Закрыть

Схема трехфазного щитка с узо: 5 вариантов сборки трехфазного щита

Содержание

Трехфазная схема распределительного щита для частного дома

Здравствуйте, уважаемые читатели сайта elektrik-sam.info!

Сборка трехфазного электрощита на заказ для частного дома с резервным генератором.

Щит вторично-учетный вводно-распределительный. Ко мне обратился заказчик с просьбой спроектировать и собрать ему электрический щит для его частного дома, с возможностью подключения резервного генератора, в случае длительных перебоев с электричеством.

На границе участка дома уже был установлен щит учета с электросчетчиком. Заказчик пожелал установить второй многотарифный счетчик в щите дома, чтобы было удобно снимать показания, не выходя из дома на участок к щиту учета.

В этом проекте реализовано:

  • пофазная защита от скачков и перепадов напряжения на реле напряжения Zubr;
  • двухступенчатая дифференциальная защита с установкой противопожарного селективного УЗО;
  • резервное электроснабжение всего дома при помощи резервного генератора с индикацией;
  • неотключаемые линии с индикацией включения;
  • программное управление бойлером при помощи недельного таймера.

На первой рейке скомпонован ввод: вводной автоматический выключатель, счетчик вторичного учета электроэнергии, противопожарное селективное УЗО.

В схеме применена двухступенчатая дифференциальная защита:

  • противопожарное УЗО — первая ступень;
  • групповые УЗО и дифавтоматы — вторая супень.

Справа на первой и второй DIN-рейках смонтирован резервный ввод от генератора и его обвязка с индикацией питания от генератора.

Вторая рейка — защита от скачков и перепадов напряжения в каждой фазе и неотключаемые линии. При выходе из дома одним нажатием на клавишу рубильника отключаем всю электросеть дома, кроме приборов жизнеобеспечения — это котел, холодильник, охранная сигнализация и для удобства свет коридора.

Третья DIN-рейка — рубильник отключаемых линий с индикацией включения и группа потребителей кухни.

Остальные две рейки — группы потребителей дома со своей групповой дифференциальной защитой.

Компоновка этого электрощита выполнена в ряд по группам — групповое УЗО и его групповые автоматические выключатели. Сборка щитов с такой компоновкой выходит сложнее, чем с обычной древовидной, но зато получается более дружественный интерфейс для пользователя — заказчика. Так намного удобней и наглядней пользоваться электрощитом, сразу видно конкретную группу целиком, не надо искать по рейкам какому УЗО соответствуют какие автоматические выключатели.

Нулевые рабочие проводники отключаемых групп подключены через двухполюсный кросс-модуль.

Для дополнительной экономии электроэнергии при многотарифном учете удобно включать мощные потребители в ночное время. Одним из мощных потребителей, который работает круглогодично, является водонагреватель. Применив недельный таймер, который управляет подключением бойлера к электросети через контактор, мы получили возможность автоматически управлять водонагревателем по заданной программе.

При необходимости программу можно изменить с помощью кнопок на передней панели таймера.

И все, далее бойлер будет включаться и нагревать воду к заданному времени автоматически в течение дня, семь дней в неделю. Очень удобно и современно!

В качестве оболочки применен полностью металлический щит Hager FW в форм-факторе 5 DIN-реек по 24 модуля. Места за рейками просто очень много! Собирать такие щиты легко и приятно.

Щит полностью протестирован, снабжен понятными авторскими схемами, пояснительной запиской, упакован и отправлен заказчику.

Если Вы желаете заказать проект или сборку электрощита у автора, оставьте заявку в разделе КОНТАКТЫ.

Трехфазный щит дома с резервным генератором

Трехфазные распределительные щиты 380В часто применяют в частных домах и на много реже в квартирах в новостройках. Это позволяет снизить сечение подходящего к дому кабеля и грамотно распределить нагрузку. Зачастую отведенная мощность на дом составляет 15 кВт. Это очень широко распространенная практика в нашей стране.

При такой отведенной мощности нужно устанавливать вводной автоматический выключатель номиналом 25А. Также 3-х фазное электроснабжение позволяет подключать электроплиты по трехфазной схеме. Это позволяет уменьшить номинал автомата, снизить сечение кабеля и уменьшить потребление тока по фазе. Например, варочная панель мощность 7кВт при однофазном подключении будет потреблять ток 31А, а при 3-х фазном подключении будет потреблять около 10А по каждой фазе. Давайте ниже рассмотрим типовые и не типовые трехфазные схемы в с наглядными примерами реальных собранных электрощитов.

Трехфазная схема распределительного щита

Типовая схема трехфазного щита состоит из входного 3-х фазного автоматического выключателя и нескольких групповых автоматов, которые защищают только свои отходящие однофазные линии. Тут на входе стоит 3-х полюсный автоматический выключатель номиналом 25А-40А и с характеристикой выше групповых однофазных автоматов (с характеристикой С). Это необходимо для попытки соблюдения селективности и исключения одновременного срабатывания входного автомата и группового.

Хотя при коротком замыкании скорее всего сработают и вводной автомат С25 и групповой В16. При такой минимальной разнице номиналов автоматических выключателей добиться селективности практически не возможно.

В схеме все нулевые проводники заводим на общую нулевую шину, все заземляющие проводники заводим на общую шину заземления, а фазные проводники на автоматические выключатели. Объединять групповые автоматы по фазам можно с помощью перемычек из провода, а лучше с помощью специальной гребенчатой шины. Ниже представлена типовая трехфазная схема распределительного щита 380В. Может кому и пригодится я сюда еще вставил счетчик электроэнергии. Здесь представлена система заземления TN-S. Если у вас система заземления TN-C, то вам обязательно нужно делать переход на систему заземления TN-C-S, т.е. разделять входящий PEN проводник на самостоятельные нулевой рабочий N и нулевой защитный PE проводники. Как это правильно организовать читайте здесь.

Вот наглядный пример подключения автоматических выключателей в 3-х фазном электрощите.

Все фото сборки данного щитка можете посмотреть здесь: Сборка трехфазных электрощитов на заказ

Если у кого-то в доме помимо однофазных потребителей есть трехфазная нагрузка, например, электрическая плита, то вам должна пригодиться следующая схема трехфазного распределительного щита. В представленном варианте можно подключить один 3-х фазный прибор и несколько однофазных.

Если в щитке нет места для счетчика электроэнергии или он стоит в другом месте, то вот схема щита 380В аналогичная предыдущей, но уже без прибора учета. Тут все фазные проводники напрямую идут на групповые автоматические выключатели.

Если с предыдущими трехфазными схемами распределительных щитов все понятно, то идем дальше. Ниже для вас выложил схему, где еще присутствуют УЗО и дифавтомат. С их помощью обязательно нужно защищать все группы розеток. Этого требует ПУЭ, а также электробезопасность должна быть на первом месте. Тут дифавтомат стоит только на стиральную машину, так как в случае его срабатывания найти неисправность будет не так сложно.

УЗО в паре с автоматическим выключателем стоит на группу кухонных розеток. Почему в паре можете узнать тут. Это сделано для облегчения поиска неисправности, так как в них будет включено много разных электроприборов. Если сработал автомат, то значит где-то короткое замыкание или если вы включили в сеть все электроприборы одновременно, то скорее всего перегрузка. Если сработало УЗО, то вероятнее всего появилась утечка в каком-то бытовом приборе. Ниже нарисовано как правильно подключить УЗО и подключить дифавтомат в щитке 380В.

Ниже представлен реальный пример трехфазного щита с подключением 2-х полюсных и 4-х полюсных УЗО.

Вот еще одна схемка может кому и пригодится. Она построена на одном общем (входном) и нескольких групповых УЗО.

Ниже представлены полностью готовые к монтажу трехфазные щитки. Это моя работа по сборке электрощитов на заказ. Данная услуга доступна всем желающим из любой точки нашей необъятной родины. Любые вопросы по данному вопросу пишите на адрес Этот адрес электронной почты защищён от спам-ботов.

У вас должен быть включен JavaScript для просмотра.

Я готов вам предложить закупку комплектующих у официальных поставщиков электроматериалов по личной скидке до 20% от розничной цены ЭТМ. При заказе сборки электрощита разработка схемы и паспорт идут бесплатно. Буду очень рад вашим заказам. С каждого собранного электрощита 50% дохода идет на погашение ипотеки. Сделаем вместе жилье доступным для электромонтажника )))

Еще вас будут радовать цветные наклейки)))

Остались вопросы? Буду рад на них ответить в комментариях. Если и после этого ничего не понятно, то не искушайте судьбу и позовите грамотного электрика.

Электрик, химик, механик и программист едут вместе в машине. Вдруг заглох мотор.
– Электрик говорит, – «Наверно аккумулятор сел».
– Химик говорит, – «Нет, скорее всего не тот бензин».
– Механик,- «Я думаю, что это передача не работает.»
– Программист, – «Может выйдем из машины, и зайдем обратно?»

Сегодня очень часто частные дома стали подключать к трехфазной электросети.

Также в некоторых новых многоэтажках в квартиры начали заводить три фазы вместо одной как раньше. Как правило, при данном подключении местные сетевые компании выделяют на дом или на квартиру мощность 15 кВт. Это означает, что номинал вводного автоматического выключателя должен быть 25 А. Для небольших офисов, кафе и т.д. выделяют большую мощность. Поэтому в их щитах номиналы вводных автоматов будут совершенно другими.

Подключение к 3-х фазной электросети обуславливает установку трехфазных электрощитов. Ниже разберем пять разных вариантов простых трехфазных схем для распределительного щита.

Все схемы простые и носят рекомендательный характер. Они наглядно показывают суть самих подключений разных защитных устройств в одном щитке. К разработке схемы каждого щита нужно подходить индивидуально, так как у всех условия разные. Система заземления в представленных вариантах TN-S.

Вариант 1

Здесь представлена самая простая трехфазная схема щита. На вводе обязательно должен стоять вводной автоматический выключатель.

Он будет ограничивать потребляемый ток, каждого потребителя — дома или квартиры. Далее идет 3-х фазный прибор учета электроэнергии.

На самом деле места размещения счетчиков могут быть разные. Они могут устанавливаться на улице в щите учета для частных домов, в этажных щитах в многоквартирных домах или непосредственно в домашних щитах. Где ставить счетчики указываю в технических условиях на подключение местные сетевые компании или это строго определяется проектной документацией зданий.

Большинство бытовых потребителей подключаются к однофазной сети. Тут составляют исключения мощные варочные поверхности, проточные водонагреватели, электрокотлы и т.д. Такие потребители имеют возможность подключения к 3-х фазной сети.

После прибора учета электроэнергии необходимо всю однофазную нагрузку равномерно распределить по фазам. Для этого нужно сосчитать мощность приборов, количество однополюсных автоматических выключателей и постараться их разделить на три равные части.

В предложенном варианте трехфазной схемы щита для наглядного понимания на каждой фазе подключено по два.

Рабочий ноль от счетчика подключается к общей нулевой шине, а нулевые защитные проводники подключаются к общей шине заземления. Фазы подключаются через групповые автоматы. Таким образом получается, что при отключении потребителя будет разрываться только один фазный проводник. Это стоит учитывать и следить, чтобы при подключении щита к сети на вводе не были перепутаны между собой фаза и ноль. С такими ошибками мне пару раз приходилось сталкиваться. Получалось, что ноль коммутировался автоматами, а фаза сидела на нулевой шине. При отключении автомата в розетки все равно оставалось опасное напряжение, что могло привести к плачевным последствиям. Будьте внимательны и осторожнее.

Вариант 2

Данный вариант схемы по своей сути аналогичен с предыдущем вариантом. Тут только нет прибора учета электроэнергии и изображен 3-х полюсный автоматический выключатель для 3-х фазной нагрузки. Также тут изменено чередование однополюсных автоматов. То есть автоматы, подключенные к фазе «А» — это первый, третий и т. д. устройства. Чередование происходит через каждые два полюса. Тут так это показано для возможности использования 3-х фазной гребенчатой шины. Зубчики ее шины от одной фазы как раз имеют такое чередование. С ее помощью очень удобно соединять между собой несколько защитных устройств. Она исключает изготовления множества перемычек между ними.

Вариант 3

Этот вариант схемы трехфазного электрощита уже больше отвечает современным нормам электробезопасности. В нем после счетчика стоит общее УЗО. В текущем примере показано устройство защитного отключение с током утечки на 30мА. Данная схема щита полностью защищает человека от поражения электрическим током. Но есть некоторые минусы у использования всего одного УЗО 30мА на вводе:

  1. При его срабатывании будут одновременно отключаться все потребители в доме. Если это произойдет в темное время суток и поиск места утечки займет много времени, то это будет не очень удобно.
  2. Есть возможность появления ложного срабатывания УЗО из-за естественных токов утечки, которые присутствуют в бытовых приборах. В данной схеме также устанавливается одна общая нулевая шина после УЗО и одна общая шина заземления. Здесь с подключением кабелей от розеток сложно запутаться.

Вариант 4

Вот в данном варианте уже можно немного запутаться с подключением нулевых рабочих проводников, так как тут стоит несколько УЗО. А мы знаем, что у каждого УЗО должна быть своя индивидуальная нулевая шина, иначе ничего работать не будет.

В текущей трехфазной схеме на вводе стоит уже противопожарное селективное УЗО на 300 мА. Оно будет защищать кабели от возгорания при замыкании фазы на землю. Для человека ток 300 мА уже опасен и поэтому для его защиты нужно ставить дополнительное УЗО на 10-30 мА.

Ниже на рисунке показано одно УЗО с током утечки 30 мА только на первой фазе, к которому подключено два автоматических выключателя. У этого УЗО будет своя нулевая шина и поэтому нулевые рабочие проводники от других групп к его шине подключать нельзя. А шина заземления всегда и для всех потребителей будет одной общей.

В текущем варианте можно рассмотреть схему с установкой трех 2-х полюсных УЗО по одному на каждую фазу. Так все группы будут иметь защиту от утечек тока. Тогда здесь можно будет отказаться от общего вводного УЗО на 300 мА, так как у вас и так все будет иметь защиту с уставкой 30 мА.

Вариант 5

В пятом варианте представлена схема трехфазного щита без вводного УЗО, но с использованием однофазных дифавтоматов на некоторые потребители. АВДТ ставится один на одну группу и поэтому их количество может быть равно количеству групп. Так все группы потребителей будут независимы друг от друга. То есть при возникновении утечки тока в одном приборе, отключится только дифавтомат, к которому он подключен. При использовании УЗО с 3-5 автоматами при срабатывании УЗО будет отключаться соответственно 3-5 групп. А это уже не очень удобно со стороны эксплуатации потребителей.

Вышеприведенные схемы имеют наглядный вид, чтобы донести саму суть подключений разных защитных устройств в одну общую схему электрощита. Также эти примеры очень элементарные и поэтому ваши схемы будут намного больше и сложнее.

Схема сборки трехфазного электрощита для частного дома

Все распределительные щиты должны выполнять 3 основные задачи:

    защита кабеля от перегрузок и КЗ

С этой целью в щитах монтируются автоматические выключатели. Они в первую очередь предназначены именно для защиты кабеля, а не подключенного к ним оборудования, как многие до сих пор думают.

    защита человека от поражения электрическим током

Обеспечивается она путем установки УЗО или дифф.автоматов.

    защита техники от перепадов напряжения

К сожалению, в наших сетях зачастую происходят скачки напряжения. Автоматы на это не реагируют, так как просто не рассчитаны на такую защиту.

УЗО также не приспособлено на срабатывание от перенапряжения. Для этого понадобятся модульные реле напряжения или УЗМ – устройства защиты многофункциональные.

На них выставляются определенные верхние и нижние пределы по напряжению. Как только произошел скачок, или наоборот резкое снижение параметров эл.сети, данное реле (УЗМ) срабатывает и отключает питание.

Чем же отличается сборка 3-х фазного щита, с условием обеспечения вышеперечисленных задач, от сборки однофазного? Понятно, что однофазный на порядок проще трехфазного.

Там есть только единственная фаза, ноль и защитное заземление. В 3-х фазном, к вам в щит приходит те же ноль, защитное заземление и уже 3 фазы.

С одной стороны это дает вам возможность подключать гораздо большую нагрузку, и получить у энергопередающей организации большую мощность для подключения. Но с другой стороны, это всегда несет и большие затраты, плюс необходимость грамотного распределения этой самой нагрузки.

Причем не по своей вине или вине энергоснабжающей организации, а именно из-за вас.

Есть множество вариантов сборки и комплектации трехфазных щитков. Не будем рассматривать самые простейшие с минимальным количеством вводного оборудования.

Выберем более сложные по комплектации, но в тоже время достаточно универсальные. В связи с резким увеличением количества эл.приборов в наших квартирах и домах, они в последнее время приобретают все большую популярность.

Преимущества:

    каждая линия защищена как от КЗ, перегрузок, так и от утечек. И все это одни аппаратом.
    проще установить проблемную зону при повреждениях
    отсутствуют нулевые шины
    у вас полная свобода в группировке аппаратов в щите
    легко распределять нагрузку по фазам
    большие габариты щита и большое количество модульных устройств (от 72шт и более)

Дифференциальный автомат это оборудование, которое ставится на отдельную линию, как обычный автомат, но еще включает в себя и защиту от утечек (дифф.защиту).

Это хоть и самый лучший вариант, но и самый дорогой. Поэтому используется крайне редко.

Условно говоря, сколько у вас будет отходящих групповых линий, столько же понадобится дифф.автоматов.

При этом, чтобы при возможных авариях понять, от чего отключился такой автомат, от утечки или КЗ, рекомендуется использовать модели с индикацией причины срабатывания.

В начале схемы монтируется вводное устройство – рубильник. С него пускаете питание на реле напряжения.

Далее, через кросс-модули разделяете нагрузку на диффы. На каждый автомат пускаете по одной фазе.

Если в последствии окажется, что та или иная линия перегружает какую-либо из фаз, вам достаточно на одном из кросс модулей просто поменять их местами, перекинув провода с одной шинки на другую.

Если вы не ограничены бюджетом, то это самый лучший вариант сборки и комплектации трехфазного щитка.

Преимущества сборки:

    требуется щиток небольших размеров (от 54 до 72 модулей)
    не наглядная группировка линий
    невозможность простого внесения изменений в перераспределении нагрузки по фазам
    наличие нулевых шинок

Это один из простых и наиболее распространенных вариантов сборки и проектировании трехфазных щитков. Объясняется это конечно его дешевизной по отношению к остальным.

Однако это все предварительное деление. Так как реального потребления никто не знает. И только со временем, путем замеров можно увидеть фактическую картину. А она может существенным образом отличаться от ранее спроектированной.

И чтобы хоть как-то подравнять нагрузки, приходится переделывать чуть ли не половину всего щитка. Оставите как есть, и обязательно в будущем столкнетесь с проблемами:

    перекос напряжения
    нагрев нулевой шинки с возможным отгоранием ноля
    перегруженные автоматы и последствия этого

Есть еще более упрощенный вариант данного способа комплектации.

Преимущества:

    самый дешевый вариант
    щит малого размера (до 32 модулей)

Недостатки:

    практически отсутствует группировка линий
    отсутствует возможность изменения нагрузки по фазам
    присутствуют нулевые шины
    возможно ложное срабатывание УЗО

Здесь используется всего одно УЗО на вводе (кроме не отключаемых потребителей) и уже далее, нагрузка распределяется через однополюсники. Согласно п.7.1.83 ПУЭ вы можете быть ограничены в выборе количества подключаемых линий.

Если же проигнорировать данное правило, то вполне вероятны ложные срабатывания УЗО. При этом вы долго будете ломать голову прикидывая, сработало оно от защиты или же ложно.

Поэтому лучше искать промежуточные варианты комплектации трехфазного щитка.

Преимущества:

    возможность легко распределять нагрузку по фазам
    наглядная группировка линий
    удобное подключение питания и отходящих проводников
    отсутствие нулевых шинок
    габаритные размеры щитка (от 96 до 144 модулей)
    относительно дорого

Когда вы собираете щит по первому варианту на дифф.автоматах, вы пропускаете через него фазный и нулевой проводник. Плюс отпадает необходимость в УЗО.

Если по экономическим причинам вы не можете себе позволить дифференциальные автоматы, группировать отходящие линии все равно придется на УЗО.

Однако для того, чтобы впоследствии все было ремонто-пригодно и легко вносились изменения в схему без ее кардинальных реконструкций и перемонтажа проводов, вместо обычных однофазных модульных автоматов достаточно применить двухполюсные.

Внешне они выглядят как собранные воедино два одинарных модульных однополюсника.

Для сборки схемы соединяете между собой нули в той или иной группе 4-х полюсных УЗО. Через них пропускаете все фазы и далее пускаете их на кросс модули.
После чего фазы распределяются по автоматам.

Преимущества:

Получив разрешение на подключение к трехфазной сети, стоит задуматься о том, как сделать так, чтобы сборка щита 380 В была надежной, работоспособной и легкой в обслуживании. В принципе, при условии установки дифавтоматов, это несложно, но дорого. Если бюджет ограничен, придется придумывать схему распределения нагрузки. А это непросто, так как надо соблюсти логику распределения линий и не перегрузить при этом фазы.

Особенности трехфазной сети

Первое и самое главное, что надо уяснить — к сети 380 В может подключаться трехфазное и однофазное оборудование. Разница в том, что трехфазное подключается сразу к трем фазам и нейтрали, а однофазное — к одной из фаз и нейтрали. Такое подключение — к одной из фаз и нейтрали — дает 220 В.

Не стоит думать, что наличие трехфазной техники обязательно. Совсем нет. Просто при подключении мощной техники к трем фазам, ее нагрузка распределяется поровну между всеми тремя фазами. А это значит, что можно использовать провода меньшего сечения и автоматы меньших номиналов (но провода при этом четырех/пяти проводные, и автомат трех-четырех полюсный).

Пример сети 380 В с трехфазной нагрузкой и без нее

Особенность электропитания 380 В в том, что фаз три и выделенная вам мощность делится поровну на все три фазы. Если вам выделили 18 кВт, на каждую из фаз должно приходиться по 6 кВт. При этом устанавливается трехполюсный или четырехполюсный автомат, который будет отключать электропитание полностью если нагрузка по одной из фаз будет превышена. У автомата есть некоторая временная задержка, но она очень невелика, так что придется хорошо рассчитывать распределение нагрузки по фазам, иначе свет будет постоянно выключаться из-за перегрузок. Это так называемый «перекос фаз», который мешает нормально жить.

Схемы сборки трехфазных электрощитов

Сборка щита 380 В может быть сделана по разным схемам. Вариантов много, важно выбрать наиболее логичный, не слишком дорогой. Но самое важное, чтобы электричество в доме или квартире было безопасным. Поэтому кроме автоматов защиты, которые оберегают сети от перегрузки, ставят еще и УЗО (устройство защитного отключения), которые оберегают человека от поражения электротоком. Нормативы не требуют установки УЗО на освещение в сухих помещениях, но в случае с трехфазным подключением квартиры или дома это не вариант, так как придется тогда все освещение сажать на один автомат. При его срабатывании все окажется в темноте. Так что придется и освещение заводить через УЗО, что только повышает надежность системы электроснабжения дома/квартиры (хоть и увеличивает цену).

Для частного дома на два этажа трехфазный электрощит будет большим

Пару, автомат + УЗО, может заменить дифференциальный автомат. Это делает схему более простой, надежной, легко читаемой и изменяемой (при условии подключения через кросс-модуль). Еще и экономится место в щите, что тоже немаловажно. Но такая схема обходится раза в три дороже, так как дифов много, а стоят они дороже пары автомат + УЗО.

Необходимость кросс-модуля для трехфазных щитов

Чтобы сборка щита 380 В была проще и существовала возможность переподключить один или несколько автоматов к другой фазе, после счетчика устанавливают трехфазный кросс-модуль. Это устройство, которое имеет три входа — под три фазы, и несколько выходов с теми же фазами (количество выходов зависит от модели).

Чтобы сборка щита 380 В была понятной и легко обслуживаемой лучше использовать кросс-модули

Подключение к нужной фазе через кросс-модуль происходит следующим образом: оконеченый проводник вставляется в гнездо, закрепляется прижимным винтом. Переключиться на другую фазу просто: откручиваем винт, вытаскиваем провод, подключаем к свободному выводу на другой фазе. При наличии кросс-модуля все подключение более логичное, в нем несложно разобраться непрофессионалу, проще вносить изменения. Стоимость этого оборудования не такая большая, а выгод много. Лучше все-таки его поставить, хоть оборудование и не входит в список обязательных.

Сборка щита 380 В только на дифавтоматах

Как уже говорили неоднократно, если на каждую группу или отдельный мощный потребитель установлен свой дифавтомат, вся задача грамотно распределить их между фазами, чтобы не было перекоса фаз. Пример такого щитка для квартиры приведен на рисунке ниже.

Сборка щита 380 В на дифавтоматах

При такой схеме все четко. Сработал первый автомат — проблема с освещением в зале, сработал четвертый — непорядок в розетках на кухне. Все ясно и понятно. Но такая схема для частного дома получается слишком дорогой, поэтому и приходится мудрить, разделяя все линии на группы.

С двумя УЗО

Можно всю нагрузку разделить на две группы, поставить два мощных трехфазных УЗО на входе. В этом случае возле каждой группы должны быть по две шины: нейтраль и заземление. После каждого УЗО ставится свой кросс-модуль, на которые заводятся фазы и уже к выходам подключаются защитные автоматы линий.

Достоинства такой схемы: не слишком высокая цена, относительно небольшой по размерам шкаф, несложно переключить при необходимости один-два потребителя в рамках одной группы.

Пример планировки электрощита на 380 В с двумя УЗО

  • Трехфазные УЗО стоят дорого. В случае выхода из строя затраты будут ощутимыми.
  • Чтобы перекинуть потребителей из одной группы в другую, придется перетягивать провода — для непосвященных это сложно.
  • При срабатывании оного из автоматов, половина потребителей остается обесточенной. Так как к каждому УЗО подключено много линий, процесс поиска виновника срабатываний длительный, ведь придется сначала отключить все, потом постепенно добавлять по одному. Та линия, на которой снова сработает защита, и будет поврежденной.
  • Появились дополнительные шины, надо их подписать, какие из них идут к первой группе, какие ко второй и не перепутать при монтаже. Чтобы во время обслуживания провода разных шин не перепутались, лучше на каждый повесить бирку.
  • Невозможно собрать группы так, чтобы на одном УЗО были только «мокрые» помещения, на другом только «сухие». И вообще, чтобы более-менее выровнять нагрузку, придется поломать голову.

В общем, схема не самая хорошая именно из-за того, что при срабатывании защиты отключается половина нагрузки. Неудобно. Да и номиналы УЗО надо брать большие, да еще и трех или четырех фазные, что в регионах может быть проблематичным, а также бьет по карману. Так что сборка щита 380 В по этой схеме возможна только на даче, например.

Сборка щита 380 В: для уменьшения количества проводов и обеспечения лучшего контакта нейтраль на автоматы лучше заводить при помощи электрической гребенки

Кстати, чтобы меньше было проводов в щите, нулевые провода лучше подавать через специальную монтажную шину. В магазинах можно даже найти шины, покрашенные с синий цвет. Если их нет, возьмите лак для ногтей и покрасьте ее сами. Для подключения нейтрали через шину, в ней надо выкусить зубья через один, подключить к ней провод от шины. Остается только вставить зубья в нужные пазы, позатягивать прижимные винты. При таком подключении нейтрали к автоматам защиты, провод всего один, а качество соединения на высоте.

С УЗО на каждой фазе

Еще один вариант схемы трехфазного электрического щитка — по одному УЗО на каждую из фаз. В этом случае УЗО берем двухполюсные, кросс модуль ставится после каждого УЗО, и к его выходам подключается нагрузка, которую распределили на каждую из фаз.

Если взглянуть на схему трехфазного щита, собранного по этому принципу, можно увидеть, что шин заземления и нейтрали уже три — у каждого из УЗО. Если подключать нейтраль при помощи проводников, будет путаница. К достоинствам этой схемы можно отнести наличие трех групп, так что распределение потребителей можно сделать более логичным. При срабатывании одного из УЗО, большая часть потребителей остается в работе, что тоже хорошо.

Проект трехфазного электрощита с тремя УЗО

Но все равно, не всегда получается распределить нагрузку так, чтобы мокрые помещения были отдельно и при этом не было перекоса фаз. И поиск повреждения достаточно сложный, так как потребителей много. Чтобы проще было разбираться, можно поставить на «опасные» линии собственные УЗО. На примере выше так сделали на линии питания к стиральной машине.

Собрать трехфазный электрощит своими руками по это схеме будет проще, если каждую из групп собрать на одной ДИН-рейке. Поставить на ней УЗО, потом последовательно расположить автоматы. При сработке будет четко видно, где и в каких линиях искать проблему (если автоматы подписаны).

Количество групповых УЗО больше трех

В больших домах и коттеджах приходится прокладывать большое количество линий. Если поставить всего три УЗО, на каждом из них будет по десятку или более линий — искать повреждение при отключении замучаешься. И никак не получится отдельно посадить влажные помещения, улицу и т.д. Выход в этом случае — делать многоуровневую защиту, ставить персональные УЗО после групповых, чтобы разделить-таки влажные и сухие помещения. Неплохой вариант, но есть и еще один: сделать групп больше чем три. Например, по две на каждой фазе или больше. Или не на каждой. Зависит от количества потребителей, от того, как вы разобьете нагрузку, от того, сколько денег вы готовы вложить в электрический распределительный шкаф. Потому что количество оборудования растет, увеличивается размер необходимого шкафа, а с размером увеличивается и стоимость самой «коробки». Еще надо добавить стоимость дин-реек, шин и т.д.

Вот пример сборки трехфазного щита где на каждой фазе больше одного УЗО

Еще один недостаток: такое количество оборудования смонтировать, а потом обслуживать проблематично. Проводов масса. Чтобы снизить шанс не «запутаться», подписывайте каждый проводок, а уж про автоматы и УЗО и говорить нечего. Пишите, к какой фазе подключен, разработайте систему нумерации. Например, если к первой фазе подключили три УЗО, пишите на первом L1-1, на втором L1-2, на третьем L1-3. Аналогично подписывайте и другие группы.

При всей сложности это схемы, мы получаем более «индивидуальную» систему. При сработке одного УЗО, искать повреждение просто, так как линий подключено немного. Еще один плюс — отключается только малая часть приборов, легче обеспечить электричеством отключенные на время помещения.

Но сборка щита 380 В по такому принципу может быть практически такой же дорогой, как при использовании дифавтоматов. Но та схема вообще уникальна в своей простоте и мобильности. Если разница получается небольшая, лучше соберите трехфазный электрощиток на дифференциальных автоматах. Будет намного проще в обслуживании, можно будет легко менять распределение по фазам, добавлять новые линии и т.д.

Алгоритм распределения нагрузки по трем фазам

Как уже сказано, надо собрать всю однофазную нагрузку и распределить ее равномерно между фазами. Причем фокус в том, чтобы подобрать все так, чтобы мощные приборы, подключенные к одной фазе не вызывали отключение по перегрузке. Это возможно если суммарная мощность работающих устройств будет не больше номинала, или если эти приборы не будут работать одновременно.

Квартирный щит 380 В может быть и не очень большим

Общие принципы группировки нагрузки для автоматов

Самая надежная и простая в обслуживании схема — когда на каждую группу потребителей или мощное устройство стоит отдельный автомат, а вкупе с ним УЗО. Но такая схема, во-первых, дорога, во-вторых, требует просто огромного шкафа, что тоже недешево. Поэтому стараются подключить несколько линий на один автомат, но объединять их надо следуя определенной логике. Иначе разобраться что к чему при срабатывании автомата будет очень непросто. Стоит придерживаться следующих правил:

  • Розетки и освещение одного помещения подключать через разные автоматы. В таком случае при проблемах в одной из групп помещение не окажется полностью обесточенным.
  • «Мокрые» помещения — ванну, кухню, баню — не группировать с «сухими». Во-первых, в помещениях с повышенной опасностью автоматы должны быть с другими параметрами, во-вторых, именно во влажных помещениях и возникают обычно проблемы.
  • Уличное освещение и уличные розетки вообще должны быть отдельно — на отдельных автоматах. К ним можно подключить хозпостройки.
  • Питание привода ворот и охранное освещение — тоже отдельные автоматы.

Сделать план трехфазного электрощита — распределить нагрузку между тремя фазами

Чтобы формировать группы было проще, составляете список линий и нагрузку на них. Должно быть указано помещение, название линии и мощность подключенной нагрузки. Глядя на эту таблицу, следуя описанным выше правилам, собираете группы. При этом надо еще следить чтобы нагрузка была распределена более-менее ровно.

Проверка групп

После того как вы на бумаге набросали группы, проводите проверку. Садитесь и думаете, что будет, если сработает каждый из автоматов, насколько катастрофичными будут последствия для каждого помещения.

Щит на 380 В для частного дома своими руками собрать можно, но надо сначала придумать как распределить нагрузку

Например, если в двухэтажном коттедже подключить все розетки первого этажа и освещение второго на один автомат, и освещение первого, розетки второго на другой, а технику на третий, то при срабатывании любого из автоматов ситуация будет аховой.

Вот в таком русле проигрываем ситуации с отключением каждого автомата. Желательно, чтобы в помещении оставались или рабочие розетки или они были в соседнем. Тогда, при необходимости, можно будет и оборудование подключить и освещение.

Трехфазные распределительные щиты 380В часто применяют в частных домах и на много реже в квартирах в новостройках. Это позволяет снизить сечение подходящего к дому кабеля и грамотно распределить нагрузку. Зачастую отведенная мощность на дом составляет 15 кВт. Это очень широко распространенная практика в нашей стране. При такой отведенной мощности нужно устанавливать вводной автоматический выключатель номиналом 25А. Также 3-х фазное электроснабжение позволяет подключать электроплиты по трехфазной схеме. Это позволяет уменьшить номинал автомата, снизить сечение кабеля и уменьшить потребление тока по фазе. Например, варочная панель мощность 7кВт при однофазном подключении будет потреблять ток 31А, а при 3-х фазном подключении будет потреблять около 10А по каждой фазе. Давайте ниже рассмотрим типовые и не типовые трехфазные схемы в с наглядными примерами реальных собранных электрощитов.

Трехфазная схема распределительного щита

Типовая схема трехфазного щита состоит из входного 3-х фазного автоматического выключателя и нескольких групповых автоматов, которые защищают только свои отходящие однофазные линии. Тут на входе стоит 3-х полюсный автоматический выключатель номиналом 25А-40А и с характеристикой выше групповых однофазных автоматов (с характеристикой С). Это необходимо для попытки соблюдения селективности и исключения одновременного срабатывания входного автомата и группового. Хотя при коротком замыкании скорее всего сработают и вводной автомат С25 и групповой В16. При такой минимальной разнице номиналов автоматических выключателей добиться селективности практически не возможно.

В схеме все нулевые проводники заводим на общую нулевую шину, все заземляющие проводники заводим на общую шину заземления, а фазные проводники на автоматические выключатели. Объединять групповые автоматы по фазам можно с помощью перемычек из провода, а лучше с помощью специальной гребенчатой шины. Ниже представлена типовая трехфазная схема распределительного щита 380В. Может кому и пригодится я сюда еще вставил счетчик электроэнергии. Здесь представлена система заземления TN-S. Если у вас система заземления TN-C, то вам обязательно нужно делать переход на систему заземления TN-C-S, т.е. разделять входящий PEN проводник на самостоятельные нулевой рабочий N и нулевой защитный PE проводники. Как это правильно организовать читайте здесь.

Вот наглядный пример подключения автоматических выключателей в 3-х фазном электрощите. Все фото сборки данного щитка можете посмотреть здесь: Сборка трехфазных электрощитов на заказ

Если у кого-то в доме помимо однофазных потребителей есть трехфазная нагрузка, например, электрическая плита, то вам должна пригодиться следующая схема трехфазного распределительного щита. В представленном варианте можно подключить один 3-х фазный прибор и несколько однофазных.

Если в щитке нет места для счетчика электроэнергии или он стоит в другом месте, то вот схема щита 380В аналогичная предыдущей, но уже без прибора учета. Тут все фазные проводники напрямую идут на групповые автоматические выключатели.

Если с предыдущими трехфазными схемами распределительных щитов все понятно, то идем дальше. Ниже для вас выложил схему, где еще присутствуют УЗО и дифавтомат. С их помощью обязательно нужно защищать все группы розеток. Этого требует ПУЭ, а также электробезопасность должна быть на первом месте. Тут дифавтомат стоит только на стиральную машину, так как в случае его срабатывания найти неисправность будет не так сложно. УЗО в паре с автоматическим выключателем стоит на группу кухонных розеток. Почему в паре можете узнать тут. Это сделано для облегчения поиска неисправности, так как в них будет включено много разных электроприборов. Если сработал автомат, то значит где-то короткое замыкание или если вы включили в сеть все электроприборы одновременно, то скорее всего перегрузка. Если сработало УЗО, то вероятнее всего появилась утечка в каком-то бытовом приборе. Ниже нарисовано как правильно подключить УЗО и подключить дифавтомат в щитке 380В.

Ниже представлен реальный пример трехфазного щита с подключением 2-х полюсных и 4-х полюсных УЗО.

Вот еще одна схемка может кому и пригодится. Она построена на одном общем (входном) и нескольких групповых УЗО.

Ниже представлены полностью готовые к монтажу трехфазные щитки. Это моя работа по сборке электрощитов на заказ. Данная услуга доступна всем желающим из любой точки нашей необъятной родины. Любые вопросы по данному вопросу пишите на адрес Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Я готов вам предложить закупку комплектующих у официальных поставщиков электроматериалов по личной скидке до 20% от розничной цены ЭТМ. При заказе сборки электрощита разработка схемы и паспорт идут бесплатно. Буду очень рад вашим заказам. С каждого собранного электрощита 50% дохода идет на погашение ипотеки. Сделаем вместе жилье доступным для электромонтажника )))

Еще вас будут радовать цветные наклейки)))

Остались вопросы? Буду рад на них ответить в комментариях. Если и после этого ничего не понятно, то не искушайте судьбу и позовите грамотного электрика.

Электрик, химик, механик и программист едут вместе в машине. Вдруг заглох мотор.
— Электрик говорит, — «Наверно аккумулятор сел».
— Химик говорит, — «Нет, скорее всего не тот бензин».
— Механик,- «Я думаю, что это передача не работает.»
— Программист, — «Может выйдем из машины, и зайдем обратно?»

Как собрать трёхфазный электрощит

Устройство трехфазных электросетей позволяет использовать кабель с меньшим сечением для передачи электричества, а также равномерно распределять нагрузку. Но при этом трехфазные щиты для дома имеют более сложное устройство, чем однофазные.

В одной из предыдущих статей мы рассматривали общие правила монтажа электрических щитов. В этой статье мы подробнее остановимся на особенностях трехфазной сети, а также рассмотрим разные варианты устройства электрощита.  

1. Особенности трехфазной сети

Для того чтобы правильно составить схему и подключить электрощит, нужно знать принцип работы трехфазных сетей.

Электрогенерирующая станция подаёт электроэнергию по сети, состоящей из трех рабочих проводников, нейтрали и заземления. Два рабочих проводника между собой имеют линейное напряжение 380 В. Рабочий проводник в паре с нейтралью имеет фазное напряжение в 220 В. Нулевой проводник в трехфазной сети выступает в роли уравновешивающего элемента – при неравномерно распределенной нагрузке на фазах излишек тока уходит в ноль, а система стабилизируется.

При постоянной неравномерной нагрузке в трехфазной сети возникает опасность отгорания нуля и перекоса фаз. Это может привести к повышению напряжения на одной из фаз, что может стать причиной поломки техники. Именно поэтому так важно равномерно распределять нагрузку на все фазы сети.


2. Как правильно распределить нагрузку и что нужно учесть при составлении схемы трехфазного щита

Перед составлением схемы щита необходимо выяснить, нужно ли подключение трехфазной техники. Так могут подключаться мощные электроприборы: печки, посудомоечные и стиральные машины, котлы, станки и пр. Для подключения такой техники нужно выделить одну или несколько трехфазных линий.

Для подключения обычной бытовой техники и освещения нужно распределить всю нагрузку равномерно по трём фазам. Это значит, что суммарная мощность подключенных приборов должна быть приблизительно одинакова по всем фазам.

Также следует придерживаться логической группировки по потребителям:

- Рекомендуется ставить защитные автоматы отдельно на освещение, а также розетки. Так, в случае отключения одного из автоматов, помещение не останется полностью обесточенным.

- Электроточки в помещениях с повышенной влажностью лучше группировать отдельно.

- Мощные электроприборы должны подключаться отдельной линией с отдельными защитными приборами.

Чтобы упростить процесс составления схемы, составьте список предполагаемых линий, укажите нагрузку на них, а также тип помещения. Следуя принципу равномерного распределения, составьте общую схему.

Затем следует проверить схему на критичность отключения каждого из автоматов: мысленно отключаем каждый из автоматов и продумываем возможные последствия этого. Желательно, чтобы в случае отключения, в соседнем помещении были доступны работающие розетки.

К сожалению, не всегда на стадии предварительного планирования электрощита можно предусмотреть и распределить всю нагрузку. Часто случается, что одна из фаз перегружена, в то время как другие мало используются. В таких случаях должна быть предусмотрена возможность оперативного перераспределения нагрузки.

3. Какие бывают схемы трехфазного щита

При сборке трехфазного щита необходимо руководствоваться 3 основными принципами безопасности:

- Безопасность для человека достигается за счет установки средств защиты от поражения током – УЗО.

- Безопасность для проводки обеспечивается установкой защитных автоматов, которые срабатывают при перегревании кабеля, а также в случае короткого замыкания.

- Безопасность для техники осуществляется путем установки реле напряжения, которые отключат нагрузку при несоответствии напряжения в сети установленным показателям. Компания DS Electronics выпускает реле контроля напряжения RBUZ для однофазных, а также для трехфазных сетей. Установка однофазного реле на каждую из фаз поможет избежать последствий перекоса по каждой фазе. Для защиты трехфазной техники рекомендуется использовать реле RBUZ 3F.

При монтаже трехфазных щитов рекомендуется использовать кросс-модули, а также электрические гребенки. Это позволит сократить количество проводов, упростит схему подключения, а также обеспечит надежность соединений.

Если с обеспечением безопасности для техники все достаточно просто, то безопасность для человека, а также проводки можно обеспечить разными способами.

3.1. Сборка щита на дифавтоматах

Электрический трехфазный щит можно собрать с использованием дифавтоматов – специальных устройств, которые объединяют в себе функции УЗО и защитных автоматов.

Такие устройства нужно установить в щитке на каждую выделенную линию.

Такая схема подключения имеет свои достоинства и недостатки:

+ максимальная защита от перегрузок, утечек, а также короткого замыкания;

+ лучшая визуализация группировки в щите;

+ легче выявить и локализовать проблемную зону;

+ простота распределения нагрузки по фазам;

+ возможность быстрого перераспределения нагрузки по фазам;

- высокая цена на оборудование.

 Трехфазный электрощит, собранный на дифавтоматах, является наилучшим вариантом подключения электричества, но высокая стоимость приборов и необходимость их установки на каждой линии заставляет искать другие решения.

3.2. Сборка электрощита на УЗО и защитных автоматах

Подключение электрощита на 3 фазы с использованием отдельных УЗО и защитных автоматов считается более экономным вариантом.

В зависимости от сложности группировки и потребляемой мощности подбираются необходимые по параметрам устройства, а также разрабатывается схема подключения. При этом возникает дополнительная группировка по УЗО. Такие варианты сборки щита также имеют свои достоинства и недостатки:

+экономия на комплектующих;

- плохая визуализация подключений;

- сложность схемы подключения;

- невозможность оперативного перераспределения нагрузки по фазам;

- риск отгорания нулевого проводника и перекоса фаз;

- ложные срабатывания УЗО;

- большие габариты щита.

Некоторые из недостатков можно нивелировать путем использования кросс-модулей, а также многополюсных защитных автоматов и УЗО. Это, в свою очередь, приводит к удорожанию проекта.

Заключение

От работы электрощита зависит стабильность и безопасность электросети в доме. Ошибки и просчеты при составлении схемы и монтаже могут привести к печальным последствиям.  Если вы не уверены, что сможете правильно собрать трехфазный щит своими руками, то лучше предоставить это профессиональным электрикам. Они просчитают возможные варианты сборки и подберут оптимальный по цене и функциональности.

Оцените новость:

Подключение трехфазного автомата в щитке

5 вариантов трехфазной схемы распределительного щита.

Все распределительные щиты должны выполнять 3 основные задачи:

    защита кабеля от перегрузок и КЗ

С этой целью в щитах монтируются автоматические выключатели. Они в первую очередь предназначены именно для защиты кабеля, а не подключенного к ним оборудования, как многие до сих пор думают.

    защита человека от поражения электрическим током

Обеспечивается она путем установки УЗО или дифф.автоматов.

    защита техники от перепадов напряжения

К сожалению, в наших сетях зачастую происходят скачки напряжения. Автоматы на это не реагируют, так как просто не рассчитаны на такую защиту.

УЗО также не приспособлено на срабатывание от перенапряжения. Для этого понадобятся модульные реле напряжения или УЗМ – устройства защиты многофункциональные.

На них выставляются определенные верхние и нижние пределы по напряжению. Как только произошел скачок, или наоборот резкое снижение параметров эл.сети, данное реле (УЗМ) срабатывает и отключает питание.

Чем же отличается сборка 3-х фазного щита, с условием обеспечения вышеперечисленных задач, от сборки однофазного? Понятно, что однофазный на порядок проще трехфазного.

Там есть только единственная фаза, ноль и защитное заземление. В 3-х фазном, к вам в щит приходит те же ноль, защитное заземление и уже 3 фазы.

С одной стороны это дает вам возможность подключать гораздо большую нагрузку, и получить у энергопередающей организации большую мощность для подключения. Но с другой стороны, это всегда несет и большие затраты, плюс необходимость грамотного распределения этой самой нагрузки.

Причем не по своей вине или вине энергоснабжающей организации, а именно из-за вас.

Есть множество вариантов сборки и комплектации трехфазных щитков. Не будем рассматривать самые простейшие с минимальным количеством вводного оборудования.

Выберем более сложные по комплектации, но в тоже время достаточно универсальные. В связи с резким увеличением количества эл.приборов в наших квартирах и домах, они в последнее время приобретают все большую популярность.

Преимущества:

    каждая линия защищена как от КЗ, перегрузок, так и от утечек. И все это одни аппаратом.
    проще установить проблемную зону при повреждениях
    отсутствуют нулевые шины
    у вас полная свобода в группировке аппаратов в щите
    легко распределять нагрузку по фазам
    большие габариты щита и большое количество модульных устройств (от 72шт и более)

Дифференциальный автомат это оборудование, которое ставится на отдельную линию, как обычный автомат, но еще включает в себя и защиту от утечек (дифф.защиту).

Это хоть и самый лучший вариант, но и самый дорогой. Поэтому используется крайне редко.

Условно говоря, сколько у вас будет отходящих групповых линий, столько же понадобится дифф.автоматов.

При этом, чтобы при возможных авариях понять, от чего отключился такой автомат, от утечки или КЗ, рекомендуется использовать модели с индикацией причины срабатывания.

В начале схемы монтируется вводное устройство – рубильник. С него пускаете питание на реле напряжения.

Далее, через кросс-модули разделяете нагрузку на диффы. На каждый автомат пускаете по одной фазе.

Если в последствии окажется, что та или иная линия перегружает какую-либо из фаз, вам достаточно на одном из кросс модулей просто поменять их местами, перекинув провода с одной шинки на другую.

Если вы не ограничены бюджетом, то это самый лучший вариант сборки и комплектации трехфазного щитка.

Преимущества сборки:

    требуется щиток небольших размеров (от 54 до 72 модулей)
    не наглядная группировка линий
    невозможность простого внесения изменений в перераспределении нагрузки по фазам
    наличие нулевых шинок

Это один из простых и наиболее распространенных вариантов сборки и проектировании трехфазных щитков. Объясняется это конечно его дешевизной по отношению к остальным.

Однако это все предварительное деление. Так как реального потребления никто не знает. И только со временем, путем замеров можно увидеть фактическую картину. А она может существенным образом отличаться от ранее спроектированной.

И чтобы хоть как-то подравнять нагрузки, приходится переделывать чуть ли не половину всего щитка. Оставите как есть, и обязательно в будущем столкнетесь с проблемами:

    перекос напряжения
    нагрев нулевой шинки с возможным отгоранием ноля
    перегруженные автоматы и последствия этого

Есть еще более упрощенный вариант данного способа комплектации.

Преимущества:

    самый дешевый вариант
    щит малого размера (до 32 модулей)

Недостатки:

    практически отсутствует группировка линий
    отсутствует возможность изменения нагрузки по фазам
    присутствуют нулевые шины
    возможно ложное срабатывание УЗО

Здесь используется всего одно УЗО на вводе (кроме не отключаемых потребителей) и уже далее, нагрузка распределяется через однополюсники. Согласно п.7.1.83 ПУЭ вы можете быть ограничены в выборе количества подключаемых линий.

Если же проигнорировать данное правило, то вполне вероятны ложные срабатывания УЗО. При этом вы долго будете ломать голову прикидывая, сработало оно от защиты или же ложно.

Поэтому лучше искать промежуточные варианты комплектации трехфазного щитка.

Преимущества:

    возможность легко распределять нагрузку по фазам
    наглядная группировка линий
    удобное подключение питания и отходящих проводников
    отсутствие нулевых шинок
    габаритные размеры щитка (от 96 до 144 модулей)
    относительно дорого

Когда вы собираете щит по первому варианту на дифф.автоматах, вы пропускаете через него фазный и нулевой проводник. Плюс отпадает необходимость в УЗО.

Если по экономическим причинам вы не можете себе позволить дифференциальные автоматы, группировать отходящие линии все равно придется на УЗО.

Однако для того, чтобы впоследствии все было ремонто-пригодно и легко вносились изменения в схему без ее кардинальных реконструкций и перемонтажа проводов, вместо обычных однофазных модульных автоматов достаточно применить двухполюсные.

Внешне они выглядят как собранные воедино два одинарных модульных однополюсника.

Для сборки схемы соединяете между собой нули в той или иной группе 4-х полюсных УЗО. Через них пропускаете все фазы и далее пускаете их на кросс модули.
После чего фазы распределяются по автоматам.

Преимущества:

Как подключить автомат в щитке без ошибок

Распределительный щит трудно представить без современных модульных устройств защиты, таких как автоматические выключатели, устройств защитного отключения, дифференциальных автоматов и всевозможных реле защиты. Но далеко не всегда эти модульные устройства подключаются правильно и надежно.

В виду обслуживания электрических щитков мне иногда приходится сталкиваться с ошибками подключения автоматических выключателей, которые в них установлены. Казалось бы, как можно неправильно подключить обычный однополюсный автомат? Зачистил кабель на определенную длину, вставил в клеммы, затянул надежно винты.

Но как бы это странно не звучало, большинство людей имеет «корявые» руки и качество сборки щитов оставляет желать лучшего. Хотя на самом деле все мы совершаем или совершали ошибки в той или иной отрасли, и как говорится в известной пословице: «не ошибается тот, кто ничего не делает».

Приветствую всех друзья на сайте « Электрик в доме ». В данной статье рассмотрим, как подключить автомат в щитке и разберем несколько вариантов самых распространенных и грубых ошибок.

Подключение автоматов в щитке – вход сверху или снизу?

Первое с чего бы хотел начать это правильность подключения автомата в принципе. Как известно автоматический выключатель имеет два контакта для подключения подвижный и неподвижный. На какой из контактов необходимо подключать питание к верхнему или нижнему? На сегодняшний день споров по этому поводу развелось очень много. На любом электротехническом форума куча вопросов и мнений на этот счет.

Обратимся за советом к нормативным документам. Что сказано в ПУЭ по этому поводу? В 7-м издании ПУЭ пункт 3.1.6. сказано:

Как видно в правилах сказано, что питающий провод при подключении автоматов в щитке должен присоединяться, как правило, к неподвижным контактам. Это также относится ко всем узо, дифавтоматам и прочих устройств защиты. Из всей этой вырезки непонятно выражение «как правило». То есть вроде, как и должно, но в некоторых случаях может быть и исключение.

Чтобы понимать, где расположен подвижный и неподвижный контакт нужно представлять внутреннее устройство автоматического выключателя. Давайте на примере однополюсного автомата рассмотрим, где находится неподвижный контакт.

Перед нами автомат серии ВА47-29 фирмы iek. Из фото понятно, что неподвижным контактом у него является верхняя клемма, а подвижным контактом – нижняя клемма. Если рассмотреть электрические обозначения на самом выключателе, то здесь тоже видно, что неподвижный контакт находится сверху.

У автоматических выключателей других фирм производителей аналогичные обозначения на корпусе. Взять, например автомат фирмы Schneider Electric Easy9, у него неподвижный контакт также находится сверху. Для УЗО Schneider Electric все аналогично сверху находятся неподвижные контакты, а снизу подвижные.

Другой пример, защитные устройства фирмы Hager. На корпусе автоматических выключателей и УЗО hager также можно увидеть обозначения, из которых понятно, что неподвижные контакты находятся сверху .

Давайте разберемся, с технической стороны есть ли значение, как подключить автомат сверху или снизу.

Автоматический выключатель защищает линию от перегрузок и коротких замыканий. При появлении сверхтоков реагируют тепловой и электромагнитный расцепитель, расположенные внутри корпуса. С какой стороны будет подключено питание сверху или снизу для срабатывания расцепителей разницы абсолютно нет. То есть с уверенностью можно сказать, что на работу автомата не влияет, на какой контакт будет подведено питание.

По правде говоря, должен отметить, что производители современных «брендовых» модульных устройств, такие как ABB, Hager и прочие допускают подключение питания к нижним клеммам. Для этого на автоматах имеются специальные зажимы, предназначенные под гребенчатые шины.

Почему же в ПУЭ советуют подключение выполнять на неподвижные контакты ( верхние )? Такое правило утверждено в целях общего порядка. Любой образованный электрик знает, что при выполнении работ необходимо снять напряжение с оборудования, на котором будет работать. «Залазя» в щиток человек интуитивно предполагает наличие фазы сверху на автоматах. Отключив АВ в щитке, он знает, что напряжения на нижних клеммах и все что от них отходит, нет.

Теперь представим, что подключение автоматов в распределительном щите Вам выполнял электрик дядя Вася, который подключил фазу к нижним контактам АВ. Прошло некоторое время (неделя, месяц, год) и у Вас появилась необходимость заменить один из автоматов (или добавить новый). Приходит электрик дядя Петя, отключает нужные автоматы и уверенно лезет голыми руками под напряжение.

В недалеком советском прошлом у всех автоматов неподвижный контакт располагался вверху (например, АП-50). Сейчас по конструкции модульных АВ не разберешь где подвижный, а где неподвижный контакт. У АВ которые мы рассматривали выше, неподвижный контакт был расположен сверху. А где гарантии, что у китайских автоматов неподвижный контакт будет расположен сверху.

Поэтому в правилах ПУЭ подключение питающего проводника к неподвижным контактам подразумевает лишь подключение на верхние клеммы в целях общего порядка и эстетики. Я сам сторонник подключения питания к верхним контактам автоматического выключателя.

Для тех, кто со мной не согласен вопрос на засыпку, почему на электрических схемах питание на автоматы подключают именно на неподвижные контакты.

Если взять, например обычный рубильник типа РБ, который установлен на каждом промышленном объекте, то его никогда не подключат верх ногами. Подключение питания к коммутационным аппаратам такого рода полагает только к верхним контактам. Отключил рубильник и ты знаешь, что нижние контакты без напряжения.

Подключаем провода к автомату – кабель с монолитной жилой

Как выполняет подключение автоматов в щитке большинство пользователей? Какие ошибки можно при этом допустить? Давайте разберем здесь ошибки, которые наиболее часто встречаются.

Ошибка – 1. Попадание изоляции под контакт.

Все знают, что перед тем как подключить автомат в щитке нужно снять изоляцию с подключаемых проводов. Казалось бы, здесь нет ничего сложного, зачистил жилу на нужную длину, затем вставляем ее в зажимную клемму автомата и затягиваем ее винтом, обеспечивая тем самым надежный контакт.

Но встречаются случаи, когда люди в недоумении, почему выгорает автомат, когда все правильно подключено. Или почему периодически пропадает питание в квартире, когда проводка и начинка в щитке абсолютно новые.

Одна из причин вышеописанного попадание изоляции провода под контактный зажим автоматического выключателя. Такая опасность в виде плохого контакта несет в себе угрозу оплавления изоляции, не только провода, но и самого автомата, что может привести к пожару.

Чтобы этого исключить нужно, следить и проверять, как затянут провод в гнезде. Правильное подключение автоматов в распределительном щите должно исключать такие ошибки.

Ошибка – 2. Нельзя подключать несколько жил разных сечений на одну клемму АВ.

Если возникла необходимость подключить несколько автоматов стоящих в одном ряду от одного источника (провода) для этой цели как невозможно лучше подойдет гребенчатая шина. Но такие шины не всегда есть под рукой. Как объединить несколько групповых автоматов в таком случае? Любой электрик, отвечая на этот вопрос, скажет сделать самодельные перемычки из жил кабеля.

Чтобы сделать такую перемычку используйте куски провода одинакового сечения, а лучше вообще не разрывайте его по всей длине. Как это сделать? Не снимая с провода изоляцию, формируете перемычку нужной формы и размеров (по количеству ответвлений). Затем зачищаем изоляцию с провода в месте перегиба на нужную длину, и у нас получается неразрывная перемычка из цельного куска провода.

Никогда не объединяйте автоматы перемычками кабелем разного сечения. Почему? При затягивании контакта хорошо зажмется жила с большим сечением, а та жила, у которой сечение меньше будет иметь плохой контакт. Как следствие оплавление изоляции не только на проводе, но и на самом автомата, что несомненно приведет к пожару.

Пример подключения автоматических выключателей перемычками из разных сечений кабеля. На первый автомат приходит «фаза» проводом 4 мм2, а на другие автоматы уже идут перемычки проводом 2.5 мм2. На фото видно, что перемычка из проводов разного сечения . Как следствие плохой контакт, повышение температуры, оплавление изоляции не только на проводах, но и на самом автомате.

Для примера попробуем затянуть в клемме автоматического выключателя две жили с сечением 2.5 мм2 и 1.5 мм2. Как бы я не старался обеспечить надежный контакт в этом случае, у меня ничего не получалось. Провод сечением 1.5 мм2 свободно болтался.

Еще один пример на фото дифавтомат, в клемму которого воткнули два провода разного сечения и попытались все это дело надежно затянуть. В результате чего провод с меньшим сечением болтается и искрит.

Ошибка – 3. Формирование концов жил проводов и кабелей.

Этот пункт, скорее всего, относится не к ошибке, а к рекомендации. Для подключения жил отходящих проводов и кабелей к автоматам мы снимаем с них изоляцию примерно на 1 см, вставляем оголенную часть в контакт и затягиваем винтом. По статистике 80 % электриков именно так и подключают.

Контакт в месте соединения получается надежный, но его дополнительно можно улучшить без лишних затрат времени и средств. При подключении к автоматам кабелей с монолитной жилой сделайте на концах U-образный загиб.

Такое формирование концов увеличит площадь соприкосновения провода с поверхностью зажима, а значит контакт будет лучше. P.S. Внутренние стенки контактных площадок АВ имеют специальные насечки. При затягивании винта эти насечки врезаются в жилу, благодаря чему надежность контакта увеличивается.

Присоединение к автомату многожильных проводов

Для разводки щитов электрики часто отдают предпочтение гибкому проводу с многопроволочной жилой типа ПВ-3 или ПуГВ. С ним легче и проще работать, чем с монолитной жилой. Но здесь есть одна особенность.

Основная ошибка, которую допускают новички в этом плане, подключают многожильный провод к автомату без оконцевания. Если обжать голый многожильный провод как он есть то при затягивании жилки передавливаются и обламываются, а это приводит к потере сечения и ухудшению контакта.

Опытные «спецы» знают, что затягивать голый многожильный провод в клемме нельзя. А для оконцевания многопроволочных жил нужно применять специальные наконечники НШВ или НШВИ.

Корме того если существует необходимость подключения двух многожильных провода к одному зажиму автомата для этого нужно использовать двойной наконечник НШВИ-2. С помощью НШВИ-2 очень удобно формировать перемычки для подключения нескольких групповых автоматов.

Пайка проводов под зажим автомата – ERROR (ошибка)

Отдельно хотел бы остановиться на таком способе оконцевания проводов в щите как пайка. Так уж устроена человеческая натура, что люди на всем стараются сэкономить и далеко не всегда хотят тратиться на всевозможные наконечники, инструменты и всякую современную мелочевку для монтажа.

Для примера рассмотрим случай, когда электрик из ЖЭКа дядя Петя выполняет разводку электрического щитка многожильным проводом (или подключает отходящие линии в квартиру). Наконечников НШВИ у него нет. Но под рукой всегда есть старый добрый паяльник. И электрик дядя Петя не находит другого выхода как облудить многопроволочную жилу, запихивает все это дело в контактный зажим автомата и затягивает от души винтом. Чем опасно такое подключение автоматов в распределительном щите?

При сборке распределительных щитов НЕЛЬЗЯ опаивать и облуживать многопроволочную жилу. Дело в том, что луженое соединение со временем начинает «плыть». И чтобы такой контакт был надежный его постоянно нужно проверять и подтягивать. А как показывает практика, про это всегда забывают. Пайка начинает перегреваться, припой плавится, место соединения еще больше ослабляется и контакт начинает «выгорать». В общем, такое соединение может привести к ПОЖАРУ.

Поэтому если при монтаже используется многожильный провод то для его оконцевания нужно применять наконечники НШВИ.

Cхема щита учета электроэнергии 380в для частного дома 15 квт

При подключении частного дома к электросети, вам обязательно потребуется получить у электросбытовой компании (Мосэнерго, Ленэнерго, Свердловэнерго и др., в зависимости региона) ТУ – Технические условия на подключение. Именно этот документ содержит основные характеристики электросети доступные вам, в том числе и требования к щиту учета электроэнергии.

В этой статье мы подробно осмотрим схему типового щита учета, а также его модификаций, которые предписывают собирать требования ТУ.

Cтандартные в таких случаях параметры сети для подключения частного дома это:

3 фазы

Напряжение: 380В

Выделенная мощность: 15 кВт

Вводной кабель: СИП 4х жильный (3 фазных проводника и PEN)

Отмечу, что одна из основных задач ТУ, не только обеспечить безопасность электроустановки, но и предотвратить возможность хищения электричества потребителями.

Именно поэтому, все устройства защиты или коммутации в электрощите, расположенные до электрического счетчика, должны быть защищены от возможности нелегального подключения. Обычно они скрыты в отдельных боксах, которые при подключении пломбируют.

Кроме того, технические условия предписывают размещать щит учета в доступном для проверки месте – на границе участка, на опоре освещения или заборе.

Чаще всего такие внещние щиты используются исключительно для учета, без дополнительных возможностей, несет лишь базовые функции. Основной распределительный щит (РЩ), при этом, ставится внутри в дома, где все потребители разделяются на группы, распределяется нагрузка, устанавливается соответствующая защитная автоматика и т.д.

Все представленные ниже схемы будут рассчитаны под две самые популярные в частных домах системы заземления TT и TN-C-S. Под каждым вариантом подключения – будут ссылки на пошаговую инструкцию по сборке, с подробными комментариями.

Если же вы не определились, какую из систем заземления выбрать – вам поможет следующая информация:

TN-C-S – рекомендуемая правилами система заземления. Имеет ряд недостатков, применять её стоит если вы уверены в состоянии подходящих к дому электросетей, если они достаточно новые и регулярно обслуживаются.

TT – относительно более безопасная система. К главным недостаткам можно отнести лишь большие затраты как на монтаж защитного оборудования и устройство контура заземления, так и на регулярное обслуживание. Которые, для безопасной работы, должны всегда поддерживаться вами в работоспособном состоянии.

Подробнее о разнице в устройстве систем заземления вы узнаете в одной из следующих статей. Подписывайтесь на нашу группу Вконтакте, следите за выходом новых материалов.

Простая схема подключения электрощита частного дома 15 кВт

Самый простой-бюджетный вариант сборки щита учета представлен ниже. Здесь используется лишь самые необходимые элементы:

2. Бокс пластиковый 3 модуля, с проушинами для пломбы

3. Трехполюсный Защитный автоматический выключатель, характеристика С25 (для выделенной мощности в 15кВт нужен именно этот номинал)

4. Прибор учета электрической энергии (счетчик) 3-фазный 380В

5. Блок распределительный коммутационный, возможностью подключения проводов сечением до 16мм.кв.

Схема простого электрощита учета для частного дома 15кВт, Система заземления TN-C-S:

Простой щит учета, система заземления TT

Этот вариант чаще используется как временный, например, для подключения бытовки на время строительства, так как имеет мало средств защиты.

Для своего дома, в котором вы планируете постоянно жить, даже для дачного, я советую применять следующую сборку:

Оптимальная схема щита учета электроэнергии 380В частного дома 15 кВт

От предыдущей, она отличается наличием селективного Устройства Защитного Отключения (номер 6), оно работает сразу на все потребители дома, еще его называют противопожарное. Установка УЗО на вводе в дом рекомендуется Правилами Устройства Электроустановок – ПУЭ.

Рекомендованнная схема щита учета для частного дома 380В с использованием селективного УЗО, заземление TN-C-S

Схема щита учета для частного дома с селективным УЗО, Для системы заземления TT

Это наиболее сбалансированная схема, которую можно реализовать для выносного электрического щита учета дома, простая и надежная. Она подходит для всех, именно её я и рекомендую собирать.

Усовершенствовать же её, в целях усиления защиты электросети и электроприборов дома, можно добавив устройство защиты от импульсных перенапряжений(УЗИП).

Вариант электрического щита частного дома с УЗИП

Установка УЗИП именно в электрощите учёта, правильное решение, особенно с точки зрения безопасности.

Подключаются устройства защиты от импульсных перенапряжений параллельно электрической цепи (номер 7), следующим образом:

Схема щита учета с УЗИП, система заземление TN-C-S

Пошаговая инструкция по расключению доступна по ССЫЛКЕ

Щит учета электрической энергии с УЗИП, заземление ТТ

Монтировать УЗИП или нет, решать вам. Зависит это от многих факторов, которые необходимо учитывать. Если же решитесь, эти схемы вам помогут.

Нередко, в накладном уличном электрощите, кроме указанного выше оборудования, требуется установить еще какие-то модульные устройства, например, коммутационные. В частности, очень полезен бывает, особенно на этапе строительства, обычный механизм розетки.

К нему можно подключить электроинструмент, прожектор или любой другой электроприбор, которым нужно воспользоваться на улице. Других способов подключиться к электросети зачастую нет.

Электрический щит учета электроэнергии 380В частного дома с розеткой 220В

В данном схеме электрического щитка дополнительно стоит модульная розетка 220В (номер 7) с индивидуальным устройством защиты – дифавтоматом (номер 8), совмещающим в себе Автоматический выключатель и Устройство защитного отключения. Номинал УЗО должен быть выше, чем у защитного автомата, например 40А, ток утечки 100 или 300 мА.

Электрический щит учета 380В, с модульной розеткой, заземление TN-C-S

Электрический щит учета 380В, с модульной розеткой и дифавтоматом, заземление TТ

Следуя этому примеру, где розетка защищена автоматическим выключателем дифференциального тока, вы сможете установить любое другое модульное оборудование, контакторы, трансформаторы и т.д. в щит учета электроэнергии, если будет такая необходимость.

Еще раз отмечу, что под каждой схемой есть ссылки, перейдя по которым вы сможете прочитать подробности, узнать использованное оборудование, задать вопросы.

Если вы знаете еще какие-то полезные варианты сборки щита учета частного дома 380В, пишите в комментариях, это может быть интересно и полезно многим.

В остальном же, здесь представлены основные варианты, которые применяются при подключении к электросети частных домов и садовых домиков. А самое главное, такие электрощиты успешно принимаются контролирующими органами и вводятся в эксплуатацию.

Как правильно подключить автоматы в электрическом щите — пошаговая инструкция

Ошибки в процессе подключения автоматов могут привести к серьезным проблемам с электропроводкой, поэтому, если вы не уверены в своих силах, лучше исключить риски и обратиться к профессиональному мастеру. Сегодня мы рассмотрим этапы проведения работ по подключению автоматов в электрическом щите, в том числе установку кабеля, соединение всех элементов. В любом доме или квартире имеется электричество, поэтому подобный вопрос не теряет актуальности.

Как правильно подключить автоматы в электрическом щите – это распространенный вопрос, ведь подобные действия требуют от мастера хотя бы базовых навыков. Для начала следует в соответствии с правилами составить проект электропроводки, определиться с местом установки, составить чертежи, выбрать основание и комплектующие элементы. Только после вышеперечисленных действий мастера приступают к монтажным работам, а потом подсоединяют щит к кабелю.

Куда устанавливают электрощит для счетчика и автоматики

Первым делом необходимо определиться с местом для установки щитка. Так, специалисты считают, что лучше фиксировать его возле входной двери в коридоре, ведь тогда не придется прокладывать кабель с лестничной площадки, что значительно упростит монтаж.

Как правило, закрепляют щиток на уровне видимости жителей квартиры — это позволит без проблем снимать показания и отключать автоматы. Поэтому место установки будет отличаться в зависимости от роста домочадцев.

Обратите внимание! До сих пор встречаются электрики, которые предпочитают устанавливать счетчики под потолком (как это делали раньше). Старые конструкции фиксировались на стену без ящиков, поэтому закрепляли их на высоте в целях безопасности.

Любые современные щитки имеют надежное основание, закрываются с помощью замка, поэтому посторонние или маленькие дети не смогут туда добраться, если не будут иметь доступ к ключам.

При выборе места для монтажа учитывают и то, откуда будет проходить кабель воздушной или подземной линии питания (в квартире или частном доме). Уточнить подобную информацию можно у сотрудников компании, отвечающей за электроэнергию.

Приобрести готовый электрощит или собрать самостоятельно

Теперь электрики уже не только самостоятельно собирают щитки, но и устанавливают готовый заводской вариант со всем внутренним наполнением. Такие конструкции даже изготавливают по специальному заказу под конкретную квартиру.

Главный момент в этом деле – это опыт установки фирменных щитков. Если мастер уже сталкивался с таким монтажом, то опасаться не стоит. В других же случаях лучше собрать конструкцию на месте, поэтапно.

Цены на электрощитки

Видео – Сборка щитка для квартиры

Схема соединения автоматов в электрощите

Прежде чем приступить к установке автоматов, необходимо внимательно изучить их схематичное устройство, ведь схема монтажа состоит из нескольких элементов с разными обозначениями.

Таблица 1. Элементы, используемые при монтаже электрощита.

НазваниеХарактеристика
Автомат вводнойЕго устанавливают на защиту целого контура электропроводки. Так, жилы основного кабеля фиксируют к зажимам автомата. Для удобства использования, впереди автомата закрепляют рубильник. Он позволяет отключить ток от всей конструкции, чтобы провести ремонтные работы. В этом случае кабель питания тоже необходимо завести на этот рубильник.
СчетчикЕго ставят уже после автоматов. Основным назначением счетчика является контроль потребляемой электроэнергии. Иногда его закрепляют в другом месте еще до электрощита вместе с автоматами (на лестничной площадке).
Устройство защитного отключенияОсновной функцией УЗО является защита от ударов током и возгораний. К примеру, в малогабаритной квартире после счетчика устанавливают только одно УЗО, потому что больше не требуется из-за минимальной нагрузки. Иногда устанавливают несколько таких устройств на линии, где имеется большое потребление электроэнергии.
Линейные автоматыОни требуются для линий в отдельные комнаты. При наличии высокого напряжения или замыкания они разрывают цепочку, благодаря чему предотвращают пожар или короткое замыкание. Они нужны для защиты различных электроприборов.
Дифференциальные автоматыИх устанавливают вместо нескольких основных автоматов с защитным устройством на отдельных линиях для различных бытовых приборов.
Монтажная рейкаРейка фиксируется к задней стенке основания щитка. В зависимости от размеров ящика, количество реек и модулей может отличаться. Для того чтобы приобрести щиток под определенное количество модулей, предварительно составляют подробный чертеж соединений.
ГребенкаПредназначаются с целью расключения щита, чтобы соединить нули с подводками заземления. В одном щитке имеются нулевые гребенки и заземляющие.
Шина распределенияОни связывают между собой линейные, дифференциальные автоматы и защитное устройство. Они надежно изолированы, благодаря чему безопасно фиксируют автоматы через входной зажим. Их используют как для фазы, так и для нуля.

Что представляют собой автоматические выключатели

Автовыключатели — это специализированные устройства, основной задачей которых является защита электропроводки от возгорания. Конечно, они не способны защитить от удара током и от поломки бытовых приборов, но контролируют перегревание.

Функционирование основано на том, что устройства разрывают электрическую цепочку при следующих ситуациях:

  • замыкание;
  • резкое повышение напряжения в проводнике (выше определенной нормы).

Обычно автомат фиксируют на входе, что позволяет защитить идущий за ним участок цепочки. Поскольку ко всем элементам применяется разная проводка, устройства защиты должны работать при различной мощности тока.

Некоторым начинающим электрикам может показаться, что достаточно зафиксировать энергоемкий автомат, но это распространенное заблуждение. Ведь если защитное устройство не сработает при наличии тока большой силы, то произойдет возгорание проводки.

Устройство автомата

Чаще всего автомат представляет собой конструкцию из следующих элементов:

  1. Рукоятка взвода. Она позволяет включить устройство или же отключить при необходимости монтажа.
  2. Включающий механизм.
  3. Контакты. Соединяют и разрывают общую цепочку.
  4. Зажимы. Используются для подключения к защитному устройству.
  5. Механизмы, работающие по условию. Сюда относится биметаллическая платина теплового расцепителя. В некоторых конструкциях присутствует винт регулировки, с помощью которого можно скорректировать силу тока.
  6. Дугогасительная камера. Располагается в любом полюсе прибора.

Как устроен механизм отключения

В автомате присутствует особый механизм, который способствует разрыву цепочки при повышении силы тока.

Существуют различные принципы функционирования подобных устройств:

  1. Электромагнитные. Отличительной особенностью является стремительное срабатывание при наличии замыкания. При резком повышении силы тока в действие приводится катушка, сердечник которой и размыкает цепочку.
  2. Тепловые. Здесь основным элементом является биметаллическая пластинка, которая при повышении температуры меняет форму, выгибается в обратную сторону, за счет чего размыкает цепочку.

По аналогичному принципу функционируют электрочайники, из-за чего происходит их отключение при закипании воды. Для разрыва цепи используют и полупроводниковые устройства, но они редко применяются в сетях.

Маркировки на автоматах

Все модели автоматов имеют различные обозначения, по которым их можно идентифицировать. Обычно, большинство производителей предпочитают выпускать такие конструкции, которые могут использоваться в различных условиях и отраслях.

Для того, чтобы исключить ошибки во время подключения, следует разобраться с маркировками на корпусной части:

  1. Логотип. Чаще всего в верхней части автомата можно обнаружить логотип копании производителя. Кроме того, все бренды выпускают изделия определенной цветовой гаммы. Это значит, что рядовому пользователю не составит труда отыскать нужный вариант.
  2. Окно индикатора. Определяет состояние контактов на данный момент. При поломке выключателя в этом окне можно увидеть напряжение в сети или его отсутствие.
  3. Тип устройства. В стандартных сетях обычно используют автоматы типов C и B. Между собой они отличаются коэффициентом чувствительности.
  4. Номинальный ток. Здесь показывается максимальное значение силы тока. Часто указывают два значения – для однофазной и трехфазной сети.
  5. Предельно допустимый ток выключения. Обозначает предел напряжения при замыкании, из-за которого автомат выключается, но при этом остается исправным.
  6. Схема. Иногда на автомате можно встретить даже чертеж подсоединения контактов, который находится в боковой части.

Какой автомат выбрать

При выборе устройства в первую очередь следует учитывать его предельно допустимый ток. Для этого необходимо посчитать, какая сила тока потребуется для всех установленных в квартире приборов.

Кроме того, значение имеет и толщина проводки, поскольку по ней течет электричество. Требуется оптимальная величина в зависимости от степени нагревания. Еще большое значение имеет наличие полюсов:

  1. Один. Цепочки с осветительными приборами и розетками, к которым подключаются только примитивные устройства.
  2. Два. Используется с целью защиты электропроводки, которая подводится к крупным приборам (стиральным машинам, плитам, холодильникам, отоплению, водонагревателям). Кроме того, устанавливается для дополнительной защиты между электрощитом и квартирой.
  3. Три. Актуальны при наличии сети с тремя фазами, что бывает на производственных предприятиях, собственных мастерских.

Автоматы устанавливаются в щитке по стандартному принципу – от большего к меньшему. Это значит, что сначала фиксируют автомат с двумя полюсами, а только потом с одним. После чего следуют остальные устройства с меньшей мощностью.

Цены на дифавтоматы

Видео – УЗО или дифференциальный автомат: что выбрать

Особенности подключения автоматических выключателей

После того, как вы определитесь с типом автоматов, их необходимо подключить. Если придерживаться определенных этапов, то справиться с таким процессом можно без каких-либо специальных навыков.

Здесь мы рассмотрим процесс поэтапной сборки электрического щита для однокомнатной квартиры. Для начала потребуется подготовить все инструменты и комплектующие, которые будут использованы в процессе монтажа:

Цены на вольтметры

Сборка щитка — пошаговая инструкция

Шаг 1. Первым делом на верхней рейке нам потребуется расположить автоматику, таким образом, как она должна выглядеть после фиксации. Сначала мы укладываем рубильник, после чего УЗМ (защитное устройство), после чего три УЗО на разные группы (ток утечки 30 мА, номиналом 63,63 и 40 А).

Первый на 40 А – свет, второй на 63 А – на варочную панель и духовку, третий на 63 А – на оставшиеся группы. В конце устанавливается один дифференциальный автомат типа «А», потому что такие устройства рекомендуют производители большинства бытовых приборов.

Шаг 2. Далее необходимо перейти ко второй рейке и расставить автоматы в правильном положении. Расставлять их надо строго под определенной группой УЗО. Начинать следует с правой стороны.

Шаг 3. Теперь автоматику необходимо запитать между собой. Для таких целей следует использовать гребенки в двух конфигурациях. Первая – PS-1 на 12 модулей. Вторая – PS-2 на 12 модулей. Поскольку у нас только 9 модулей, лишний участок гребенки потребуется удалить машинкой со специальным диском. Так, сначала необходимо запитать верхний модуль.

Шаг 4. Когда миниатюрная гребенка будет готова, потребуется вставить ее в автоматику, а потом затянуть винтовые крепления.

Шаг 5. Теперь необходимо запитать по аналогичному принципу нижнюю автоматику. Здесь придется учесть некоторые нюансы. Медь вместе с пластиковой частью отпиливать не стоит, их следует отрезать отдельно. Это позволит исключить необходимость использования боковых заглушек. Так, пластмассовая часть будет длиннее медной, тем самым обеспечивается дополнительная безопасность.

Поскольку автоматика разделяется на три части, то понадобится разделить и медную часть (два модуля, два модуля, 5 модулей). После чего эти три части можно использовать под единой гребенкой из пластика.

Шаг 6. Далее необходимо подавить питание от рубильника на УЗМ, это позволит проверить функциональность. Для этого нам понадобится подготовить два кабеля 10 квадратных миллиметров — черный и синий (на фазу и нуль). Потребуется сначала отрезать кабели нужной длины, затем снять изоляции по краям, а только потом подсоединять.

Шаг 7. Проверяем работоспособность соединения. Для этого нам необходимо подготовить питающий кабель с вилкой на одном конце и соединениями на другом. Одну сторону следует подключить к автомату, а вилку включить в розетку (вторым этапом).

Шаг 8. Далее необходимо подать питание на первое УЗО, потому что все остальные мы уже запитали гребенкой. Здесь тоже необходимо отрезать кабель нужного размера, зачем зачистить его концы и подключить питание от УЗМ на первое УЗО.

Шаг 9. Следующим этапом нам необходимо сдвинуть все нижние автоматы в правую сторону и зафиксировать их ограничителем.

Шаг 10. Теперь необходимо убрать питающий кабель и перенести конструкцию в щиток. Теперь необходимо перейти к этапу установки нулевых шин. Здесь имеется три УЗО и такое же количество шин.

Потребуется установить шины и подключить каждое УЗО к шине. Сделать это следует с помощью кабеля 6 квадратных миллиметров. В данном случае тоже потребуется отрезать нужный размер, снять изоляцию.

Шаг 11. Далее нам потребуется запитать группы автоматов к каждому УЗО. Теперь понадобится взять кабель того же сечения, но только уже красного цвета. Здесь тоже следует отмерить нужную длину, зачистить, а только потом соединить.

На данном этапе процесс подключения всех элементов щитка считается завершенным. Теперь следует только подтянуть винтовые крепления, еще раз проверить работоспособность устройства, закрыть его крышкой. Кроме того, желательно промаркировать автоматику, чтобы понимать последовательность компонентов.

Обратите внимание! Провода нагрузки и питающий кабель следует закреплять уже на месте установки.

Видео – Монтаж электрического щитка

Подводим итоги

Читайте также нашу статью на тему — Как подобрать кондиционер, где подробно рассказывается, как выбрать эффективную сплит-систему.

Для того, чтобы подключить автоматику в электрическом щитке, не обязательно вызывать профессионального электрика. Справиться с поставленной задачей можно и без посторонней помощи, следуя этапам инструкции. Желаем удачи!

Как подключить трехфазный автомат

Как подключить электрический автомат?

Когда в квартире разведена проводка, пришло время установки электрических автоматов и распределительного щитка. Концы всех проводов, которые установлены на стенах, должны быть подписаны, промаркерованые и зачищены для подключения к автоматам.

Электрические автоматы предназначены для включения/выключения общего питания помещения, включая розетки и выключатели для освещения.

Если в доме есть мощное оборудование, требующее большего питания, его следует выводить на отдельные автоматы. Есть, также защитные автоматы, которые называются УЗО, предназначены для защиты человека от поражения током.

Как подключить проводку к автомату.

Процесс установки и подключения проводки к автомату требует внимательности и знаний инструкций и схем подключения. Каждый автоматический выключатель должен соответствовать своему назначению в распределительном щитке.

Для этого следует поделить провода на узлы (прихожая, спальня, коридор, кухня, санузел, котел).

Когда все готово для подсоединения проводки к электрическим автоматам, необходимо переходить к подключению:

  • сперва автомат крепится на специальную, металлическую рейку (din-рейка). Для этого с тыльной стороны автомата нужно отщелкнуть зажимной клапан вниз. Потом вставить автомат в щиток на планку и защелкнуть зажим, подняв его вверх;
  • зачищаем кончики проводов. Провода крепятся при помощи специальных зажимов, потому, ослабеваем винтовые крепления и вставляем вводной провод в гнездо верхнего зажима. Затем зажимаем крепежный винт до упора, только нужно следить, чтоб не пережать его.
  • в гнездо нижнего зажима вставляем провод, идущий с одного из узлов, и зажимаем его;
  • один автомат уже подключен. Такую же операцию нужно провести со всеми автоматами.

После подключения силового провода к автомату необходимо подключить нулевые провода и провода заземления на соответствующие шины.

Как подключить однофазный автомат.

Однофазный автоматический выключатель выполняет 2-е основные функции: защищает от перепадов напряжения и тепловых перепадов, при нагрузке на кабелях.

Перепады напряжения очень частое явление. Оно может возникнуть при коротком замыкании, после чего напряжение в кабелях может достичь до 100А. Электрический автомат сразу отключает питание. Таким образом, предотвращается повреждение проводки.

Что касается тепловой защиты, то она производит отключение питания в случае превышения, более 5А, номинального ампеража автоматического однофазного выключателя.

Это сделано специально, чтобы исключить ложные отключения автомата, в момент запуска оборудования.

Для бытовой проводки, напряжением 220В и частотой 50Гц, достаточно будет однофазного автомата номиналом 25А.

Автоматы устанавливаются только на фазные провода. Чтобы правильно подключить однофазный автомат, необходимо:

  • установить автомат на специальную металлическую рейку, при помощи тыльных зажимов;
  • затем послабить крепежные винты снизу и сверху;
  • сначала подключаем верхний провод (ввод). Вставляем его в клемму и затягиваем до упора;
  • в нижнюю клемму нужно вставить провод потребителя электроэнергии и закрепить его также до упора.

Как подключить трехфазный автомат.

Трехфазный автоматический выключатель по принципу работы похож на однофазный автомат, только он имеет три, и более контактов. Фазные провода проходят через него, благодаря чему одновременно осуществляется коммутация фаз.

Категорически запрещено использование одинарных автоматов в замену трехфазному автоматическому устройству.

Применяется он для защиты трехфазных потребителей (электродвигатель, сварочный аппарат, иное оборудование). Также, может применяться для защиты 3-х фаз однофазных электрических систем.

Есть еще возможность подключения трехфазного автомата к двум проводам однофазной, двухпроводной системе. В этом случае обеспечивается присоединение нулевого провода и фазного провода.

При коротком замыкании или нагрузки, трехфазный автомат отключит двопроводниковую однофазную систему.

Советы в статье “Как подключить электросчетчик и автоматы?” здесь.

Его выгодно использовать в качестве средства автоматизации, позволяющее производить отключения разных нагрузок, по срабатыванию основной нагрузки.

Подключение трехфазного автомата осуществляется по принципу:

  • – провода питания подключаются к верхним клеммам автомата. Необходимо ослабить зажимные винты, вставить провода и зажать их;
  • – к нижним клеммам подключаются провода потребителя. Ослабляются крепежные винты, вставляются провода и зажимаются до упора.

Автомат трехфазный: характеристики, назначение, подключение

Содержание статьи

  • Автомат трехфазный: характеристики, назначение, подключение
  • Как выбрать автомат по току
  • Как подключить трёхфазный электродвигатель

Назначение трехфазного автомата

Автоматы трехфазного типа (имеющие три полюса) устанавливаются на приводные электрические устройства высокой мощности для обеспечения соединения и экстренного разрыва цепи. Они предназначены для защиты электрической сети от сверхтоков. В сетях с переменным током устройства используются одновременно с выпрямителями. Многие модификации автоматов способны работать с контроллерами. Наиболее мощные модели подходят для электростанций.

У проводных модификаций устройства имеется стабилизатор. Автоматы оснащены триодами, предназначенными для передачи сигнала на центральный блок аппарата. Регуляторы у разных модификаций применяются одно- и двухканального типа. В качестве защиты системы используются изоляторы с обкладками. Для увеличения мощности трехфазного автомата устанавливают специальные преобразователи.

Подключение трехфазного автомата

Вводной автоматический выключатель трехфазного вида подключается через динистор, двунаправленный тригерный диод. Выходные контакты аппарата соединяются с расширителем, одновременно для стабилизации входного сигнала используется реле. Номинальное напряжение на устройстве не должно превышать 230 В.

Подключение автомата к приводным механизмам осуществляется только через переходник с применением контакторов инвертирующего типа. Если в работу включается приводное устройство малой мощности, то в таком случае реле допустимо использовать на 120 В. Процедура подключения зависит от конкретной модели трехфазного автомата и ее рабочих характеристик.

Характеристики модели трехфазного автомата PL6-C10/3 и PL6-C10/5

Данные трехфазные автоматы серии PL6-C10 расчитаны на 25 А и подходят для цепей с переменным током. Регулятор в коммутаторе версии PL6-C10/3 используется одноканального типа. Выходное напряжение на контактах устройства достигает максимум 300 В, а мощность автоматов данной серии составляет 2 кВт. Проводимость резистора равняется 3 мк.

При установке важно учитывать, что конденсатор для указанной модификации применяется только с переходником. Также необходимо отметить, что этот трехфазный автомат оснащен варикапом, который установлен в нижней части конструкции. Благодаря этому устройству обеспечивается лучшая стабилизация частоты.

Характеристики модели PL6-C10/5 немного отличаются. Подключается автомат через реле с напряжением в 200 В. Расширители в аппарате используются с емкостными фильтрами. Устройство оснащено регулятором двухканального типа и лучше всего подходит для приводных механизмов с током на 3 А.

В данную модификацию включены тетроды низкоомного типа. На обкладке показатель сопротивления составляет 30 Ом. Выходное рабочее напряжение автомата не превышает 120 В. Важно учитывать, что для сетей с переменным током эта модель трехфазного автомата не подходит.

Характеристики модели ВА47-33 и ВА47-35

Модели вводного автомата серии ВА47 обладают высоким показателем входного напряжения. Допустимый уровень перегрузки реле равен 40 А. Однако приводные устройства следует подключать только с одинарными переходниками. Резисторы у подобных модификаций также установлены низкоомного типа. На расширителях параметр сопротивления равен 30 Ом.

Благодаря такому оснащению проблемы с частотными сбоями автоматам этой серии не страшны. Для защиты устройства установлен модулятор с тремя конденсаторами. Трансивер у модели ВА47-33 размещен в верхней части конструкции. Регулятор этого же автомата выполнен в двухканальном варианте, и к контактам он подсоединяется через переходник. Установленный в устройстве варикап отвечает за принятие сигнала с максимальным входным напряжением в 300 В.

Однако, подключая эту модель автомата, стоит учитывать, что система защиты от сбоев динистора здесь не предусмотрена. Контактные приводные механизмы позволяют подключать автомат через реле на 240 В. Частота устройства составляет 55 Гц. При подключении необходимо использовать изоляторы с фильтрами, как правило, применяются электродного типа.

Характеристики автомата модификации ВА47-35 подходят для приводов, расчитанных на 30 А, показатель проводимости на расширителе составит не менее 3 мк. В данной модели используется два качественных фильтра. Входное сопротивление этой версии автомата также равняется 30 Ом. Модулятор – с двумя переходниками, а резисторы – операционного типа. Причем показатель перегрузки изоляторов не может превышать 23 А.

При подключении необходимо учитывать, что система защиты от импульсных помех у данного трехфазного автомата отсутствует. Триод в приборе установлен в нижней части конструкции, а контакты – под замыкающим механизмом. Смена положения резисторов происходит благодаря транзистору. Проводимость варикапа соответствует 4 мк. Подключается модель только через реле на 230 В, однако выходное напряжение прибора не менее 300 В. Защита от фазовых искажений у данной версии автомата не предусмотрена.

Характеристики модификаций Legrand 40 и 45

Трехфазный автомат данных модификаций выпускается с двумя проводными резисторами со стабилизацией напряжения и проводимостью на конденсаторе не более 3 мк. Автомат подходит для приводов на 40 А. Установленный в устройстве варикап используется с линейным фильтром.

При установке Legrand 40 важно учитывать, что у автомата только один преобразователь, а значение предельной перегрузки расширителя не более 3 А. Выходное напряжение на контактах составит 250 В, поэтому реле на 300 В использовать запрещается. Защита от фазовых искажений у данного автомата не предусмотрена.

Параметры модели Legrand 45 соответствуют регулятору одноканального типа. Автомат необходим для выключения приводных устройств и оснащен тремя конденсаторами хорошей проводимости. Резисторы в устройстве размещены за контактами. Для стабилизации выходного напряжения используется расширитель и фильтры линейного типа. При подключении автомата разрешается использовать реле на 200 В. Причем преобразователь у данной модификации рассчитан на большие перегрузки.

Характеристики трехфазного автомата модели АВВ 30

Автоматы серии АВВ производятся с тремя резисторами. Показатель выходного напряжения на конденсаторах составляет 230 В. Важно отметить, что данная модель выделяется низким сопротивлением, а система защиты от импульсных помех здесь вообще отсутствует.

Конденсаторы на расширителе автомата установлены емкостного типа. Имеется специальный варикап, предохраняющий от проблем с повышением напряжения. При подключении устройства должно использоваться реле только на 240 В и триод операционного типа. Всего у данной модификации используется четыре линейных фильтра. Следует отметить, что автомат хорошо подходит для приводов с допустимой силой тока в 43 А.

Минимальный показатель проводимости у трехфазного автомата подобного назначения составляет порядка 4 мк. Следует учитывать, что конденсаторы в данном варианте расположены за контактами. Если требуется выполнить подключение с повышением выходного напряжения, то в этом случае необходимо использовать только оперативный расширитель. В устройстве данной модификации применяется модулятор с двумя фильтрами, а тетрод установлен магнитного типа.

Схема подключения автоматического выключателя

Приветствую вас, уважаемые читатели сайта http://elektrik-sam.info.

В продолжение серии публикаций по автоматическим выключателям очередная статья цикла — схема подключения автоматического выключателя.

Мы уже подробно изучили конструкцию и основные технические характеристики автоматов, давайте рассмотрим схемы их подключения.

В зависимости от количества коммутируемых полюсов (или иначе модулей), автоматы подразделяются на одно-, двух-, трех-, четырехполюсные (три фазы и ноль). В случае возникновения аварийной ситуации все полюса автоматического выключателя отключаются одновременно.

Один полюс — это часть автомата, в которую входит две винтовые клеммы для присоединения проводов (со стороны питания и со стороны нагрузки). Ширина однополюсного автомата, устанавливаемого на DIN-рейку стандартна — 17,5 мм, многополюсные автоматы кратны этой ширине.

Одно- и двухполюсные используются в однофазной электросети. Чаще всего применяются однополюсные автоматы, они устанавливаются в разрыв фазного провода и в случае возникновения аварийной ситуации отключают питающую фазу от нагрузки.

Двухполюсные автоматы позволяют одновременно отключить и ноль, и фазу. Применяются чаще всего, как вводные автоматы, либо если необходимо полностью отсоединить потребителя от электрической сети, например бойлер, душевую кабину. Они отключают ноль и фазу от защищаемого участка цепи и позволяют проводить работы по ремонту, обслуживанию или замене автоматических выключателей.

Нельзя устанавливать два однополюсных автомата отдельно для защиты фазного и нулевого провода. Для этих целей применяют двухполюсные автоматы, которые отключают ноль и фазу одновременно.

Трех- и четырехполюсные автоматические выключатели используются в трехфазной электросети. Трехполюсные автоматы устанавливаются в разрыв фаз (L1,L2,L3) трехфазной сети и служат для подключения к ней трехфазной нагрузки (электродвигателей, трехфазных электроплит и т.д.). В случае возникновения аварийной ситуации они отключают одновременно все три фазы от нагрузки.

Четырехполюсные автоматы позволяют одновременно отключить и ноль, и все три фазы, и используются как вводные автоматы в трехфазной электросети.

Вводной автомат позволяет отключить всю электропроводку квартиры и отключить питающую линию от групповых электрических цепей квартиры.

В зависимости от системы заземления применяются следующие вводные автоматы:

Вводной автомат для системы TN-S (где нулевой рабочий N и нулевой защитный PE проводники разделены) должен быть:

— однополюсный с нулем или двухполюсный;

— трехполюсный с нейтралью или четырехполюсный.

Система TN-S используется в современных домах.

Это необходимо для одновременного отключения электросети квартиры от нулевого рабочего и фазных проводников со стороны ввода электропитания, так как нулевой и защитный проводники разделены на всем протяжении.

Для системы TN-C (где нулевой рабочий и нулевой защитный проводники объединены в один PEN-проводник) вводной автомат защиты устанавливается однополюсный (при электропитании 220 В) или трехполюсный (при питании 380В). Устанавливаются они в разрыв фазных рабочих проводников.

Система TN- C используется в домах советской постройки (так называемая «двухпроводка»).

По правилам устройства электроустановок (п.1.7.145) не допускается включать коммутационные аппараты в цепи РЕ- и РЕN-проводников, за исключением случаев питания электроприемников при помощи штепсельных соединителей.

Это требование ПУЭ обусловлено тем, что возможна ситуация, когда двухполюсные автоматические выключатели не смогут одновременно отключить фазный и РЕN-проводник. А отключая РЕN-проводник, мы тем самым инициируем его обрыв.

При включении под нагрузкой внутри автомата может произойти залипание или обгорание фазных контактов (например, может попасть песчинка на контактную группу автомата), в этом случае при отключении автомата от питающей сети произойдет обрыв РЕN-проводника и вынос на зануленные корпуса электрооборудования опасного потенциала. Т.е. нет гарантии, что коммутационные аппараты одновременно отключат и фазный и РЕN-проводник.

Подключение проводов к автоматическим выключателям осуществляется по схеме: «питание сверху», а «нагрузка снизу». Т.е. провод с питающим напряжением подводится к верхней винтовой клемме, а отходящий провод нагрузки к нижней винтовой клемме.

Смотрите подробное видео Схемы подключения автоматических выключателей

Конструкцию, основные характеристики, схемы подключения автоматических выключателей мы рассмотрели и вплотную подошли к вопросу их выбора.

Подписывайтесь на новости, впереди самое интересное!

Рекомендую материалы по теме:

Трехфазная схема распределительного щита — 5 разных вариантов

Сегодня очень часто частные дома стали подключать к трехфазной электросети. Также в некоторых новых многоэтажках в квартиры начали заводить три фазы вместо одной как раньше. Как правило, при данном подключении местные сетевые компании выделяют на дом или на квартиру мощность 15 кВт. Это означает, что номинал вводного автоматического выключателя должен быть 25 А. Для небольших офисов, кафе и т.д. выделяют большую мощность. Поэтому в их щитах номиналы вводных автоматов будут совершенно другими.

Подключение к 3-х фазной электросети обуславливает установку трехфазных электрощитов. Ниже разберем пять разных вариантов простых трехфазных схем для распределительного щита.

Все схемы простые и носят рекомендательный характер. Они наглядно показывают суть самих подключений разных защитных устройств в одном щитке. К разработке схемы каждого щита нужно подходить индивидуально, так как у всех условия разные. Система заземления в представленных вариантах TN-S.

Вариант 1

Здесь представлена самая простая трехфазная схема щита. На вводе обязательно должен стоять вводной автоматический выключатель. Он будет ограничивать потребляемый ток, каждого потребителя — дома или квартиры. Далее идет 3-х фазный прибор учета электроэнергии.

На самом деле места размещения счетчиков могут быть разные. Они могут устанавливаться на улице в щите учета для частных домов, в этажных щитах в многоквартирных домах или непосредственно в домашних щитах. Где ставить счетчики указываю в технических условиях на подключение местные сетевые компании или это строго определяется проектной документацией зданий.

Большинство бытовых потребителей подключаются к однофазной сети. Тут составляют исключения мощные варочные поверхности, проточные водонагреватели, электрокотлы и т.д. Такие потребители имеют возможность подключения к 3-х фазной сети.

После прибора учета электроэнергии необходимо всю однофазную нагрузку равномерно распределить по фазам. Для этого нужно сосчитать мощность приборов, количество однополюсных автоматических выключателей и постараться их разделить на три равные части.

В предложенном варианте трехфазной схемы щита для наглядного понимания на каждой фазе подключено по два. Рабочий ноль от счетчика подключается к общей нулевой шине, а нулевые защитные проводники подключаются к общей шине заземления. Фазы подключаются через групповые автоматы. Таким образом получается, что при отключении потребителя будет разрываться только один фазный проводник. Это стоит учитывать и следить, чтобы при подключении щита к сети на вводе не были перепутаны между собой фаза и ноль. С такими ошибками мне пару раз приходилось сталкиваться. Получалось, что ноль коммутировался автоматами, а фаза сидела на нулевой шине. При отключении автомата в розетки все равно оставалось опасное напряжение, что могло привести к плачевным последствиям. Будьте внимательны и осторожнее.

Вариант 2

Данный вариант схемы по своей сути аналогичен с предыдущем вариантом. Тут только нет прибора учета электроэнергии и изображен 3-х полюсный автоматический выключатель для 3-х фазной нагрузки. Также тут изменено чередование однополюсных автоматов. То есть автоматы, подключенные к фазе «А» — это первый, третий и т.д. устройства. Чередование происходит через каждые два полюса. Тут так это показано для возможности использования 3-х фазной гребенчатой шины. Зубчики ее шины от одной фазы как раз имеют такое чередование. С ее помощью очень удобно соединять между собой несколько защитных устройств. Она исключает изготовления множества перемычек между ними.

Вариант 3

Этот вариант схемы трехфазного электрощита уже больше отвечает современным нормам электробезопасности. В нем после счетчика стоит общее УЗО. В текущем примере показано устройство защитного отключение с током утечки на 30мА. Данная схема щита полностью защищает человека от поражения электрическим током. Но есть некоторые минусы у использования всего одного УЗО 30мА на вводе:

  1. При его срабатывании будут одновременно отключаться все потребители в доме. Если это произойдет в темное время суток и поиск места утечки займет много времени, то это будет не очень удобно.
  2. Есть возможность появления ложного срабатывания УЗО из-за естественных токов утечки, которые присутствуют в бытовых приборах. В данной схеме также устанавливается одна общая нулевая шина после УЗО и одна общая шина заземления. Здесь с подключением кабелей от розеток сложно запутаться.

Вариант 4

Вот в данном варианте уже можно немного запутаться с подключением нулевых рабочих проводников, так как тут стоит несколько УЗО. А мы знаем, что у каждого УЗО должна быть своя индивидуальная нулевая шина, иначе ничего работать не будет.

В текущей трехфазной схеме на вводе стоит уже противопожарное селективное УЗО на 300 мА. Оно будет защищать кабели от возгорания при замыкании фазы на землю. Для человека ток 300 мА уже опасен и поэтому для его защиты нужно ставить дополнительное УЗО на 10-30 мА.

Ниже на рисунке показано одно УЗО с током утечки 30 мА только на первой фазе, к которому подключено два автоматических выключателя. У этого УЗО будет своя нулевая шина и поэтому нулевые рабочие проводники от других групп к его шине подключать нельзя. А шина заземления всегда и для всех потребителей будет одной общей.

В текущем варианте можно рассмотреть схему с установкой трех 2-х полюсных УЗО по одному на каждую фазу. Так все группы будут иметь защиту от утечек тока. Тогда здесь можно будет отказаться от общего вводного УЗО на 300 мА, так как у вас и так все будет иметь защиту с уставкой 30 мА.

Вариант 5

В пятом варианте представлена схема трехфазного щита без вводного УЗО, но с использованием однофазных дифавтоматов на некоторые потребители. АВДТ ставится один на одну группу и поэтому их количество может быть равно количеству групп. Так все группы потребителей будут независимы друг от друга. То есть при возникновении утечки тока в одном приборе, отключится только дифавтомат, к которому он подключен. При использовании УЗО с 3-5 автоматами при срабатывании УЗО будет отключаться соответственно 3-5 групп. А это уже не очень удобно со стороны эксплуатации потребителей.

Вышеприведенные схемы имеют наглядный вид, чтобы донести саму суть подключений разных защитных устройств в одну общую схему электрощита. Также эти примеры очень элементарные и поэтому ваши схемы будут намного больше и сложнее.

Трехфазный щит для частного дома с переключением на генератор

Ну что же! Пришло время рассказывать про сборку и подключение электрощитов. На этот раз щит собирал я для своего объекта. Частный дом, одноэтажный. Там мы делали проводку. После электромонтажа я составил перечень кабелей, которые подходят к щиту и отправился в свою мастерскую его собирать!

1. План электропроводке в доме

Перед тем, как описывать сборку щита, расскажу немного об объекте и электропроводке в нем.

Объект находится в с.Маяки Одесской обл. Загородный дом площадью около 100м2. Стены выполнены из газобетона:

Частный дом, Маяки. Сборка электрощита для этого дома

В статье про философию контакта я немного упоминал об этом объекте.

Заказчик мне отправил вот такой план дома с расположением мебели:

План дома

Затем я к нему приехал и мы нанесли расположение розеток, выключателей на стены. После этого я перенес все это дело на план. И отправил заказчику на подтверждение. В итоге схема была одобрена и мы начали электромонтаж:

План дома с электроточками

 

2. Выполнение электромонтажа

Проводку выполняли кабелем ВВГнгLS (моножила) производства Одескабель. Кабели монтировали в гофрированных трубах. На этот раз применил гофру от производителя Сourbi. Производится в Греции:

Гофра Сourbi

Гофра в монтаже показала себя нормально. Было немного брака: кусочек сплющенной гофры нам попался.

 

2.1. Монтаж трасс на потолке

Вот так получились трассы на потолке:

Проводка в гофрированной трубе по потолку

 

Проводка “собирается” зайти в электрощит

Заказчик пожелал установить роутер в прихожей. Поэтому мы сделали штробу и проложили кабель питания со щита и слаботочные кабели от компьютерных розеток:

Ответвление кабелей на роутер

 

2.2. Выводы в котельной

В котельной планируется электрический котел мощностью 12кВт. Питание от трех фаз. Поэтому был проложен кабель сечением 5х4мм2. А в щите предусмотрен отдельный автомат на электрокотел.

Выводы в котельной

Также в котельной будет стиральная машина и электрический бойлер. На эти прибора также проложены отдельные линии со щита.

 

3. Сборка электрощита

Наконец подбираемся к главному в этой статье – сборке щита. Чтобы правильно собрать щит на частный дом, необходимо сперва разработать схему щита. Поэтому сборку щита я разделяю на 2 этапа: разработка схемы щита и сама сборка.

3.1. Разработка схемы щита

Ну а чтобы разработать правильно щит, нужно знать перечень отходящих кабелей. У меня выработалась такая технология: я кабели маркирую цифрами слева направо и креплю к ним бирки с номером кабеля. Эта операция делается на объекте перед тем, как собрать щит:

Нумерация приходящих в щит кабелей

 

Затем составляю список кабелей, и по нему моделирую расположение автоматов в щите:

Схема щита

3.2. Сборка щита у себя в мастерской

Далее приступаю к сборке щита.

Щит, собираю у себя в мастерской. На объекте щит собирать – это себя не уважать! Да, я так считаю, что специалисты и профессионалы собирают электрощиты в отведенном для этом месте. Затем приезжают на объект и подключают к щиту подходящие кабели.

Бывает так, что в процессе сборки немного корректирую расположение оборудования в щите. Вот как выглядел щиток в мастерской с подключенными проводами. Оборудования использовал австрийского бренда Schrack Technik (“Шрак Техник”):

Сборка щита в Маяки_фото_1

 

Сборка щита в Маяки_фото_2

 

Сборка щита в Маяки_фото_3

 

4. Подключение щита на объекте

Берем собранную начинку щита и едем на объект. Кладем пока щит на столик.

Собранный щит на объекте не подключенный

Здесь кабели уже промаркированы, как  выше я упоминал:

Кабели входящие в щит

Нужно снять с них изоляцию и посортировать:

Подготовка кабелей для подключения в щите

Ну а дальше вставляется начинка щита в корпус. Затем подключаются провода. Фоток поэтапного подключения не делал. После всего щит выглядит так:

Собранный и подключенный щит на объекте

 

Рассмотрим детально оборудование в каждом ряду

Ряд 1

Поскольку в Шрак Техник нет переключателя для генератора (или я не нашел), то я взамен него применил переключатель от Хайгер SF463. Брендовые цвета похоже у двух производителей похоже, поэтому они отлично сочетаются:

Подключенный щит_ Ряд 1

Ряд 2

Фазы в щите распределены относительно поровну. На каждой фазу подключено УЗО, затем реле контроля напряжения, затем автоматы на отдельные линии. УЗО поставлено с типом отключения “А”. Этот тип УЗО лучше, чем тип “АС”, потому что реагирует на ток утечки с постоянной составляющей. Этот ток утечки могут генерировать некоторые бытовые электроприборы. Справа от УЗО расположен автоматический выключатель для защиты линии электрического котла:

Подключенный щит_ Ряд 2

 

Ряд 3

Здесь реле напряжения на фазу L1. И автоматы, которые на этой фазе: освещение по помещениям, розетки по помещениям, кондиционер, бойлер.

Подключенный щит_ Ряд 3

Ряд 4

Здесь реле напряжения на фазу L2. И автоматы, которые на этой фазе: освещение по помещениям, розетки по помещениям, посудомоечная машина, стиральная машина.

Подключенный щит_ Ряд 4

Ряд 5

Здесь реле напряжения на фазу L3. И автоматы, которые на этой фазе: духовой шкаф, холодильник, газовый котел, рекуператор.

Подключенный щит_ Ряд 5

Внизу щита расположены нулевые клеммы. В эти клеммы нужно подключать нулевые проводники от трех УЗО, каждый должен попасть в свою клемму, путать нельзя!

Сколько в щите находится УЗО, столько и должно быть отдельных нулевых шин для этих УЗО.

Подключенный щит_ Нулевые клеммы для УЗО

Ну что же! Электрощит собран и подключен. Теперь пришло время проверить каждую линию. Для этого нужно включить общий автомат в щите и по очереди поднимать каждый автоматический выключатель и проверять наличие тока на выходе кабельной линии, которую проверяешь. Если не бахнет, значит все хорошо 🙂 .

После проверки нужно закрыть пластроном:

Щит с закрытым пластроном

Далее подписываю назначение каждого автомата. Это надписи временные, на период ремонта. В конце ремонта я выдаю пояснительные наклейки с надписями и пиктограммами.

Щит с закрытым пластроном и временными подписями карандашом

 

5. Электровыводы

Как обычно, в конце статьи подвожу итоги.

  • Этот щит для частного дома с генератором.
  • Генератор будет с ручным включением.В щите предусмотрен переключатель “Сеть-Генератор”.
  • Для запуска генератора нужно переключить этот переключатель в нижнее положение и включить автомат подачи питания от генератора, который также находится в щите.
  • Есть отдельный трехфазный автомат на трехфазный электрический котел.
  • В щите предусмотрена защита линий от утечки токов – с помощью трех реле УЗО, по одному на каждую фазу.
  • Защита бытовой техники от скачков напряжения реализована с помощью реле контроля напряжения.
  • Автоматы защищают кабельные линии: освещение на каждое помещение, и розетки на каждое помещение.
  • Каждая бытовая техника имеет свой автомат в щите.
  • Посчитаны нагрузки и относительно равномерно распределены по трем фазам.
  • Общий автоматический выключатель является второй ступенью защиты и отключается в случае, когда не сработал нижестоящий автомат.

 

Чтобы заказать проект и сборку электрощита, обращайтесь:

066-100-93-21.

почта:  [email protected]

Алексей,

инженер-проектировщик по электрике и автоматике, электромонтажник.

Инструкция по сборке 3-х фазного электрощита

Инструкция по самостоятельной сборке трехфазного электрического счита.


Содержание:

В данном материале мы рассмотрим процесс сборки 3-х фазного электрического щита наружной установки. В первую очередь нужно определиться с размерами и материалом щита. Выбирать размер бокса нужно исходя из размеров счетчика электроэнергии и количества устанавливаемых коммутационных и защитных аппаратов. В минимальный набор могут войти трех- или четырехполюсное отключающее устройство устанавливаемое перед счетчиком электроэнергии, электрический счетчик и вводной автоматический выключатель. Отключающее устройство позволяет производить замену счетчика и автоматических выключателей без отключения питающей линии. Номинальный ток отключающего устройства, счетчика прямого включения и вводного автомата должны соответствовать установленной мощности согласованной с энергоснабжающей организацией. В случае если от щита будут питаться несколько отдельно стоящих строений (дом, гараж, баня, хозяйственные постройки и т. д.) в щите размещают соответствующее количество автоматов отходящих линий.


Что касается материала щитка, то предпочтение лучше отдать герметичному металлическому боксу. Однако следует помнить, что металлический щит в обязательном порядке должен быть заземлен. Заземление металлического распределительного щита может быть выполнено двумя способами. Если трехфазный ввод осуществляется с помощью пятипроводной питающей лини, в которой нулевой провод (PN) и провод защитного заземления (PE) разделены, то тогда заземление щитка осуществляется присоединением к корпусу проводника PE. Следует обратить внимание, чтобы кроме корпуса щитка также была заземлена и металлическая дверца бокса. Присоединение дверцы к заземлению выполняют с помощью перемычки из гибкого провода. Заметим, что провод защитного заземления PE имеет желто-зеленую окраску.

В случае, если ввод осуществляется с помощью четырехпроводной питающей линии, то придется выполнить повторное заземление совмещенного нулевого защитного провода PEN. Просто так присоединять этот провод к корпусу металлического бокса нельзя. Поясним, почему это запрещается. Представим себе, что в питающей линии произошел обрыв нулевого провода. Тогда при включении любой лампочки или другой нагрузки фаза вернется на корпус щитка, что чревато поражением электрическим током при прикосновении. В случае если выполнить повторное заземление нулевого провода не представляется возможным, то нужно использовать пластиковый бокс.

Предварительная сборка электрического щита

Установку и выполнение электрических соединений счетчика, автоматических выключателей, УЗО, дифавтоматов, клеммников внутри электрического щитка лучше выполнять в мастерской на столе. Это намного удобнее, чем проделывать эти операции на улице. При этом скорость сборки и качество монтажа оказываются более высокими.

Практически все коммутационные и защитные электрические аппараты современная промышленность выпускает в модульном исполнении под DIN-рейку. Наиболее распространенная 35 мм DIN-рейка представляет собой металлический профиль, на который очень просто крепятся модульные аппараты и электроустановочные изделия. Для установки на рейку в модулях предусмотрен специальный паз и механическая защелка фиксирующая модуль на рейке. На рисунке показаны модульные аппараты и клеммник установленные на DIN-рейку.


Помимо счетчика и защитных аппаратов, на DIN-рейку устанавливают клеммники для подключения нулевого провода и провода защитного заземления. Нулевой клеммник имеет синюю окраску, зеленые клеммники применяют для подключения заземления.
Соединения аппаратов между собой внутри щитка выполняют согласно монтажной схеме с помощью отрезков провода необходимой длины. Концы проводов зачищают так, чтобы обеспечивался надежный электрический контакт, но при этом не было видно оголенных участков провода. Сечение проводов должно соответствовать расчетному току. В случае применения многопроволочных проводников нужно использовать специальные наконечники, которые напрессовывают на концы провода. Применение наконечников позволяет получить качественный контакт в винтовых зажимах автоматов и счетчика. Перемычки фазных проводов между автоматами, установленными в ряд тоже можно выполнить из провода, но лучше использовать стандартные перемычки – «гребенки» промышленного производства. Производители предлагают как однофазные, так и трехфазные гребенки на разное количество соединяемых между собой автоматов. На рисунке показана трехфазная гребенка.


После установки аппаратов на DIN-рейку и выполнения всех электрических соединений нужно внимательно свериться с монтажной схемой и проверить затяжку винтовых контактов. Практика показывает, что при применении модульных аппаратов, стандартных клеммников, наконечников и гребенок на сборку электрического щита у квалифицированного монтера уходит совсем немного времени.


Установка собранного щита и подключение кабелей

Собранный электрический щит крепят к стене дома с помощью анкерных болтов или дюбель гвоздей подходящего размера. Если бокс устанавливается на столб, то обычно используют специально изготовленный бандаж. После этого в щит заводят питающие и отходящие провода и кабели. Предпочтительно заводить кабели снизу щита, используя уплотнительные фитинги. Такой способ ввода кабелей позволяет предотвратить попадание влаги внутрь щита. Снаружи кабели должны быть защищены с помощью металлорукава или отрезков металлического уголка. Защитные рукава должны быть заземлены. Кабели должны быть промаркированы с помощью бирок с указанием потребителя, марки и сечения жил. Назначение жил кабеля должно быть помечено цветом, нанесением надписей или специальными бирками. Напомним, что для фазных проводов используют белый, черный, красный, оранжевый и коричневый цвет. Нулевой провод должен окрашиваться в синий цвет или иметь голубую полосу, если изоляция белая. Заземляющие провода должны иметь желто-зеленую окраску.

Выключатель дифференциального тока ВД1-63 (УЗО): обзор, схема подключения

Схема подключения УЗО и автоматов

УЗО необходимо подключать вместе с автоматическим выключателем. Допустим, можно поставить на линию одно УЗО и пару автоматов. Существует два самых распространенных способа подключения УЗО и автоматов.

В первом случае следует поставить на всю электрическую сеть одно УЗО. У этого способа есть два очевидных недостатка: во-первых, при поломке очень трудно будет определить, на каком конкретно участке сети это случилось ; во-вторых, при срабатывании УЗО возможно выключение всего питания в сети.

Во втором случае УЗО необходимо установить на каждую линию в отдельности. Таким образом, как только сработает подобное устройство, электрический ток отключится исключительно на поврежденном отрезке сети. Остальная часть сети продолжит функционировать в обычном режиме. Разумеется, этот способ более затратный, чем первый, и для такой установки УЗО необходимо больше свободного места в щитке.

Схема подключения трехфазного УЗО

Подобная электрическая схема подключения УЗО поможет обеспечить одновременную защиту однофазных и трехфазных потребителей. В подобной схеме обычно совмещены «земляная» шина и нулевая шина. В такой ситуации счетчик электрической энергии следует установить между УЗО и автоматическим выключателем. В принципе, подключение трехфазного УЗО происходит по аналогии с однофазным. Разница лишь в количестве фаз.

Схема подключения однофазного УЗО

Главным правилом при использовании схемы подключения однофазного УЗО является использование предохранителя, который сможет защитить как УЗО, так и электрический счетчик. Еще не будет лишним установить автоматический выключатель, который сам отключится, если будет подан повышенный ток. Ток отключения у автомата не должен превышать рабочий ток УЗО. Таким образом, с помощью выключателя и предохранителя можно максимально защитить УЗО.

Также важным является использование нейтрального провода и его подключение к УЗО. Чтобы правильно подключить нейтральный провод, следует обратить внимание на особый символ на корпусе УЗО, который показывает, к какой клемме нужно подсоединить провод. Помните, что в случае неправильного подключения нейтрального провода (например, к фазной клемме) устройство может выйти из строя. Чтобы УЗО работало корректно, необходимо, чтобы нейтральный провод был подключен к «земле», а не к контакту, на который подается напряжение!

Схема подключения ВД1-63 (УЗО)

Выключатель дифференциальный ВД1-63 (УЗО) рассчитан на длительную непрерывную работу в течение не менее 15 лет. Он предназначен для функционирования при рабочем напряжении 230/400 B (в зависимости от типа исполнения), номинальной частоте 50 Гц и номинальной силе тока 16, 25, 32, 40, 50, 63, 80, 100 А. Максимальное сечение проводов ввода / вывода – 50 мм², износостойкость (цикл В-О) механическая – не менее 10 000, износостойкость электрическая – не менее 4 000 циклов. Степень защиты – IP20 (ГОСТ 14254). Схема подключения ВД1-63 (УЗО) представлена ниже:

Выключатель дифференциальный ВД1-63 (УЗО) не имеет защиты от короткого замыкания и токов перегрузки. Поэтому при его установке обязательно наличие предохранителя или автоматического выключателя с меньшим или равным номинальным током. При обрыве нулевого провода работоспособность выключателя сохраняется.

Схема подключения УЗО без заземления

Несмотря на многочисленные споры, схема подключения УЗО без заземления работает ничуть не хуже, чем с заземлением. И защитные свойства устройства также не снижаются. Если подключить УЗО без заземления, то можно обеспечить возможность отключиться автоматически напряжению при попадании тока в проводники, которые для него не предназначены.

Одним из таких проводников может оказаться и человек. Также при схеме подключения УЗО без заземления можно не беспокоиться о пожаре, так как утечка тока, если и произойдет, то случится на заземленную часть конструкции, а не на заземляющий провод. Таким образом, схема подключения УЗО без заземления ничуть не хуже аналогичной с заземлением.

Подключение УЗО по ветке нейтрали

После противопожарного закрепляем нулевой проводник на общую нулевую шину. Далее от общей нулевой шины заводится проводник на и. автомат.

Причем после последнего приспособления нулевой проводник прокладывается прямо к нагрузке, поскольку автомат работает в автономном режиме и может обеспечивать, например, лишь стиральную машину либо только специально выделенную компьютерную сеть.

Далее нулевой проводник после ведем к шине. К последней подключаются нулевые проводники розеток. Если произойдет утечка тока в определённой группе розеток, то сработает. Практически идентичная схемас подключенной группой розеток. Данная схема работает достаточно корректно.

Подключение УЗО компании Legrand

Устройство защитного отключения (УЗО) предназначено для обеспечения защиты людей от поражения электрическим током при возникновении короткого замыкания, перегрузок в сети и замыканий на землю. Также УЗО защищают здания от пожара в случае возникновения коротких замыканий и возгорания проводки. Еще одна функция УЗО – защита оборудования от перегрузок и выхода из строя в случае неполадок в питающей сети.

Современные условия эксплуатации электрической проводки требуют непременной установки УЗО в жилых и нежилых помещениях. Вложения на этапе проектирования и прокладки электрической сети многократно окупятся в процессе эксплуатации.

Сегодня множество компаний предлагают разнообразные модели и типы данных изделий. Так французская компания Legrand

изготавливает УЗО серии DX с номинальным током до 80А и током утечки до 300 мА.

Подключение УЗО Legrand

должно осуществляться непосредственно в распределительном электрическому шкафу сразу же после электросчетчика. Такая схема обеспечивает наиболее полную защиту от всевозможных утечек и замыканий. На рисунке представлена схема включения УЗО в однофазную сеть. В случае трехфазной сети принципиальных отличий от данной схемы не будет.

Если обратиться к данной схеме, то при возникновении какой-либо утечки в сети вся система будет обесточена, что в некотором смысле является недостатком данного варианта монтажа. Если же обесточивание всей сети критично, можно организовать подключение УЗО Legrand

на том участке цепи, на котором наиболее вероятно возникновение утечки или замыкания.

Любое устройство может сломаться, и УЗО в этом плане не исключение. Для проверки работоспособности изделия на нем предусмотрена тестирующая кнопка, имитирующая неисправность сети и вызывающая срабатывание защиты.

Старые электротехнические приборы, например, светильники и другие, грешат постоянными утечками на корпус. В таком случае УЗО будет срабатывать довольно часто. Поэтому при установке системы защиты стоит провести ревизию ваших приборов и неисправные заменить.

Сегодня купить УЗО не составляет никакой проблемы. Однако, стоит серьезно подойти к выбору модели и типа изделия, так как цена на данные устройства напрямую связана с их функционалом и техническими параметрами.

А кто с этим спорит. По тексту несколько раз об этом упоминалось, кроме того, человек дошедший своим умом до ДСУП, знает это как аксиому, одно без другого не существует

Система ДСУП может устанавливаться ТОЛЬКО в случае разделения заземляющего и нулевого проводника на ГРЩ дома. Т.е. система в квартире должна быть трехпроводной, а в этажном щитке 5-проводной. Объединять нулевой и заземляющий проводники ЗАПРЕЩЕНО. В квартирах старой постройки не делали разделения на заземляющий и нулевой проводник, и эти оба проводника объеденены на всём участке электропроводки в один совмещенный заземляюще-нулевой проводник (в квартире двухпроводная разводка). В таком случае, при присоединении системы ДСУП к объединенному заземляюще-нулевому проводнику в коробке ДСУП, а также к присоединемых к нему объектах: ванных, душевых поддонах может оказаться опасный для человека электрический потенциал. Поэтому, прежде чем делать у себя систему ДСУП необходимо поинтересоваться какого типа электропроводка выполнена в вашем доме.

Очень серьезный недостаток первой схемы в том, что ее поведение абсолютно непредсказуемо в случае пропадания питания обоих источников, с последующим ОДНОВРЕМЕННЫМ их включением.

Александр, во-первых, с датчиком движения нельзя устанавливать светодиодные лампы, зайдите в любой магазин самообслуживания, выньте и прочитайте иструкцию по установки датчика. Во-вторых, нальзя на одной линии ставить разные типы ламп. Об этом тоже написано в инструкции для энергосберегающих и светодиодных ламп. Не стоит в люстру, например, вкручивать лампу накаливания со светодиодными и энергосберегающими, т.е. городить огород, и об этом тоже написанов инструкции к лампам. К тому же не рекомендуется с энергосберегающими и светодиодными лампами использовать выключатель с подсветкой. Потому что выключенные лампы могут моргать, а это существенно сократит их ресурс, особенно у энергосберегающих лампочек — это те же люминисцентные, только за счёт введения в состав люминофора редкоземельных элементов удалось уменьшить их размер. Такие лампы после включения должны гореть 15-20 минут, затем их можно выключить и обратно включить так же через 15-20 минут. Такой режим эксплуатации этих лампочек позволит выработать их ресурс полностью. В противном случае, если ими щёлкать как попало, они прослужат недолго. Но вообще то, Александр, читайте все бумажки-инструкции до того, как начали чем то пользоваться.

День добрый! Насчет остановки счетчика при малых нагрузках знаю (дело в самой механике, время берет свое, потому и требуют сейчас сменить подобные счетчики), но насчет обратного хода сказать ничего не могу. По поводу остальной части вопроса требуются подробности, пока не совсем уловил, что Вы имели ввиду. В сети у нас переменный ток и деление на «фазу» и «ноль» в трехфазной сети довольно условное понятие (в отличии от постоянного тока).

Автомобильное подъемное устройство для инвалидов «Panorama» (Германия)

• Подъемные устройства запатентованы как самые легкие на рынке подъемников для автомобилей. • Обладают уникальным дизайном • Могут одинаково быть.

Автомобильное подъемное устройство для инвалидов «Solid» (Германия)

• Подъемные устройства запатентованы как самые легкие на рынке подъемников для автомобилей • Обладают уникальным.

Автомобильное подъемное устройство для инвалидов «Split» (Германия)

• Подъемные устройства запатентованы как самые легкие на рынке подъемников для автомобилей. • Обладают уникальным дизайном • Могут одинаково быть.

Автомобильный кассетный лифт «K90» и «К90 Аctive» (Германия)

• Подъемные устройства запатентованы как самые легкие на рынке подъемников для автомобилей. • Обладают уникальным дизайном: обеспечивают нулевой.

Ванна надувная «Armed»

Ванна предназначена для упрощения работы человека, ухаживающего за лежачим больным или пожилым человеком. Ванна позволяет не только помыть.

Вас приветствует Александр Ковалёв (г.Санкт-Петербург). По профессии техник-электрик и стажем работы c 1994 года. Сертифицированный специалист фирм Schneider Electric. Gira. Jung. Vimar. Предлагаю свои услуги по любым электромонтажным работам. • Подробнее о мастере.Блог Александра.Обратная связьОтзывы о работеОставить отзыв+7Бесплатная консультацияЧитайте меня в:

«Горячий паяльник выглядит точно так же, как и холодный.

«

Вы можете подписаться на рассылку новостей. В рассылку включается информация о новых публикациях на сайте. Для этого:

Функции противопожарного УЗО

К основным функциям противопожарного УЗО относят:

  • Контроль состояния вводного кабеля и его защита.
  • Контроль и защита линий потребителей, в которых дифференциальная защита не установлена.
  • Анализ исправности электрической схемы после модуля на предмет тока утечек через изоляцию.
  • Резервирование (дополнительная ступень защиты) расположенных ниже защит при их отказе и продолжающемся развитии аварийного режима.

Более подробно остановимся на функции резервирования, и отметим, что поскольку УЗО — быстродействующий выключатель, то при использовании обычных вариантов с уставкой 100 — 300 мА не удастся обеспечить селективность последовательно включенных устройств защитного отключения по дифференциальному току. Поэтому, при всплеске тока утечки до многократного значения от номинального отключающего дифференциального тока, во избежание одновременного срабатывания последовательно включенных устройств, основное УЗО должно иметь задержку по времени — селективность.

В качестве противопожарных (резервных) устройств применяют только селективные УЗО типа «S», имеющие выдержку времени на срабатывание 120-60 мс.

Инструкция и схемы подключения УЗО

В каждом доме, в каждой городской квартире имеется просто огромное количество бытовых приборов и техники, работающей за счет электричества. Для нормальной работы этого оборудования необходимо установить в помещении специальное устройство, так называемое УЗО. В ином случае, вся аппаратура будет находиться в непосредственном риске. В том случае, если до этого времени с этим устройством не было возможности столкнуться, то в данной статье будет рассказано что такое УЗО и как его подключить по всем правилам. Но первоначально необходимо будет разобраться, для чего именно необходимо это устройство.

На рисунке представлены варианты подключения УЗО

Правила подключения

Осуществлять установку контролирующего устройства данного типа необходимо по ряду причин. В первую очередь УЗО было разработано специально для того, чтобы защитить человека от поражения электрическим током. Особенно это касается тех моментов, когда в системе существуют реальные неполадки. Затем оно необходимо для того, чтобы предотвратить утечки тока. И в конце концов прибор предназначается специально для того, чтобы предотвратить возгорание и воспламенение электрической проводки в случае образования короткого замыкания. Так что, существует минимум три причины, по которым без этого аппарата не возможно обойтись.

Для того, чтобы подключить устройство защиты, необходимо следовать ряду определенных правил:

  • УЗО необходимо подключать после вводного аппарата.
  • В соответствии с нормами через него должен проходить «0» и фаза той электрической цепи, которая особенно нуждается в дополнительной защите.
  • Следует использовать специальные технические элементы для монтажа УЗО.

Внимание! Некоторые интересуются: можно ли подключить УЗО без заземления? Специалисты утверждают, что да, этот вариант возможен.

Единственное что требуется помнить – это необходимость создание и сборки цепи по определенной схеме, которая существенно отличается от привычных.

Как правильно подключить?

Для того чтобы подключить устройство защиты в частном доме или в городской квартире, необходимо учитывать метод и тип подключения:

  • как подключить УЗО и автоматы – по правилам не следует подключать УЗО перед автоматом, потому как устройство не сможет нормально функционировать в нормальном режиме. Питание к прибору следует подводить сверху;

Подключение УЗО в щитке на фото

как подключить УЗО в щитке – в этом случае УЗО будет защищать всю квартиру в целом. Этот способ является самым простым для подключения УЗО; как подключить УЗО без заземления – при подключении УЗО без заземления необходимо пользоваться схемой, которая представлена ниже;

Подключение УЗО без заземления на снимке

как подключить УЗО в двухпроводную сеть – является одним из самых распространенных методов подключения устройства защиты в электрическую сеть; подключение УЗО в трехфазной сети с заземлением – в данном конкретном случае зачастую отсутствует нейтраль. Применяют лишь фазные электрические кабели (без применения обмотки). Останется пустая клемма нуля; подключение УЗО в цепь электропроводки – защитное устройство является немаловажным элементом любой системы электрической проводки. Это позволит избежать форс-мажоров в квартире и частном доме;

На фото подключение УЗО в цепь электропроводки

подключение четырехполюсного УЗО – этот вариант на данный момент является наиболее распространенным. Принципиально этот вариант ничем не отличается от подключения в однофазную сеть. Фактически меняется число полюсов и магистральных подключений; УЗО на две фазы подключения 10 ма – этот вариант предполагает срабатывание защитного устройства при появлении электрической утечки от пяти до десяти мА; подключение УЗО и автомата схема 380 в — в цепь с такими показателя специалисты рекомендуют подключать УЗО четырехполюсного типа.

Следует понимать, что подключать прибор необходимо только при выключенном щите. В случае реальной необходимости следует приобрести одно мощное устройство и установить его на весь многоквартирный дом. Но стоит понимать, что этот вариант предполагает использования аппарата с высоким уровнем напряжения. Чтобы избежать ошибок и возможных проблем, нужно присоединять все элементы последовательно.

Чтобы избежать реальных проблем при подключении, необходимо следовать определенной схематической расстановке. Для этого следует использовать следующие схемы врезания УЗО и автоматов аbb:

Схема подключения УЗО в однофазной сети

Подключение УЗО без заземления на схеме

Схема подключения УЗО с заземлением

Подключение трехфазного УЗО на схеме

Схема подключения нескольких УЗО

УЗО Legrand на схеме подключения

Внимание! При несоблюдении норм и правил подключения, указанных на принципиальной схеме, могут возникнуть реальные проблемы с работой оборудования.

Ошибки подключения

Монтаж УЗО выполняется людьми, так что не стоит исключать возможность появления ошибок. Для того чтобы избежать форс-мажоров, необходимо знать о самых распространенных ошибках:

  • Не следует заводить питающую жилу снизу корпуса устройства. При неправильном подведении питания аппарат может попросту выйти из строя.
  • Не следует устанавливать автоматический выключатель после УЗО. Устройство при таком подключении попросту не сработает. Как следствие, электрическая сеть будет представлять большую опасность для человека.
  • Не стоит использовать местные защитные устройства на большую электрическую сеть. В данном случае может возникнуть утечка. Из-за этих утечек может произойти полное отключение от электричества всего здания.

После того как будет выполнено подключение необходимо будет проверить аппарат в работе. УЗО не должно срабатывать ни в ложных ситуациях, ни при других случайностях. Для тестирования необходимо будет перед непосредственным местом «врезки» устройства включить автомат и создать определенную нагрузку на него. Специально для этого, нужно включить в электрическую сеть прибор. Если при включении приборов в сеть не произошло никаких изменений, то УЗО работает нормально.

Смотрите на видео ошибки при подключении УЗО:

Также необходимо не забывать еще и о том, что после включения его в сеть и при срабатывании прибора, нужно обязательно определить место утечки. Чтобы провести все тесты без лишних проблем, стоит воспользоваться кнопкой, расположенной на корпусе прибора, которая носит название «ТЕСТ».

Окт 5, 2015 Татьяна Сумо

Источники:

Создание современной внутриквартирной электросети – ответственное мероприятие, связанное с расчетами, выбором проводов и электроустановок, монтажными работами. При этом одной из главных задач остается обеспечение безопасности жильцов и сохранности имущества. Вы согласны?

Если правильно подобраны защитные приборы и продумана схема подключения УЗО и автоматов, все риски снижаются до минимума. Но как это сделать? Что учесть при выборе? На эти и многие другие вопросы мы ответим в нашем материале.

Также вы сможете разобраться в принципе действия УЗО и вариантах его подключения. Советы экспертов и нюансы монтажа собраны в этом материале. Кроме того, в статье размещены видеоролики, из которых вы узнаете о главных ошибках при подключении и увидите, как подключается УЗО на практике.

Назначение и принцип действия УЗО

В отличие от автомата, который предохраняет сеть от перегрузок и коротких замыканий, УЗО предназначено для мгновенного распознавания наличия тока утечки и реагирования путем отключения сети или отдельной электрической линии.

Поскольку эти два защитных прибора отличаются функционально, то оба должны присутствовать в схеме сборки.

Принцип работы УЗО прост: сравнение величин входящей и выходящей силы тока и срабатывание при обнаружении несоответствия.

Схема, показывающая работу прибора в случае, если происходит пробой фазы. Сначала срабатывает реле напряжения (РН), затем контактор (К)

Внутри корпуса автоматического устройства находится трансформатор с сердечником и обмотки с равномерными магнитными потоками, направленными в разные стороны.

При возникновении тока утечки выходной магнитный поток уменьшается, в результате чего срабатывает электрореле и размыкает питание. Это возможно, если человек прикоснется к заземленному прибору и электроцепи. В среднем, на это уходит от 0,2 до 0,4 секунды.

Существуют различные типы приборов, предназначенные для сетей с постоянным или переменным током. Одна из важных технических характеристик, которая обязательно присутствует в маркировке – сила тока утечки.

Для защиты жильцов дома выбирают устройства номиналом 30 мА. Там, где есть повышенный риск, например, санузлы с повышенной влажностью, игровые детские комнаты, устанавливают УЗО на 10 мА.

Более высокий номинал, например, 100 мА или 300 мА, предназначен для предотвращения пожара, так как крупные утечки тока способны вызвать возгорание. Такие устройства монтируют в качестве общего вводного УЗО, а также на предприятиях и крупных объектах.

УЗО (слева) не нужно путать с дифавтоматом (справа), который объединяет функции автоматического выключателя и защитного устройства отключения, то есть может срабатывать как от перегрузки, так и от тока утечки

АВДТ компактнее связки защитных приборов и занимает меньше места в электрошкафу, но при его срабатывании труднее найти причину отключения.

Схема установки выбирается в соответствии с поставленной задачей и видом сети – 1-фазной или 3-фазной. Если необходимо защитить дом или квартиру целиком от токовых утечек, УЗО устанавливают на входе силовой линии.

Противопожарная функция УЗО

Данные устройства получили свое название, исходя из функций защиты объектов от возгорания, а не людей от поражения электротоком. Особенно актуально противопожарное УЗО для деревянного дома, обладающего высокой степенью пожарной опасности. Для выполнения своего целевого назначения, у этих приборов установлен высокий порог срабатывания, составляющий 100, 300 и даже 500 мА.

Такие токи утечки, вызывающие срабатывание противопожарного УЗО, представляют смертельную опасность для человека. Поэтому они и не используются для защиты людей, а предназначены для предупреждения пожаров, которые могут возникнуть под действием значительных токов утечки.

Так, например, напряжение 220В и ток утечки 500мА создают условия для выделения тепла, равного тепловыделению обычной газовой зажигалки. Этого вполне достаточно, чтобы воспламенить материалы в районе точки утечки. Защита обеспечивается противопожарным устройством защитного отключения, отличающимся от обычных УЗО лишь высоким номиналом и ничем более.

По правилам проектирования электроустановок и нормам пожарной безопасности электросеть на входе в квартиру или коттедж должна иметь противопожарное УЗО. Это обычный дифференциальный выключатель, только имеющий более высокое значение тока утечки, нежели классические устройства защиты от поражения электротоком.

При выборе подобного прибора, предназначенного для предотвращения пожара, необходимо соблюсти ряд условий. Его установка также предполагает выполнение специфических требований электромонтажа.

Давайте разберемся в особенностях работы этого устройства, сфере его применения и ключевых особенностях на которые нужно обратить внимание выбирая это оборудование.

Варианты защиты для однофазной сети

О необходимости монтажа комплекта защитных приборов упоминают производители мощной бытовой техники. Нередко в сопроводительной документации к стиралке, электроплите, посудомойке или бойлеру указано, какие устройства необходимо дополнительно установить в сеть.

Однако все чаще используется несколько приборов – по отдельным контурам или группам. В этом случае устройство в связке с автоматом (-ми) монтируется в щитке и соединяется с определенной линией

Учитывая количество различных контуров, обслуживающие розетки, выключатели, технику, максимально нагружающую сеть, можно сказать, что схем подключения УЗО бесконечное множество. Рассмотрим популярные варианты, которые являются основными.

Вариант #1 – общее УЗО для 1-фазной сети.

Место УЗО – на входе силовой линии в квартиру (дом). Его устанавливают между общим 2-полюсным автоматом и комплектом автоматов для обслуживания различных электролиний — осветительных и розеточных контуров, отдельных ответвлений для бытовой техники и др.

Если на каком-либо из отходящих электроконтуров возникнет ток утечки, защитное устройство тут же отключит все линии. В этом, безусловно, его минус, так как нельзя будет точно определить, где именно неисправность

Предположим, что произошла утечка тока из-за соприкосновения фазного провода с включенным в сеть металлическим прибором. УЗО срабатывает, напряжение в системе пропадает, и найти причину отключения будет довольно сложно.

Положительная сторона касается экономии: один прибор стоит дешевле, да и места в электрощите занимает меньше.

Вариант #2 – общее УЗО для 1-фазной сети + счетчик.

Отличительной чертой схемы является наличие прибора учета электроэнергии, установка которого обязательна.

Защита от утечки тока так же подключается к автоматам, но на входящей линии к ней присоединен счетчик.

Если необходимо перекрыть подачу электроэнергии в квартиру или дом, отключают общий автомат, а не УЗО, хотя они установлены рядом и обслуживают одну и ту же сеть

Преимущества такого расположения те же, что и у предыдущего решения – экономия пространства на электрощите и денег. Недостаток – сложность обнаружения места утечки тока.

Вариант #3 – общее УЗО для 1-фазной сети + групповые УЗО.

Схема является одной из усложненных разновидностей предыдущего варианта.

Благодаря установке дополнительных приборов на каждый рабочий контур защита от токов утечки становится двойной. С точки зрения безопасности — это отличный вариант.

Предположим, произошла аварийная утечка тока, а подключенное УЗО контура освещения по какой-то причине не сработало. Тогда реагирует общее устройство и отключает уже все линии

Чтобы сразу не срабатывали оба аппарата (частный и общий), необходимо соблюдать селективность, то есть при установке учитывать и время срабатывания, и токовые характеристики приборов.

Положительная сторона схемы – в аварийной ситуации отключится один контур. Крайне редко происходят случаи, когда отключается вся сеть.

Это может произойти, если установленное на конкретной линии УЗО:

  • бракованное;
  • вышло из строя;
  • не соответствует нагрузке.

Минусы – загруженность электрощитка множеством однотипных приборов и дополнительные траты.

Вариант #4 – 1-фазная сеть + групповые УЗО.

Практика показала, что схема без монтажа общего УЗО тоже неплохо функционирует.

Конечно, страховки от несрабатывания одной защиты нет, но это легко исправить, купив более дорогостоящее устройство от производителя, которому можно доверять.

Схема напоминает вариант с общей защитой, но без установки УЗО на каждую отдельно взятую группу. Отличается важным положительным моментом – здесь легче определить источник утечки

С точки зрения экономии, электромонтаж нескольких устройств проигрывает – один общий обошелся бы намного дешевле.

Защита оборудования для однофазной сети

В однофазной сети ток протекает по двум проводникам – фазном (L) и нулевом (N). Напряжение составляет 220В, частота – 50 Гц. Такие электросети устанавливают в квартирах, частных домах, общественных зданиях. Суммарная мощность пикового потребления не должна превышать 10 кВт.

Для установки УЗО нужен третий проводник – заземление (PE). Его функцией является защита от воздействия тока методом снижения напряжения прикосновения. Подключение устройства защитного отключения осуществляется только при наличии заземляющей линии в схеме.

Общее УЗО для однофазной сети

Для создания стандартной схемы защиты дома можно использовать одно устройство защитного отключения, двухполюсный автомат. Система подключается к блоку автоматов, каждый из которых обслуживает отдельные линии электросети.

Порядок подключения:

  • Подключение двухполюсного автомата к фазе, нулю и заземлению.
  • Коммутация устройства с УЗО.
  • От устройства происходит распределение тока по отдельным линиям.

Преимущества: возможность самостоятельной установки, экономия места в распределительном электрощите.

Недостаток схемы – сложно определить место возникновения дифференциального тока величины.

Общее УЗО со счетчиком

Правильное подключение УЗО к сети частного дома, квартиры включает в себя установку прибора учета электроэнергии – счетчика. Автомат находится перед счетчиком, за ним следует устройство защитного отключения. Это позволяет защитить не только людей, бытовые приборы, но и прибор учета.

Особенности подключения:

  • Фаза и ноль от двухполюсного автомата подсоединяются к счетчику.
  • От прибора учета силовые линии направляются к защитному устройству.
  • От УЗО провода распределяются по основным автоматам сети.

Для подключения или переноса счетчика нужно предварительное согласование – сделать проект электроснабжения, электромонтажные работы, сдать электроустановку в эксплуатацию.

Общее УЗО с групповыми устройствами защитного отключения

Для выявления источника разности токов УЗО интегрируют в каждый контур совместно с автоматами. Преимущество этой схемы – двойная защита, так как остается основное устройство защиты, работающее с двухполюсным автоматом. Недостаток – сложность выбора режима работы схемы.

Возможные сложности:

  • Соблюдение селективности. Токовые характеристики и время срабатывания основного и вспомогательных УЗО должны отличаться. Иначе будет одновременное срабатывание устройств.
  • Электрощит должен вместить все элементы схемы.
  • Увеличение расходов на организацию электроснабжения.

В этой схеме можно определить линию, в которой произошла внештатная ситуация. Если подобраны приборы с правильными расчетными характеристиками, при перепаде напряжения произойдет отключение одной электролинии.

Групповые УЗО в однофазной сети

Для экономии средств можно исключить общее устройство защиты из схемы. Вместо него происходит установка двухполюсного автомата, который подключается к электросчетчику. Затем идет распределение электрических линий по группам (УЗО и автомат) для каждого контура электроснабжения.

Преимущества метода:

  • обеспечение защиты в совокупности с небольшими материальными затратами;
  • снижение трудоемкости;
  • можно определить источник утечки.

Характеристики устройств рассчитываются исходя из нагрузки каждой линии электросети. При неправильном выборе возможно ложное или несвоевременное срабатывание защиты.

Схемы для 3-фазной сети

В домах, производственных помещениях и прочих сооружениях может встречаться иной вариант обустройства электроснабжения.

Так, для квартир подключение 3-фазной сети нехарактерно, зато для оснащения частного дома такой вариант не редкость. Здесь будут использоваться иные схемы подключения аппарата защиты.

Вариант #1 – общее УЗО для 3-фазной сети + групповые УЗО.

Для сети 380 В 2-полюсного прибора мало, необходим 4-полюсный аналог: нужно подключить 1 нулевую жилу и 3 фазных.

Схема усложнена оборудованием каждой электролинии отдельным прибором УЗО. Это необязательно, однако дублированную защиту рекомендуется делать для дополнительного предохранения от токов утечки

Важен вид проводов. Для 1-фазной сети подходит стандартный кабель ВВГ, тогда как для 3-фазной рекомендуется протягивать более стойкий к возгоранию ВВГнг.

Вариант #2 – общее УЗО для 3-фазной сети + счетчик.

Это решение полностью повторяет предыдущее, но в схему добавлен счетчик электроэнергии. Групповые УЗО также включены в систему обслуживания отдельных линий.

Из всех представленных схем эта самая объемная в буквальном смысле, то есть требует установки большого электрощита с множеством проводов и подключенных электроприборов

Существует нюанс, который относится к любой из представленных схем. Если в квартире или доме несколько осветительных и розеточных контуров, несколько мощных бытовых приборов, требующих обустройства отдельных электролиний, то есть смысл устанавливать двойную защиту с общим УЗО.

В обратном случае достаточно либо общего аппарата, или по одному на каждый контур.

Инструкция по установке УЗО

Сначала нужно выбрать место для монтажа устройства. Применяются 2 варианта: щит или шкаф. Первый напоминает металлическую коробку без крышки, закрепленную на высоте, удобной для обслуживания.

Шкаф оснащен дверцей, которую можно закрывать на замок. Некоторые виды шкафов имеют отверстия, чтобы можно было снимать показания прибора учета, не распахивая специально дверцу, и отключать устройства.

Защитные приборы фиксируют на монтажных DIN-рейках, расположенных горизонтально. Модульная конструкция автоматов, дифавтоматов и УЗО позволяет разместить на одной рейке несколько штук

К левым клеммам на входе и на выходе всегда подключают нулевой провод, к правым – фазный. Один из вариантов:

  • входная клемма N (верхняя левая) – от вводного автомата;
  • выход N (нижняя левая) – на отдельную нулевую шину;
  • входная клемма L (верхняя правая) – от вводного автомата;
  • выход L (нижняя правая) – к групповым автоматам.

К моменту установки защитного устройства на щите уже могут быть установлены автоматические выключатели. Чтобы упорядочить расположение приборов и проводов, возможно, придется переставить устройства в определенном порядке.

Представляем пример установки вводного УЗО в электрошкаф, где уже стоит счетчик, вводный автомат и несколько автоматических выключателей для отдельных контуров — осветительного, розеточного и др.

Галерея изображений

Фото из

Размеры щита (ШУЭ, ЩУЭ, ШР) зависят от количества размещенных внутри устройств. Лучше подбирать изделие с небольшим запасом для установки новых автоматов и УЗО

На дин-рейке, в один ряд, предварительно установлены (слева направо) домашний прибор учета электроэнергии, затем один вводный выключатель и 5 групповых автоматов

Лучшее решение для установки, обоснованное работой приборов, – место между вводным автоматом и остальными устройствами, обслуживающими отдельные линии (розеточную и др.)

От нижней левой клеммы фазный проводник тянется к верхней клемме среднего автомата, а нуль – к заземляющей шине, которая расположена ниже. Верхняя фаза – от вводного автомата, ноль – от счетчика

Металлический распределительный щит марки IEK

Комплект защитных устройств перед монтажом УЗО

Выбор места для монтажа УЗО

Порядок подключения проводов к прибору

Никогда не подключают УЗО на входе – оно всегда следует за общим вводным автоматическим выключателем. Если используют счетчик, то устройство защитного отключения переходит на третью позицию от входа.

Описание процесса подключения:

  • устанавливаем прибор на DIN-рейку справа от автомата – достаточно приложить его и надавить с небольшим усилием до щелчка;
  • протягиваем разделанные и зачищенные провода от автомата и нулевой шины, вставляем в верхние клеммы согласно схеме, закручиваем крепежные винты;
  • таким же образом вставляем провода в нижние клеммы и закручиваем винты;
  • тестируем – сначала включаем общий автомат, затем УЗО, нажимаем кнопку «Тест»; при нажатии прибор должен отключиться.

Чтобы убедиться в правильности подключения, иногда инсценируют ток утечки. Берут два рабочих провода – «фазу» и «землю», одновременно подводят к цоколю электролампы. Появляется утечка, и прибор должен моментально сработать.

Принцип работы ВД1-63 (УЗО) в системе отопления «греющий потолок»

При нормальной работе системы магнитные потоки компенсируют друг друга, поэтому результирующий поток равняется нулю. Якорь дифференциального реле прижат к ярму, где удерживается магнитом. При появлении дифференциального тока, превышающего заданное значение (уставку), возникает магнитный поток в обмотке расцепителя, который отрывает якорь от ярма. В этом случае срабатывает механизм расцепления, силовые контакты размыкаются, ВД1-63 отключает нагрузку от сети.

Каждый дифференциальный выключатель оснащается устройством контроля (кнопка «Тест»). При запуске устройства эксплуатационного контроля происходит имитация появления превышающего номинальное значение дифференциального тока. Это позволяет убедиться в корректности работы электромеханического аппарата ВД1-63 (УЗО).

Если нажать кнопку «Тест» на подключенном к сети устройстве, то оно должно сработать, о чем свидетельствует красный сектор в окне визуального контроля, который указывает на отключение контактов системы. Мгновенное срабатывание устройства подтверждает его работоспособность. При необходимости переведите рукоятку управления в положение «I» – «Вкл». Использование кнопки «Тест» в ходе первоначального запуска отопительной системы позволяет убедиться в ее нормальном функционировании и правильном подключении. Если выключатель не срабатывает, значит, система отопления работает корректно.

При проектировании и установке инфракрасных систем отопления типа «греющий потолок» наша компания обязательно предусматривает установку дифференциальных выключателей. Для этого мы рекомендуем использовать выключатель дифференциальный ВД1-63 (УЗО) с номинальным отключающим показателем дифференциального тока 100 mA или 300 mA.

Если вы не имеете опыта самостоятельного монтажа защитной аппаратуры, то настоятельно рекомендует приглашать для работ в силовом электрическом щите только квалифицированных специалистов.

Каких ошибок следует избегать?

Перед подключением обязательно следует перепроверить технические характеристики устройств. Номинальный ток должен быть равным или выше, чем аналогичный параметр у входного автомата. Определить значения легко по маркировке.

Электрики рекомендуют выбирать защитное устройство на ступень выше, то есть для автомата на 50А подходит УЗО 63А.

Можно правильно рассчитать параметры, выбрать автомат и УЗО с верным номиналом, но при монтаже допустить небольшую ошибку, вследствие чего система будет бесполезной.

Например, новички часто путают шины. Следует запомнить, что для нулевого проводника и заземляющего провода использую разные шины. Кроме этого, для каждого устройства необходима отдельная шина: на 5 УЗО – 5 шин.

Какую бы схему подключения вы не использовали, проводник заземления в ней участвовать не будет. Все клеммы предназначены либо для фазного провода (нагрузки), либо для нулевого (нейтрали)

Ни в коем случае нельзя путать полюса N и L. Они имеют на корпусе буквенные обозначения, а провода отличаются цветом, поэтому нужно быть внимательным.

Если происходит ложное срабатывание или, напротив, прибор не реагирует, возможно, причина в следующем:

  • «фаза» и «земля» соединены после УЗО;
  • неполное подключение – не вставлен проводник N в соответствующую клемму;
  • «нуль» и «земля» соединены в розетке;
  • путаница между подключением двух и более УЗО к электроустановкам.

На практике ошибок гораздо больше, так как применяются разные схемы. Чем больше приборов участвует в сборке электрощита, тем внимательнее нужно быть при подключении.

Ошибки подключения

Во время составления схемы или монтажа могут появиться ошибки, влекущие за собой неправильное функционирование системы или ее полную неработоспособность. Их можно избежать до окончательного запуска, когда большая часть проводов будет скрыта, а устройства установлены.

Частые ошибки подключения:

  • Значение номинального тока. Он должен быть равен или выше, чем у входного автомата.
  • Несоблюдение полярности. Неправильно подключены входные и выходные ноль и фаза.
  • Неправильное группирование каждой электросети. Ноль подключается к другой линии или является общим контуром для всех. Приводит к ложному срабатыванию защиты.
  • Монтаж розеток. При соединении нулевого и соединяющего провода в них будет происходить ложное срабатывание УЗО при возникновении нагрузки.
  • Лишние перемычки, объединение нулевых проводов между двумя устройствами.

Для проверки правильности работы нужно использовать кнопку «Тест», а также имитацию появления тока утечки. Это делается до окончательного монтажа системы, чтобы исправить возможные ошибки.

Правила безопасности в процессе работы

Большая часть правил носит общий характер, то есть их необходимо применять в процессе любых электромонтажных работ.

Если вы решили самостоятельно оборудовать распределительный электрощит, перед тем как установить и подключить УЗО, не забудьте:

  • отключить электропитание – выключить автомат на входе;
  • использовать провода с соответствующей цветовой маркировкой;
  • не применять металлические трубы или арматуру в квартире для заземления;
  • в первую очередь устанавливать автоматический входной выключатель.

Если существует возможность, рекомендуется использовать отдельные приборы для линий освещения, розеток, контуров для стиральной машины и др. В обратном случае достаточно установки общего УЗО.

Для защиты детей все электроустановки из детской комнаты обычно объединяют в один контур и оборудуют отдельным прибором. Вместо УЗО можно использовать дифавтомат

Кроме характеристик самих приборов, важны и параметры других элементов электропроводки, например, сечение электропровода. Его следует рассчитать, учитывая постоянную нагрузку.

Соединять провода между собой лучше скруткой или с помощью клеммников, а для подключения к приборам – использовать специально предназначенные, промаркированные клеммы, а также схему на корпусе.

Выводы и полезное видео по теме

Несколько практических советов и объяснений помогут новичкам разобраться, как правильно выбрать и подключить УЗО в доме или квартире.

Ошибки при подключении розеток:

Сравнение подключения 2 вариантов – УЗО+автомат/дифавтомат:

О необходимости и нюансах установки защитных приборов:

Не всегда существует возможность вызова квалифицированного специалиста для оборудования распределительного электрощита. Иногда автоматы или УЗО приходится устанавливать самостоятельно.

Из-за оплошности при монтаже может произойти удар током, поэтому важно использовать схемы подключения, правильно делать расчеты и следовать правилам техники безопасности.

Разведение виски - молекулярная перспектива

  • 1.

    Gill, V. Тур по виски - это самый химически сложный напиток в мире? Виктория Гилл пытается раскрыть некоторые тайны шотландского солодового виски. Chem. World UK 5 , 40–44 (2008).

    CAS Google Scholar

  • 2.

    Кью В., Гудолл И., Кларк Д. и Урин Д. Химическое разнообразие и сложность шотландского виски, выявленные с помощью масс-спектрометрии высокого разрешения. J. Am. Soc. Масс-спектрометрия. 28 , 200–213 (2017).

    ADS CAS Статья Google Scholar

  • 3.

    Йоунела-Эрикссон, П. и Лехтонен, М. В Качество продуктов питания и напитков V1: Химия и технология (Elsevier Science, 1980).

  • 4.

    Лехтонен, М. Фенолы в виски. Chromatographia 16 , 201–203 (1982).

    CAS Статья Google Scholar

  • 5.

    Nie, Y. & Kleine-Benne, E. Определение фенольных соединений в виски с использованием прямого впрыска большого объема и сорбционной экстракции с мешалкой. Gerstel Glob. Анальный. Solut . AppNote 02/2012.

  • 6.

    Guo, J.-H. и др. . Молекулярная структура водно-спиртовых смесей. Phys. Rev. Lett. 91 , 157401 (2003).

    ADS Статья Google Scholar

  • 7.

    Диксит, С., Крейн, Дж., Пун, В. К. К., Финни, Дж. Л. и Сопер, А. К. Молекулярная сегрегация, наблюдаемая в концентрированном водно-спиртовом растворе. Nature 416 , 829–832 (2002).

    ADS CAS Статья Google Scholar

  • 8.

    Лам, Р. К., Смит, Дж. У. и Сайкалли, Р. Дж. Сообщение: взаимодействия водородных связей в водно-спиртовых смесях по данным рентгеновской абсорбционной спектроскопии. J. Chem. Phys. 144 , 1

    (2016).

    ADS Статья Google Scholar

  • 9.

    Takamuku, T., Saisho, K., Nozawa, S. & Yamaguchi, T. Рентгенографические исследования смесей метанол-вода, этанол-вода и 2-пропанол-вода при низких температурах. J. Mol. Liq. 119 , 133–146 (2005).

    CAS Статья Google Scholar

  • 10.

    Asenbaum, A. et al. .Структурные изменения в смесях этанол – вода: Ультразвук, рассеяние Бриллюэна и исследования молекулярной динамики. Виб. Спектрос. 60 , 102–106 (2012).

    CAS Статья Google Scholar

  • 11.

    Guo, J.-H. и др. . Молекулярная структура смесей спирта с водой определена методами мягкой рентгеновской абсорбционной и эмиссионной спектроскопии. J. Electron. Relat. Феном. 137–140 , 425–428 (2004).

    Артикул Google Scholar

  • 12.

    Нагасака М., Мочизуки К., Лелуп В. и Косуги Н. Локальные структуры бинарных растворов метанол-вода, исследованные с помощью мягкой рентгеновской абсорбционной спектроскопии. J. Phys. Chem. В 118 , 4388–4396 (2014).

    CAS Статья Google Scholar

  • 13.

    Бако И., Мегьес Т., Балинт С., Гросс Т. и Чихайя В.Смеси вода-метанол: топология сети с водородными связями. Phys. Chem. Chem. Phys. 10 , 5004–5011 (2008).

    CAS Статья Google Scholar

  • 14.

    Вензинк, Э. Дж. У., Хоффманн, А. К., ван Маарен, П. Дж. И ван дер Споул, Д. Динамические свойства смесей вода / спирт изучены с помощью компьютерного моделирования. J. Chem. Phys. 119 , 7308–7317 (2003).

    ADS CAS Статья Google Scholar

  • 15.

    Ранкин, Б. М., Бен-Амотц, Д., ван дер Пост, С. Т. и Баккер, Х. Дж. Контакты между спиртами в воде являются скорее случайными, чем гидрофобными. J. Phys. Chem. Lett. 6 , 688–692 (2015).

    CAS Статья Google Scholar

  • 16.

    Тарек, М., Тобиас, Д. Дж. И Кляйн, М. Л. Исследование молекулярной динамики равновесия поверхность / объем в растворе этанол-вода. J. Chem. Soc., Faraday Trans. 92 , 559–563 (1996).

    CAS Статья Google Scholar

  • 17.

    Стюарт, Э., Шилдс, Р. Л. и Тейлор, Р. С. Моделирование молекулярной динамики границы раздела жидкость / пар водных растворов этанола в зависимости от концентрации. J. Phys. Chem. В 107 , 2333–2343 (2003).

    CAS Статья Google Scholar

  • 18.

    Уилсон, М. А. и Похорилл, А. Адсорбция и сольватация этанола на границе раздела вода-жидкость-пар: исследование молекулярной динамики. J. Phys. Chem. B 101 , 3130–3135 (1997).

    CAS Статья Google Scholar

  • 19.

    Хаб, Дж. С., Калеман, К. и ван дер Споул, Д. Органические молекулы на поверхности капель воды - энергетическая перспектива. Phys. Chem. Chem. Phys. 14 , 9537–9545 (2012).

    CAS Статья Google Scholar

  • 20.

    Бен-Амоц, Д. Термодинамика межфазной сольватации. J. Phys.-Condens. Дело 28 , 414013 (2016).

    Артикул Google Scholar

  • 21.

    Хабартова, А., Обизесан, А., Минофар, Б. и Розелова, М. Частичная гидратация н-алкилгалогенидов на границе раздела вода – пар: исследование молекулярного моделирования с атмосферными последствиями. Теор. Chem. В соотв. 133 , 1455 (2014).

    Артикул Google Scholar

  • 22.

    Hanwell, M. D. et al. . Avogadro: расширенный семантический химический редактор, платформа для визуализации и анализа. J. Cheminform. 4 , 17 (2012).

    CAS Статья Google Scholar

  • 23.

    Halgren, T. A. Merck молекулярное силовое поле.I. Основа, форма, объем, параметризация и производительность MMFF94. J. Comput. Chem. 17 , 490–519 (1996).

    CAS Статья Google Scholar

  • 24.

    Фриш, М. Дж. и др. . Gaussian09. (Gaussian Inc., 2009).

  • 25.

    Пондер, Дж. У. и Кейс, Д. А. Силовые поля для моделирования белков. Adv. Protein Chem. 66 , 27–85 (2003).

    CAS Статья Google Scholar

  • 26.

    Wang, J., Cieplak, P. & Kollman, P.A. Насколько хорошо модель ограниченного электростатического потенциала (RESP) работает при вычислении конформационных энергий органических и биологических молекул? J. Comput. Chem. 21 , 1049–1074 (2000).

    CAS Статья Google Scholar

  • 27.

    Мартинес, Л., Андраде, Р., Биргин, Э. Г. и Мартинес, Дж. М. PACKMOL: пакет для создания начальных конфигураций для моделирования молекулярной динамики. J. Comput. Chem. 30 , 2157–2164 (2009).

    Артикул Google Scholar

  • 28.

    Case, D. A. et al . Программы биомолекулярного моделирования Amber. J. Comput. Chem. 26 , 1668–1688 (2005).

    CAS Статья Google Scholar

  • 29.

    Case, D. A. et al . ЯНТАРЬ 10 . (Калифорнийский университет, Сан-Франциско, США).

  • 30.

    Ван, Дж., Вольф, Р. М., Колдуэлл, Дж. У., Коллман, П. А. и Кейс, Д. А. Разработка и тестирование общего янтарного силового поля. J. Comput. Chem. 25 , 1157–1174 (2004).

    CAS Статья Google Scholar

  • 31.

    Берендсен, Х. Дж. К., Григера, Дж. Р. и Страатсма, Т. П. Отсутствующий член в эффективных парных потенциалах. J. Phys. Chem. 91 , 6269–6271 (1987).

    CAS Статья Google Scholar

  • 32.

    Mark, P. & Nilsson, L. Структура и динамика моделей воды TIP3P, SPC и SPC / E при 298 К. J. Phys. Chem. А 105 , 9954–9960 (2001).

    CAS Статья Google Scholar

  • 33.

    Тейлор Р. С., Данг, Л. X. и Гарретт, Б. С. Моделирование молекулярной динамики границы раздела жидкость / пар SPC / E воды. J. Phys. Chem. 100 , 11720–11725 (1996).

    CAS Статья Google Scholar

  • 34.

    Андох, Ю. и Ясуока, К. Двумерное сверхкритическое поведение монослоя этанола: исследование молекулярной динамики. Langmuir 21 , 10885–10894 (2005).

    CAS Статья Google Scholar

  • 35.

    Чикос, Дж. С.И Акри, У. Э. Энтальпии испарения органических и металлоорганических соединений, 1880–2002 гг. J. Phys. Chem. Ref. Данные 32 , 519–878 (2003).

    ADS CAS Статья Google Scholar

  • 36.

    Budavari, S., O’Neil, M., Smith, A., Heckelman, P. & Obenchain, J. The Merck Index, версия для печати, двенадцатое издание. (CRC Press, 1996).

  • 37.

    Grolier, J. & Wilhelm, E.Избыточные объемы и избыточные теплоемкости вода + этанол при 298,15-К. Равновесие жидкой фазы. 6 , 283–287 (1981).

    CAS Статья Google Scholar

  • 38.

    Геребен О. и Пуштаи Л. О точном расчете диэлектрической проницаемости на основе моделирования молекулярной динамики: случай воды SPC / E и SWM4-DP. Chem. Phys. Lett. 507 , 80–83 (2011).

    ADS CAS Статья Google Scholar

  • 39.

    Нейман, М. Формулы флуктуаций дипольного момента в компьютерном моделировании полярных систем. Мол. Phys. 50 , 841–858 (1983).

    ADS CAS Статья Google Scholar

  • 40.

    Петонг П., Поттель Р. и Каатце У. Смеси воды и этанола при различных составах и температурах. Исследование диэлектрической релаксации. J. Phys. Chem. А 104 , 7420–7428 (2000).

    CAS Статья Google Scholar

  • 41.

    Ryckaert, J.-P., Ciccotti, G. & Berendsen, H.J.C. Численное интегрирование декартовых уравнений движения системы со связями: молекулярная динамика н-алканов. J. Comput. Chem. 23 , 327–341 (1977).

    ADS CAS Google Scholar

  • 42.

    Джорджино Т. Вычисление одномерной атомной плотности в макромолекулярных моделях: инструмент профиля плотности для VMD. Сост. Phys. Commun. 185 , 317–322 (2014).

    ADS CAS Статья Google Scholar

  • 43.

    Хамфри В., Далке А. и Шультен К. VMD: визуальная молекулярная динамика. J. Mol. График . 14 , 33–8, 27–8 (1996).

    CAS Статья Google Scholar

  • 44.

    Гил П. С. и Лакс Д. Дж. Влияние формы поверхностно-активного вещества на сольвофобность и поверхностную активность в системах спирт-вода. J. Chem. Phys. 145 , 204705 (2016).

    ADS Статья Google Scholar

  • 45.

    Карто Д., Бассани Д. и Пианет И. «Эффект Узо»: после спонтанного эмульгирования транс-анетола в воде с помощью ЯМР. Comptes Rendus Chim. 11 , 493–498 (2008).

    CAS Статья Google Scholar

  • Проект защиты лица - Parker Lab

    Справочная информация: Из-за вспышки пандемии поставщики медицинских услуг подвергаются более высокому риску заражения COVID-19, чем население в целом.В дополнение к практике и следованию рекомендациям по дистанцированию 6 футов, что не всегда возможно с учетом различных задач и ограниченного пространства, лицевые щитки стали критически важным средством индивидуальной защиты для уменьшения распространения COVID-19.

    Описание исследования: В партнерстве с Virginia Tech было проведено генеративное исследование для разработки критериев дизайна для текущих улучшений защитной маски для лица, а также для лучшего понимания удобства использования существующей маски для лица, а также того, улучшает ли она или мешает поставщикам медицинских услуг. Работа.

    После этого было проведено многоэтапное итеративное качественное исследование юзабилити с клиницистами и медицинскими работниками для оценки юзабилити разработанных функций и итеративного улучшения дизайна с обратной связью. Всего было разработано три этапа прототипов лицевых щитков, на каждом этапе решалась проблема, о которой сообщалось, по сравнению с предыдущей.

    Этап 1 начался с исследования, чтобы выявить существующие проблемы проектирования лицевых щитков. Всего было найдено шесть различных дизайнов лицевых щитков.Эти проекты были выбраны потому, что они были немедленно доступны медицинскому персоналу путем распространения от группы управления материалами в одном медицинском учреждении. Участников попросили высказать свое мнение о наиболее часто используемых типах лицевых щитков. Опрос состоял из четырех вопросов, три из которых были количественными, а один представлял собой открытый текстовый ответ.

    Фаза 2 Проект был создан в Лаборатории наземной робототехники и управления (TREC) в Политехническом институте Вирджинии и Государственном университете (Технологический институт Вирджинии).Эта конструкция содержит два компонента: (1) оголовье (внутренняя часть), (2) шарнирный рычаг (внешняя часть). Двухкомпонентная конструкция защитной маски обеспечивает следующие три функции: (1) три отверстия с каждой стороны оголовья, которые позволяют пользователям выбирать предпочтительное расстояние между защитной маской для лица и лицом, (2) возможность переворачивания защитной маски вверх и вниз обеспечивается соединением двух компонентов и (3) прикрепляемыми эластичными ремнями от уха до уха.

    Phase 3 Подобно конструкции Phase 2, на оголовье была добавлена ​​дополнительная встроенная шляпа для предотвращения попадания капель аэрозоля сверху.

    Phase 4 Учитывая повышенную плотность и негибкость оголовья фазы 3 (встроенный счетчик шляпы), о проблеме головной боли часто сообщалось. Чтобы решить эту проблему, на этапе 4 была удалена встроенная шляпа и добавлены четыре штифта в верхней части оголовья (по две с каждой стороны), обеспечивающие съемные соединения для непрозрачного пластика.

    Катализаторы | Бесплатный полнотекстовый | Супрамолекулярная химия и самоорганизация: настоящая площадка для катализа

    Прежде чем погрузиться в недискретные и структурно плохо определенные сборки, основанные на коллоидной химии (мицеллы, эмульсии и микроэмульсии), давайте сосредоточим наше внимание на различных концепциях, которые появились последние несколько лет, которые позволяют нам проводить каталитическую реакцию в двухфазных системах.

    3.2. Мицеллы и эмульсии
    В водных растворах молекулярные поверхностно-активные вещества представляют собой соединения, которые снижают поверхностное натяжение на границе раздела воздух / вода. Поскольку в поверхностном слое присутствует избыток поверхностно-активных веществ, эти молекулы могут способствовать образованию хорошо организованных монослоев. Затем, когда поверхность насыщается, эти амфифильные молекулы объединяются в объемной фазе с образованием агрегатов выше критической концентрации агрегации (CAC) в результате гидрофобного эффекта [77].Самый простой агрегат, который может быть получен, - это мицеллы, где гидрофобные хвосты образуют ядро ​​агрегата, а гидрофильные головки контактируют с окружающими молекулами воды. Однако могут быть образованы и другие типы агрегатов, такие как деформированные мицеллы (например, цилиндрические или червеобразные мицеллы) или другие структуры (например, бислои, везикулы). Форма агрегатов зависит от упаковки молекул, которая напрямую коррелирует с химической структурой поверхностно-активных веществ, а именно с балансом между гидрофильной головкой и гидрофобным хвостом.Показателем этого является параметр упаковки (PP), который часто хорошо предсказывает тип агрегатов, образованных поверхностно-активным веществом в водной среде. PP определяется как отношение объема цепи, v s , к объему, спроектированному оптимальной площадью головной группы, a s , и критической длиной цепи, l s (Рисунок 19) [78]. Следовательно, в водных растворах маленький PP указывает на маленький хвост, прикрепленный к большой головной группе, ведущий к прямым сферическим или цилиндрическим мицеллам, а большой PP указывает на большой (е) хвост (ы), связанный с меньшей головной группой, ведущий к пузырьку или бислою.Напротив, при PP> 1 самоорганизующиеся структуры в органических растворах представляют собой обратные мицеллы. Стоит отметить, что все эти самоорганизующиеся структуры (кроме пузырьков) образуются спонтанно. Следовательно, эти агрегаты термодинамически стабильны (за исключением кинетически стабильных везикул). В водных растворах прямые мицеллы также можно использовать для растворения липофильных субстратов в гидрофобном ядре мицелл, что приводит к набуханию мицелл и к более высокой концентрации субстрата, чем в окружающей воде.Обратное верно для инвертированных мицелл, которые позволяют солюбилизировать гидрофильные молекулы. В таких условиях скорость реакции значительно увеличивается за счет более высокой концентрации реагентов внутри мицелл. К сожалению, несмотря на низкую концентрацию поверхностно-активного вещества, необходимого для получения мицелл, количество растворенного вещества в этой коллоидной среде очень мало [79]. Чтобы разместить больше гидрофобных молекул, системе требуется больше поверхностно-активных веществ для получения так называемых эмульсий.К сожалению, в этих системах происходит разделение фаз, и для их образования требуется внешний подвод энергии (например, перемешивание или обработка ультразвуком). Со временем эмульсии имеют тенденцию возвращаться к стабильному состоянию фаз, составляющих эмульсию. Следовательно, их стабильность означает способность противостоять изменению своих свойств с течением времени. Вследствие этого все эмульсии являются термодинамически нестабильными, но кинетически стабильными смесями двух несмешивающихся жидких фаз. Природа эмульсий (т.е. масло в воде, масло в воде или вода в масле, вода в масле) зависит от объемной доли обеих фаз и типа присутствующего поверхностно-активного вещества (Рисунок 20).Поверхностно-активные вещества, как правило, способствуют диспергированию фазы, в которой они плохо растворяются. Например, поверхностно-активные вещества, которые лучше растворяются в воде, чем в масле, имеют тенденцию образовывать эмульсии типа масло / вода (т.е. они способствуют диспергированию капель масла в непрерывной фазе воды).

    Поскольку было доказано, что включение поверхностно-активных веществ в водную среду повышает реакционную способность опосредованных водой реакций за счет образования мицелл или эмульсий, использование поверхностно-активных веществ в качестве катализаторов в воде широко распространено и было изучено для ряда различных превращений в воде. вода.Кроме того, разделение реагентов, продуктов и катализаторов на части приводит к лучшей стабильности этих частиц. В этом разделе приведены некоторые типичные примеры.

    Пионерские работы Кобаяши, Энгбертса и его коллег в конце 1990-х годов по проведению реакций с использованием катализаторов на основе поверхностно-активных веществ с целью стимулирования межфазных превращений вызвали интерес для многочисленных исследовательских групп. Действительно, прорыв произошел в период 1997–1999 гг. С однокомпонентной, многокомпонентной конденсацией, катализируемой кислотой (т.например, водный альдол [80,81], реакции типа Манниха [82,83] и Дильса-Адерса [84]) с использованием каталитических поверхностно-активных веществ на основе кислот Бренстеда или Льюиса, таких как п-додецилбензолсульфоновая кислота, тридодецилсульфат скандия и медь. или дидодецилсульфат цинка в водной среде и в мягких условиях реакции. Несколько лет спустя эта концепция была распространена на конденсацию альдегидов, аминов и диена Данишефского или аллилтрибуилолова [85]. Эти органические реакции в водной среде дешевы, безопасны, экологичны во всем мире и протекают в мягких условиях реакции.Более того, эти комбинированные кислотно-поверхностно-активные катализаторы дают хорошие выходы (до 100%) по сравнению с системами, в которых используются органические растворители (Рисунок 21). Спустя несколько лет все эти преимущества побудили Кобаяши и его коллег разработать реакции дегидратации в водной среде. . Например, в 2001 году эти авторы сообщили о катализируемой кислотой прямой этерификации карбоновых кислот спиртами в качестве модельной реакции (рис. 22) [86].

    Действительно, прямую этерификацию трудно проводить в водном растворе, так как воду, образующуюся во время реакции, необходимо исключить, чтобы сместить равновесие.Например, азеотропная перегонка используется для удаления молекул воды, образующихся во время реакции. Основываясь на этом заключении, авторы предложили использовать катализаторы типа поверхностно-активного вещества и органические субстраты (например, карбоновые кислоты и спирты) в водной среде, чтобы получить компартментализацию реагентов и продуктов (например, сложных эфиров) внутри ядра гидрофобной мицеллы. . Кроме того, использование кислотных поверхностно-активных веществ приведет к концентрации каталитических частиц (то есть протонов) на поверхностных каплях.В этой системе гидрофобные продукты остаются в ядре мицеллы, тогда как молекулы воды вытесняются из капель из-за липофильной природы их внутренней части. В результате реакции дегидратации эффективно протекают даже в присутствии большого количества воды в качестве растворителя. Кислота Бренстеда типа поверхностно-активного вещества может использоваться для прямой селективной этерификации в водной среде. Результаты показали, что этерификацию, катализируемую п-додецилбензолсульфоновой кислотой (10 мол.%) В воде, можно проводить с выходами 89–99% при 40 ° C в течение 48 ч при механическом перемешивании.

    В 2002 году эта группа исследователей сообщила о реакциях дегидратации для синтеза простых эфиров, тиоэфиров и дитиоацеталей [87]. Совсем недавно Сиракава и Кобаяши сообщили об использовании кислоты Бренстеда типа поверхностно-активного вещества для каталитического дегидративного нуклеофильного замещения бензиловых спиртов различными углеродными и гетероатом-центрированными нуклеофилами в воде [88]. Эта каталитическая система использует хорошо известную додецилбензолсульфоновую кислоту в качестве катализатора и может применяться для стереоселективного C-гликозилирования 1-гидроксисахаров в воде (рис. 23).Эти реакции проводили с выходами 61–96% при 40–80 ° C в течение 24–48 ч при механическом перемешивании. После этих работ эта концепция была распространена на другие реакции дегидратации с использованием п-додецилбензолсульфоновой кислоты в водном растворе. Например, типичный пример был опубликован Song et al. в котором осуществлен синтез 12-арил-8,9,10,12-тетрагидробензо [a] ксантен-11-онов из ароматических альдегидов, 2-нафтола и 5,5-диметил-1,3-циклогександиона (димедона). проводится с выходами 76–93% при 40–42 ° С в пределах 1–2.5 ч при ультразвуковом облучении вместо классического механического перемешивания [89]. Однако стоит отметить, что использование комбинированного катализатора кислота Бренстеда и поверхностно-активное вещество не обязательно требуется для проведения синтеза 12-арил-8,9,10,12-тетрагидробензо [a] ксантен-11-онов. Например, 12- (4-хлорфенил) -9,9-диметил-8,9,10,12-тетрагидробензо [a] ксантен-11-он может быть легко осуществлен при комнатной температуре в присутствии различных архетипических катионных поверхностно-активных веществ. (например, цетилпиридиний, метилтрифенилфосфоний, тетрадецилтриметиламмоний, цетилтриметиламмоний или додецилсульфат натрия) в водной среде (рис. 24).Авторы сообщили, что наилучший компромисс между временем реакции и выходом продукта наблюдается при увеличении длины алкильной цепи поверхностно-активного вещества до C 14 , после чего выход реакции и время реакции практически не зависят от алкильной цепи поверхностно-активного вещества. длина. Авторы предположили, что в этой каталитической системе скорость дегидратации была улучшена только за счет исключения воды за пределы гидрофобного ядра мицелл или капель эмульсии [90]. Некоторые исследовательские группы систематически использовали ультразвуковое облучение вместо механического перемешивания.Например, в 2012 г. конденсация 1,5-дифенил-1,4-пентадиен-3-она с гидрохлоридом аминогуанидина была легко осуществлена ​​с выходами 84–94% за 2–3 ч при ультразвуковом облучении [91]. В 2015 году та же группа сообщила о синтезе 2,3-дизамещенного-2,3-дигидрохиназолин-4 (1H) -она из однореакторной трехкомпонентной конденсации изатинового ангидрида, ароматического альдегида и амина под ультразвуковым облучением в Выход 80–92% при 40–42 ° C в течение 1–2 ч [92]. В том же году Ян и др. исследовали синтез 3-гидрокси-5,5-диметил-2- [фенил (фенилтио) метил] циклогекс-2-енона с ароматическими альдегидами, замещенными тиофенолами и 5,5-диметил-1,3-циклогександионом в аналогичных экспериментальных условиях. условия [93].Эти реакции проводили с выходами 20–92% при 25 ° C в течение 1–6 ч. Многочисленные каталитические системы на основе поверхностно-активных веществ в настоящее время используются для ускорения многокомпонентных реакций (например, Бигинелли [94], Кабачник-Филдс [95], Стрекер [96] и Ханч [97]). Для получения дополнительной информации по этой теме и для других многокомпонентных реакций мы советуем читателю обратиться к недавнему обзору Осташевского и его коллег [98]. Благодаря их очевидным преимуществам, включая оптимизированную поверхность раздела между двумя несмешивающимися растворителями или несовместимыми молекулами и преобразование классической партии с перемешиванием в процесс нанореактора, эти системы были расширены до металлоорганических катализаторов.Например, Ли и его сотрудники сообщили о переносе гидрирования альдегидов с иридиевым катализатором на основе амфифильного полимера, что привело к эмульгированию альдегидов и воды (рис. 25) [99].

    Эта интеллектуальная система значительно улучшила скорость реакции (до 93% конверсии с иридиевым катализатором на основе амфифильного полимера, тогда как классические комплексы Ir дают только 8%) как следствие большой площади контакта из-за эмульгирования, а также благодаря к межфазной концентрации реагентов вокруг катализатора.

    Очень похожая стратегия использует стабилизацию металлических наночастиц (НЧ) мицеллами. Например, в 2006 году Белецкая и ее сотрудники сообщили о возможности стабилизации наночастиц палладия в мицеллах, образованных сополимером полистирола с поли (этиленоксидом) и хлоридом цетилпиридиния в качестве поверхностно-активных веществ [100] (Рисунок 26). Активность этой каталитической системы была сопоставима с активностью низкомолекулярных комплексов палладия для реакций Хека и гетероциклизации. Однако стабильность коллоидной палладиевой системы была улучшена за счет очень хорошей возможности повторного использования благодаря возможности термоморфного разделения катализатора и продуктов.Эти двухфазные системы могут быть очень полезны для получения экологически чистых процессов домино / каскадного синтеза для химического синтеза. Например, McErlean et al. сообщил в 2012 году об относительном взаимодействии между реакциями на воде и в воде, где вода может служить реакционной средой, разделением продукта и катализатором реакции в зависимости от различной растворимости в воде органических реагентов и продуктов, которые перемещаются между две фазы эмульсии [101]. Поскольку смеси компонентов, способных взаимодействовать друг с другом, являются динамическими, можно получить адаптацию химических образований в ответ на внутренние факторы или внешние физические стимулы и химические эффекторы посредством усиление или подавление определенных членов или видов путем перераспределения под термодинамическим контролем (в конечном итоге кинетическим) [102].Стоит отметить, что коллоиды на основе молекулярных поверхностно-активных веществ способны давать коммутируемые системы. Самая простая система получается из термочувствительного поверхностно-активного вещества. Например, в 2013 г. амфифильные имидазолиевые соли кислоты Бренстеда, содержащие остатки этиленоксида (ЭО) и алкансульфоновой кислоты (рис. 27), были использованы для этерификации олеиновой кислоты метанолом с получением биодизельного топлива [103].

    Гидрофильный / липофильный баланс поверхностно-активного вещества дает ему способность образовывать менее стабильные кислотно-спиртовые эмульсии при большом количестве гидрофильных единиц ЭО.Однако при меньшем количестве единиц ЭО и / или при высоких температурах катализатор становится липофильным. Таким образом, управление установками ЭО позволяет проводить эмульгирование с оптимальными каталитическими характеристиками для 350 ЭО. Кроме того, произведенное биодизельное топливо можно было отделить простой декантацией, а катализатор можно было повторно использовать до 5 раз, в отличие от гомогенных каталитических систем.

    В контексте водного двухфазного гидроформилирования (см. Выше) использование поверхностно-активных веществ для создания стабильных тонкодисперсных эмульсий очень интересно для получения достаточно большой межфазной поверхности, чтобы способствовать массопереносу водорастворимости олефинов.Несмотря на все преимущества этих систем, присутствие поверхностно-активных веществ затрудняет разделение фаз, и после охлаждения реакционной смеси вместо двухфазной системы получают кинетически стабильные эмульсии. В этом контексте были разработаны некоторые стратегии контроля эмульгирования. Например, в 2009 году Schmitzer et al. сообщили о межфазном Rh / трисульфонированном, катализируемом трифенилфосфином гидроформилировании высших алкенов в эмульсии на основе комплекса ЦД / поверхностно-активное вещество (Рисунок 28) [28].Анионные лиганды увеличивали конверсию из-за локализации Rh на поверхности масляной капли, стабилизированной катионными поверхностно-активными веществами (т.е. образование нанореакторов). Однако комбинация катионных поверхностно-активных веществ и природного α-CD позволила точно контролировать реакционную среду с помощью терморегуляции. Действительно, во время реакции (80 ° C) эмульгирование, вызванное самосборкой катионного поверхностно-активного вещества, разрешается из-за диссоциации комплексов CD / поверхностно-активное вещество, тогда как в конце реакции α-CD помогли разрушить эмульсия за счет комплексообразования катионных поверхностно-активных веществ, что приводит к быстрой декантации.Очень похожие системы были разработаны в 2012 году Монфлиером и его сотрудниками [104]. Авторы использовали водорастворимый фосфин, который сам собирался в мицеллы. В мицеллярной области нейтральные β-ЦД образуют комплекс с фосфином и разрушают мицеллы. Напротив, дестабилизация мицелл наблюдалась при высокой концентрации ионных β-CD. В реакции гидроформилирования 1-децена, катализируемой Rh, каталитические характеристики таких мицеллярных систем были улучшены без влияния ионного β-CD на региоселективность (т.е.е., соотношение линейных и разветвленных). Как и в предыдущем случае, также сообщалось о положительном влиянии на декантацию в конце реакции.

    Все эти недискретные и структурно плохо определенные сборки, основанные на коллоидной химии (мицеллы и эмульсии), ускоряют скорость реакции за счет более высокой концентрации реагентов внутри мицелл или капель эмульсии. Как следствие, эти процедуры глобально просты, мягки, эффективны и экологичны. Несмотря на все преимущества мицеллярного катализа, эти системы ограничены низкой загрузкой реагентов.Кроме того, присутствие поверхностно-активных веществ затрудняет разделение фаз, и кинетически стабильные эмульсии могут быть получены вместо двухфазной системы после охлаждения реакционной смеси. Для устранения этих недостатков были разработаны системы, основанные на переключаемых средах; однако их обобщение непросто. К счастью, молекулярные поверхностно-активные вещества могут также обеспечивать микромы с большим размером агрегатов, чем обычные «набухшие мицеллы» (10–100 против 5–10 нм), и это позволяет нам, по крайней мере частично, устранить некоторые из этих недостатков.

    3.3. Микроэмульсии
    В отличие от классических эмульсий, для производства которых требуется подводимая энергия, микроэмульсии, сокращенно µems, самопроизвольно образуются в результате «солюбилизации» молекул воды или масла смесью поверхностно-активных веществ, дополнительных поверхностно-активных веществ и / или дополнительных растворителей [105 ]. Три основных типа микроэлементов: прямые (O / W), обратные (W / O) и бинепрерывные. Системы Винзора - это способ классификации микрометров [106]. Существует четыре типа систем: Winsor I (WI), которая представляет собой двухфазную систему, состоящую из фазы O / W с органической фазой; Winsor II (WII), которая представляет собой двухфазную систему, состоящую из фазы W / O с водной фазой; Winsor III (WIII), которая представляет собой трехфазную систему, в которой между водной и органической фазами образуется промежуточная фаза, богатая поверхностно-активными веществами (бинепрерывная фаза); и Winsor IV (WIV) можно рассматривать как однофазную систему WIII (Рисунок 29).

    Системы WI, WIII и WIV могут быть очень полезны для проведения каталитических реакций в системах вода / масло из-за присутствия небольших нанодоменов (т.е. значительно улучшается массоперенос). Кроме того, очень интересными свойствами являются их срок годности и их спонтанное образование. К сожалению, для этих систем требуется относительно большое количество поверхностно-активного вещества, и система часто требует добавления дополнительных поверхностно-активных веществ (например, спиртов). Стоит отметить, что для ясности в этом разделе описаны только типичные системы, используемые для гидроформилирования и окисления.

    Как упоминалось ранее, двухфазное гидроформилирование с использованием водорастворимых родиевых катализаторов выгодно с точки зрения извлечения катализатора и разделения продуктов. В этом контексте было исследовано несколько элегантных подходов к увеличению массопереноса высших олефинов в водной фазе. Один из таких подходов - использование микроэлементов, стабилизированных поверхностно-активными веществами. Эти очень интересные системы создают достаточно большую площадь поверхности раздела, чтобы способствовать массопереносу. В отличие от мицеллярного катализа микроэлементы являются хорошими платформами для увеличения массопереноса олефинов.В отличие от эмульсий, для производства которых требуется подвод энергии, микрометры спонтанно образуются в результате «солюбилизации» молекул масла одним или несколькими поверхностно-активными веществами [107]. Следовательно, µems термодинамически стабильны, в отличие от эмульсий, которые кинетически стабильны. Системы Winsor IV (WIV) могут быть очень полезны для растворения масел из-за присутствия небольших нанодоменов (т.е. в этих системах растворимость олефинов значительно повышается). Для максимального разделения WIII более важен, потому что в этом случае μem ведет себя как третья фаза, расположенная между масляной и водной фазами.К сожалению, для этих систем требуется большое количество поверхностно-активного вещества. В дополнение к их свойствам для каталитических реакций и процессов (длительный срок хранения и их самопроизвольное образование), µems можно легко настроить путем выбора подходящих поверхностно-активных веществ. Действительно, они позволяют лучше солюбилизировать гидрофобные реагенты или даже повторно использовать растворенные катализаторы. Следовательно, гидрофобные олефины могут быть успешно гидроформилированы в микроэлементах на основе неионных поверхностно-активных веществ со скоростью реакции выше, чем в двухфазной системе [108,109,110,111].Стоит отметить, что во всех этих каталитических системах используются неионные поверхностно-активные вещества типа простого алкилполигликолевого эфира, тогда как можно использовать различные комплексы родия, стабилизированные водорастворимыми лигандами, такие как SulfoXantPhos ([2,7-бис (SO 3 Na ) -4,5-бис (дифенилфосфино) -9,9-диметилксантен]) или TPPTS (трис- (3-сульфофенил) фосфин). В оптимизированных условиях реакции были получены очень высокие частоты оборота и селективность (> 300 ч -1 и линейно-разветвленные альдегиды до 99/1).Более того, в большинстве случаев извлечение катализатора может быть достигнуто путем простого разделения фаз с последующей ультрафильтрацией. Недавно возможность переноса гидроформилирования длинноцепочечных олефинов в микрометрах в промышленных масштабах изучалась на мини-заводах [112,113,114]. Результаты ясно доказывают, что µems можно использовать в реальных условиях для выполнения гидроформилирования с легким разделением фаз (рис. 30). Авторы использовали сульфированный XantPhos в качестве водорастворимого лиганда вместо TPPTS.В самом деле, этот лиганд явно расположен в средней фазе (т.е. в фазе μem в WIII) в большей степени. Основываясь на этих результатах, µems могут быть очень эффективными в случае гидроформилирования. К сожалению, их фазовое поведение сильно зависит от состава, температуры, поверхностно-активного вещества (например, степени этоксилирования для неионогенных поверхностно-активных веществ) и взаимодействия поверхностно-активное вещество / катализатор [115]. Стоит отметить, что эти типы микрометаллов могут использоваться для других металлоорганических реакций. [116]. В данной работе авторы использовали катионные (додецилтриметиламмоний, тетрадецилтриметиламмоний и гексадецилтриметиламмоний бромид) и неионные поверхностно-активные вещества (нонилфенилэтоксилаты, алкилэтоксилаты и др.)). Во время реакции сочетания Хека между йодобензолом и стиролом полученная реакционная среда представляет собой двухфазную микромагнитную смесь (в присутствии бромида гексадецилтриметиламмония в качестве поверхностно-активного вещества и 1-пропанола в качестве вспомогательного поверхностно-активного вещества) из-за стехиометрического количества основания, необходимого для выполнить чертову реакцию. В этой системе реакция сочетания Хека была успешной, и около 70% конверсии было достигнуто за 5–6 ч при> 75 мас. % воды. Катализатор может быть легко переработан и повторно использован несколько раз с незначительным выщелачиванием катализатора.Реакции окисления широко используются для преобразования органических материалов в полезные химические вещества с более высокой степенью окисления. В контексте «зеленой» химии каталитическое окисление в сочетании, в частности, с перекисью водорода, H 2 O 2 , привлекает большое внимание для жидкофазных каталитических процессов. Для преодоления несовместимости водного раствора H 2 O 2 с органическими субстратами особенно привлекательным представляется многофазный катализ жидкость-жидкость, который позволяет сочетать эффективность и селективность с катализатором и разделением продуктов.Одна из элегантных стратегий состоит из систем µem. Типичный пример был приведен Холмбергом с соавторами в 2001 г. [117]. Авторы сообщили об окислении двух водных азокрасителей (метиловый оранжевый и амарант), катализируемом порфиринами марганца, с использованием H 2 O 2 . Эти реакции были проведены в микромасло-в-воде на основе неионогенного поверхностно-активного вещества (монододециловый эфир октаэтиленгликоля) с использованием липофильной кислоты в качестве сокатализатора (бензойная кислота или додекановая кислота) и 4-трет-бутилпиридина в качестве основания и лиганда ( Рисунок 31).Окисление, проводимое в µem вода / гексадекан-дихлорметан, было быстрым для двух азокрасителей, и скорость реакции увеличивалась с увеличением количества липофильной кислоты, добавляемой в каталитическую смесь. Как и ожидалось, скорости реакции в µem были значительно выше, чем в двухфазной системе (аналогичные условия, но без поверхностно-активного вещества). Следует отметить, что добавление анионных поверхностно-активных веществ (додецилсульфата натрия и бромида тетрадецилтриметиламмония) привело к явному снижению скорости реакции.Авторы предположили, что лимитирующей стадией является образование металлоацилперокси-комплекса в межфазном слое. Этот комплекс окисляет азокраситель на следующей стадии. Поскольку различные каталитические анионы могут быть связаны за счет электростатических взаимодействий с катионными поверхностно-активными веществами, можно составить каталитические микроматериалы, в которых катализатор находится вблизи межфазного слоя, чтобы значительно повысить эффективность скорости реакции. Например, классические гомогенные катализаторы окисления, такие как анионы молибдата и вольфрамата, можно использовать для генерации синглетного кислорода ( 1 O 2 ) или пероксометаллатов в присутствии H 2 O 2 и в зависимости от pH. .Очевидно, окисление гидрофобных субстратов H 2 O 2 происходит в двухфазных условиях, и превращение остается слабым из-за гидрофильной природы Na 2 MoO 4 или Na 2 WO 4 . Для системы H 2 O 2 / MoO 4 2- синглетный кислород, образующийся в водной фазе (выход 100%), дезактивируется водой до того, как достигнет органического субстрата (время жизни синглетного кислорода в воде ≈ 3 мкс).Для Na 2 WO 4 конверсия зависит от растворимости пероксо-частиц в органической фазе. В этом контексте катионные поверхностно-активные вещества могут использоваться в качестве противоионов анионного катализатора для ускорения как массопереноса, так и межфазной области. Однако для получения трехжидкостных µems (Winsor III) с водой и подходящим растворителем необходимо разработать хорошо сбалансированные поверхностно-активные вещества. Например, Обри и его коллеги разработали серию амфифильных двусторонних четвертичных аммониевых поверхностно-активных веществ в сочетании с молибдатом (рис. 32) [27].Эти «сбалансированные каталитические поверхностно-активные вещества» использовали для темного синглетного [4 + 2] циклооксигенирования органических субстратов. Комбинация диметилдиоктиламмониймолибдата была особенно эффективной для обеспечения оптимальных трехжидкостных микроэлементов в присутствии пропилацетата или толуола. Реакция протекала с конкурентоспособной скоростью даже со следующими преимуществами: (i) простая μem, состоящая всего из трех компонентов; (ii) низкие количества поверхностно-активных веществ; (iii) устойчивость к разбавлению водой; и (iv) быстрое разделение с легким извлечением продукта и каталитического поверхностно-активного вещества.Аналогичным образом, реакции эпоксидирования и окисления сульфида в мягких условиях могут быть выполнены в трехфазных микроэлементах с использованием вольфрамата додецилдиметиламмония / воды / органического растворителя и смеси катиона диметилдиоктиламмония в сочетании с дигидрофосфатом и гидросульфатом. Следовательно, эпоксидирование олефинов с помощью H 2 O 2 в микрометре Winsor III на основе воды и толуола может быть легко выполнено при 50 ° C [118]. Авторы приписывают высокую каталитическую активность и селективность разделению реагентов и продуктов в этой наноструктурированной среде, что приводит к очень хорошему массопереносу несмешивающихся компонентов и стабильности эпоксида, подавляющего образование диола через раскрытие кольца.Следует отметить, что такая хорошая стабильность эпоксида была получена в кислых условиях (диметилдиоктиламмоний дигидрофосфат и диметилдиоктиламмоний гидросульфат, pH 2–3). Кроме того, комбинация этих кислотных солей позволила образовать и стабилизировать несколько оксодипероксокомплексов в присутствии пероксида водорода, таких как так называемые частицы Venturello [PO 4 {WO (O 2 ) 2 } 4 ] 3- . Как и в предыдущих случаях (каталитические мицеллы или эмульсии), адаптация поверхностно-активных веществ или их сборок в ответ на внутренние или внешние стимулы может быть использована для получения коммутируемых систем.Например, в 2015 году Нарделло-Ратай и его коллеги сообщили об очень простом термочувствительном однофазном микрочипе для еновой реакции, [4 + 2] циклоприсоединения и сульфидного окисления органических субстратов (рис. 33) [119].

    Эта система была получена путем объединения молибдата бис (диметилдиоктиламмония) (каталитического поверхностно-активного вещества) с неионогенным монооктиловым эфиром тетраэтиленгликоля. Поскольку эти два поверхностно-активных вещества сильно взаимодействуют, прямое разделение каталитического поверхностно-активного вещества и продуктов на две отдельные фазы может быть достигнуто путем охлаждения реакционной среды.Действительно, окисление происходит в системе Winsor IV (однофазная система Winsor III), которая разделяется на систему Winsor I (т. Е. Μem + масло) только при изменении температуры благодаря наличию термочувствительного неионогенного поверхностно-активного вещества. агент. Эти исследованные реакции были проведены с выходами 10–92% при 19–28 ° С в течение 1–24 ч. К сожалению, для этой системы требуется относительно большое количество поверхностно-активных веществ, что не очень актуально в контексте зеленой химии.

    Наконец, стоит отметить, что µem-системы также могут быть использованы для выполнения биокаталитических преобразований с использованием ферментов [120,121,122].В одной из этих публикаций, опубликованной в 1990 г., сообщалось о цикле регенерации связанного субстрата кофермента с использованием алкогольдегидрогеназы печени лошади в микроэме вода / изооктан или вода / гептан, стабилизированной бис- (2-этилгексил) сульфосукцинатом натрия или додециловым эфиром пентаэтиленгликоля соответственно [ 123]. Эта дегидрогеназа может окислять и восстанавливать широкий спектр спиртовых и кетоновых субстратов, таких как циклогексанол и 3-метилциклогексанон, с использованием никотинамидадениндинуклеотида (НАД) в качестве кофактора в следующих двух формах: окисленная и восстановленная (НАД + и НАДН соответственно, см. рисунок 34).Путем изменения температуры микропроцессорные системы могут быть переведены в двухфазные области, где богатая маслом фаза, содержащая продукт, сосуществует с богатой водой фазой, содержащей поверхностно-активное вещество и фермент. Этот переход заметно облегчает повторное использование ферментов и извлечение продукта. Действительно, богатая маслом фаза была удалена, и новая партия свежего органического субстрата была добавлена ​​к богатой водой фазе. Реакция протекает без потери активности и селективности после девяти последовательных циклов. Стоит отметить, что активность фермента была лучше в неионогенной, чем в ионной системе ПАВ.Однако авторы выделили два недостатка: высокую концентрацию поверхностно-активного вещества в богатой маслом фазе и сложность разделения μem на две фазы при равных объемах масла и воды. Стоит отметить, что использование гидрофобных IL вместо обычные органические растворители также могут применяться для получения микрометров [124]. Например, смесь воды и гидрофобного гексафторфосфата 1-бутил-3-метилимидазолия приводит к образованию µem в присутствии неионогенного поверхностно-активного вещества Triton X-100.В этой среде можно растворять оксидазы, такие как лигнинпероксидаза или лакказа [125]. Оптимальная каталитическая активность была получена, когда молярное отношение H 2 O к TX-100 было зафиксировано на уровне 8,0 в буфере с pH 3,2 для лигнинпероксидазы и> 20 для лакказы в буфере с pH 4,2 для лакказы. Напротив, две оксидазы показали незначительную каталитическую активность в чистой или водонасыщенной IL из-за сильной денатурации ферментов в среде IL. Таким образом, использование микрометра со структурой вода / 1-бутил-3-метилимидазолий гексафторфосфат / Тритон X-100 было очень успешным и привело к значительному усилению каталитической активности обеих грибковых оксидаз.Вдобавок, текучесть μem также значительно улучшена по сравнению со средой IL. Читатель, интересующийся более подробной информацией о μem-системах для био-, гомогенных и гетерогенных каталитических реакций и процессов, может ознакомиться с превосходным обзором Schwarze и соавторов. [126]. На основании всех этих исследований микрометры могут быть очень эффективными при проведении каталитических реакций. Однако эти системы требуют относительно большого количества поверхностно-активных веществ, что не очень важно с точки зрения устойчивой обработки.Идеальным случаем было бы создание двухфазных водных систем, подобных системам μem, но без поверхностно-активных веществ. К счастью, вопреки мнению о том, что поверхностно-активное вещество в каждом случае необходимо для стабилизации μems за счет образования межфазной пленки между водной и масляной фазами, μems без поверхностно-активного вещества было легко получить с тех пор, как Барден и его коллеги первыми разработали конец 1970-х. В самом деле, в 1977 году сообщалось о микропроцессоре W / O, состоящем из 2-пропанола, гексана и воды, который представляет собой первый пример многофазной эмульсии без поверхностно-активного вещества, поскольку в этой системе не использовалось традиционное поверхностно-активное вещество [127, 128].Эти системы привлекли большое внимание, особенно в физической химии [129]. В этом контексте Кунц и его коллеги изучали микроподобное структурирование смесей двух несмешивающихся растворителей с «амфи-растворителем», который смешивается с обоими двумя другими [130, 131, 132]. Такое структурирование всегда происходит, когда смесь находится не слишком далеко от границы дефазирования [133]. Это явление позволяет формировать четко определенные микроэлементы в монофазной области. По аналогии с классическими микроструктурами, различные микроструктуры были идентифицированы с использованием различных методов (например,ж., проводимость, флуоресценция, теплоемкость, динамическое рассеяние света, ядерный магнитный резонанс и т. д.): прямая, обратная и биконтинуальная структуры (рис. 35) [134]. Однако стоит отметить, что расположение этих суб- границы регионов могут значительно отличаться в зависимости от используемой системы и факторов окружающей среды [135]. Кроме того, эти типы микроструктур представляют собой различные микросреды различной полярности. С фундаментальной точки зрения микроструктуры, не содержащие поверхностно-активных веществ, имеют свойства, аналогичные классическим микроструктурам: они стабильны, оптически прозрачны и демонстрируют микроструктуры, диспергированные в непрерывной фазе растворителя [136].Единственное условие этого явления - полная или хотя бы частичная смешиваемость «амфи-растворителя» с водой и маслом. Помимо своих уникальных физико-химических свойств микромембранные частицы, не содержащие поверхностно-активных веществ, открывают новые возможности для создания интеллектуальных процессов, особенно в контексте зеленой химии, поскольку «амфи-растворители» могут быть экологически совместимыми (этанол, этиллактат, γ-валеролактон и т. Д.) ) [137 138]. Более того, стоит отметить, что они также предлагают преимущество в виде легко обрабатываемой и удаляемой добавки вместо опасных растворителей или классических поверхностно-активных веществ с высокой вязкостью и температурой кипения.Некоторые типичные каталитические системы на основе микроэлементов без поверхностно-активных веществ, используемых для химических и биохимических превращений, описаны ниже. Как уже упоминалось ранее, обычные микромембраны являются подходящими средами для проведения ферментативно катализируемых реакций из-за большой площади поверхности раздела, что позволяет ферменту катализировать реакции, включающие как гидрофильные, так и гидрофобные соединения. Тем не менее, крупномасштабному применению обычных микроэлементов может препятствовать сложность отделения продуктов реакции от поверхностно-активного вещества без денатурации фермента, который следует использовать повторно.С конца 1980-х годов этот вид микроэлементов использовался для проведения ферментативных реакций. В большинстве тройных систем, участвующих в ферментативных превращениях, в качестве «амфорастворителей» используются спирты. Например, тройные системы н-гексан / спирт / вода использовались с трипсином [139], холестериноксидазой [140], полифенолоксидазой грибов [141], липазой [142,143,144,145], пероксидазой хрена [146] и ферулоилэстеразой [147]. . Очевидно, стоит отметить, что структура трехкомпонентных микрочастиц, не содержащих поверхностно-активных веществ, зависит от состава системы, влияя, следовательно, на каталитическую эффективность фермента.Обычно при низком содержании воды фермент имеет низкую каталитическую активность. Действительно, в маловодной части присутствуют слабые обратные мицеллоподобные структуры. Следовательно, фермент зарождается, и нарушение внутриковалентных взаимодействий приводит к денатурации ферментов органическими растворителями. Другими словами, фермент не обладает своей биологической активностью в отсутствие достаточного количества гидратирующей воды. Напротив, при более высоком содержании воды фермент проявляет высокую каталитическую активность, поскольку он может находиться в своей активной конформации из-за существования замкнутого водного микроокружения, стабилизированного молекулами пропанола, которые образуют поверхность раздела между гексаном и водой (Рисунок 36). [148].Для получения дополнительной информации об использовании микроэлементов без поверхностно-активных веществ в качестве реакционной среды для каталитических превращений с использованием оксидаз и липаз см. Недавний обзор Xenakis и соавторов, в котором также описывается взаимосвязь между каталитическими характеристиками и структурированием системы [149]. Стоит отметить, что в 2018 году Кунц и его коллеги исследовали влияние структурирования двух микромеханических систем, не содержащих поверхностно-активных веществ, на основе вода / 1-пропанол / лимонен и вода / трет-бутанол / лимонен, на каталитическую активность пероксидазы хрена. при различных составах [150].Для получения структурной информации об используемых микрометрах, свободных от поверхностно-активных веществ, были использованы различные методы, такие как проводимость, динамическое рассеяние света и малоугловое рассеяние рентгеновских лучей. Комбинация данных, полученных с помощью этих методов, и ферментативной активности в чистом буферном растворе и в этих двух микропроцессорных системах привела авторов к утверждению, что способность «амфорастворителей» (т.е. спиртов с короткой цепью) образовывать водные агрегаты в масле имеет решающее влияние на активность ферментов в этих системах.Результаты показали, что молекулы 1-пропанола дают более выраженную структурированность, чем более гидрофобный трет-бутанол. Поскольку максимум ферментативной активности был получен для наиболее выраженных структурирующих микроэлементов без поверхностно-активных веществ, где образовывались устойчивые во времени и достаточно определенные (не слишком быстрые колебания) микрометры W / O, авторы пришли к выводу, что эти агрегаты способны защитить фермент от денатурации. Несмотря на некоторые предположения, этот эффект обусловлен двумя механизмами: (i) спирт выталкивается больше к границе раздела и в область, богатую лимоненом, и (ii) присутствие набухших агрегатов, богатых водой, обеспечивает достаточную гидратацию, позволяя ферменты для достижения своей активной конформации с минимальной энергией простым и быстрым способом.Благодаря этой гидратной оболочке молекулы воды образуют защитный и стабилизирующий экран вокруг фермента и защищают его от денатурации. Очевидно, что водные многофазные μem-системы, не содержащие поверхностно-активных веществ, также могут использоваться в качестве переключаемых растворителей для металлоорганического катализа. Например, в 2016 году Погржеба и его коллеги сообщили о первых применениях этих систем в качестве реакционных сред для катализируемого родием гидроформилирования 1-додецена и реакции сочетания Сузуки 1-хлор-2-нитробензола и 4-хлорбензолбороновой кислоты [151] .Все исследованные реакционные системы были получены с использованием масла, водного каталитического раствора и бутилового эфира диэтиленгликоля (C 4 H 9 (C 2 H 4 O) 2 OH, сокращенно C 4 E 2 ) как термочувствительный «амфорастворитель». Для каждой многофазной системы авторы сообщили о влиянии соотношения масло / вода, концентрации «амфи-растворитель», состава катализатора и температуры на фазовое поведение и на распределение капель по размерам.Для многофазных систем на основе 1-додецена (действующего и как реагент, и как растворитель) повышение температуры позволяет нам перейти от двухфазной к трехфазной, когда эмульсионная фаза диспергирована внутри непрерывной фазы. Следовательно, эта система обеспечивает возможность получения интеллектуального процесса гидроформилирования, основанного на концепции фазового перехода, индуцированного температурой, аналогично классическим системам μem. Для катализируемого родием гидроформилирования 1-додецена с использованием водорастворимого лиганда SulfoXantPhos конверсия 23.4% через 4 ч времени реакции (частота оборота, TOF, = 77,5 ч –1 ) с соотношением линейных и разветвленных цепей 99: 1 было получено в мягких условиях реакции (95 ° C и 15 бар давления 1: 1 смесь CO и H 2 ). Кроме того, авторы отметили, что реакция, по-видимому, происходит в средней фазе и что на скорость реакции сильно влияет количество «амфи-растворитель» в системе. Наконец, катализатор родий-сульфоксантфос может быть успешно переработан четыре раза, сохраняя при этом очень высокое соотношение линейных и разветвленных цепей.Затем авторы попытались расширить объем этой реакции до реакции сочетания Сузуки, катализируемой палладием, с использованием 2'-дициклогексилфосфино-2,6-диметокси-натрия в качестве лиганда. Однако, в отличие от реакции гидроформилирования, в качестве масляной фазы использовали гептан. По концентрации «амфи-растворитель» можно переходить с двухфазной системы на трехфазную. Более того, трехфазная область смещается в сторону более низких температур (30–40 ° C) с гептаном по сравнению с 1-додеценом (75–80 ° C).К сожалению, несмотря на то, что выход реакции Сузуки достигает 90%, палладиевый катализатор не может быть полностью переработан, что приводит к снижению каталитической активности из-за выщелачивания лиганда во время стадий разделения. Все эти результаты демонстрируют потенциал многофазных эмульсий без поверхностно-активных веществ в качестве переключаемых реакционных сред для гомогенного катализа.

    Avdt 32 электромеханический или электронный. Узо электронный или электромеханический. Внешний источник питания

    Для защиты от утечек тока используются дифференциальные токовые выключатели или устройства защитного отключения (УЗО).В каждой новой квартире, новом доме это устройство становится необходимым оборудованием.

    Однако устройства с принципиально иной внутренней конструкцией, определяющей надежность всего УЗО, могут продаваться под общим названием. Конструкция может иметь различное расположение рычагов и кнопок управления, иметь стандартные или расширенные варианты подключения шин и проводов, но принципиальное значение имеет конструкция УЗО выпуска ... Он может быть электромеханическим или электронным.Только как сразу отличить электромеханическое УЗО от электронного? Этот вопрос требует подробного рассмотрения.

    Чем отличается электромеханическое УЗО от электронного
    УЗО и дифавтоматы

    (это УЗО и автоматический выключатель в одном корпусе) по своему внутреннему устройству делятся на два типа: электромеханические и электронные ... Это никак не влияет на рабочие параметры и характеристики. Многие сразу задаются вопросом: а в чем между ними разница? И разница есть, и важная: УЗО электромеханического типа сработает в любом случае, если в поврежденном месте появится ток утечки, вне зависимости от напряжения в сети или нет... Основным рабочим модулем электромеханического УЗО является дифференциальный трансформатор (тороидальный сердечник с обмотками). Если в поврежденном месте происходит утечка, то во вторичной обмотке этого трансформатора появляется напряжение, которое включает поляризованное реле, что в свою очередь приводит к срабатыванию механизма отключения.

    Электронные УЗО срабатывают при наличии утечки тока в зоне повреждения и только при наличии сетевого напряжения. То есть для полноценной работы устройству остаточного тока электронного типа требуется внешний источник питания.Это связано с тем, что основным рабочим модулем электронных УЗО является электронная плата с усилителем. И эта плата не будет работать без внешнего источника питания.

    Откуда источник питания? Внутри УЗО нет батареек или аккумуляторов. А напряжение для питания электронной платы с усилителем идет от внешней сети. Есть сеть 220В, и появилась утечка тока - УЗО сработает! Если в сети нет напряжения, защитное устройство не сработает.

    Итак, для работы электромеханического УЗО нужна только утечка тока, для электронного УЗО требуется утечка тока и напряжения в сети.


    На фото слева - УЗО Hager с электромеханическим расцепителем, справа УЗО с электронным расцепителем.

    Насколько важно, чтобы защитное устройство оставалось работоспособным при отсутствии напряжения? Уверен, многие пользователи ответят примерно так: если в сети есть напряжение, электронное УЗО сработает.Если в сети нет напряжения, то зачем ему вообще работать, ведь в сети нет напряжения, а значит, утечку тока взять негде. А какие вы знаете чрезвычайные ситуации, когда может исчезнуть напряжение в доме или квартире или, как говорят в народе, «нет света»? Это может быть авария на подходящей к дому линии, это могут быть ремонтные работы электросетей, а может быть еще одна очень распространенная проблема - прогорание нулевого провода в доске пола.Все оборудование будет без признаков жизни, все сигнальные устройства (сигнальные лампы, если есть) укажут, что в сети нет напряжения. Однако фаза никуда не делась! Остается опасность поражения электрическим током. Представьте, что в такой ситуации произошло повреждение изоляции внутри стиральной машины, фаза попала в корпус. Если в этот момент прикоснуться к корпусу станка, произойдет течь и УЗО должно сработать. Но точно электронный УЗО работать не будет, так как на его электронную плату с усилителем приходит только "фаза" без нуля, нет источника питания, поэтому электронная плата не будет фиксировать результирующий ток утечки, импульс отключения будет не будет отправлен на механизм отключения, и УЗО не отключится.Для человека такая ситуация крайне опасна. Поэтому, как ни печально, при появлении тока утечки в этой ситуации УЗО электронного работать не будет.

    Еще одна распространенная проблема - скачки напряжения. Конечно, сейчас многие устанавливают реле напряжения для защиты, но не у всех они есть. Что такое скачки напряжения - это отклонение от номинала. То есть вместо 220 Вольт в вашей розетке может появиться 170 Вольт или 260 Вольт, а еще хуже - 380 Вольт. Повышенное напряжение опасно для электронного оборудования, которым фактически оснащены электронные УЗО и электронные дифференциальные автоматические устройства.Скачки напряжения могут повредить электронную плату с усилителем. Внешне все будет выглядеть целым и невредимым, но при возникновении утечки тока ситуация может стать плачевной для человека - из-за поврежденных электронных компонентов УЗО не отреагирует на утечку.

    Вы можете даже не знать, что внутренняя начинка защитного устройства вышла из строя. Поэтому необходимо периодически проверять работу УЗО кнопкой «ТЕСТ». Специалисты рекомендуют проводить эту проверку не реже одного раза в месяц.

    Итак, в электросети могут возникать различные аварийные ситуации, при которых электронные УЗО или диффавтоматика могут потерять свои защитные функции. Вышеуказанные проблемы не представляют опасности для электромеханических защитных устройств. , поскольку для работы им не требуется внешний источник питания. Будет ли напряжение в сети или нет, электромеханическое УЗО (RCBO) сработает в любом случае при наличии утечки тока в сети.

    Как отличить электромеханическое УЗО от электронного

    Внешне эти два устройства очень похожи и многие пользователи, не задумываясь, покупают их без разбора в магазине, даже не зная об особенностях.Чтобы понять, какое устройство дифференциального тока перед вами является электронным или электромеханическим, необходимо уметь различать их. Вы думаете, что это под силу только профессионалам? Но уверяю, это не так, ничего сложного здесь нет.

    Обратите внимание на схему на корпусе УЗО

    Самый простой и надежный способ - изучить схему, изображенную на корпусе УЗО. Электрическая схема применяется к любому защитному устройству. Между показанными схемами электромеханического УЗО и электронного есть небольшие различия.

    На схеме электромеханического УЗО или дифавтомата изображен дифференциальный трансформатор (через который «продета» фаза и ноль), вторичная обмотка этого трансформатора, а также поляризованное реле, подключенное к вторичной обмотке. Поляризованное реле уже действует непосредственно на механизм отключения. Все это показано на схеме. Вам просто нужно понять, какой цифрой обозначается каждый из описанных выше элементов. Например, электромеханическое УЗО европейского производителя HAGER:

    .

    Дифференциальный трансформатор помечен прямоугольником (иногда овалом) вокруг фазного и нулевого проводов.От него отходит виток вторичной обмотки, которая подключена к поляризованному реле. На схеме поляризованное реле обозначено прямоугольником или квадратом. Реле механически связано с триггером отключения.


    Здесь также указана кнопка ТЕСТ с собственным сопротивлением (сопротивление позволяет создать утечку в 30 мА, безопасный порог для жизни человека). Как видите, в электромеханическом УЗО нет электронных плат и усилителей. Конструкция состоит из одного механика.

    Теперь рассмотрим электронное УЗО. Например, электронный дифавтомат 16А, 220В, с током утечки 30 мА.


    Как видно из схемы, на корпусе электронного дифавтомата практически все обозначено как на электромеханическом защитном устройстве.


    Но, если присмотреться, можно увидеть, что между дифференциальным трансформатором и поляризованным реле есть дополнительный элемент в виде прямоугольника с буквой «А», обозначение I>.Это та же электронная плата с усилителем. Кроме того, вы можете видеть, что к этой плате подходят два провода «фаза» и «ноль» (обозначены на рисунке зеленым цветом ниже). Это как раз тот внешний источник питания, который необходим для полноценной работы данного типа УЗО. Не будет блока питания, и УЗО работать не будет. Независимо от того, есть утечка или нет.


    Итак, для работы электромеханического УЗО нужна только утечка тока, для электронного УЗО требуется утечка тока и напряжения в сети.Настоятельно рекомендуем приобрести УЗО или диффузионный автомат электромеханического типа.

    Устройства защитного отключения (УЗО) - одно из самых популярных устройств, используемых как строительными корпорациями, так и частными пользователями. Но как можно быть уверенным в правильности выбора? Надеюсь, эта статья поможет вам ориентироваться на рынке УЗО, насыщенном различными моделями.

    Устройство защитного отключения. Основы

    Устройства защитного отключения (УЗО) или, иначе, устройства дифференциальной защиты, предназначены для защиты людей от поражения электрическим током в случае электрических неисправностей или при контакте с токоведущими частями электроустановки, а также для предотвращения пожаров и пожаров, вызванных: токи утечки и замыкания на землю... Эти функции не присущи обычным автоматическим выключателям, которые реагируют только на перегрузку или.

    В чем причина потребности в этих устройствах для пожаротушения?

    По статистике причиной около 40% всех возгораний является «замыкание электропроводки».

    Во многих случаях общая фраза «короткое замыкание электропроводки» часто подразумевает утечку электричества, которая возникает из-за старения или повреждения изоляции. В этом случае ток утечки может достигать 500 мА.Экспериментально установлено, что при протекании тока утечки именно такой силы (а что такое полампера? Ни тепловой, ни электромагнитный расцепители на ток такой силы просто не реагируют - хотя бы по той причине, что они не предназначены для этого) максимум на полчаса через влажные опилки самовозгораются. (И это касается не только опилок, но вообще любой пыли.)

    Как устройства дифференциальной защиты защищают вас и меня от поражения электрическим током?

    Если человек прикоснется к токоведущей части, по его телу будет протекать ток, величина которого является частным от деления фазного напряжения (220 В) на сумму сопротивлений проводов, заземления и самого тела человека: Иперс = Uph / (Rпр + Rz + Rpers).В этом случае сопротивлениями заземления и проводки по сравнению с сопротивлением человеческого тела можно пренебречь, последнее можно принять равным 1000 Ом. Следовательно, рассматриваемое значение тока будет 0,22 А или 220 мА.

    Из нормативно-справочной литературы по охране труда и технике безопасности известно, что минимальный ток, протекание которого уже ощущается человеческим организмом, составляет 5 мА. Следующее стандартизованное значение - это так называемый ток без срабатывания, равный 10 мА.Когда по телу человека протекает ток такой силы, происходит спонтанное сокращение мышц. Электрический ток 30 мА уже может вызвать паралич дыхания. Необратимые процессы, связанные с кровотечением и сердечной аритмией, начинаются в организме человека после протекания по телу тока 50 мА. Возможен летальный исход при воздействии тока 100 мА. Очевидно, что уже надо быть защищенным от тока, равного 10 мА.

    Так, своевременная реакция автоматики на ток менее 500 мА защищает объект от возгорания, а на ток менее 10 мА - защищает человека от последствий случайного прикосновения к токоведущим частям.

    Также известно, что за токоведущую часть, находящуюся под напряжением 220 В, можно спокойно продержаться 0,17 с. Если токоведущая часть находится под напряжением 380 В, время безопасного прикосновения сокращается до 0,08 с.

    Проблема в том, что такой небольшой ток и даже за ничтожно малое время не способен исправить (и, конечно же, выключить) обычные защитные устройства.

    Таким образом, родилось такое техническое решение, как ферромагнитный сердечник с тремя обмотками: «токоподвод», «токоподвод», «управление».Ток, соответствующий фазному напряжению, подаваемому на нагрузку, и ток, протекающий от нагрузки в нейтральный проводник, индуцируют магнитные потоки противоположных знаков в сердечнике. При отсутствии утечек в нагрузке и в защищаемом участке проводки общий расход будет равен нулю. В противном случае (прикосновение, повреждение изоляции и т. Д.) Сумма двух потоков станет ненулевой.

    Поток, возникающий в сердечнике, индуцирует электродвижущую силу в обмотке управления. Реле подключено к обмотке управления через прецизионное устройство фильтрации всех видов помех.Под действием ЭДС, возникающей в обмотке управления, реле размыкает фазную и нулевую цепи.

    Во многих странах использование УЗО в электроустановках регулируется нормами и стандартами. Так, например, в РФ - принят в 1994-96 гг. ГОСТ Р 50571.3-94, ГОСТ Р 50807-95 и др. Согласно ГОСТ Р 50669-94 УЗО в обязательном порядке устанавливается в электросетях мобильных зданий из металла или с металлическим каркасом для уличной торговли и бытового обслуживания. .В последние годы администрациями крупных городов в соответствии с государственными стандартами и рекомендациями Главгосэнергонадзора приняты решения по оснащению фонда жилых и общественных зданий этими устройствами (в Москве - Распоряжение Правительства Москвы № 868-РП от 20.05.94 г.).

    УЗО бывают разные .... Трехфазные и однофазные ...

    Но на этом деление УЗО на подклассы не заканчивается ...

    На данный момент на российском рынке представлены 2 принципиально разные категории УЗО.

    1. Электромеханический (независимый от сети)

    2. Электронный (зависит от сети)

    Рассмотрим отдельно принцип работы каждой из категорий:

    УЗО электромеханические

    Предки УЗО - электромеханические. Принцип точной механики, т.е. заглянув внутрь такого УЗО, вы не увидите компараторов операционных усилителей, логики и тому подобного.

    Состоит из нескольких основных компонентов:

    1) Так называемый трансформатор тока нулевой последовательности, его назначение - отслеживать ток утечки и передавать его с определенным Ktr на вторичную обмотку (I 2), I ut = I 2 * Ktr (очень идеализированная формула , но отражающие суть процесса).

    2) Чувствительный магнитоэлектрический элемент (запираемый, т.е. при срабатывании без внешнего вмешательства он не может вернуться в исходное состояние - защелку) - играет роль порогового элемента.

    3) Реле - обеспечивает отключение при срабатывании защелки.

    Этот тип УЗО требует высокоточной механики чувствительного магнитоэлектрического элемента. В настоящее время только несколько мировых компаний продают электромеханические УЗО. Их стоимость намного выше, чем цена электронных УЗО.

    Почему электромеханические УЗО получили распространение в большинстве стран мира? Все очень просто - этот тип УЗО сработает при обнаружении тока утечки на любом уровне напряжения в сети.

    Почему этот фактор (независимость от уровня сетевого напряжения) так важен?

    Это связано с тем, что при использовании исправного (исправного) электромеханического УЗО мы гарантируем в 100% случаев срабатывание реле и, соответственно, отключение питания потребителя.

    У электронных УЗО этот параметр тоже большой, но не равен 100% (как будет показано ниже, это связано с тем, что при определенном уровне сетевого напряжения не будет работать электронная цепь УЗО), а в В нашем случае каждый процент возможен для человеческих жизней (будь то прямая угроза жизни человека при касании проводов, или косвенная, в случае пожара из-за выгорания изоляции).

    В большинстве так называемых «развитых» стран электромеханические УЗО являются стандартом и устройством, обязательным для широкого использования.В нашей стране постепенно происходят сдвиги в сторону обязательного использования УЗО, однако в большинстве случаев потребителю не предоставляется информация о типе УЗО, что влечет за собой использование дешевых электронных УЗО.

    Электронные УЗО

    Любой строительный рынок наводнен такими УЗО. Стоимость электронных УЗО местами ниже электромеханических до 10 раз.

    Недостатком таких УЗО, как уже было сказано выше, является не 100% гарантия при исправном состоянии УЗО его срабатывания из-за появления тока утечки.Преимущество - дешевизна и доступность.

    В принципе, электронное УЗО построено по той же схеме, что и электромеханическое (рис. 1). Отличие заключается в том, что место чувствительного магнитоэлектрического элемента занимает опорный элемент (компаратор, стабилитрон). Чтобы такая схема работала, вам понадобится выпрямитель, небольшой фильтр (возможно, даже КРЕН). Поскольку трансформатор тока нулевой последовательности является понижающим (в десятки раз), тогда также необходима схема усиления сигнала, которая, помимо полезного сигнала, также будет усиливать помехи (или сигнал дисбаланса, присутствующий при нулевой утечке). Текущий).Из вышесказанного очевидно, что момент срабатывания реле в этом типе УЗО определяется не только током утечки, но и напряжением сети.

    Если вам не по карману электромеханическое УЗО, то все же стоит взять УЗО электронное, ведь оно работает в большинстве случаев.

    Бывают и случаи, когда нет смысла покупать дорогое электромеханическое УЗО. Один из таких случаев - использование стабилизатора или источника бесперебойного питания (ИБП) при питании квартиры / дома.В этом случае нет смысла брать электромеханическое УЗО.

    Сразу отмечу, что я говорю о категориях УЗО, их плюсах и минусах, а не о конкретных моделях. Вы можете купить некачественные УЗО как электромеханического, так и электронного типов. При покупке запрашивайте сертификат соответствия, ведь многие электронные УЗО на нашем рынке не сертифицированы.

    Трансформатор тока нулевой последовательности (ТТНП)

    Обычно это ферритовое кольцо, через которое (внутри) проходят фазный и нейтральный провод, они играют роль первичной обмотки.Вторичная обмотка равномерно намотана на поверхность кольца.

    Идеально:

    Пусть ток утечки равен нулю. Ток, протекающий через фазовый провод, создает по величине магнитное поле, создаваемое током, протекающим через нейтральный провод, и в противоположном направлении. Таким образом, общий поток муфты равен нулю, а ток, индуцированный во вторичной обмотке, равен нулю.

    В момент протекания тока утечки в проводах (нулевой, фазный) возникает неравенство токов в результате протекания муфты и индукции тока, пропорционального току утечки, во вторичную обмотку.

    На практике через вторичную обмотку протекает ток небаланса, который определяется используемым трансформатором. Требование к ТТНП следующее: ток небаланса должен быть значительно меньше тока утечки, приведенного во вторичную обмотку.

    Выбор УЗО

    Допустим, вы определились с типом УЗО (электромеханическое, электронное). Но что выбрать из огромного списка предлагаемых товаров?

    Выбрать УЗО с достаточной точностью можно по двум параметрам:

    Номинальный ток и ток утечки (ток отключения).

    Номинальный ток - это максимальный ток, который проходит через фазовый провод. Этот ток легко найти, зная максимальную потребляемую мощность. Просто разделите потребляемую мощность в наихудшем случае (максимальная мощность при минимальном Cos (?)) На фазное напряжение. Ставить УЗО на ток больше номинального тока автомата перед УЗО не имеет смысла. В идеале с запасом берем УЗО на номинальный ток равный номинальному току автомата.

    Часто встречаются УЗО

    с номинальными токами 10,16,25,40 (А).

    Ток утечки (рабочий ток) - обычно 10 мА, если УЗО установлено в квартире / доме для защиты жизни человека, и 100-300 мА на предприятии для предотвращения пожаров при сгорании проводов.

    Есть и другие параметры УЗО, но они специфичны и не интересны рядовому потребителю.

    Выход

    В этой статье были рассмотрены основы понимания принципов работы УЗО, а также методы построения различных типов устройств защитного отключения.И электромеханические, и электронные УЗО безусловно имеют право на существование. имеет свои выразительные достоинства и недостатки.

    УЗО (устройство защитного отключения) - Это электроустановочное изделие, предназначенное для отключения подачи электричества в проводку в случае утечки тока в случае нарушения изоляции в проводах или электроприборах.

    УЗО, в отличие от автоматического выключателя, предназначено исключительно для защиты человека от поражения электрическим током, предотвращения возгорания и не принимает непосредственного участия в работе электроприборов.УЗО не защищает от короткого замыкания в проводке и в случае прикосновения человека к фазному и нулевому проводам.

    На фото изображено двухпроводное устройство защитного отключения типа ВД1-63, предназначенное для работы в однофазной сети переменного тока 220 В и рассчитанное на ток защиты 30 мА. УЗО с такими характеристиками подходит для установки в подъезде практически любой квартирной электропроводки.

    Ассортимент монтажных изделий включает комбинированные, в одном корпусе которых встроены УЗО и автоматический выключатель.Такое устройство называется выключателем дифференциального тока со встроенной максимальной токовой защитой. На фото представлен внешний вид модели RCBO32, рассчитанной на ток защиты электропроводки 16 А и защиту человека на 30 мА. Но такие устройства защиты не получили широкого распространения из-за их дороговизны.

    Кроме того, в случае отключения сложно определить, является ли неисправность коротким замыканием или утечкой тока.

    Как выбрать УЗО

    Выбрать УЗО для квартирной проводки или дома для домашнего электрика не составит труда. Подходит любое однофазное УЗО, рассчитанное на рабочий ток равный току защиты автоматического выключателя и ток утечки 30 мА ... Фотография такого УЗО дана в начале статьи.

    Какой тип УЗО лучше всего подходит для квартиры


    электромеханическое или электронное УЗО

    выпускаются в двух исполнениях - электромеханическом и электронном. Для правильного выбора нужно сравнить их технические характеристики.

    Сравнительная таблица характеристик электромеханического и электронного УЗО
    Характеристика Электромеханическое УЗО Электронное УЗО
    Цена низкая высокая
    Конструкция сложная простая
    Надежность высокая низкая
    Допуск срабатывания по току высокий низкий
    КПД в случае обрыва нейтрального провода или при падении напряжения сети ниже допустимого сохраняется не работает
    Устойчивость к скачкам перенапряжения в сети высокая низкая
    размеры большой во много раз меньше

    Как видно из таблицы, если нет ограничений по габаритным размерам, нужно выбирать УЗО электромеханическое.Электронное УЗО незаменимо при установке на отдельный электроприбор, например, в розетку или удлинитель.

    Основные технические характеристики УЗО

    Требования к техническим характеристикам УЗО установлены ГОСТ Р 51326.1-99 (МЭК 61008-1-96) «Автоматические выключатели дифференциального тока бытового и аналогичного назначения без встроенной максимальной токовой защиты».

    Для желающих сделать более осознанный выбор я свел в таблицу все основные технические характеристики УЗО.

    Таблица основных технических характеристик УЗО
    Характеристика Обозначение Количество Примечание
    Рабочее напряжение IN 220, 380 Для однофазной домашней сети УЗО устанавливается на напряжение 220 В, для трехфазной сети - на 380 В
    Количество фаз 1, 3 Указывается в паспорте
    Ток утечки срабатывания, I∆n мА 5 Инструкции по установке в ПУЭ нет, но можно найти в рекомендациях по применению электроприборов, например, теплый пол
    10 Предназначен для подключения розеток, установленных в ванных, кухнях, детских комнатах и ​​бытовой техники, установленной на земле
    30 Универсальный, подходит для любого дома или квартиры
    100, 300 Применяется в промышленности, иногда устанавливается на вводе электропроводки в корпус для повышения пожарной безопасности
    Максимальный ток нагрузки, In AND 6-125 Должен быть равен или превышать ток автоматического выключателя, установленного после УЗО
    Максимальный коммутируемый ток, Im AND 500 Должен быть в 10 раз больше максимального тока нагрузки
    Ток короткого замыкания, Inc кА 3-10 Максимальный ток, который может выдержать УЗО кратковременно в случае короткого замыкания в проводке
    Время отключения мс Время, по истечении которого при превышении допустимого тока утечки УЗО должно отключить нагрузку
    Периодичность проверок месяц 1 Для простого теста просто нажмите кнопку RCD Test.Для диагностики времени отклика требуется специальный прибор
    Рабочая температура ° C минус 25 - +40 Рабочая температура, при которой разрешена работа УЗО
    Конструктивные характеристики Электромеханический Более надежный, дешевый, но более крупный электронный УЗО
    Электронные Современные УЗО, дорогие, малогабаритные
    Тип формы рабочего тока AS Отключение при медленном или резком нарастании синусоидального тока утечки
    И Срабатывает, если синусоидальный или пульсирующий постоянный ток утечки увеличивается медленно или внезапно
    IN Срабатывает, если синусоидальный, пульсирующий постоянный или постоянный ток утечки увеличивается медленно или внезапно
    Способ установки Предназначен для монтажа на DIN-рейку в щите Предназначен для установки в электрощиты квартир и домов
    Встраивается в розетку Устанавливается для защиты отдельного электрического устройства или, в случае старой электропроводки, для предотвращения ложных тревог из-за естественных токов утечки
    В виде переходника, вставляемого в розетку
    Удлинитель
    Устанавливается на шнур питания электроприбора

    На лицевой стороне устройства защитного отключения всегда имеется маркировка с основными техническими характеристиками.Расшифровка буквенно-цифрового обозначения показана на чертеже.

    При выборе УЗО главное обращать внимание на напряжение, рабочий ток и ток утечки. Остальные параметры имеют второстепенное значение.

    Электрическая схема подключения УЗО в панели приборов

    УЗО в панели четвертной разводки подключается сразу после счетчика к разрыву между нулевым и фазным проводами, идущими к выключателям.

    Провода от счетчика подключаются поверх УЗО. Фазный провод L идет к левому контакту, а ноль N к правому контакту. Провода, идущие к машинам, подключаются к нижним клеммам в такой же последовательности. Желто-зеленый заземлитель прокладывается в обход УЗО.

    Устройство и принцип работы УЗО

    Когда УЗО находится во включенном состоянии (рычаг поднят вверх), через него подается напряжение питания на выключатели в проводке.Если включен потребитель электроэнергии, то по нейтральному и фазному проводам течет ток.

    В УЗО провода проходят через дифференциальный кольцевой трансформатор, и когда через них протекает ток, в его магнитной цепи возбуждается магнитное поле. Если утечки нет, то токи в фазном и нулевом проводах равны и текут в противоположных направлениях. Следовательно, создаваемые ими магнитные поля имеют противоположную полярность и взаимно компенсируются. В этом случае по закону Кирхгофа ЭДС не возникает в дополнительной обмотке трансформатора, независимо от тока, протекающего по ней в нагрузку.

    Принцип работы УЗО электромеханического

    В том случае, если из-за нарушения изоляции бытового электроприбора по фазовому проводу протекает ток, больший, чем через фазный провод, в магнитопроводе трансформатора возникает магнитное поле. Если разность токов превышает I∆n, то в дополнительной обмотке индуцируется ЭДС достаточной величины для отключения УЗО и отключения питания проводки.

    В электромеханическом УЗО к дополнительной обмотке трансформатора подключен электромагнит, соленоид которого механически связан с механизмом расцепления. Когда в обмотке возникает заданная ЭДС, соленоид втягивается и тем самым, воздействуя на механизм расцепления, размыкает контакты. Подача питания на проводку прекращается.

    Принцип работы УЗО электронного

    По внешнему виду стандартное электронное УЗО ничем не отличается от электромеханического и отличить их можно только по маркировке или схеме, нанесенной на корпус.Принцип действия обоих типов УЗО одинаков, разница заключается в измерительном приборе. В электронике вместо электромагнита установлена ​​электронная схема в виде порогового компаратора с усилителем и реле.

    При превышении разницы токов I∆n, протекающих по фазному и нулевому проводам, напряжение подается с усилителя на реле. Он срабатывает и УЗО перестает подавать напряжение на проводку.

    Установка УЗО в экран на DIN-рейке

    В стеновых панелях или коробках УЗО, как и другие монтажные электрические устройства, монтируются на DIN-рейку, ее также часто называют монтажной рейкой.Это металлическая пластина шириной 35 мм, изогнутая таким образом, что ее продольные края приподняты. Согласно ГОСТ Р МЭК 60715-2003 «Аппаратура распределения и управления низковольтная. Установка и крепление на рельсах электрооборудования в низковольтных комплектных распределительных и управляющих устройствах », обозначенных Т35 .


    Этот способ крепления не требует дополнительных креплений и позволяет быстро как установить УЗО, так и снять его для профилактики, проверки или замены.На фотографии показана DIN-рейка старого образца, когда она была профилем из алюминиевого сплава.


    DIN-рейки устанавливаются в панели горизонтально. На тыльной стороне УЗО есть два фиксатора - стационарный (на фото слева) и подпружиненный подвижный (справа). Таким образом, чтобы установить УЗО на рейку, нужно надеть верхнюю фиксированную защелку на край DIN-рейки, а затем прижать к ней нижнюю часть. Подвижная защелка погрузится в корпус УЗО и выйдет из него при прижатии УЗО к DIN-рейке всей плоскостью.

    Для снятия УЗО с DIN-рейки достаточно вставить конец лезвия плоской отвертки, расположенный ниже отходящего проводника, в ушко подвижного фиксатора и надавить на него. Защелка выйдет из зацепления, и нижняя часть УЗО свободно отодвинется от DIN-рейки.

    Подключенное УЗО находится под фазным напряжением и перед демонтажем необходимо отключить питание.

    Как правильно подключить провода к УЗО

    Бесперебойная работа всей электропроводки определяется не только правильным выбором сечения провода и электроприборов, но и надежностью их соединения между собой.Несмотря на простоту этой операции, часто допускаются ошибки, что впоследствии приводит к подгоранию контактов и выходу из строя УЗО.

    Основной особенностью электромеханических устройств является их работа вне зависимости от того, есть напряжение в сети или нет.

    Тока утечки будет вполне достаточно для работы оборудования, в это время во вторичной обмотке трансформатора возникает ток, что является причиной срабатывания реле, а соответственно и триггера.

    Для работы электронного УЗО без напряжения не обойтись, в силу совершенно других принципов работы.

    Внутри них есть усилитель и плата для него, срабатывающая при наличии даже небольшого тока во вторичной обмотке. Плата увеличивает доступный ток и передает импульс, достаточно сильный, чтобы активировать реле.

    Именно поэтому в конструкции таких УЗО присутствует трансформатор меньшего размера.

    Электромеханические агрегаты

    имеют простую, но в то же время более надежную конструкцию, поэтому они реже ломаются в процессе эксплуатации.Но можно отключить электронное устройство при малом импульсе в сети.

    В этом случае потребуется замена микросхемы или полупроводников. Несмотря на это, большая популярность электронных УЗО обусловлена ​​их более низкой стоимостью.

    Более того, современные разработки позволили оснастить такое оборудование дополнительной защитой от скачков напряжения. Как только произойдет скачок, он отключится.

    Есть несколько других способов отличить эти два типа УЗО.

    Самое сложное - посмотреть на схему внутри. Если это электромеханическое устройство, то на его схеме будет показан трансформатор дифференциального типа, у которого вторая обмотка подключена непосредственно к реле.

    Реле схематично можно представить в виде квадрата, иногда прямоугольника. Связь с сетью, питающей узел, не следует показывать схематично.

    Если рассматривать схематическое изображение УЗО электрического типа, то плата на нем будет изображена в виде треугольника.На схеме показаны линии от блока питания.

    Можно использовать простую батарею, чтобы отличить одно устройство от другого. Включаем оборудование и двумя проводами подключаем к нему его столбы.

    Таким образом, мы провоцируем скачок тока, в результате которого, если это УЗО электромеханическое, реле выключится. Соответственно, если отключение не произошло, то у нас электронный вариант.

    Если у вас нет под рукой аккумулятора, найдите постоянный магнит среднего размера и поднесите его к корпусу рассматриваемого оборудования.В этом случае обязательным условием является включенное состояние агрегата. Переместите магнит вдоль боковой и передней панели. Если реле не срабатывает, перед вами электронное оборудование, а если работает - электромеханическое.

    Пишите комментарии, дополнения к статье, может я что-то упустил. Загляните, буду рад, если найдете на моем еще что-нибудь полезное.

    Устройства защитного отключения бывают двух типов по принципу внутреннего устройства. Это электромеханические и электронные.Это касается и дифавтоматов, так как УЗО являются их составной частью. Различный принцип внутреннего устройства этих устройств не влияет на их рабочие параметры. Однако есть нюансы, при которых один вид УЗО исправно выполняет свои функции, а другой - не может, что может привести к плачевным последствиям. Поэтому еще перед покупкой нужно знать, как их отличить.

    Отличить электромеханическое УЗО от электронного можно тремя способами.Это соответствует схеме подключения, которая изображена на корпусе устройства, с использованием обычной батареи и постоянного магнита. Давайте подробнее рассмотрим каждый метод ниже.

    1. Используя схему подключения, которая изображена на корпусе устройства.

    Я считаю, что это самый простой способ их различить, поскольку для этого не требуются какие-либо дополнительные элементы и инструменты. Здесь главное запомнить отличия схем и все.

    Если вы возьмете в руки какое-либо УЗО или дифавтомат, то на его корпусе вы обязательно найдете схему их внутреннего устройства. На самом деле существует два типа схем. Это один тип для электромеханического типа и второй тип для электронного. Хотя у каждого типа схемы есть небольшие отличия, они не столь значительны.

    В двух словах: электромеханическое УЗО или дифавтомат состоит из дифференциального трансформатора и поляризованного реле. Если в контролируемой цепи возникает ток утечки, он генерирует ток во вторичной обмотке дифференциального трансформатора.Этот дифференциальный ток вызывает срабатывание реле, которое воздействует на триггер, вызывая срабатывание устройства.

    Итак, на схеме нам нужно найти дифференциальный трансформатор и поляризованное реле. Первый обозначается овалом вокруг фазного и нейтрального проводников, а реле обозначается квадратом или прямоугольником. Реле с трансформатором соединены посредством вторичной обмотки, которая показана сплошной линией. Пунктирной линией обозначена механическая связь со спусковым крючком.Также на схеме часто изображается кнопка «Тест», но ее нет на представленном на фото дифавтомате.

    На фото ниже я подписал необходимые элементы на схеме.

    Электронные УЗО и дифавтоматы

    имеют немного другую схему подключения на корпусе. Из названия можно понять, что работой таких устройств управляет электронная плата.

    В двух словах: Если в управляемой цепи возникает ток утечки, то он поражает ток во вторичной обмотке дифференциального трансформатора.Этот дифференциальный ток улавливается электронной платой, усиливает его и создает импульс, от которого срабатывает реле. Реле уже воздействует на курок, тем самым выводя из строя устройство.

    Электронные элементы намного компактнее и поэтому такие УЗО и дифавтоматы зачастую меньше по размеру. На рынке представлены электронные одномодульные защитные устройства, размером с однополюсный автоматический выключатель.

    Здесь, на схеме, нам нужно помимо дифференциального трансформатора и реле найти плату электронного усилителя.Обозначается треугольником. Также ни одна плата не работает без питания, поэтому на схеме есть дополнительные линии для ее питания. На фото ниже я подписала все необходимые элементы.

    В результате получаем:

    • Если на схеме изображен овал над нулевым и фазным проводниками (дифференциальный трансформатор) и квадрат (реле), соединенные сплошной линией, то перед вами электромеханическое УЗО или дифавтомат.
    • Если на схеме изображен овал над нейтральным и фазным проводниками (дифференциальный трансформатор) и квадрат (реле), соединенный сплошной линией через треугольник (плата усилителя), к которому подключены две силовые линии, то перед вами электронное УЗО. или дифавтомат.

    2. Второй способ отличить электромеханическое УЗО от электронного - использовать аккумулятор.

    Хотя этот вариант и надежен, мне он кажется более сложным, так как с собой нужно иметь заряженный аккумулятор, два провода и отвертку. Также в магазине, думаю, вам в руки не дадут девайс, чтобы можно было к нему что-то подключить и поэкспериментировать. Еще много защитных устройств продаются в запечатанной упаковке (коробке), вскрыть которую в магазине тоже не разрешат.

    Однако этот способ имеет право на жизнь и я вам об этом расскажу. Например, на фото я использую RCBO от Schneider Electric.

    Здесь все просто. Надо сверху к единице, например к нулевому полюсу прикрутить один провод. Второй провод прикрутите к нижнему нулевому полюсу. Затем взвести ручку управления, т.е. включить УЗО или дифавтомат. Теперь нужно замкнуть другие концы проводов на любую заряженную батарею. Если устройство отключается, значит, оно электромеханическое.Если не выключается, то переверните аккумулятор (поменяйте полярность) и попробуйте снова замкнуть провода. Если устройство отключается, то однозначно электромеханическое.

    Почему электромеханические УЗО и дифавтоматы работают от аккумуляторов? Потому что аккумулятор начинает разряжаться через замкнутый полюс, т.е. на одном полюсе появляется ток, который, в свою очередь, влияет на дифференциальный ток во вторичной обмотке трансформатора. Достаточно сработать поляризованное реле.

    Если прибор не выключается, значит он электронный.Почему не выключается УЗО этого типа? Потому что для работы платы усилителя нужна мощность, которой нет. Следовательно, усилитель не подает импульс на реле, которое не влияет на триггер.

    Такую операцию можно проводить на любом полюсе, нуле и фазе. Электромеханическое защитное устройство сработает в любом случае.

    3. Третий способ отличить электромеханическое УЗО от электронного - с помощью постоянного магнита.

    Здесь тоже нет ничего сложного. Просто нужно где-то найти постоянный магнит средних размеров (1 / 4-1 / 3 УЗО).

    Последовательность действий следующая:

    • подбираем УЗО или дифавтомат;
    • взведение рычага, т.е. включение;
    • вращаем магнит вокруг передней и боковой части устройства круговыми движениями.

    Если при таких движениях прибор отключается, то он электромеханический, а если нет, то электронный.Этот способ не стопроцентный, так как силы вашего магнита может не хватить для появления дифференциального тока.

    Итак, мы проанализировали все три доступных способа определения типов УЗО и дифавтоматов.

    Вы когда-нибудь использовали такие варианты, чтобы отличить электромеханическое УЗО от электронного?

    Давайте улыбнемся:

    «Да будет свет!» - сказал электрик и полез за спичками.

    наноразмерных полимеров | SpringerLink

    Об этой книге

    Введение

    В этой книге подробно описаны все современные методы преобразования объемных полимеров в наноразмерные материалы. Авторы выделяют различные физические и химические подходы к получению наноразмерных полимеров. Они описывают свойства этих материалов и их широкие возможности коммерческого применения.

    Ключевые слова

    Электропрядение Электропряденые волокна Наноразмерные полимеры Полимерные нанокомпозиты Полимерные нанофибриллы Полимерные наноматериалы

    Редакторы и членские организации

    1. 1. Кафедра машиностроения, Центр современных композитных материалов Оклендский университет Окленд Новая Зеландия
    О редакции

    Стойко Факиров в настоящее время является профессором факультета машиностроения Оклендского университета.Его исследовательские интересы включают взаимосвязь структура-свойства в полимерах и композиционных материалах, микроскопические характеристики, полимерное материаловедение, технологии производства высокоэффективных пластиков и композитов с термопластичными матрицами, реакции в твердых и расплавленных конденсационных полимерах (основы и коммерческое применение), последовательное переупорядочение в конденсационные сополимеры, химическое заживление, композиты, армированные микро- и нанофибриллами, микротвердость полимеров, биоматериалы на основе желатина и крахмала, материалы для биомедицинских применений и отдельные полимерные композиты.

    Библиографическая информация

    Разработка наночастиц для тераностических приложений

    % PDF-1.4 % 1 0 объект > эндобдж 7 0 объект /Заголовок /Предмет / Автор /Режиссер / Ключевые слова / CreationDate (D: 20210423025146-00'00 ') / ModDate (D: 20140418121708 + 02'00 ') >> эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 объект > эндобдж 5 0 obj > эндобдж 6 0 obj > поток GPL Ghostscript 9.10 () 2014-04-18T12: 17: 08 + 02: 002014-04-18T12: 17: 08 + 02: 00 Adobe Acrobat Pro 10.0.0

  • Разработка наночастиц для тераностических приложений
  • AHMED Naveed
  • ()
  • конечный поток эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > эндобдж 26 0 объект > эндобдж 27 0 объект > эндобдж 28 0 объект > эндобдж 29 0 объект > эндобдж 30 0 объект > эндобдж 31 0 объект > эндобдж 32 0 объект > эндобдж 33 0 объект > эндобдж 34 0 объект > эндобдж 35 0 объект > эндобдж 36 0 объект > эндобдж 37 0 объект > эндобдж 38 0 объект > эндобдж 39 0 объект > эндобдж 40 0 объект > эндобдж 41 0 объект > эндобдж 42 0 объект > эндобдж 43 0 объект > эндобдж 44 0 объект > эндобдж 45 0 объект > эндобдж 46 0 объект > эндобдж 47 0 объект > эндобдж 48 0 объект > эндобдж 49 0 объект > эндобдж 50 0 объект > эндобдж 51 0 объект > эндобдж 52 0 объект > эндобдж 53 0 объект > эндобдж 54 0 объект > эндобдж 55 0 объект > эндобдж 56 0 объект > эндобдж 57 0 объект > эндобдж 58 0 объект > эндобдж 59 0 объект > эндобдж 60 0 объект > эндобдж 61 0 объект > эндобдж 62 0 объект > эндобдж 63 0 объект > эндобдж 64 0 объект > эндобдж 65 0 объект > эндобдж 66 0 объект > эндобдж 67 0 объект > эндобдж 68 0 объект > эндобдж 69 0 объект > эндобдж 70 0 объект > эндобдж 71 0 объект > эндобдж 72 0 объект > эндобдж 73 0 объект > эндобдж 74 0 объект > эндобдж 75 0 объект > эндобдж 76 0 объект > эндобдж 77 0 объект > эндобдж 78 0 объект > эндобдж 79 0 объект > эндобдж 80 0 объект > эндобдж 81 0 объект > эндобдж 82 0 объект > эндобдж 83 0 объект > эндобдж 84 0 объект > эндобдж 85 0 объект > эндобдж 86 0 объект > эндобдж 87 0 объект > эндобдж 88 0 объект > эндобдж 89 0 объект > эндобдж 90 0 объект > эндобдж 91 0 объект > эндобдж 92 0 объект > эндобдж 93 0 объект > эндобдж 94 0 объект > эндобдж 95 0 объект > эндобдж 96 0 объект > эндобдж 97 0 объект > эндобдж 98 0 объект > эндобдж 99 0 объект > эндобдж 100 0 объект > эндобдж 101 0 объект > эндобдж 102 0 объект > эндобдж 103 0 объект > эндобдж 104 0 объект > эндобдж 105 0 объект > эндобдж 106 0 объект > эндобдж 107 0 объект > эндобдж 108 0 объект > эндобдж 109 0 объект > эндобдж 110 0 объект > эндобдж 111 0 объект > эндобдж 112 0 объект > эндобдж 113 0 объект > эндобдж 114 0 объект > эндобдж 115 0 объект > эндобдж 116 0 объект > эндобдж 117 0 объект > эндобдж 118 0 объект > эндобдж 119 0 объект > эндобдж 120 0 объект > эндобдж 121 0 объект > эндобдж 122 0 объект > эндобдж 123 0 объект > эндобдж 124 0 объект > эндобдж 125 0 объект > эндобдж 126 0 объект > эндобдж 127 0 объект > эндобдж 128 0 объект > эндобдж 129 0 объект > эндобдж 130 0 объект > эндобдж 131 0 объект > эндобдж 132 0 объект > эндобдж 133 0 объект > эндобдж 134 0 объект > эндобдж 135 0 объект > эндобдж 136 0 объект > эндобдж 137 0 объект > эндобдж 138 0 объект > эндобдж 139 0 объект > эндобдж 140 0 объект > эндобдж 141 0 объект > эндобдж 142 0 объект > эндобдж 143 0 объект > эндобдж 144 0 объект > эндобдж 145 0 объект > эндобдж 146 0 объект > эндобдж 147 0 объект > эндобдж 148 0 объект > эндобдж 149 0 объект > эндобдж 150 0 объект > эндобдж 151 0 объект > эндобдж 152 0 объект > эндобдж 153 0 объект > эндобдж 154 0 объект > эндобдж 155 0 объект > эндобдж 156 0 объект > эндобдж 157 0 объект > эндобдж 158 0 объект > эндобдж 159 0 объект > эндобдж 160 0 объект > эндобдж 161 0 объект > эндобдж 162 0 объект > эндобдж 163 0 объект > эндобдж 164 0 объект > эндобдж 165 0 объект > эндобдж 166 0 объект > эндобдж 167 0 объект > эндобдж 168 0 объект > эндобдж 169 0 объект > эндобдж 170 0 объект > эндобдж 171 0 объект > эндобдж 172 0 объект > эндобдж 173 0 объект > эндобдж 174 0 объект > эндобдж 175 0 объект > эндобдж 176 0 объект > эндобдж 177 0 объект > эндобдж 178 0 объект > эндобдж 179 0 объект > эндобдж 180 0 объект > эндобдж 181 0 объект > эндобдж 182 0 объект > эндобдж 183 0 объект > эндобдж 184 0 объект > эндобдж 185 0 объект > эндобдж 186 0 объект > эндобдж 187 0 объект > эндобдж 188 0 объект > эндобдж 189 0 объект > эндобдж 190 0 объект > эндобдж 191 0 объект > эндобдж 192 0 объект > эндобдж 193 0 объект > эндобдж 194 0 объект > эндобдж 195 0 объект > эндобдж 196 0 объект > эндобдж 197 0 объект > эндобдж 198 0 объект > эндобдж 199 0 объект > эндобдж 200 0 объект > эндобдж 201 0 объект > эндобдж 202 0 объект > эндобдж 203 0 объект > эндобдж 204 0 объект > эндобдж 205 0 объект > эндобдж 206 0 объект > эндобдж 207 0 объект > эндобдж 208 0 объект > эндобдж 209 0 объект > эндобдж 210 0 объект > эндобдж 211 0 объект > эндобдж 212 0 объект > эндобдж 213 0 объект > эндобдж 214 0 объект > эндобдж 215 0 объект > эндобдж 216 0 объект > эндобдж 217 0 объект > эндобдж 218 0 объект > эндобдж 219 0 объект > эндобдж 220 0 объект > эндобдж 221 0 объект > эндобдж 222 0 объект > эндобдж 223 0 объект > эндобдж 224 0 объект > эндобдж 225 0 объект > эндобдж 226 0 объект > эндобдж 227 0 объект > эндобдж 228 0 объект > эндобдж 229 0 объект > эндобдж 230 0 объект > эндобдж 231 0 объект > эндобдж 232 0 объект > эндобдж 233 0 объект > эндобдж 234 0 объект > эндобдж 235 0 объект > эндобдж 236 0 объект > эндобдж 237 0 объект > эндобдж 238 0 объект > эндобдж 239 0 объект > эндобдж 240 0 объект > эндобдж 241 0 объект > эндобдж 242 0 объект > эндобдж 243 0 объект > эндобдж 244 0 объект > эндобдж 245 0 объект > эндобдж 246 0 объект > эндобдж 247 0 объект > эндобдж 248 0 объект > эндобдж 249 0 объект > эндобдж 250 0 объект > эндобдж 251 0 объект > эндобдж 252 0 объект > эндобдж 253 0 объект > эндобдж 254 0 объект > эндобдж 255 0 объект > эндобдж 256 0 объект > эндобдж 257 0 объект > эндобдж 258 0 объект > эндобдж 259 0 объект > эндобдж 260 0 объект > эндобдж 261 0 объект > эндобдж 262 0 объект > эндобдж 263 0 объект > эндобдж 264 0 объект > эндобдж 265 0 объект > эндобдж 266 0 объект > эндобдж 267 0 объект > эндобдж 268 0 объект > эндобдж 269 ​​0 объект > эндобдж 270 0 объект > эндобдж 271 0 объект > эндобдж 272 0 объект > эндобдж 273 0 объект > эндобдж 274 0 объект > эндобдж 275 0 объект > эндобдж 276 0 объект > эндобдж 277 0 объект > эндобдж 278 0 объект > эндобдж 279 0 объект > эндобдж 280 0 объект > эндобдж 281 0 объект > эндобдж 282 0 объект > эндобдж 283 0 объект > эндобдж 284 0 объект > эндобдж 285 0 объект > эндобдж 286 0 объект > эндобдж 287 0 объект > эндобдж 288 0 объект > эндобдж 289 0 объект > эндобдж 290 0 объект > эндобдж 291 0 объект > эндобдж 292 0 объект > эндобдж 293 0 объект > эндобдж 294 0 объект > / ProcSet [/ PDF / Text / ImageC / ImageB / ImageI] >> эндобдж 295 0 объект > поток х ڝ XɎ6 + (! Ȃ6H ߂ Uq.s (nw {a # nɰTMv_Onq`yor6XWk ֺ ڐ og-lo8bO8pcUkw_ = O.?>! Iʦ @ 1zdxL S {&) "> PXemle 5 "" * ӠD ֟ & M: ⬩: F? Q ޡ њ

    Разница между электромеханическим и электронным узо. УЗО электронное или электромеханическое

    Устройства дифференциального тока делятся по напряжению питания для электромеханических и электронных УЗО ... Типы УЗО по функциональной зависимости от наличия в цепи электрического тока (напряжения питания) определяют особенности их использования. и приложение.

    УЗО электромеханическое

    УЗО электромеханическое не зависит, а точнее функционирование электромеханического УЗО, не зависит от наличия электрического тока в цепи. То есть сработает электромеханическое УЗО и отключит аварийную цепь, даже если в цепи нет тока. Для работы электромеханического УЗО достаточно появления дифференциального тока в цепи, где оно установлено.

    Электронное УЗО

    Срабатывание электронного УЗО зависит от наличия электрического тока в цепи.Пусковой механизм электронных УЗО требует подачи на него напряжения от цепи установки или от внешнего источника тока.

    Практическое применение электронных и электромеханических УЗО

    Если вы внимательно прочитали, в чем разница между электронным и электромеханическим УЗО, то логично предположить, что электромеханическое УЗО более надежно.

    Например, Электронное УЗО по конструкции работает только при наличии напряжения на входных клеммах УЗО.Допустим, в цепи обрыв нулевого проводника. Пропадает напряжение на входных клеммах, УЗО перестает работать. Однако фазовый провод остается в рабочем состоянии, и в электрической установке присутствует электрический потенциал.

    Рекомендации по применению УЗО по типу срабатывания

    Для базовой защиты человека от повреждений токами утечки следует применять УЗО электромеханическое или другое название, УЗО первого типа.

    Электронное УЗО , или УЗО второго типа следует использовать для дополнительной защиты конечных потребителей: отдельную розетку, переносные удлинители, электроинструмент.

    Электромеханические и электронные УЗО, визуальная идентификация типа устройства

    Самое интересное, что внешне электронные и электромеханические УЗО в РФ не различаются. Как их отличить?

    Способ 1.

    Смотрим на корпус УЗО, а конкретно на схему подключения, которая прилагается к корпусу.На схемах мы видим отличия электронного устройства защитного отключения от электромеханического УЗО.

    Способ 2.

    • Проверку делаем перед установкой УЗО.
    • Взводим аппарат.
    • Подключаем аккумулятор на 9 Вольт к одному полюсу прибора, на входе и выходе.
    • Если устройство работает, то это УЗО электромеханическое.

    выводы

    • В распределительных щитах, при установке в групповых цепях, необходимо устанавливать электромеханические УЗО.
    • Электронные УЗО могут использоваться для дополнительной защиты отдельных электрических устройств.
    • Электронные и электромеханические УЗО можно отличить по схеме подключения, напечатанной на корпусе устройства.

    Как уже говорилось, УЗО бывают двух типов - электромеханические и электронные. По внешнему виду они практически не отличаются друг от друга. Обычному потребителю без определенных знаний и навыков разобраться, какое УЗО перед ним электронное или электромеханическое, очень сложно.

    Как их отличить? Вам нужны для этого какие-нибудь инструменты или устройства?

    Всего можно выделить три основных способа отличить УЗО:

    • по схеме на корпусе УЗО
    • с аккумулятором
    • с магнитом

    По схеме на корпусе УЗО

    На корпусе всех современных УЗО изображена его электрическая схема. Если его нет на передней части корпуса, посмотрите на верхнюю часть.

    Электронная схема УЗО несколько отличается от электромеханической схемы. Если вы знаете эти отличия, то легко сможете распознать тип УЗО перед покупкой.

    Схема электромеханического УЗО:

    • Тяговый дифференциальный трансформатор
    • нарисовано реле, имеющее связь с трансформатором
    • нарисован отключающий механизм
    • тоже отображается кнопка ТЕСТ

    Пример такой схемы:

    Электронная цепь УЗО:

    Элементы, которые показаны на электронной схеме УЗО, практически не отличаются от указанных на электромеханической.Какая разница? И состоит он в дополнительной электронной плате.

    Нарисовывается в виде прямоугольника или треугольника, устанавливается между дифференциальным трансформатором и реле.

    К этому элементу подходят два проводника - фазный и нулевой, то есть 220В. Это внешний источник питания, необходимый для работы электронного УЗО.

    Проверка УЗО с помощью аккумулятора

    Необходимый инвентарь для проверки:

    • батарейка (палец, или корона)
    • два провода длиной 10-15 см

    Процесс проверки выглядит следующим образом.Подключите один из проводов к верхнему контакту УЗО, другой провод к нижнему контакту. Главное, чтобы контакт был однополюсным, т.е. либо одноименной фазы (если это 3-х фазное УЗО), либо нулевой. И замкнуть провода на плюс и минус аккума.

    Если УЗО не выключилось, перевернуть полюса проводов на АКБ. Если на этот раз не сработало, значит УЗО электронное.

    Отключение УЗО означает, что оно электромеханического типа.

    Использование магнита для проверки УЗО

    Этот метод не совсем точен, но иногда его можно использовать. Включите УЗО и проведите им магнитом по корпусу. Магнит должен касаться разных мест корпуса, так как разные производители имеют дифференциальный трансформатор в разных частях УЗО (правый, средний или левый).

    Магнитное поле в обмотке дифференциального трансформатора должно создавать ток, который приведет к срабатыванию реле и срабатыванию УЗО.В таком случае УЗО электромеханическое, если нет - электронное. Но рассчитывать на стопроцентный результат такой проверки не стоит.

    Как отличить электронное УЗО от электромеханического

    Разница в конструкции этих устройств не влияет на производительность. Эти выключатели дифференциальной защиты вполне успешно справляются со своими функциями и имеют высокие параметры. Рассмотрим устройство электронного и электромеханического устройства.

    Версия с электромеханической защитой имеет тороидальный дифференциальный трансформатор, поляризованное реле и триггер.Дифференциальный трансформатор определяет разницу между токами фазного и нейтрального проводов, усиливает ее с помощью вторичной повышающей обмотки трансформатора, и усиленный дифференциальный сигнал подается на поляризованное реле.

    Выстреливает и активирует спусковой механизм защиты. Электронная защита также имеет дифференциальный трансформатор, поляризованное реле, но размер трансформатора меньше, поскольку сигнал усиливается электронной платой, которая питается от сетевого напряжения и подает сигнал на поляризованное реле, которое также связано с курком.Электронная защита работает только при наличии сетевого напряжения. Но наша сеть еще не достигла хорошего качества.

    В конструкции УЗО электронного присутствует электронный усилитель А, работающий от сетевого напряжения (справа)

    Перебои в работе сети, пониженное или повышенное напряжение, импульсные помехи, внезапные скачки напряжения - не редкость. Электронное наполнение защиты может не выдержать таких испытаний и выйти из строя. Другой вариант, когда электронная защита не может выполнять свои функции, - это перегорев или обрыв нейтрального провода (актуально для старой электропроводки).

    Нейтральный провод может перегореть в вашем электрическом щите у входа, и поскольку электронное устройство защиты срабатывает от сетевого напряжения, защита будет отключена. Вы будете лишены защиты по току утечки остаточного фазного напряжения. Поэтому для электронной версии выключателя необходимо часто проверять его работу, нажимая кнопку «ТЕСТ». Механический вариант защиты не боится отсутствия напряжения и обрыва нуля.Следовательно, их надежность будет выше, чем у электронных выключателей.

    Внешняя разница между электронным и электромеханическим УЗО

    На корпусе дифференциального выключателя имеется маркировка и схема включения этого типа устройства. На представленной схеме электромеханического устройства вы можете видеть дифференциальный трансформатор, его вторичную обмотку с подключенным поляризованным реле и пунктирную линию, показывающую соединение реле с триггером.

    Схема УЗО электромагнитного (слева) и электронного (справа)

    Также обозначена кнопка «ТЕСТ» с резистором.В электронной форме устройства на корпусе вы найдете разницу в схеме в дополнительном треугольнике с обозначением И электронного усилителя между трансформатором и поляризованным реле и подключения этого треугольника к силе, фазе и нейтрали. провода.

    Испытание электромагнитного устройства

    Если у вас возникли трудности с выбором защиты по схеме на корпусе, то определить тип устройства можно обычным пальцем или любым другим аккумулятором.Для этого подключите провод к верхней клемме фазы, а другой провод к нижней клемме фазы устройства и включите его. Подключаем концы проводов к аккумулятору.

    Если защита не срабатывает, поменяйте полярность АКБ. Устройство сработало, значит это выключатель электромеханического типа, электронное устройство работать не будет, так как нет сетевого напряжения. Для проверки можно подключить аккумулятор к клеммам нулевой защиты. Другой тест проводится с помощью постоянного магнита.

    Методика проверки типа УЗО с пальчиковой батареей

    Магнит перемещается по корпусу дифференциального выключателя (защита должна быть включена) до срабатывания защиты. Конструкция дифференциального переключателя отличается от производителя к производителю, поэтому вам нужно будет найти расположение дифференциального трансформатора с помощью магнита. Защита сработала, значит, это электромеханическое устройство, электронная защита не сработает, так как не подано сетевое напряжение.

    Устройство защитного отключения служит для защиты человека от поражения электрическим током из-за утечки. Сегодня эти устройства выпускаются в двух вариантах: электронном и электромеханическом. Первые более современные и к тому же дешевле, вторые, в свою очередь, дольше находятся на рынке и, главное, надежнее с точки зрения защиты (об этом мы поговорим ниже). Далее мы расскажем, как отличить УЗО электронное от электромеханического и что лучше выбрать для домашней разводки.

    Различия между устройствами

    Есть 3 принципиальных различия между устройствами защитного отключения. Первый наглядный - определить тип УЗО можно, взглянув на схему, которая находится на лицевой стороне корпуса. Для начала рекомендуем ознакомиться с. Итак, механическое УЗО имеет дифференциальный трансформатор с вторичной обмоткой, поляризованное реле, триггер, кнопку «ТЕСТ» и резистор на корпусе. Электронная модель имеет усилитель, который дополнительно подключается к питающим проводам.

    Проще говоря, отличить УЗО электронное от электромеханического можно по наличию в схеме (усилителе) треугольника с буквой «А». Если есть треугольник, значит устройство с электроникой, нет - механического типа.

    Вы можете ясно увидеть принципиальную разницу на диаграмме ниже:

    Второй метод определения - с обычной пальчиковой батареей. Возьмите два провода, подключите один к входной клемме (вверху), второй - снизу.Главное, чтобы терминалы были одноименными: либо PHASE-PHASE, либо ZERO-ZERO. Затем переведите рычаг в положение «включено». (вверх) и подсоедините провода к аккумулятору. Если рычаг срабатывает при подключении аккумулятора, то устройство защитного отключения - электромеханического типа. Ничего не случилось? Поменяйте полярность источника питания. Опять ничего? В этом случае УЗО - электронное.

    Ну последний способ определить устройство - с помощью магнита.Проведите магнитом по корпусу неподключенного УЗО (главное, чтобы рычаг был в положении «включено») и в случае срабатывания электромеханического устройства.

    Какой выбор лучше?

    Важной информацией для вас будет функциональная разница между электронными и электромеханическими УЗО. Как многие, наверное, уже поняли, исходя из методик определения типа устройства, устройство с электроникой внутри работает только при наличии напряжения в сети.Если нет напряжения, срабатывания не произойдет. И это очень большой недостаток электронных дифавтоматов и УЗО.

    С одной стороны кажется, что срабатывание должно быть только при наличии напряжения. Смысл защиты работать если все равно нет света? И это имеет смысл, если вспомнить о такой опасности, как. Если в щите сгорит ноль, света не будет, но опасное напряжение останется, а при утечке тока невозможно избежать поражения электрическим током.При этом электромеханическое устройство в этом случае сработает.

    Еще один недостаток электронных УЗО - выход из строя при скачках напряжения. Вся электроника очень чувствительна к перенапряжению и импульсным помехам. В итоге плата выйдет из строя, вам будет казаться, что устройство защиты сработало, но на самом деле не спасет когда.

    Исходя из этого становится понятно, что лучше выбрать УЗО электромеханическое или электронное. Если вы все же решили использовать современное устройство, настоятельно рекомендуем проверять его хотя бы раз в месяц с помощью кнопки «ТЕСТ».

    Как определить вид казни

    Именно по таким критериям можно отличить электронное УЗО от электромеханического. Надеемся, теперь вы знаете, в чем разница между устройствами и какой лучший выбор для домашней электропроводки.

    Устройства защитного отключения бывают двух типов по принципу внутреннего устройства. Это электромеханические и электронные. Это касается и дифавтоматов, так как УЗО являются их составной частью. Различный принцип внутреннего устройства этих устройств не влияет на их рабочие параметры.Однако есть нюансы, при которых один вид УЗО исправно выполняет свои функции, а другой - не может, что может привести к плачевным последствиям. Поэтому еще перед покупкой нужно знать, как их отличить.

    Отличить электромеханическое УЗО от электронного можно тремя способами. Это соответствует схеме подключения, которая изображена на корпусе устройства, с использованием обычной батареи и постоянного магнита. Давайте подробнее рассмотрим каждый метод ниже.

    1. Используя схему подключения, которая изображена на корпусе устройства.

    Я считаю, что это самый простой способ их различить, поскольку для этого не требуются какие-либо дополнительные элементы и инструменты. Здесь главное запомнить отличия схем и все.

    Если вы возьмете в руки какое-либо УЗО или дифавтомат, то на его корпусе вы обязательно найдете схему их внутреннего устройства. На самом деле существует два типа схем.Это один тип для электромеханического типа и второй тип для электронного. Хотя у каждого типа схемы есть небольшие отличия, они не столь значительны.

    В двух словах: электромеханическое УЗО или дифавтомат состоит из дифференциального трансформатора и поляризованного реле. Если в контролируемой цепи возникает ток утечки, он генерирует ток во вторичной обмотке дифференциального трансформатора. Этот дифференциальный ток вызывает срабатывание реле, которое воздействует на триггер, вызывая срабатывание устройства.

    Итак, на схеме нам нужно найти дифференциальный трансформатор и поляризованное реле. Первый обозначается овалом вокруг фазного и нейтрального проводников, а реле обозначается квадратом или прямоугольником. Реле с трансформатором соединены посредством вторичной обмотки, которая показана сплошной линией. Пунктирной линией обозначена механическая связь со спусковым крючком. Также на схеме часто изображена кнопка «Тест», а на изображенном на фото дифавтомате ее нет.

    На фото ниже я подписал необходимые элементы на схеме.

    Электронные УЗО и дифавтоматы

    имеют немного другую схему подключения на корпусе. Из названия можно понять, что работой таких устройств управляет электронная плата.

    В двух словах: Если в управляемой цепи возникает ток утечки, то он поражает ток во вторичной обмотке дифференциального трансформатора. Этот дифференциальный ток улавливается электронной платой, усиливает его и создает импульс, от которого срабатывает реле.Реле уже воздействует на курок, тем самым выводя из строя устройство.

    Электронные элементы намного компактнее и поэтому такие УЗО и дифавтоматы зачастую меньше по размеру. На рынке представлены электронные одномодульные защитные устройства, размером с однополюсный автоматический выключатель.

    Здесь, на схеме, нам нужно помимо дифференциального трансформатора и реле найти плату электронного усилителя. Обозначается треугольником. Также ни одна плата не работает без питания, поэтому на схеме есть дополнительные линии для ее питания.На фото ниже я подписала все необходимые элементы.

    В результате получаем:

    • Если на схеме изображен овал над нулевым и фазным проводниками (дифференциальный трансформатор) и квадрат (реле), соединенные сплошной линией, то перед вами электромеханическое УЗО или дифавтомат.
    • Если на схеме изображен овал над нейтральным и фазным проводниками (дифференциальный трансформатор) и квадрат (реле), соединенный сплошной линией через треугольник (плата усилителя), к которому подключены две силовые линии, то перед вами электронное УЗО. или дифавтомат.

    2. Второй способ отличить электромеханическое УЗО от электронного - с помощью аккумулятора.

    Хотя этот вариант и надежен, мне он кажется более сложным, так как с собой нужно иметь заряженный аккумулятор, два провода и отвертку. Также в магазине, думаю, вам в руки не дадут девайс, чтобы можно было к нему что-то подключить и поэкспериментировать. Еще много защитных устройств продаются в запечатанной упаковке (коробке), вскрыть которую в магазине тоже не разрешат.

    Однако этот способ имеет право на жизнь и я вам об этом расскажу. Например, на фото я использую RCBO от Schneider Electric.

    Здесь все просто. Надо сверху к единице, например к нулевому полюсу прикрутить один провод. Второй провод прикрутите к нижнему нулевому полюсу. Затем взвести ручку управления, т.е. включить УЗО или дифавтомат. Теперь нужно замкнуть другие концы проводов на любую заряженную батарею. Если устройство отключается, значит, оно электромеханическое.Если не выключается, то переверните аккумулятор (поменяйте полярность) и попробуйте снова замкнуть провода. Если устройство отключается, то однозначно электромеханическое.

    Почему электромеханические УЗО и дифавтоматы работают от аккумуляторов? Потому что аккумулятор начинает разряжаться через замкнутый полюс, т.е. на одном полюсе появляется ток, который, в свою очередь, влияет на дифференциальный ток во вторичной обмотке трансформатора. Достаточно сработать поляризованное реле.

    Если прибор не выключается, значит он электронный.Почему не выключается УЗО этого типа? Потому что для работы платы усилителя нужна мощность, которой нет. Следовательно, усилитель не подает импульс на реле, которое не влияет на триггер.

    Такую операцию можно проводить на любом полюсе, нуле и фазе. Электромеханическое защитное устройство сработает в любом случае.

    3. Третий способ отличить электромеханическое УЗО от электронного - с помощью постоянного магнита.

    Здесь тоже нет ничего сложного. Просто нужно где-то найти постоянный магнит средних размеров (1 / 4-1 / 3 УЗО).

    Последовательность действий следующая:

    • подбираем УЗО или дифавтомат;
    • взведение рычага, т.е. включение;
    • вращаем магнит вокруг передней и боковой части устройства круговыми движениями.

    Если при таких движениях прибор отключается, то он электромеханический, а если нет, то электронный.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *