя и не так часто, как в 1900-х годах.

Связанные темы: Как правильно выбрать контактор для вашего двигателя

Различия между контактором и реле

Реле, как и контакторы, представляют собой устройства, которые используются для электромеханического или электронного размыкания или замыкания цепей. Реле — это не просто переключающие устройства; они также являются основной защитой в большинстве процессов или оборудования управления. Все реле можно классифицировать по одной или нескольким электрическим величинам, таким как ток или напряжение, которые могут замыкать или размыкать цепи или контакты.

Как упоминалось ранее, контактор — это электромеханический переключатель, используемый в основном для размыкания или замыкания электрических цепей. Контактор обычно управляется схемой, которая имеет более низкий уровень мощности по сравнению с коммутируемой схемой — например, катушкой на 24 В, управляющей переключателем двигателя на 240 В.

Ниже приведены области, в которых эти устройства имеют различия.

Основное различие между обоими устройствами заключается в том, что контакторы более мощные, чем реле, поэтому они используются для приложений с высокой мощностью.

Контакторы

могут использоваться в цепях управления, которые имеют как высокую, так и низкую токовую нагрузку от 9 до 1250 А.В то время как

Реле

используются в цепях управления только с малой токовой нагрузкой, то есть от 5 до 15 А.

Контакторы

предназначены в основном для трехфазных систем. Однако реле в первую очередь предназначены для однофазных приложений.

Контакторы

предназначены для работы в системах с высоким напряжением, и высокое напряжение представляет большую опасность. Итак, для предотвращения несчастных случаев в устройство были добавлены функции безопасности, такие как подпружиненные контакты. Подпружиненный контакт — это функция, предотвращающая внутреннее короткое замыкание в случае перегрузки контактора.Еще одна функция безопасности устройства — это магнитный дугогасящий элемент. Эта функция помогает удалить или уменьшить искры, образующиеся при разделении токовых контактов.

Различия между контактором и реле

Реле не имеют этих функций безопасности.

Контакторы

намного медленнее, чем реле, когда дело доходит до скорости переключения, поэтому реле могут работать с электронными сигналами.

Контакторы потребляют больше энергии, чем реле, потому что в реле используются меньшие электромагниты, чем в контакторах.

Поскольку контакторы используются для приложений с высокой допустимой токовой нагрузкой, они относительно больше и тяжелее реле. Очевидно, что из-за разницы в размерах, эффективности и функциональности контакторы дороже реле.

Следовательно, со всем, что было сказано в этой статье, вы, вероятно, думаете о приобретении контактора. Покупайте пускатели и контакторы в Интернете на сайте sg.electgo.com. Магазин по оптовым ценам на силовые контакторы , вспомогательные контакты, реле перегрузки и т. Д.ElectGo также предлагает продукты по более низким ценам для зарегистрированных клиентов, то есть клиентов, которые зарегистрировались на веб-сайте. Если у вас не получается установить контактор самостоятельно, не волнуйтесь. У нас есть штатные инженеры, которые смогут помочь вам с этим и со всеми другими инженерными проблемами, которые могут возникнуть с контакторами. К каждому приобретенному продукту вы получаете прилагаемую таблицу контакторов. Хороший!

>>> Где купить Контактор

Замена контактора кондиционера

, Пошаговое руководство

Контактор кондиционера — это, по сути, переключатель, расположенный в наружная часть кондиционера.«Выключатель» состоит из катушки управления, металлического плунжера, а также один или несколько наборов электрических контактов. выключатель включает и выключает устройство по мере необходимости, чтобы сохранить дом при желаемой температуре.

HvacRepairGuy теперь предлагает бесплатную живую помощь по всем вашим проблемам с кондиционером, нажав на чат виджет.

** ПРИМЕЧАНИЕ ** ТОЛЬКО ВЫ МОЖЕТЕ ОЦЕНИТЬ СВОЮ СПОСОБНОСТЬ ВЫПОЛНЯТЬ СЛЕДУЮЩУЮ ЗАДАЧУ. ЭТО РУКОВОДСТВО И НЕ МОЖЕТ ПРЕДОСТАВИТЬ ВСЕ ДЕТАЛИ ДЛЯ ЛЮБОЙ СИТУАЦИИ.

Нормальная работа контактора переменного тока

Чтобы определить, работает ли деталь правильно или нет, вы должны понять, как он предназначен для работы.

На катушке управления указано номинальное напряжение. В большинстве жилых систем управляющее напряжение будет 24 В переменного тока, но оно также может быть 120 или 240 В переменного тока. Рейтинг обычно будет написано на самой катушке. Это напряжение обычно подается на катушку термостатом.

Когда управляющее напряжение подается на контактор кондиционера, ток протекает через катушку и создает магнитное поле. Магнитное поле притягивает поршень и тянет это в центр катушки. Это действие приводит к замыканию контактов.

Каждый набор контактов состоит из одного фиксированного и одного подвижного контакта и называется полюсом. Эти контакты изготовлены из стали и покрыты серебром для улучшения проведение электричество.Подвижный контакт соединяется с плунжером, и когда плунжер втягивается в в центре катушки подвижный контакт приводится в контакт с неподвижным контактом. Этот завершает электрическая цепь и обеспечивает питание компонентов кондиционера, таких как компрессор и то вентилятор конденсатора.

Когда домашний термостат определяет, что дальнейшее охлаждение не требуется, управляющее напряжение на контактор отключено. Когда ток перестает течь через катушку, магнитное поле схлопывается, и плунжер отпускается.Плунжер возвращается в нормальное состояние. должность и открывает контакты.

Контактор кондиционера может выйти из строя одним из двух способов: электрически или механически.

Механическая неисправность

Нормальная механическая неисправность заключается в том, что контактор «заедает» в замкнутом состоянии. Нормальный Признаки этого — то, что внешняя часть системы (конденсаторный агрегат) не отключится. С термостат выключен, вентилятор печи или воздухообрабатывающий агрегат выключен, но конденсаторный агрегат все еще работает. Бег.Обычно вы можете обнаружить лед, покрывающий трубопроводы хладагента и змеевик испарителя. Эта неудача обычно возникает при стирании серебряного покрытия контактов. Электрическая дуга создается как контакты Закрыть а без серебряного покрытия контакты можно приварить. Если контактор заедает, он должен заменить.

Контактор может не замкнуться механически, если что-то попало в механизм, физически предотвращающий его закрытие.Обычно это вызвано насекомыми или мышами.

Электрический отказ

Контактор может выйти из строя электрически одним из трех способов и с помощью простого мультиметра используется для проверки на отказ. Катушка может закоротиться, заземиться или разомкнуться. Катушка может стать закороченный при пробое изоляции между проводами в катушке. Это можно найти, отключив мощность и снятие показания сопротивления между выводами катушки. Показание должно быть около 20. Ом, если оно значительно меньше, контактор следует заменить.Катушка может стать заземленной, если изоляция на внешних проводах катушки выходит из строя и открывает путь к другому металлическому компоненту. Этот можно найти, сняв показания сопротивления с каждой клеммы катушки до металлического корпуса воздушного кондиционер.

Низкое показание означает, что катушка заземлена и контактор следует заменить. (В обоих этих случаях предохранитель цепи управления на плате управления печью / воздухообрабатывающим устройством сработает. наверное быть взорванным.)

Если катушка разомкнута, контактор не замкнется, когда управляющее напряжение применяется к катушке. Обычно это можно найти, отключив питание устройства и печь / воздух обработчик и снятие показаний сопротивления на выводах катушки. Если чтение существенно выше 20 Ом, катушка разомкнута и контактор следует заменить.

Выбор контактора на замену

Чтобы найти контактор кондиционера на замену, необходимо сопоставить три вещи.Первое — это управляющее напряжение. Второе — это рейтинги контактов устройства. Вам следует матч номинальное сопротивление контактора в амперах. В обычной жилой системе это обычно 25, 30, или 40 ампер. Можно заменить отряд на более высокий рейтинг, но нельзя на более низкий. рейтинг. Последнее, что нужно сделать — это сопоставить количество полюсов. Обычно они бывают однополюсными, двухполюсными. полюс, или трехполюсные блоки. (В большинстве жилых систем используются одно- или двухполюсные контакторы.)

Вы также можете рассмотреть возможность обновления к современное электронное управление, которое может помочь защитить компрессор вашего охлаждения система.

Что такое контактор? | Library.AutomationDirect.com

Описание контактора

Контакторы

— это специализированная форма реле, способная переключать нагрузки более высокой мощности, такие как двигатели, освещение и электрические обогреватели.

Включение больших электрических нагрузок, таких как двигатели, включение и выключение освещения и обогревателей — обычное требование автоматизации.Приложения встречаются в коммерческих зданиях, промышленном оборудовании и транспортных средствах. Фундаментальный Устройство для коммутации электроэнергии называется контактором . Контакторы в основном это усиленные реле, но с некоторыми специальными функциями для управления нагрузки большой мощности.

В предыдущем посте уже подробно обсуждались реле управления. В этом сообщении блога рассказывается, почему используются контакторы, как они работают, используемая терминология, некоторые ключевые функции и где они обычно устанавливаются.

Почему используются контакторы? Контакторы

используются для приложений большой мощности. Они позволяют более низкому напряжению и току переключать цепь с гораздо большей мощностью, поэтому они, как правило, больше и более надежны, чем реле управления, что позволяет им включать и выключать более мощные нагрузки в течение многих тысяч циклов (Рисунок 1) . Стандартные управляющие реле обычно имеют номинальный ток контактов 10 А или меньше при 250 В переменного тока или меньше. Контакторы, с другой стороны, выдерживают гораздо более высокие контактные характеристики до многих сотен ампер и обычно рассчитаны на работу при 600 В переменного тока.

Рис. 1 Контакторы определенного назначения могут быть экономичным выбором для определенных нагрузок HVAC и охлаждения.

Очень распространенная категория электрических контакторов включает устройства, разработанные в соответствии со стандартами Международной электротехнической комиссии (МЭК), которые преобладают в Европе, но также используются в Северной Америке. Контакторы IEC имеют компактную модульную конфигурацию и доступны многие электрические размеры (рис. 2). Конечным пользователям всегда необходимо убедиться, что любые компоненты, которые они выбирают, соответствуют потребностям приложения, имеют любые другие требуемые рейтинги, такие как UL, и соответствуют всем применимым нормам и правилам при эксплуатации.

Обратите внимание, что некоторые управляющие реле рассчитаны на ток более 10 А, а некоторые контакторы — менее 10 А. Технически реле управления может переключать некоторые силовые нагрузки, а контактор может использоваться для управления. Однако лучше всего использовать устройства, подходящие для предполагаемой службы.

Рис.2: Контакторы IEC и устройства защиты от перегрузок предлагаются в широком диапазоне номиналов и поставляются в компактных корпусах с различными аксессуарами и опциями.

Как работают контакторы Работа?

Стандартные контакторы — это электромеханические устройства точно так же, как реле, с электрическим соленоидом , катушка , расположенная на , закрывается механический контактирует с , когда находится под напряжением .Типовые контакторы иметь пружинный механизм, как и реле, но он больше и больше мощно, чтобы положительно разомкнуть грузонесущие контакты, когда обмотка обесточена . В противном случае высокий ток может вызвать отказ контактов, если они сваривают все вместе.

Кроме того, из-за больших нагрузок возникает большее искрение, чем контакты открыты. Таким образом, контакторы могут направлять дугу. вдали от контактов, чтобы быстро погасить или погасить дугу и сохранить контактная жизнь.Более специализированные устройства, называемые вакуумными контакторами, могут использоваться для коммутируемое напряжение выше 600 В переменного тока, поскольку дуга быстро гаснет в вакуум.

Связаться Конфигурации и приложения

Еще одно различие между реле и контакторами заключается в контактные договоренности. Реле управления доступны с различным количеством Н.О., N.C. и / или N.O./N.C. контакты для выполнения широкого круга обязанностей, а реле может работают намного быстрее, чем контакторы.

С другой стороны, контакторы

обычно используются для включения питание при подаче напряжения.Поэтому контакторы обычно предлагают Н.О. для основного силовые контакты, также известные как полюса . Конечно, есть контакторы. с Н.З. контактами, а иногда каждый контакт представляет собой сменный картридж. Здесь несколько схем силовых полюсов контактора, с общим применением для каждого (Рисунок 3):

Рис. 3. Здесь показаны общие схемы подключения контактора, изображающие типовые соединения для 1-полюсного + шунтирующего, 2-полюсного и 3-полюсного устройств.
  • 1-полюсный: для работы с нагрузкой 12 В постоянного тока на автомобиле
  • 1-полюсный + шунт: для работы 2-проводного 1-фазного Нагрузка 120 В переменного тока, как вентилятор (сквозное шунтирующее соединение не переключается и для удобства подключения)
  • 2-полюсный: для работы от 3-проводной однофазной сети 240 В перем. нагрузка, как у бытового кондиционера
  • 3-полюсная: для работы от 3-проводной 3-фазной сети 480 В переменного тока нагрузка как у промышленного двигателя
  • 4-полюсная: для переключения всех фаз и нейтрали для трехфазной нагрузки

Контакторы могут использоваться для частого включения и выключения нагрузки.В других случаях они являются частью цепи аварийной остановки, где могут оставаться находится под напряжением в течение длительных периодов времени для обеспечения основного питания оборудования, но будет обесточьте оборудование, если сработала цепь аварийного останова.

Кроме того, иногда желательно для цепей управления для взаимодействия с контакторами, но было бы расточительно использовать контактор силовой столб для небольшой цепи управления. Поэтому большинство контакторов предлагают дополнительные вспомогательные контакты, которые устанавливаются сбоку или сверху и обеспечивают гораздо больший контроль контакты в различных конфигурациях (при гораздо меньших номиналах, обычно ниже 10А) для проводки управления.Специализированные контакты способны передавать меньшие токи и напряжения благодаря материалу и конструкции контактов, с высоким удерживающее давление и очень низкий внутренний импеданс.

Многие контакторы IEC могут принимать несколько сумматоров вспомогательные контакты для верхнего монтажа. Если для большого количества цепей управления требуется переключение, это хороший вариант для достижения этой цели вместо использования множества реле управления параллельно.

Электрические характеристики

См. Что такое реле? для получения более подробной информации об электрической терминологии реле и контакторов.Важно просмотреть листы спецификаций для обоих, чтобы убедиться, что контакт будет работать должным образом. Некоторые контакты рассчитываются по-разному для определенных нагрузок, два основных типа:

  • Резистивный: обычно используется с нагревателями и лампами накаливания освещение
  • Индуктивное: обычно используется с двигателями, соленоидом катушки или трансформаторы

Поскольку контакторы часто работают с нагрузками двигателя, это обычно производители должны предоставить таблицы, касающиеся допустимой мощности, наряду с током полной нагрузки контакторов для различных нормальных рабочих режимов напряжения.Это помогает пользователю выбрать правильный размер. Кроме того, IEC перечисляет многие категории использования, определяющие типичные приложения, чтобы помочь пользователям с выбор контактора. Обратите внимание, что каждое реле или контактор может иметь разные рейтинги основаны на стандартах UL или IEC. Опоры электропередач будут иметь разные номиналы. чем вспомогательные полюса.

Если контакты рассчитаны на нагрузку постоянного тока, обычно это намного меньшая сила тока, чем для нагрузки переменного тока. Более высокие нагрузки переменного тока могут быть отключены контактов, потому что в цепях переменного тока происходит быстрое пересечение нулевого напряжения, что упрощает чтобы погасить дугу.

Поскольку контакторы больше реле, они обычно имеют более высокое энергопотребление и тепловыделение, что необходимо учитывать при проектирование корпусов, в которых они размещаются. Также схема управления должны быть тщательно спроектированы для обеспечения достаточного напряжения катушки или контактора. может треп .

Установка контактора Контакторы

обычно выбираются, размеры и заказываются по их предполагаемая сила тока полной нагрузки. Обычно можно установить контактор большего размера, но никогда не занижать его.Некоторые пользователи пытаются ограничить свой выбор, чтобы минимизировать количество заказываемых деталей, даже если они время от времени превышают размер компонента.

Малые контакторы могут использовать монтаж на DIN-рейку, а некоторые контакторы используют свои собственные специализированные монтажные пластины или могут быть просто панельный. Контакторы большего размера довольно тяжелые и обычно должны быть прикручены к задняя панель корпуса. Обратите внимание, что в то время как промышленные реле часто снимаются и подключены к постоянно подключенным базам, это обычно не происходит с контакторы.Контакторы обычно устанавливаются и подключаются к месту и должны быть без болтов и без проводов при замене (Рисунок 4). Иногда контактор можно разобрать спереди для замены определенных деталей.

Большинство малых реле имеют класс защиты IP20 с защитой от прикосновения как и некоторые новые контакторы, особенно версии IEC. Однако многие более крупные контакторы будут иметь открытую конфигурацию, требующую отдельного вывода охватывает. Провода либо попадают в зажимные проушины, либо иногда проушины должны устанавливаться на провода так, чтобы их можно было закрепить на болтовых соединениях.Некоторый поставщики предлагают готовые перемычки для ускорения электромонтажа различные конфигурации. Другие полезные функции — это четко обозначенные соединения. и номер модели, а также средства для легкого наклеивания паспортных табличек или маркеров.

Последнее замечание относительно использования контакторов с дискретным ПЛК. выходы. Если маленький контактор должен напрямую управляться ПЛК, тогда на контакторе должен быть установлен ограничитель перенапряжения для защиты ПЛК. выход из строя. Для более крупных контакторов катушка, вероятно, слишком велика, чтобы ее можно было запитывается напрямую от ПЛК, поэтому релейный выход ПЛК или промежуточное управление может понадобиться реле.Многие производители предлагают электронные катушки на более крупной раме. контакторы, которые уменьшают ток включения, позволяя прямое управление без промежуточного реле.

Контакторы в качестве двигателя Стартеры

Двигатели относятся к особой категории нагрузки, и NEC имеет определенные требования по защите электродвигателей от перегрузки по току и перегрузки. Когда контактор используется для управления двигателем, обычно он сочетается с перегрузкой реле для лучшей защиты двигателя и проводки фидера.Контакторы парные с реле перегрузки таким образом и используется в службе управления двигателями часто называется стартерами (рис. 5). Если контактор покупается в собранном виде с реле перегрузки его можно назвать комбинированным стартером.

Контакторы

— это универсальные устройства, широко используемые в различных отрасли. Несмотря на простоту концепции, существует множество нюансов, которые необходимо учитывать. понял, как правильно определять и применять контакторы. Это сообщение в блоге — хорошее отправной точкой, с дополнительной информацией, доступной в AutomationDirect эксперты.

Схема подключения контактора переменного тока

Как подключить пусковой или рабочий конденсатор электродвигателя. Вы всегда должны следовать инструкциям производителя термостата при замене термостата.




Схема подключения нагревательного контактора Схема электрических соединений Схема данных




Схема подключения нагревательного контактора Схема электрических соединений Схема данных




Схема подключения нагревательного контактора Схема подключения Схема данных Схема электродвигателя





Инструкции по монтажу пускового конденсатора для конденсаторов электродвигателя, предназначенные для запуска электродвигателя, такого как компрессор переменного тока, компрессор теплового насоса или двигатель вентилятора, а также способы подключения компрессора кондиционера с жестким запуском.


Схема подключения контактора переменного тока . Монтажные схемы установки M 6 электрические схемы электрические схемы стандартных двигателей c Fantech 2008 m эти схемы относятся к стандартным асинхронным двигателям корпуса, которые. Обычно электрическая схема наклеивается на одну из панелей кондиционера. Типичные электрические схемы для кнопочных станций управления 3, генерирующих информацию в каждой цепи, проиллюстрированы схематической или линейной схемой, продолженной цепью управления, и проводкой станции управления.Цвета проводки термостата обозначают стандарты безопасности и стандарты управления ОВКВ. Трехфазное питание от трансформатора распределительной линии подается к месту обслуживания дома или здания. 5 6 схем документов в целом. Вам нужно будет посмотреть на электрическую схему, прилагаемую к устройству. Указатель EATON Wiring Manual 0611 11 3 11 электрические схемы контакторных реле. Клемма r — это горячее питание 24 В от управляющего понижающего трансформатора, которое запитывает контактор реле или замыкает цепь на печатной плате, питая его напряжением 24 В, когда термостат требует того, на что он настроен.В этом руководстве мы предполагаем, что мы будем подключать только однофазные осветительные точки нагрузки, вентиляторы, розетки переменного тока и т. Д. В этой трехфазной установке электропроводки. Посетите домашний склад, чтобы купить флаги напряжения катушки 24 В, 30 полюсов, 1 А, 40 контактор определенного назначения c130a. Эта трехфазная мощность от генераторов переменного тока далее передается в распределительный конец по линиям передачи. Спасибо за интерес к нашему сайту.





Электропроводка и установка непосредственно на линии Dol




Прямая онлайн-конструкция стартера Рабочие преимущества




Схема подключения 6 реле Pdf Библиотека Epub







Простая схема

Контактор с трехфазным электродвигателем




Wrg 2586 Схемы подключения электродвигателя




Электромонтажные схемы разделенного контактора переменного тока






Контакторный релейный кабель Электросхема
000 Схема подключения реле

Схема электрических соединений Учебное пособие




Основная электрическая схема Схема подключения конденсатора Схема данных






Схема подключения раздельного переменного тока Скачать




Схема подключения контакторов

207 Схема подключения нагревателей

207 Схема подключения контактора Схема данных Схема






Wrg 5624 2003 Блок-схема предохранителя Impala




Схема подключения контактора переменного тока Данные схемы подключения




Схема подключения 903 Схема разветвления 903 Что такое схема подключения 903 принцип работы контактора переменного тока?

Контактор переменного тока представляет собой электромагнитный контактор переменного тока с НО главным контактом, тремя полюсами и воздухом в качестве средства гашения дуги. Его компоненты включают: катушку, кольцо короткого замыкания, статический стальной сердечник, подвижный стальной сердечник, подвижный контакт, статический контакт, вспомогательный замыкающий контакт, вспомогательный замыкающий контакт, лист нажимной пружины, противодействующую пружину, буферную пружину, гашение дуги. оригинальных запчастей. Внешний вид обычного контактора переменного тока показан на рисунке ниже:

Электромагнитная система: Она включает катушку, статический железный сердечник и подвижный железный сердечник (также называемый якорем).

Контактная система: Включает главные и вспомогательные контакты. Главный контакт пропускает больший ток и играет роль подключения и отключения главной цепи. Обычно максимальный ток, допустимый для главного контакта (т. Е. Номинальный ток), является одним из технических параметров контактора. Вспомогательные контакты могут пропускать только небольшие токи и обычно подключаются к цепи управления при использовании.

Главные контакты контакторов переменного тока обычно являются нормально разомкнутыми контактами, а вспомогательные контакты — нормально разомкнутыми или нормально замкнутыми.Контактор с меньшим номинальным током имеет четыре вспомогательных контакта; контактор с большим номинальным током имеет шесть вспомогательных контактов.

NO и NC относятся к состоянию контактов до подачи питания на электромагнитную систему. То есть нормально разомкнутый контакт означает, что, когда на катушку не подается напряжение, ее подвижные и статические контакты находятся в разомкнутом состоянии, а катушка закрывается после того, как на нее подается питание. НЗ-контакт означает, что когда катушка не находится под напряжением, ее подвижные и статические контакты замкнуты, а когда катушка находится под напряжением, она отключена.

Функция устройства гашения дуги заключается в быстром отключении дуги при разрыве главного контакта. Если его быстро не отрезать, произойдет опаливание главного контакта и сварка. Поэтому контакторы переменного тока обычно имеют устройства гашения дуги. Для контакторов переменного тока большей мощности часто используются дуговые решетки.

Принцип работы контактора переменного тока показан на рисунке ниже. Когда катушка находится под напряжением, железный сердечник намагничивается, заставляя якорь двигаться вниз, делая нормально закрытый контакт открытым, а нормально открытый контакт закрытым.Когда катушка обесточена, магнитная сила исчезает. Под действием противодействующей пружины якорь возвращается в исходное положение, а контакт возвращается в исходное состояние.

Рекомендуемый артикул:

Что такое контактор?

Что такое признаки отказа контактора переменного тока

Устранение неполадок переменного тока — непростая задача. Но, как ни удивительно, есть множество вещей, о которых вы действительно можете позаботиться самостоятельно. Вам не нужно быть инженером, чтобы разобраться в них.Вместо этого все, что вам нужно, — это протянуть руку помощи в виде полезного и информативного руководства. В этом контексте вот небольшое руководство, которое поможет вам понять симптомы неисправности контактора переменного тока и что делать, когда это произойдет.

Что такое контактор переменного тока?

Да, мы знаем, что вы, должно быть, задаетесь вопросом: «Что такое контактор переменного тока»? Контактор — это электрический передатчик или реле в сети переменного тока. Он регулирует подачу электричества к различным частям. Например, контактор подает ток на конденсатор, а также на двигатель вентилятора наружного блока.В основном контактор позволяет или предотвращает подачу питания на блок переменного тока.

С точки зрения непрофессионала, это переключатель с электрическим управлением, который используется для переключения силовой цепи. Обычно контактор управляется схемой более низкого уровня мощности, чем коммутируемая схема. Например, катушечный электромагнит на 24 вольт управляет выключателем двигателя на 230 вольт.

Что делает контактор в переменном токе?

В сети переменного тока контактор замыкается, образуя электрическую цепь. Это позволяет вашему блоку переменного тока запускаться, когда термостат посылает сигнал на охлаждение или нагрев.Когда термостат требует нагрева или охлаждения, возникает магнитное воздействие. Это вызывает соединение между стороной напряжения контактора (стороной сети) и стороной нагрузки. Сторона нагрузки — это та, где соединены компрессор и двигатель вентилятора. Когда термостат перестает вызывать действие, контактор размыкается. Когда контактор размыкается, он прекращает подачу питания на переменный ток.

Что происходит при неисправности контактора?

Когда контактор выходит из строя или выходит из строя, может потребоваться его замена.В таком случае он не будет тянуться. Когда это происходит, два конца не соединяются друг с другом, даже если к ним напрямую протекает ток. Если ваш термостат щелкает; однако сам блок не работает, контактор, скорее всего, полностью отключился. В противном случае он не получает столь необходимого электрического тока.

Признаки отказа контактора переменного тока

Есть 3 основных признака, указывающих на неисправный контактор в вашей сети переменного тока. Это —

1.Дребезжание — плунжер имеет тенденцию дребезжать при загрязнении контактов или ослаблении катушки. Звук дребезжания можно услышать, когда поршень пытается войти в контакт, но не может этого сделать полностью. Он не срабатывает и вместо этого издает звук.

2. Жужжание — При включении переменного тока вы слышите гудящий звук; однако он не включается. Катушка издает жужжащий звук, но контакт все равно не устанавливается, так как кнопка не втягивается.При нажатии кнопки вручную ваш блок переменного тока будет нормально работать. Жужжание также является признаком слабых катушек или грязных контактов.

3. Расплавление — В крайних случаях вы можете увидеть, что пластмассовая деталь или пластиковый корпус контактора расплавились. Это тоже указывает на то, что контактор требует немедленной замены.

Ремонт или замена контактора

Из приведенного выше обсуждения довольно очевидно, что есть 3 основные причины отказа контактора переменного тока.Это —

1. Загрязнение контактов
2. Слабые катушки
3. Полный пробой или выгорание.

В любом из вышеперечисленных случаев ремонт можно провести, но в идеале он не стоит затраченных усилий. Было бы намного лучше заменить неисправный компонент. В конечном итоге это более осуществимое с финансовой точки зрения решение. В наши дни замена легко доступна, и это тоже за небольшую часть совокупной стоимости ремонта.

Грязные контакты — На контакторе есть точки контактов, которые становятся корродированными, обугленными, а иногда даже грязными.Их можно легко очистить с помощью какого-нибудь очистителя контактов. Слегка используйте очиститель, поскольку точки соприкосновения очень маленькие; нет необходимости обливать их очистителем.

Слабые катушки — Ремонт катушек невозможен. Их можно только заменить. Замена только катушек в контакторе — утомительная и хлопотная задача. Это включает в себя вынимание контактора из сети переменного тока, а затем его демонтаж, чтобы добраться до катушки. Гораздо более осуществимый и быстрый подход — заменить весь контактор.Контакторы для жилых помещений относительно дешевы и стоят от 20 до 30 долларов.

Complete Burnout — Полное выгорание означает, что в компоненте закончился срок службы. Поэтому ремонту не подлежит; вместо этого его можно только заменить.

При замене учитывайте характеристики оригинального компонента и заменяйте его на тот, который им соответствует. Замена проста; все, что вам нужно, это отвертка с плоским жалом. Выключите питание блока переменного тока. От контактора отсоедините провода.Снимите ножки с устройства, отвинтив их. Теперь, на новой части, снова прикрутите ножки к устройству.

Наконец, снова подключите провода, и работа сделана. Эту работу вам следует выполнять только в том случае, если вы уверены, что справитесь с ней должным образом. В противном случае вызовите специалиста по кондиционированию, чтобы он позаботился о вашей проблеме.

Сохраните свой AC

Если бы все проблемы с кондиционерами были легкими, вам бы никогда не понадобился специалист по кондиционированию воздуха или, если на то пошло, различные компании HVAC .Факт остается фактом: ваш кондиционер — это деликатное оборудование, с которым нужно обращаться осторожно. Вот почему настоятельно рекомендуется, чтобы вместо того, чтобы брать дело в свои руки, вы должны позволить людям, прошедшим специальную подготовку, позаботиться о них.

Однако, если у вас есть технические ноу-хау для решения проблем, вы можете значительно сэкономить на затратах на ремонт и замену. Что бы вы ни решили, всегда не забывайте отключать питание блока переменного тока всякий раз, когда выполняете какие-либо действия, связанные с ремонтом и обслуживанием .Кроме того, обновите свои знания по электробезопасности и будьте предельно осторожны.

Можно ли использовать 2-полюсный контактор вместо 1-полюсного контактора?

Быстрый ответ — да. Но давайте посмотрим на контакторы и посмотрим, как они работают.

На Рисунке 1 выше клеммы обозначены L1, L2, T1 и T2. Буква «L» обозначает линию, источник энергии. При однофазном питании будет два источника питания, которые будут подключены к L1 и L2.Буква «T» обозначает нагрузку, такую ​​как двигатель, компрессор или какое-либо другое устройство. Подумайте о простом подключении двигателя, когда два вывода двигателя подключены к двум линиям питания. В случае контактора эти два провода двигателя будут подключены к T1 и T2.

Посмотрите внимательно на 2-полюсный контактор. Обратите внимание на материал цвета латуни между L1 и T1. Он состоит из верхней и нижней части. Верхняя часть контактирует с нижней частью, когда катушка контактора находится под напряжением.Это замыкает цепь, позволяя мощности от L1 пройти к T1. Когда катушка находится под напряжением, между L1 и T1 будет непрерывность. Обратите внимание, что мощность, питающая катушку контактора, может быть другим источником энергии, чем тот, который подключен к L1 и L2. Когда питание отключается от катушки, секции разделяются, и цепь от L1 до T1 разомкнута, и нет непрерывности. Каждый полюс контактора работает одинаково.

Посмотрите на 1-полюсный контактор. Он определен как полюс 1+! Обратите внимание, что имеется только один набор контактов (материал цвета латуни), следовательно, 1 полюс.Цепь между L1 и T1 будет работать, как мы обсуждали ранее. Но почему знак «+» и отсутствие контактов между L2 и T2?

Обратите внимание на рис. 2 ниже, что между L2 и T2 есть «шунт». Это сплошная латунная перемычка, соединяющая L2 с T2. Цепь между L2 и T2 всегда замкнута, и всегда есть непрерывность от L2 до T2. «+» Указывает, что есть дополнительная цепь, но она не переключается между разомкнутым и замкнутым.

С 1-полюсным контактором используется шунтирующая цепь, когда на работающее устройство всегда должно подаваться питание, например, в случае нагревателя картера.

При замене 1-полюсного контактора на 2-полюсный помните, что контакты L2 — T2 будут размыкаться и замыкаться при подаче питания на катушку. Если бы подогреватель картера был подключен через этот путь, он не всегда был бы под напряжением.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *