Закрыть

Схема включения реле: Схемы включения реле и пускателей

Содержание

Схемы включения реле и пускателей

Схемы включения реле и пускателей

Программа КИП и А

Здесь представлены и рассматриваются типовые схемы включения реле / пускателей в устройствах КИП и А.

Схемы достаточно тривиальны и широко распространены, но тем не менее могут представлять интерес для начинающих работников КИП и А.

Внимание! Так как все схемы работают под напряжением 220 Вольт, опробование и наладка должна производиться квалифицированным персоналом с соответствующей группой допуска по электробезопасности.

Простая схема управления реле / пускателем

Простая схема управления (включение / выключение) трехфазным электродвигателем приведена на рисунке 1.


Рисунок 1. Простая схема управления реле / пускателем


K1 – реле / пускатель ~220 Вольт с 4 нормально разомкнутыми контактами.
SB1 – кнопка «Пуск» с 1 нормально разомкнутым контактом
SB2 – кнопка «Стоп» с 1 нормально замкнутым контактом
K1. 1

– нормально разомкнутый контакт реле K1
K1.2...K1.4 – контакты реле K1 для коммутации силовых цепей

Принцип действия

При нажатии кнопки «Пуск» (SB1), напряжение ~220 Вольт между фазой и нулевым проводом подается через нормально замкнутый контакт SB2 кнопки «Стоп» на катушку реле / пускателя K1.

Реле срабатывает и замыкает как три силовых контакта, подключая электродвигатель к трехфазной цепи, так и контакт самоподхвата K1.1, удерживающий реле во включенном состоянии.

При нажатии кнопки «Стоп» (SB2), питание катушки реле K1 прекращается, и оно переходит в исходное состояние разрывая как контакты силовой цепи, так и контакт самоподхвата K1.1.

Хотя на схеме показан процесс включения трехфазного электродвигателя, эта схема является классической и пригодна для различных целей, где используются две кнопки «Пуск» и «Стоп», с соответствующими изменениями в силовой части схемы.

Схема управления реверсивным электродвигателем

Еще одна широко используемая схема включения реле / пускателей для управления реверсивным электродвигателем приведена на рисунке 2.


Рисунок 2. Схема управления реверсивным электродвигателем


K1, K2 – реле / пускатель ~220 Вольт с 4 нормально разомкнутыми контактами и одним нормально замкнутым.
SB1, SB2 – кнопки «Вперед», «Назад» с одним нормально разомкнутым контактом.
SB3 – кнопка «Стоп» с 1 нормально замкнутым контактом

Принцип действия

При нажатии кнопки SB1Вперед»), напряжение ~220 Вольт подается через нормально замкнутый контакт SB3 кнопки «Стоп» и нормально замкнутый контакт K2.2 реле K2 на катушку реле K1.

Оно замыкает свой контакт самоподхвата

K1.1, удерживая таким себя во включенном состоянии.

Кроме того, оно размыкает нормально замкнутый контакта K1.2 в цепи кнопки SB2 «Назад», предотвращая этим самым срабатывание реле K2 при нажатии кнопки «Назад». Иначе бы произошло короткое замыкание между фазами «B» и «С».

При нажатии кнопки SB3Стоп»), цепь питания катушки реле K1 разрывается, оно переходит в исходное состояние, отключая силовые цепи питания электродвигателя.

При нажатии кнопки SB2Назад»), напряжение ~220 Вольт подается через нормально замкнутый контакт SB3 кнопки «Стоп» и нормально замкнутый контакт K1.2 реле K1 на катушку реле K2. Оно замыкает свой контакт самоподхвата K2. 1, удерживая таким себя во включенном состоянии.

Кроме того, оно размыкает нормально замкнутый контакта

K2.2 в цепи кнопки SB2 «Вперед», предотвращая этим самым срабатывание реле K1 при нажатии кнопки «Вперед».

Силовые цепи питания электродвигателя собраны так, что при срабатывании реле K2, фазы «B» и «С» меняются местами и электродвигатель вращается в обратную сторону.

При нажатии кнопки SB3Стоп»), цепь питания катушки реле K2 разрывается, оно переходит в исходное состояние, отключая силовые цепи питания электродвигателя.

Замечания.

Для повышения надежности схемы, существуют промышленные блоки управления реверсивным электродвигателем, в которых кроме электрического блокирования включения противоположных реле / пускателей, применяются и механические рычаги блокирования одновременного срабатывания двух реле K1 и K2. В редких случаях это может происходить, когда силовые контакты одного из реле подгорели (залипли).

 

Схемы включения реле направления мощности в защитах от междуфазных КЗ | Справочник по наладке вторичных цепей | РЗиА

Страница 15 из 58

Раздел третий
НАЛАДКА НАПРАВЛЕННЫХ МАКСИМАЛЬНЫХ ТОКОВЫХ ЗАЩИТ (MT3) 3.1.   Схемы включения реле направления мощности в защитах от междуфазных КЗ
В направленных максимальных токовых защитах от междуфазных КЗ в качестве органа, фиксирующего направление мощности в аварийном режиме, используются индукционные быстродействующие реле мощности типов РБМ-171, РБМ-271, которые имеют угол максимальной чувствительности —30°, —45° (технические данные см. в разд. 2). Для повышения чувствительности и надежности действия защиты необходимо, чтобы в аварийном режиме к реле подводилась максимальная мощность, в связи с этим реле направления мощности в этих защитах обычно включаются на различные сочетания токов и напряжений по схемам, приведенным в табл. 3.1.
При включении по этим схемам на зажимах реле обеспечивается по возможности большое значение напряжения Uv и величины cos((pp+a). Исходя из этого различные схемы предусматривают включение реле на разноименные фазы тока и напряжения в таких сочетаниях, которые при возникновении КЗ обеспечивают правильную фиксацию направления мощности и подачу на реле необходимой мощности срабатывания. Наибольшее распространение получили 90- и 30- градусные схемы включения. При 90-градусной схеме к выводам реле подводятся токи одной из фаз и междуфазные (линейные) напряжения других фаз, отстоящие от тока на 90° (рис. 3.1). На рис. 3.2 представлены векторные диаграммы токов и напряжений при различных видах КЗ, подводимых к реле, имеющему фм.ч=45° и включенному на ток фазы А и линейное напряжение фаз ВС.

Из анализа приведенных диаграмм можно сделать следующие выводы о поведении реле.
Таблица 3.1. Схемы включения реле направления мощности в защитах от междуфазных КЗ


Наименование схемы включения

Ток, подводимый к реле

Напряжение, подводимое к реле

Векторные диаграммы токов и напряжений

90-градусная

30-градусная

60-градусная с 'включением на фазные токи

60-градусная с включением на разность фазных токов

При трехфазном КЗ, двухфазных КЗ на фазах АВ и СА, однофазном КЗ на фазе А реле работает четко и надежно.
При двухфазном КЗ на фазах ВС в общем случае реле не работает, так как момент на реле зависит от остаточного напряжения Ubc, значения и фазы тока нагрузки в фазе А /а„.

При однофазном КЗ на фазах В и С реле может работать ложно от токов нагрузки.
Рис. 3.1. Схема включения реле мощности от междуфазных КЗ
Для выполнения защиты от всех видов междуфазных КЗ достаточно включить всего два реле мощности на токи разных фаз. Так как в этом случае каждое реле четко работает при двух видах двухфазных КЗ, защита, выполненная на двух реле, обеспечивает надежную работу защиты при всех возможных вариантах КЗ.

При близких трехфазных КЗ, когда напряжение, подводимое к реле, мало или равно нулю, реле не работает и защита имеет «мертвую зону».
Необходимо принимать меры для исключения возможности ложной работы защиты при однофазных КЗ от токов нагрузки неповрежденных фаз — эти функции выполняют пусковые токовые реле с определенной уставкой срабатывания.

Рис. 3.2. Векторные диаграммы для оценки поведения реле мощности от междуфазных КЗ, включенного по 90-градусной схеме на напряжение
Ubc и ток /а:
а —симметричное трехфазное КЗ; б —двухфазное КЗ на фазах АВ; а —то же на фазах ВС; г —то же на фазах СА; д — однофазное КЗ на фазе А; е — то же на фазе В; ж — то же на фазе С

139. Типовые схемы включения реле направления мощности.

Реле направления мощности включаются, как правило, на фазный ток и междуфазное напряжение. Сочетание фаз тока и напряжения реле, называемое его схемой включения, должно быть таким, чтобы реле правильно определяло знак мощности КЗ при всех возможных случаях и видах повреждений. При этом к нему должна подводиться возможно большая мощность. Мощность, подводимая к реле 2, в общем случае может иметь недостаточное для действия РНМ значение при КЗ, близких к месту установки реле. Этот факт может быть обусловлен:

-        снижением напряжения Up;

-        значением углапри которомравен или близок к нулю.

Практически в схемах НТЗ применяется включение РНМ по так на-зываемой 90-градусной схеме сочетания токов и напряжений.

Название схемы (90-градусная) носит условный характер. В нем от-ражается величина угламежду напряжением и током, подведенным к РНМ в симметричном трехфазном режиме при условии, что токи в фазах совпадают с одноименными фазными напряжениями.

Диаграммы работы РНМ типа РБМ-171 с углом максимальной чув-ствительности, включенного по 90-градусной схеме, показаны

на рис. 11.

Угол внутреннего сдвига этого реле

Мощность на зажимах такого реле равна. РНМ

включено на ток Ip = IA и напряжение

На рис. 11,б изображена векторная диаграмма напряжений и тока IА при трехфазном КЗ на ЛЭП. Ток IАотстает от напряжения UA на угол

Вектор IАимеет два предельных положения: IАпри КЗ за чисто реак-тивным сопротивлением Х, когда, IА- при КЗ через дугу в на- чале ЛЭП, когда

По найденным значениямопределяют знак и значение мощности на входе РНМ. С этой целью строят диаграммы тока и напряжения на за-жимах РНМ для рассматриваемого случая КЗ (рис.11,б). С этой целью на ней относительно Up для данного типа РНМ строят линию N1N2 (измене-ния знака мощности Sp) и линию М1М2

(максимальной мощности Sp). Проекция вектора IАна линию максимальной мощности, равная характеризует значение и знак мощности.

При КЗ в зоне проекция вектора IА имеет положительный знак, а в случае КЗ вне зоны – отрицательный. Значение мощности на реле дости-гает максимума Spmax при(чему соответствует).

Из диаграммы и характеристики реле РНМ следует, что поведение реле направления мощности при трехфазном коротком замыкании в зоне и вне зоны будет правильным и значение Sp достаточным для его дейст-вия.

 

В начало

Схемы включения реле направления мощности — Студопедия

Сочетание фаз тока и напряжения питающих реле, называемое схемой включения, должно быть таким, чтобы реле правильно определяло знак мощности КЗ при всех возможных случаях и видах повреждений и чтобы к нему поводилась наибольшая мощность Sр.

Мощность Sр может иметь недостаточную для действия реле величину при КЗ, близких к месту установки реле, за счет снижения напряжения Uр или при неблагоприятном значении угла φр, при котором Sin(a–φр) равен или близок к нулю.

Рис. 3.6. Схема включения реле направления мощности

В схемах максимальных направленных защит применяется включение реле направления мощности по так называемым 90-градусной и иногда 30-градусной схемам. Соответствующие указанным схемам сочетания токов и напряжений приведены в табл. 3.1 применительно к схеме включения реле на рис. 3.6.

Таблица 3.1. Сочетания токов и напряжений для различных схем соединений

90-градусная схема 30-градусная схема
Реле Ip Up Реле Ip Up
I IA UВС I IA UАС
II IВ UСА II IВ UВА
III IС UАВ III IС UСВ

Рис. 3.7. Векторные диаграммы токов и напряжений, подводимых к реле мощности:


а) – при 90-градусной схеме; б) – при 30-градусной схеме

Названия схем 90-градусная, 30-градусная носят условный характер. Схемы именуются по углам φр между током и напряжением, подведенными к реле в симметричном трехфазном режиме при условии, что токи в фазах совпадают с одноименными фазными напряжениями.

Схема экономичного включения электромагнитных реле » S-Led.Ru


Изобретённые на заре зарождения электротехники электромагнитные реле всё ещё продолжают использоваться как в радиолюбительских конструкциях, так и в промышленных разработках. Сейчас их прочные позиции в стане коммутирующих и переключающих радиоэлементов заметно пошатнулись, но и постепенно вытесняющие их оптоэлектронные приборы не заняли бесспорно доминирующих позиций.

Продолжающаяся разработка новых типов электромагнитных реле -наглядное свидетельство тому, что их прощальный аккорд пока откладывается.

Многие знают, что ток срабатывания реле заметно больше тока удержания контактов в замкнутом/разомкнутом состоянии. Отсюда напрашивается несложный вывод, что нет необходимости подавать на обмотки реле полное напряжение питания в течение всего периода нахождения реле в активном состоянии. Если время включения реле обычно превышает 5...20 секунд, то целесообразно после переключения контактов ограничить протекающий через обмотку реле ток, что не только сделает устройство более экономичным, но и уменьшит нагрев обмотки реле.

Рассмотрим типичное решение, наиболее часто используемое для улучшения экономичности устройств с электромагнитными реле. Когда ток через переход база-эмиттер биполярного транзистора VT1 отсутствует, транзистор закрыт, напряжение на обмотку реле К1 не поступает. Напряжение на конденсаторе С1 равно напряжению питания. Когда на транзистор подаётся управляющее напряжение, он открывается, и накопленной в С1 энергии достаточно для надёжного включения реле.

Благодаря токоограничительному резистору R2, ток через обмотку реле К1, быстро снижается до заданного значения. Сопротивление R2 подбирается так, чтобы обеспечить надёжное удержание контактов реле, а ёмкость С1 должна быть достаточной, чтобы накопленной в нём энергии хватило на уверенное переключение контактов реле. У этого узла есть два недостатка — реле не включится, если управляющее напряжение будет подано одновременно или раньше напряжения питания этого каскада; реле может не включиться, если управляющее напряжение будет отключено на короткое время, (обычно десятые доли секунды), а потом снова появится. Так как С1 за столь короткое время может не успеть зарядиться, то повторного переключения контактов реле не произойдет.

Если у реле имеется незанятая группа свободно-замкнутых контактов, то с её помощью можно реализовать быструю зарядку накопительного конденсатора С1 (рис. 2). В отличие от первой схемы, здесь, для управления реле типа РЭС-22, применён ключ на полевом МДП-транзисторе. Такое решение позволяет свести ток в цепи управления практически к нулю и без оглядки использовать этот узел совместно с любыми управляющими устройствами, работающими в ключевом режиме в диапазоне питающих напряжений 3. ..10 В, например, с цифровыми микросхемами КМОП, ТТЛШ или с микропроцессорами. Низкоомный резистор R3 уменьшает износ контактов К1.1 от искрения. Резистор R1 предотвращает перегрузку выхода узла управления в случае пробоя изоляции затвора DA1.

Рисунок 2

Конденсатор С2 в большинстве реальных устройств можно не устанавливать, однако, если узел, собранный по схемам рис. 2...рис. 4, будет соединяться с узлом управления длинной, (более 30...50 см), незащищённой от помех линией связи, то его наличие желательно. Узел, собранный по схеме на рис. 2, хоть и более надёжен, но всё же не может гарантировать безупречного переключения контактов, так как нельзя исключать зависание подвижной группы контактов в промежуточном состоянии, например, при излишне низком сопротивлении R2 или малой ёмкости С1. На месте реле К1 использован экземпляр с током переключения 40 мА и током удержания 20 мА.

Если реле не имеет свободной группы переключаемых контактов или вы желаете применить другое схемотехническое решение, то можно обратиться к схеме на рис. 3. При подаче на управляющий вход напряжения высокого уровня, открывается ключ DA1, но максимальный ток через него ограничен резистором R2. Чтобы реле надёжно включилось, установлен вспомогательный ключ на DA2, который открывается на короткое время в момент подачи управляющего напряжения высокого уровня. Время, на которое открывается DA2, зависит от ёмкости конденсатора С3 и сопротивления резистора R3. Для быстродействующих герконовых реле ёмкость С3 можно уменьшить в 2...4 раза.

Рисунок 3

На рис. 4 приводится альтернативный предыдущему, вариант схемы управления реле. Когда напряжение на управляющем входе отсутствует, ключ DA1 закрыт. Конденсатор С2 разряжен, биполярный р-n-р транзистор VT1 закрыт, обмотка реле обесточена. Если затвор ключа DA1 поступит управляющее напряжение, напряжение сток-исток DA1 уменьшится практически до нуля, на выводах С2 появится разность потенциалов, Транзистор VT1 откроется примерно на 0,5 секунды, что достаточно для включения реле К1. После зарядки С2, транзистор VT1 закрывается, ток через катушку реле ограничивается резистором R2. Диод VD2 предназначен для быстрой разрядки С2 после выключения реле. Этот узел обеспечивает быструю готовность к повторному включению реле, но иногда, для надёжного включения реле может потребовать на 1...2 В более высокого напряжения питания, чем для первых трёх узлов.

Рисунок 4

Схемы подключения реле времени

Реле времени — повсеместно применяющиеся устройства, как в бытовых целях, так и на крупных промышленных предприятиях. Приборы выпускаются механического типа, представляющие собой простейшие конструкции, и электронными, оснащенными сложными системами управления, программируемыми пользователем.

Область применения

Реле времени – это устройство, предназначенное для включения/выключения приборов, управления процессами с определенным промежутком времени.

Такое оборудование довольно часто используются в промышленности для управления производственными процессами без участия человека. Реле не менее часто применяется в быту. Оно может использоваться для систематического полива, включения в определенное время освещения и т. д.

Электронное микропроцессорное реле времени модели PCR-513 может программироваться самим пользователем

Виды и классификация

Такие приборы, как реле времени разделяются на:

  • блочные;
  • модульные;
  • встраиваемые.

Блочные отличаются спецификой процесса установки, требующим индивидуального запитывания от сети. Встраиваемые не нуждаются в организации отдельного питания, так как чаще всего используются как вспомогательные элементы в более сложных схемах. Модульные реле времени также не подключаются к отдельной питающей линии. Крепление модульных реле производиться на DIN – рейку.

Также реле времени могут быть:

  • электромагнитными;
  • пневматическими;
  • электронными;
  • моторными.

Для использования в быту в основном применяются электронные или электромагнитные реле. Это объясняется тем, что они максимально эффективны в работе, а также их стоимость невысока и доступна для любого потребителя.

Читайте также статью ⇒ Подключение реле максимального тока.

Преимущества и недостатки устройства

У электронных реле преимущественным качеством является то, что они с высокой точностью выполняют свои функции. Из отрицательных качеств можно отметить только то, что для них требуется точность в программировании, интервал времени, который может устанавливаться, значительно меньше чем у электромеханических. Также стоит отметить и достаточно высокую стоимость.

Основными достоинствами электромагнитных реле являются низкая цена, они не требуют постоянного обслуживания, регулярного программирования, изменения настроек. Недостатком таких устройств является ограниченный ресурс работы, а также не слишком хорошая работа с постоянным током.

Реле времени на современном рынке представлены в широком разнообразии типов и моделей

Принцип работы

Принцип работы реле времени заключается в следующем.

Так как это приборы, которые производят подсчет времени, в каждом из них имеется таймер, который выставляется на определенный период. Поэтому необходимо выставить таймер на требуемое время включения или выключения. Таймер вмонтирован в лицевую часть прибора. В зависимости от заданных характеристик этот прибор будет отключать сеть от питания и в определенное время включать ее. Такой цикл будет продолжаться до тех пор, пока реле не будет переведено в состояние покоя.

Реле времени независимо от его исполнения и характеристик может выставляться от одной секунды до 999 часов.

Читайте также статью ⇒ Подключение указательное реле.

Технические характеристики

Все приборы, которые используются в электросети, должны своими характеристиками соответствовать ее параметрам, то есть должны выполняться условия при которых их работа будет стабильной.

Независимо от типа и конкретной модели, реле времени характеризуются следующими параметрами:

  • напряжение, при котором этот прибор будет работать стабильно;
  • коммутирующий ток, определяющий ток управления прибора;
  • износостойкость, определяющаяся количеством включений или выключений и подходящий больше для электромагнитных реле;
  • тип защиты;
  • количество контактов;
  • мощность устройства, указывающая, на какую максимальную нагрузку этот прибор может коммутировать без подключения контактора.

Исходя из этих данных, можно подобрать прибор с нужными характеристиками для определенных параметров обслуживающейся электросети.

Как читать маркировку

При маркировке таких приборов производителя стараются максимально упростить читаемость. На корпусе изначально указывается фирма производитель и модель устройства. Также указывается напряжение, подходяще для нормальной работы прбора. В большинстве случаев это 220 В.

Также помечается, для работы при какой величине и типе тока (постоянном или переменном) подходит устройство. На приборе также должно быть указан максимальный ток нагрузки для конкретного прибора.

Практически у всех реле времени присутствует маркировка выводов и обозначение подключения ноля и фазы.

Анализ производителей

Реле времени изготавливаются множеством производителей, заводы которых расположены по всему миру. В таблице ниже приведены наиболее популярные в нашей стране модели с указанием производителей и типа крепления устройства.

МодельСтрана производительНазвание фирмыКрепление
РВЦ-10/DУкраинаУКР РЕЛЕDIN рейка
TR4N 4COПольшаRelpolDIN рейка
TM M1ИталияLOVATO ElectricDIN рейка
IO 1080/IOИталияPerryDIN рейка
LT4H-AC240VSМалайзияPanasonicНа панель

Схемы подключения реле времени

Для подключения реле времени не используются сложные схемы. При его установке важно знать, какую нагрузку оно будет коммутировать.

Такая схема позволяет выполнять различные операции путем включения/выключения реле в штатном режиме

Представленная выше схема подключения используется в большинстве случаев для домашнего использования. Такая схема обеспечивает стабильную работу прибора. Единственным недостатком является то, что реле времени может подключаться только на одну линию с небольшой нагрузкой. Например, уличное освещение или полив газона.

Схема подключения реле времени к сети с электроприборами со значительной нагрузкой

Схема с контактором используется в тех случаях, когда необходимо отключать более мощную нагрузку. Ее применение в быту также можно часто встретить. В ней роль выключающего устройства более мощной нагрузки исполняет контактор. Такая схема может контролировать, например, работу асинхронного двигателя. Она также применяется, если необходимо с помощью маломощного реле времени коммутировать более мощную нагрузку.

Схема подключения реле времени марки ERF-09 к трехфазной сети через контактор

Также реле времени можно подключать и в трехфазной сети. Схема, которая представлена выше наглядно это демонстрирует. Она применяется в местах с трехфазным напряжением. Основным выключающим устройством служит контактор работу, которого контролирует реле времени.

Читайте также статью ⇒ Реле напряжения.

Пошаговая инструкция по установке

Для того чтобы самостоятельно подключить реле времени необходимо определиться, в какой сети будет происходить монтаж. Она может быть однофазной или трехфазной. Также нужно заранее знать, что будет коммутировать этот прибор, то есть какую нагрузку требуется отключать или включать.

Исходя из этих данных, нужно приобрести устройство с нужными характеристиками, или же любой доступный, но в комплекте с ним также необходимо приобрести контактор.

Совет №1: Перед монтажом реле времени требуется обесточить всю электросеть для безопасного проведения работ. Это делается с помощью вводного автомата.

Реле времени устанавливается после счетчика электроэнергии. На следующем этапе с помощью паспортных данных прибора необходимо определить, где у него вход и выход.  Вход — это клеммы, к которым требуется выполнять присоединение провода. Выход — это клеммы, от которых будет выходить коммутирующее напряжение.

Непрерывное импульсное реле времени на 16 А часто используется в домашнем хозяйстве

Совет №2: Пред установкой также требуется проверить прибор на работоспособность. Это необходимо сделать до отключения электричества.

Для этого к прибору необходимо подключить шнур с вилкой по заданной схеме и выставить минимальное время срабатывания. С помощью тестера проверяется наличие напряжения на контактах выхода.

Перед подключением реле времени необходимо надежно установить. У большинства этих приборов крепление производиться на DIN-рейку. После установки проводится подключение. Натяжение болтов должно быть максимальным, так как при плохом контакте прибор будет нагреваться и может быстро выйти из строя, или что еще хуже может быть причиной пожара.

Аналоги реле времени

Подбор аналогичных устройств осуществляется по специальной таблице, имеющейся на сайте каждого производителя реле времени. Например, реле ВС10-38 соответствует прибор РСВ17-3. Или устройство РКВ 11-43-11 успешно заменит модель РП21М-003В1.

Ошибки при установке

Основной ошибкой является подключение реле времени к приборам со слишком большой нагрузкой, например, к электрокотлу. Для управления отопителем обязательно требуется подключение реле через магнитный пускатель, соединяющийся с котлом.

Также не менее часто монтаж реле времени осуществляют в помещениях с климатическими условиями, не подходящими для нормальной эксплуатации устройства. Температура должна находиться в диапазоне -20 — 50°С при влажности не выше 80%.

Оцените качество статьи:

4 схемы включения реле после запуска двигателя автомобиля. | AvtoTechLife

Схема 1. Включение реле при помощи датчика аварийного давления масла.

Некоторые автолюбители добавляют в свою машину различные подсветки, фонари и другие приборы, которые хотелось бы, чтобы включались после запуска двигателя. Для этого рассмотрим несколько схем, первую из них можно увидеть под заголовком.

Схема 1. При помощи датчика аварийного давления масла. Для этой схемы нужно приобрести пяти контактное реле с колодкой и подключить к датчику давления масла через диод, второй диод нужен для развязки индикации панели приборов.

Схема 2. Геркон и генератор

Схема 2. При помощи геркона и генератора. В этой схеме понадобятся реле и геркон. Для геркона нужно найти место на генераторе, чтобы он устойчиво срабатывал, а затем закрепить его в термоусадочной трубке при помощи пластикового хомута к корпусу генератора.

Пример работы геркона от корпуса генератора

Есть ещё способ включения реле от генератора через выход D+ на сигнальную лампу (см. картинку ниже):

Схема 3 Подключение реле к генератору

Схема 3. При включенном замке зажигания реле разомкнёт цепь нагрузки, но после запуска генератора, на контакте D+ появится "+" от дополнительных диодов в генераторе и реле выключится и нормально замкнутые контакты включат нагрузку. Мне такое подключение не очень нравится, так как при неисправности регулятора напряжения контрольная лампа в комбинации приборов может потухнуть из за приходящего "+" от обмотки реле.

Схема 4. Включение реле после запуска генератора.

Схема 4. Для этой схемы понадобятся 5 радиодеталей и 1 реле. Настройка не требуется. Реле будет включатся при достижении 13 вольт в бортовой сети. Если нужно изменить напряжение срабатывания реле, можно изменить номинал сопротивления R1, достаточно уменьшить его на 0,2 кОм и реле начнёт включаться при 12,5 вольт, это нужно если из-за длинных проводов падает напряжение и реле будет щёлкать при просадках в бортовой сети.

На этом схемы заканчиваются, если знаете ещё, то делитесь ими в комментариях. Желаю всем успехов!

Цепь электронного релейного переключателя

- канал NPN, PNP, N&P

Схема цепи электронного релейного переключателя

и ее работа

Существует множество электрических и электронных устройств, которые классифицируются как выход Устройства , такие устройства используются для управления или управлять некоторым внешним физическим процессом машины или устройства. Эти устройства вывода обычно называются исполнительными механизмами.

Эти приводы преобразуют электрическую энергию в физические единицы, называемые силой, скоростью и т. Д.Реле в основном представляет собой двоичный исполнительный механизм с двумя стабильными состояниями. В этой статье мы подробно обсудим схему релейного переключателя , ее конструкцию и особенности.

Что такое электрические реле?

Это переключатели с электрическим управлением, которые бывают различных форм, размеров и номинальной мощности. Электрические реле подходят практически для любого типа приложений. Реле могут иметь один или несколько контактов в одном корпусе. Реле питания большего размера в основном используются для коммутации сетевого напряжения или высокого тока, называемых «контакторами».Давайте посмотрим на классификации реле.

Электрические реле в основном делятся на две подкатегории, а именно:

Электромеханические реле:

Как следует из названия, электромеханические реле представляют собой электромагнитных устройств . По сути, он преобразует магнитный поток, генерируемый приложением электрического управляющего сигнала, в тянущую механическую силу, которая приводит в действие электрические контакты внутри релейного переключателя. Самая простая и наиболее распространенная форма электрохимических реле состоит из катушки возбуждения, намотанной на проницаемый железный сердечник.Эта возбуждающая катушка также называется первичной цепью.

Электрохимические реле используются в основном электрическое и электронное управление или коммутационные цепи . Они либо монтируются непосредственно на печатные платы, либо подключаются отдельно. В автономной конфигурации токи нагрузки обычно равны амперам.

Конструкция электромеханического реле

Реле настраиваются в двух режимах, а именно «нормально разомкнутый» или «нормально замкнутый».Одна пара контактов называется нормально разомкнутыми (NO) или замыкающими контактами, а другая группа - нормально замкнутыми (NC) или размыкающими контактами.

Теперь в нормально «открытом» положении контакты замыкаются только тогда, когда ток возбуждения «ВКЛ». В нормальном положении «ВКЛ.» Контакты переключателя подтянуты к индуктивной катушке. Одна из наиболее важных частей любого электрического реле - это катушка. Эта катушка преобразует электрический ток в электромагнитный поток. Эти магнитные потоки используются для механического управления контактами реле.Самая большая проблема с катушками реле заключается в том, что они представляют собой «высокоиндуктивные нагрузки». Катушка реле обычно сделана из катушек проволоки.

Когда ток течет через катушку, вокруг нее создается самоиндуцированное магнитное поле. Когда ток в катушке выключен, создается большое напряжение обратной ЭДС. Это происходит из-за столкновения магнитного потока с катушкой. Значение индуцированного обратного напряжения очень велико по сравнению с напряжением переключения. Этого напряжения достаточно, чтобы повредить любое полупроводниковое устройство, такое как транзистор, полевой транзистор или микроконтроллер, используемый для управления реле.

Примечание: Эти термины « нормально разомкнутый» и «нормально замкнутый » или замыкающие и размыкающие контакты относятся к состоянию электрических контактов, когда катушка реле «обесточена», т. Е. Отсутствует напряжение питания. подключен к катушке реле.

При использовании электрических реле следует помнить об одном важном моменте: «Не рекомендуется подключать контакты реле параллельно, чтобы выдерживать более высокие токи нагрузки». Пример: Никогда не пытайтесь запитать нагрузку 10 А с двумя параллельно включенными контактами реле, каждый из которых имеет номинальный ток 5 А.

Контакты реле состоят из токопроводящих деталей, которые позволяют току проходить через них при контакте. Они сконструированы так же, как выключатель. Как только контакты размыкаются, сопротивление между контактами становится очень высоким. Это приводит к разомкнутой цепи, и ток цепи не течет через реле.

Через некоторое время подвижные части электрохимического реле изнашиваются и выходят из строя, или постоянное искрение и эрозия могут сделать реле непригодным для использования. Кроме того, они создают электрические помехи, поскольку контакты страдают от дребезга контактов, что может повлиять на электрическую цепь, к которой они подключены. Чтобы преодолеть сложность этого реле, был разработан другой тип реле, названный твердотельным реле.

Твердотельное реле:

Твердотельное реле не имеет движущихся частей. Это чисто электронное устройство. В этом типе реле нет движущихся частей, поскольку механические контакты заменены силовыми транзисторами, тиристорами или симисторами.

Отсутствие подвижных частей делает реле высоконадежным, долговечным и снижает электромагнитные помехи. Это делает твердотельное реле намного более быстрым и точным по сравнению с обычным электромеханическим реле. Требования к входной мощности твердотельного реле для управления обычно достаточно низки, чтобы сделать их совместимыми с большинством семейств ИС.

Поскольку выходное переключающее устройство твердотельного реле является полупроводниковым, падение напряжения на выходных клеммах твердотельного реле в состоянии «ВКЛ» намного выше, чем у электромеханического реле. Обычно оно находится в пределах 1,5–2,0 вольт. Для коммутации больших токов в течение длительного периода времени потребуется дополнительный радиатор.

Вы можете использовать их без необходимости добавления драйверов или усилителей. Однако они должны быть установлены на подходящую пластину радиатора или материал, чтобы предотвратить перегрев полупроводникового устройства переключения выхода, поскольку это полупроводниковое устройство. Конструкция и тип схемы переключения реле довольно огромны. Говорят, что реле переключает один или несколько полюсов так же, как простая схема переключателя.Каждый полюс реле имеет контакты, которые можно переключить тремя разными способами:

Различные способы переключения реле:

  • Нормально открытый контакт (NO): Это также называется замыкающим контактом. Этот контакт замыкает цепь при срабатывании реле. Он отключает цепь, когда реле находится в неактивном состоянии.
  • Нормально замкнутый контакт (NC): это называется размыкающим контактом. Функция противоположна замыкающему контакту. Когда реле срабатывает, цепь отключается.Когда реле деактивировано, цепь начинает подключаться.
  • Переключающие (CO) / двухходовые (DT) контакты: они используются для управления нормально разомкнутым контактом и нормально замкнутым контактом с общей клеммой. Это означает, что они используются для управления двумя типами цепей. По своему типу они называются именами контактов «размыкание перед замыканием» и «замыкание перед размыканием».

Важно:

Реле предназначены для двух основных операций. Один предназначен для применения с низким напряжением, а другой - для высокого напряжения.Для приложений с низким напряжением реле предназначено для снижения шума всей цепи. Для приложений с высоким напряжением они в основном предназначены для уменьшения возникновения дуги.

Некоторые из распространенных способов переключения реле:

Реле модуля интерфейса ввода-вывода: Модули ввода-вывода) - это еще один тип твердотельных реле, разработанный специально для сопрягать устройства, такие как компьютеры, микроконтроллеры или PIC, с нагрузками и переключателями. В основном на рынке доступны четыре типа модулей ввода / вывода.

Это входное напряжение переменного или постоянного тока для выхода логического уровня TTL или CMOS, а также логический вход TTL или CMOS для выходного напряжения переменного или постоянного тока. Каждый из модулей содержит все необходимые схемы для обеспечения полного интерфейса и изоляции в одном устройстве. Они доступны как отдельные твердотельные модули или интегрированы в 4-, 8- или 16-канальные устройства на рынке.

Цепь релейного переключателя NPN:

Типичная схема релейного переключателя NPN имеет катушку, управляемую транзисторным переключателем NPN.Когда базовое напряжение транзистора равно нулю, транзистор будет в области отсечки и действует как разомкнутый переключатель. В этой ситуации ток коллектора не течет, и катушка реле обесточена.

Если ток не течет в базу, то через катушку реле также не будет протекать ток. Если теперь в базу подается большой положительный ток для насыщения области NPN-транзистора, ток начинает течь от базы к эмиттеру.

Цепь релейного переключателя PNP:

Цепь релейного переключателя PNP требует разной полярности рабочего напряжения.Это похоже на схему переключения реле NPN с точки зрения ее способности управлять катушкой реле. Например, для типа PNP напряжение коллектор-эмиттер должно быть отрицательным, чтобы ток протекал от эмиттера к коллектору.

Релейные переключатели с N-каналом Схема:

Релейная коммутация MOSFET очень похожа на работу переключателя на биполярном переходном транзисторе (BJT). Основное различие между операциями заключается в том, что полевые МОП-транзисторы - это устройства, работающие от напряжения. Однако затвор электрически изолирован от канала сток-исток.N-канальные полевые МОП-транзисторы являются наиболее часто используемым типом полевых МОП-транзисторов. Положительное напряжение на выводе затвора включает полевой МОП-транзистор, а отрицательное напряжение на затворе делает его «выключенным». Это делает его идеальным для релейного переключателя MOSFET.

Релейные переключатели с P-каналом Схема:

В отличие от N-канального расширенного MOSFET, он работает только с отрицательными напряжениями затвора. В этой конфигурации клемма источника P-канала подключена к + Vdd, а клемма слива подключена к земле.Оба соединены через катушку реле. Когда на клемму затвора подается ВЫСОКИЙ уровень напряжения, то полевой МОП-транзистор с P-каналом будет соответственно отключен.

О чем следует помнить при выборе подходящего реле:

  • Убедитесь, что они имеют хорошую защиту катушки и защиту от прикосновения
  • Ищите стандартные реле с нормативными разрешениями
  • Выбирайте высокоскоростные переключающие реле
  • Разумно выберите тип контактов.
  • Убедитесь, что между цепью катушки и контактами в вашем реле есть изоляция

Давайте разберемся с работой цепи реле на примере:

Предположим, вам нужно включить лампу CFL с помощью релейного переключателя. В этой релейной схеме мы используем кнопку для включения реле 5 В, которое, в свою очередь, замыкает вторую цепь и включает лампу.

Соберите следующие компоненты для разработки схемы:

  • Реле 5 В
  • Держатель лампы
  • CFL
  • Нажмите кнопку ВКЛ / ВЫКЛ
  • Perf-Board
  • Батарея 9 В
  • Источник питания переменного тока

Типичный ВКЛ / Переключатель ВЫКЛ добавлен с целью переключения релейного устройства. В приведенной выше схеме реле 5 В питается от батареи 9 В.Первоначально, когда переключатель разомкнут, через катушку не будет протекать ток. В результате общий порт реле подключается к нормально разомкнутому контакту. Следовательно, ЛАМПА останется выключенной.

Когда переключатель замкнут, ток начинает течь через катушку. Здесь в катушке создается магнитное поле, которое притягивает подвижный якорь из-за электромагнитной индукции, и Com-порт подключается к нормально замкнутому контакту реле. В результате CFL включится.

Основным недостатком твердотельных реле по сравнению с электромеханическими реле эквивалентной мощности является их более высокая стоимость. Доступны только однополюсные однопроходные типы, токи утечки в состоянии «ВЫКЛ» протекают через переключающее устройство, а высокое падение напряжения в состоянии «ВКЛ» и рассеиваемая мощность приводят к дополнительным требованиям к отводу тепла. Кроме того, стандартные реле состояния не могут переключать очень малые токи нагрузки или высокочастотные сигналы, такие как аудио или видеосигналы.Однако для этого типа приложений доступны специальные твердотельные переключатели.

И электрохимическое реле, и твердотельное реле имеют большое значение в повседневной жизни. Вы можете выбрать любой из них в зависимости от ваших требований к устройству. Твердотельные реле имеют довольно большую и, возможно, устрашающую начальную цену по сравнению с электромеханическими реле.

Однако движение этого контакта твердотельного реле создается за счет электромагнитных сил от входного сигнала малой мощности.Это позволяет завершить цепь, содержащую сигнал большой мощности. Следовательно, твердотельные реле лучше электромеханических. Электромеханические реле относятся к относительно старой технологии, в которой используется простой подход механической конструкции.

Приложения:

Существует широкий спектр приложений для реле. Вот некоторые из наиболее распространенных приложений:

  • Релейная цепь может использоваться для реализации логических функций
  • Они также обеспечивают критически важную логику безопасности
  • Реле могут использоваться для обеспечения функций задержки времени
  • Они используются для управления сильноточными цепями с помощью помощь слаботочных сигналов

В этой статье мы обсудили различные типы реле, их работу и области применения.Теперь вы хорошо знаете реле и их функции. Прочитав эту статью, вы сможете без каких-либо неудобств самостоятельно спроектировать реле.

Схемы связанных электронных проектов:

Что такое реле? | Схема контактов релейного переключателя

Реле управляют цепями путем размыкания и замыкания контактов в другой цепи. Для работы катушки требуется относительно небольшое количество энергии, но она сама может использоваться для управления двигателями, нагревателями, лампами или цепями переменного тока, которые сами могут потреблять намного больше электроэнергии.

Эти переключатели используются для электромеханического или электронного размыкания и замыкания цепей. Когда контакт разомкнут, он не запитан. Когда он замкнут, есть замкнутый контакт, когда он не запитан. В любом случае подача электрического тока на контакты изменит их состояние.

Обычно они используются для коммутации меньших токов в цепи управления и обычно не управляют устройствами, потребляющими мощность, за исключением небольших двигателей и соленоидов, потребляющих малый ток.Тем не менее, он может «контролировать» большие напряжения и амперы, оказывая усиливающий эффект, потому что небольшое напряжение, приложенное к катушке, может привести к коммутации большого напряжения контактами.

Схема выводов

Релейный переключатель DPDT Релейный переключатель DPDT

Защитные реле могут предотвратить повреждение оборудования, обнаруживая электрические аномалии, включая перегрузки по току, минимальный ток, перегрузки и обратные токи. Кроме того, они также широко используются для включения пусковых катушек, нагревательных элементов, контрольных ламп и звуковой сигнализации.

Типы:

В электромеханических реле (ЭМР) контакты размыкаются или замыкаются с помощью магнитов. Твердотельные реле (SSR) не имеют контактов, а переключение полностью электронное. Функции, выполняемые тяжелым оборудованием, часто требуют коммутационных возможностей электромеханических реле. SSR переключает ток с помощью неподвижных электронных устройств, таких как кремниевые выпрямители.

SSR не требует подачи питания на катушку или размыкания контактов. Им требуется меньшее напряжение для переключения, они включаются и выключаются быстрее, потому что нет движущихся физических частей.

Хотя отсутствие контактов и движущихся частей означает, что SSR не подвержены искрению и не изнашиваются. Контакты на электромеханических реле можно заменить, тогда как весь SSR должен быть заменен, когда какая-либо часть выходит из строя. Из-за конструкции SSR существует остаточное электрическое сопротивление и / или утечка тока независимо от того, разомкнуты или замкнуты переключатели.

Существует много типов релейных переключателей, но часто транзисторы и полевые МОП-транзисторы используются в качестве основного переключающего устройства.Транзисторы обеспечивают быстрое переключение катушки от различных источников.

Типичная схема релейного переключателя имеет катушку, управляемую транзисторным переключателем NPN, TR1, как показано, в зависимости от уровня входного напряжения. Когда базовое напряжение транзистора равно нулю (или отрицательно), транзистор отключен и действует как разомкнутый переключатель. В этом состоянии ток коллектора не течет и он обесточивается, потому что, будучи устройствами тока, если ток не течет в базу, то ток не будет проходить через катушку.

Цепи релейного переключателя

Цепь релейного переключателя NPN

Когда базовое напряжение транзистора равно нулю (или отрицательно), транзистор отключен и действует как разомкнутый переключатель. В этом состоянии ток коллектора не течет и он обесточивается, потому что, будучи устройствами тока, если ток не течет в базу, то ток не будет проходить через катушку.

Цепь релейного переключателя NPN

Цепь релейного переключателя NPN Дарлингтона

Два NPN-транзистора соединены так, что ток коллектора первого транзистора TR1 становится током базы второго транзистора TR2.Приложение положительного базового тока к TR1 автоматически включает переключающий транзистор TR2.

Цепь переключателя реле Дарлингтона

Цепь переключателя реле повторителя эмиттера

Конфигурация

с общим коллектором или эмиттерным повторителем очень полезна для приложений согласования импеданса из-за очень высокого входного импеданса (~ сотни тысяч Ом) при относительно низком выходном сопротивлении для переключения катушки.

Цепь переключателя реле повторителя эмиттера

Цепь переключателя реле Дарлингтона эмиттера

Очень небольшой положительный базовый ток, приложенный к TR1, вызывает намного больший ток коллектора, протекающий через TR2 из-за умножения двух значений Beta.

Реле Дарлингтона эмиттера с цепью

Цепь переключателя реле PNP

Эта схема требует разной полярности рабочего напряжения. Ток нагрузки течет от эмиттера к коллектору, когда база смещена в прямом направлении с напряжением, которое более отрицательно, чем на эмиттере. Чтобы ток нагрузки реле протекал через эмиттер к коллектору, и база, и коллектор должны быть отрицательными по отношению к эмиттеру.

Цепь релейного переключателя PNP

Цепь релейного переключателя коллектора PNP

Релейная нагрузка подключена к коллектору транзисторов PNP.Переключение транзистора и катушки в положение ВКЛ-ВЫКЛ происходит, когда Vin имеет низкий уровень, транзистор «включен», а когда Vin имеет высокий уровень, транзистор «выключен».

Цепь переключателя коллекторного реле PNP

Цепь переключателя N-канального MOSFET-реле

Схема релейного переключателя MOSFET подключена в конфигурации с общим источником. При нулевом входном напряжении, состоянии LOW, значении V GS , привода затвора недостаточно для открытия канала, и транзистор находится в состоянии «ВЫКЛ».

Цепь релейного переключателя N-канального полевого МОП-транзистора

Цепь релейного переключателя P-канального полевого МОП-транзистора

Когда на затвор подается ВЫСОКИЙ уровень напряжения, P-канальный полевой МОП-транзистор будет выключен.Выключенный E-MOSFET имеет очень высокое сопротивление канала и действует почти как разомкнутая цепь. Когда на затвор подается НИЗКИЙ уровень напряжения, P-канальный MOSFET будет включен.

Схема релейного переключателя P-канального полевого МОП-транзистора

Цепь релейного переключателя с логическим управлением

Относительно небольшое положительное напряжение, превышающее пороговое напряжение V T , на его высокоимпедансном затворе заставляет его начать проводить ток от своего вывода стока к выводу истока. В отличие от биполярного переходного транзистора, который требует тока базы для его включения, e-MOSFET требует только напряжения на затворе, поскольку из-за его изолированной конструкции затвора нулевой ток течет в затвор.

Схема релейного переключателя с логическим управлением

BJT - это хорошие и дешевые схемы переключения реле, но они являются устройствами, управляемыми током. Они преобразуют небольшой ток базы в больший ток нагрузки, чтобы запитать катушку. Однако переключатель MOSFET работает лучше как электрический переключатель, поскольку для его включения практически не требуется ток затвора, преобразуя напряжение затвора в ток нагрузки. Следовательно, полевой МОП-транзистор может работать как переключатель, управляемый напряжением.

Цепь переключателя реле микроконтроллера


Дополнительные основные статьи доступны в учебном уголке.

Эта статья была впервые опубликована 5 июня 2017 г. и обновлена ​​до 18 августа 2020 г.
Схема драйвера транзисторного реле

с формулой и расчетами

В этой статье мы подробно изучим схему драйвера транзисторного реле и узнаем, как спроектировать ее конфигурацию, вычисляя параметры по формулам.

Важность реле

Реле - один из самых важных компонентов в электронных схемах. Реле играют основную роль в выполнении операций, особенно в цепях, где задействована передача большой мощности или переключение сетевой нагрузки переменного тока.

Здесь мы узнаем, как правильно управлять реле с использованием транзистора, и применить конструкцию в электронной системе для переключения подключенной нагрузки без проблем.


Для более подробного изучения того, как работает реле , прочтите эту статью


Реле, как мы все знаем, представляет собой электромеханическое устройство, которое используется в форме переключателя.

Он отвечает за переключение внешней нагрузки, подключенной к его контактам, в ответ на относительно меньшую электрическую мощность, подаваемую на соответствующую катушку.

Обычно катушка наматывается на железный сердечник, когда к катушке прикладывается небольшой постоянный ток, она возбуждает и ведет себя как электромагнит.

Подпружиненный контактный механизм, расположенный в непосредственной близости от катушки, немедленно реагирует и притягивается к силе электромагнита катушки, находящейся под напряжением. В процессе контакт соединяет одну из своих пар вместе и разъединяет дополнительную пару, связанную с ним.

Обратное происходит, когда на катушку отключается постоянный ток, и контакты возвращаются в исходное положение, соединяя предыдущий набор дополнительных контактов, и цикл может повторяться столько раз, сколько возможно.

Электронной схеме обычно требуется драйвер реле, использующий каскад транзисторной схемы, чтобы преобразовать ее коммутационный выход постоянного тока малой мощности в коммутационный выход переменного тока большой мощности.

Однако сигналы низкого уровня от электроники, которые могут быть получены из каскада IC или каскада слаботочного транзистора, могут быть неспособны напрямую управлять реле. Поскольку для реле требуются относительно более высокие токи, которые обычно могут быть недоступны от источника IC или низкотокового транзисторного каскада.

Чтобы преодолеть вышеуказанную проблему, ступень релейного управления становится обязательной для всех электронных схем, которые нуждаются в этой услуге.

Драйвер реле - это не что иное, как дополнительный транзисторный каскад, прикрепленный к реле, которое необходимо задействовать. Транзистор обычно и исключительно используется для управления реле в ответ на команды, полученные от предыдущего каскада управления.

Принципиальная схема

Ссылаясь на приведенную выше принципиальную схему, мы видим, что конфигурация включает только транзистор, базовый резистор и реле с обратным диодом.

Однако есть несколько сложностей, которые необходимо решить, прежде чем проект можно будет использовать для требуемых функций:

Поскольку базовое напряжение возбуждения на транзисторе является основным источником для управления работой реле, его необходимо точно рассчитать для оптимальные результаты.

Значение базового резистора id прямо пропорционально току на выводах коллектор / эмиттер транзистора, или, другими словами, ток катушки реле, который является нагрузкой коллектора транзистора, становится одним из основных факторов и напрямую влияет на него. номинал базового резистора транзистора.

Расчетная формула

Основная формула для расчета базового резистора транзистора определяется выражением:

R = (Us - 0,6) hFE / ток катушки реле,

  • Где R = базовый резистор транзистор,
  • Us = Источник или триггерное напряжение на базовом резисторе,
  • hFE = Прямой ток транзистора,

Последнее выражение, которое является «током реле», можно найти, решив следующий закон Ома :

I = Us / R, где I - требуемый ток реле, Us - напряжение питания реле.

Практическое применение

Сопротивление катушки реле можно легко определить с помощью мультиметра.

Us также будет известным параметром.

Допустим, напряжение питания Us = 12 В, сопротивление катушки 400 Ом, тогда

Ток реле I = 12/400 = 0,03 или 30 мА.

Также можно предположить, что Hfe любого стандартного низкосигнального транзистора составляет около 150.

Применяя вышеуказанные значения в фактическом уравнении, мы получаем

R = (Ub - 0.6) × Hfe ÷ Relay Current

R = (12 - 0,6) 150 / 0,03

= 57000 Ом или 57 К, ближайшее значение 56 К.

Диод, подключенный к катушке реле, никак не связан с приведенный выше расчет, его все же нельзя игнорировать.

Диод следит за тем, чтобы обратная ЭДС, генерируемая катушкой реле, была закорочена через него, а не попала в транзистор. Без этого диода обратная ЭДС попыталась бы найти путь через коллектор-эмиттер транзистора и, конечно, повредить транзистор навсегда, в течение нескольких секунд.

Схема драйвера реле с использованием PNP BJT

Транзистор лучше всего работает в качестве переключателя, когда он подключен к общей конфигурации эмиттера, то есть эмиттер BJT всегда должен быть подключен непосредственно к линии «земли». Здесь «земля» относится к отрицательной линии для NPN и положительной линии для PNP BJT.

Если в цепи используется NPN, нагрузка должна быть соединена с коллектором, что позволит включать / выключать ее путем включения / выключения отрицательной линии.Это уже объяснялось в вышеупомянутых обсуждениях.

Если вы хотите включить / выключить положительную линию, в этом случае вам придется использовать PNP BJT для управления реле. Здесь реле может быть подключено через отрицательную линию питания и коллектор PNP. Точную конфигурацию см. На рисунке ниже.

Однако для запуска PNP потребуется отрицательный триггер в его основе, поэтому, если вы хотите реализовать систему с положительным триггером, вам, возможно, придется использовать комбинацию как NPN, так и PNP BJT, как показано на следующем рисунке. :

Если у вас есть какие-либо особые вопросы относительно вышеупомянутой концепции, пожалуйста, не стесняйтесь выражать их в комментариях для получения быстрых ответов.

Драйвер реле энергосбережения

Обычно напряжение питания для срабатывания реле рассчитывается таким образом, чтобы обеспечить оптимальное втягивание реле. Однако требуемое удерживающее напряжение обычно намного ниже.

Обычно это даже не половина напряжения втягивания. В результате большинство реле могут работать без проблем даже при этом пониженном напряжении, но только тогда, когда гарантируется, что при начальном напряжении активации достаточно высокое для втягивания.

Схема, представленная ниже, может быть идеальной для реле, рассчитанных на работу с током 100 мА или ниже и при напряжении питания ниже 25 В.Использование этой схемы обеспечивает два преимущества: во-первых, реле функционирует при существенно низком токе; на 50% ниже номинального напряжения питания, а ток снижен примерно до 1/4 от фактического номинального значения реле! Во-вторых, реле с более высоким номинальным напряжением можно использовать с более низкими диапазонами питания. (Например, реле на 9 В, которое требуется для работы с напряжением 5 В от источника TTL).

Видно, что цепь подключена к источнику питания, способному надежно удерживать реле. Пока S1 открыт, C1 заряжается через R2 до напряжения питания.R1 подключен к клемме +, а T1 остается выключенным. В момент, когда S1 задан, база T1 подключается к общей цепи питания через R1, так что она включается и приводит в действие реле.

Положительный вывод C1 подключается к общей земле через переключатель S1. Учитывая, что этот конденсатор изначально был заряжен до напряжения питания, его клемма в этой точке становится отрицательной. Таким образом, напряжение на катушке реле в два раза превышает напряжение питания, и это втягивает реле.Разумеется, переключатель S1 можно заменить любым транзистором общего назначения, который можно включать и выключать по мере необходимости.

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Как сделать схему релейного переключателя

В этом руководстве вы узнаете, как сделать свою собственную схему релейного переключателя для Arduino за несколько простых шагов.Мы часто видим, как любители электроники, особенно пользователи Arduino, покупают дорогой релейный модуль вместо того, чтобы создавать свои собственные. Общая цена релейного модуля, представленного на рынке, составляет около 2 долларов, но вы можете сделать свой собственный менее чем за 0,70 доллара.

В учебном курсе «Схема реле реле для Arduino» вы познакомитесь с

  1. Реле и принципом работы
  2. Идентификация контактов реле
  3. Расчет значений компонентов и выбор лучшего для вашей конструкции.
  4. Создайте свою собственную схему релейного переключателя в соответствии с вашими требованиями.

Итак, давайте начнем с темы «Введение в реле и принцип его работы».

Что такое реле? | Как сделать схему переключателя реле

Реле - это устройство, с помощью которого электрический ток, протекающий в одной цепи, может размыкать или замыкать вторую цепь, то есть включать или выключать ток во второй цепи.

Работа электромагнитного реле:

Рабочий контур (контур 1), см. Рисунок 1, подключен к катушке соленоида, намотанной на круглый железный сердечник. Ток в катушке образует электромагнит, притягивающий якорь из мягкого железа.Это объединяет точки контакта, цепь 2 замыкается и течет ток. При выключении контура 1 стальная пружина возвращает якорь в разомкнутое положение, и ток в контуре 2 отключается.

Идентификация контактов реле

Обычно реле имеет 5 клемм, из которых две клеммы представляют собой катушки, общую клемму, нормально замкнутую клемму и нормально открытую клемму.

Следуйте инструкциям, чтобы определить контакты реле.

  • Возьмите мультиметр и настройте его в режим измерения сопротивления (обычно в режиме 2K).
  • Если видите, пять штифтов расположены в два столбца. Один столбец состоит из 3 контактов, а другой - из 2 контактов. Штырь с двумя катушками и общий штифт расположены с одной стороны, как показано на рисунке ниже. Штифт, который находится в центре, - это общий штифт, а два боковых штифта - штифты катушки.

  • Вы также можете определить контакт катушки с помощью мультиметра. Проволока, используемая в катушках, имеет фиксированное сопротивление в пределах нескольких сотен Ом. Теперь просто проверьте сопротивление двух боковых клемм реле (сторона с тремя клеммами), сопротивление находится в пределах от 100 до 500 Ом.Поскольку мы знаем, что у катушки нет полярности, нет необходимости идентифицировать контакты Vcc и GND.

  • На этом этапе мы определим общий и нормально замкнутый (NC) контакт реле. Как правило, клемма между клеммой катушки называется общим контактом, поэтому нам просто нужно идентифицировать контакт NC. Оставьте мультиметр в режиме проверки целостности и проверьте целостность цепи между общим контактом и другим контактом, кроме катушки. Если мультиметр издает звуковой сигнал (т. Е. Провод подключен), это означает, что другой контакт является контактом NC.

  • Пятый контакт - это нормально разомкнутый контакт

Теперь пора спроектировать схему переключения

Перед тем, как приступить к проектированию схемы переключения реле, давайте вычислим параметр схемы, такой как сопротивление тока и т. Д.

Как правило, вы найдете различные параметры реле, такие как напряжение катушки, сопротивление катушки и т. Д., На самом реле. Но иногда сопротивление катушки не указывается (как показано на рисунке 1), в этом случае мы должны измерить сопротивление между двумя выводами катушки.

В моем случае мультиметр показывает сопротивление 102 Ом (рисунок 4), но для простоты мы берем для расчета 100 Ом.

Сопротивление катушки

Номинальное напряжение катушки

Используя закон Ома, мы можем рассчитать ток, необходимый для подачи питания на катушку реле

Поскольку мы знаем, что вывод Arduino или любого микроконтроллера не может выдерживать ток более 40 мА, поэтому мы необходимо разработать простую схему переключателя.

Цепь переключения:

Цепь релейного переключателя показана на рисунке 6.В схеме переключения используется транзистор с током коллектора (I C ), превышающим вычисленное выше значение (60 мА).

Теперь, прежде чем обсуждать работу схемы переключения, давайте сначала рассчитаем номинал базового резистора.

Я решил использовать транзистор BC548, но вы можете использовать любой транзистор общего назначения, например BC47, 2N2222 и т. Д., В зависимости от наличия.

ВЧ транзистора BC 548 составляет 75 (согласно даташиту).

Ток коллектора (I C ) = 60 мА (рассчитано ранее)

Мы знаем, что

Итак, базовый ток (I b ) можно рассчитать как:

Минимальный ток 0,8 мА на базе транзистора необходим для управления транзистором в проводящем каскаде.

База транзистора подключена к источнику сигнала (цифровому выводу Arduino), выходное напряжение которого составляет около +5 В, а ток около 40 мА. Ток 40 мА достаточно, чтобы пережечь транзистор, поэтому мы должны использовать резистор ограничения тока.

Опять же, используя закон Ома, мы можем рассчитать сопротивление, которое должно поддерживаться между источником сигнала и базой транзистора.

(с платы Arduino)

(базовый ток (I b ))

Мы знаем, что

Итак, примерно мы можем использовать резистор от 5 до 6 кОм

Работа схемы переключения реле

Когда входное напряжение на базе заземлено (т. Е. Вход 0 вольт). Транзистор смещен в обратном направлении, и ток не течет.Коллекторный ток равен нулю, т.е. на коллекторе не падает напряжение. Напряжение на выводе обмотки 1 реле такое же, как напряжение на выводе обмотки 2 реле, т. Е. Отсутствует разность потенциалов, что реле обесточено.

Если задано входное напряжение (+ 5В с платы Arduino), то на базу подается положительное напряжение. Если оно достаточно высокое (скажем, +5 В), транзистор находится на дне, а напряжение коллектора фактически равно нулю. Следовательно, реле запитывается.

Защитный диод, также называемый обратным диодом, должен быть подключен между двумя выводами катушек реле в режиме обратного смещения, поскольку резкое изменение напряжения на катушке индуктивности вызывает генерацию высокого напряжения.Чтобы протекать ток до тех пор, пока он не станет равным нулю, мы используем этот диод в обратном направлении, как показано на рисунке.

Компонент, необходимый для цепи переключения реле

R1 = резистор 5 кОм

T1 = BC548 (NPN-транзистор общего назначения)

D1 = 1N4007 (выпрямительный диод)

RL1 = 6 В, реле

SPDT

Как это:

Нравится Загрузка ...

DC Relay Switch

Электромеханический переключатель называется реле.Он реагирует как автоматический переключатель для управления (просто ВКЛ / ВЫКЛ) большой нагрузкой напряжения с помощью сигнала низкого напряжения. Мы используем источник постоянного тока для подачи питания на электромагнитную катушку, размещенную в реле, поэтому она называется переключателем реле постоянного тока.


Вы знаете, что происходит, когда на катушку подается переменный ток, будет изменяющееся магнитное поле, не подходящее для работы с постоянным переключением (ВКЛ / ВЫКЛ), поэтому здесь используется постоянный ток.

Конструкция реле

Реле имеет электромагнитную катушку, повернутую вокруг металлической детали, которая реагирует как магнит, когда катушка находится под напряжением.Подвижный якорь прикреплен с пружиной, расположенной точно над установкой электромагнита и замыкающей контакт между общим выводом и нормально замкнутым контактом (НЗ), без какого-либо питания или нулевого входного питания, это состояние можно назвать нормально разомкнутым реле. Когда катушка находится под напряжением, подвижный якорь притягивается электромагнитом, и замыкающий контакт замыкается, а замыкающий контакт размыкается.

Типы переключателей силового реле

Реле

можно найти в разных формах, в зависимости от контактов переключателя, полюсов и ходов.Однополюсный однопозиционный (SPST) однополюсный переключатель и контакт нормально разомкнутый или нормально замкнутый. Однополюсное реле с двойным переходом (SPDT) - наиболее распространенное реле, используемое в проектах электроники, и оно имеет замыкающие и замыкающие контакты. Реле двухполюсного типа имеют два контакта, которые одновременно замыкаются или размыкаются.

Работа реле

Реле можно найти по этому внешнему виду. Имеется пять контактов, два контакта для электромагнитной катушки и клеммы N / C, Common, N / O.

Распиновка реле

Как использовать реле в цепи?

Типовая схема применения для реле постоянного тока. Магнитная катушка подключена между ними через переключающий транзистор. Для защиты катушки от обратной ЭДС диод маховика размещен с обратным смещением поперек катушки. Вход Vin на базу переключающего транзистора обеспечивает проводимость через транзистор, следовательно, катушка подключается к смещению напрямую.Он включает катушку, когда транзистор падает до отключения и отключает катушку реле от напряжения смещения.

Твердотельное реле

Некоторым критически важным устройствам требуется постоянный источник питания без скачков и скачков напряжения. Когда мы используем электромеханический переключатель, он создает выбросы и искры при изменении состояния переключателя, чтобы избежать этой ситуации, используются твердотельные реле.

Принципиальная схема полупроводникового реле

Использует световой сигнал и не имеет движущихся частей.Вход твердотельного реле преобразуется в световой сигнал, и фототранзистор принимает свет и изменяет поток тока, схема детектора нулевого уровня определяет импульс и включает тиристор, это действие обеспечивает близкий контакт с нагрузкой и источником питания. Он принимает входное напряжение от 3 до 32 В постоянного тока и регулирует выходное напряжение от 24 до 380 В переменного тока.




Что такое реле и почему они так важны для приложений?

Преобразование небольшого электрического входа в сильноточный выход - нелегкая задача, но эта задача необходима для эффективного управления широким спектром стандартных приборов и транспортных средств.Во многих схемах такое преобразование достигается за счет использования реле, без которого не обойтись во всех видах электронного оборудования.

Что такое реле?

Реле

- это электрические переключатели, которые используют электромагнетизм для преобразования небольших электрических импульсов в большие токи.

Эти преобразования происходят, когда электрические входы активируют электромагниты для формирования или разрыва существующих цепей.

Используя слабые входы для питания более сильных токов, реле эффективно действуют как переключатель или усилитель для электрической цепи, в зависимости от желаемого применения.

Зачем использовать реле?

Реле

- это универсальные компоненты, которые столь же эффективны в сложных цепях, как и в простых.

Их можно использовать вместо переключателей других форм или они могут быть специально разработаны с учетом таких факторов, как требуемая сила тока.

Уровень тока переключения

Одна из наиболее распространенных ситуаций, когда требуется использование реле, возникает, когда приложению необходимо переключиться с высокого на низкий ток (или наоборот) в одной и той же цепи.

Например, датчики температуры, питающие блоки HVAC, требуют уровней силы тока, которые значительно превышают допустимую мощность их проводки.

Реле

обеспечивают необходимое усиление для преобразования небольшого тока в больший.

Комплексные приложения

Реле

не ограничиваются преобразованием одиночных входов в одиночные выходы в отдельных точках цепи. В других приложениях одно реле может активировать несколько цепей, позволяя одному входу инициировать множество других эффектов.

Точно так же реле могут использоваться в комбинации друг с другом для выполнения функций логической логики, которые, хотя и могут быть реализованы с использованием других компонентов, могут быть более рентабельными при реализации с использованием реле.

Более того, определенные реле могут выполнять более сложные функции, чем другие электронные компоненты. Реле с выдержкой времени, если назвать только одну категорию, позволяют системам работать только в течение заданного периода времени или запускаться только через заданный период времени.

Это вводит более сложные возможности для построения электронных систем.

Преимущества

Даже если приложение не требует специального реле, его использование может оказаться полезным.

Реле

могут снизить потребность в силовой проводке и переключателях, которые дороги и занимают место.

Таким образом, переключение на реле в ваших электронных системах может уменьшить размер или вес корпуса, например, или позволить производителям разместить больше функций в пространстве того же размера.

Как работает реле?

Реле

различаются по размеру, мощности и назначению.Однако, хотя они могут различаться в этом отношении, все реле работают по существу одинаково: одна цепь используется для питания другой.

Конкретный способ, которым это происходит, зависит от того, является ли реле нормально разомкнутым (NO) или нормально замкнутым (NC).

Нормально разомкнутые реле

Большинство реле нормально разомкнуты; то есть вторая, более крупная цепь по умолчанию выключена.

В нормально разомкнутом реле мощность протекает через входную цепь, активируя электромагнит.Это создает магнитное поле, которое притягивает контакт для соединения со второй, большей цепью, позволяя току течь через него. Когда источник питания удаляется, пружина отводит контакт от второй цепи, останавливая поток электричества и выключая оконечное устройство.

Нормально замкнутые реле

Основы реле NC такие же, как реле NO: есть две цепи, вторая из которых больше, и электромагнит перемещает физический контакт между двумя положениями.

Но в случае реле NC состояния по умолчанию меняются местами. Когда срабатывает первая цепь, электромагнит отводит контакт от второй цепи. Таким образом, реле с нормально замкнутым контактом по умолчанию удерживают большую цепь в в положении .

Как определить неисправное реле

Хотя в целом реле надежны, они могут выйти из строя, как любой механический компонент. К счастью, с помощью мультиметра относительно легко определить неисправное реле.

Для этого вы должны сначала определить, где цепи входят и выходят из реле, область, обычно отмеченную контактами.Определив это место, вы можете использовать мультиметр для измерения напряжения в каждой точке.

Используйте следующие шаги по устранению неполадок:

  1. Проверьте напряжение в точке включения реле. Если его нет, проверьте предохранитель или выключатель на предмет дефектов.
  2. Если в точке подключения есть напряжение, используйте функцию проверки целостности цепи на мультиметре, чтобы обеспечить хорошее заземление на противоположной стороне реле.
  3. Если шаги 1 и 2 не выявили источник проблемы, проверьте напряжение в точке, где реле подключается к батарее или другому источнику питания.Если здесь нет напряжения, возможно, проблема с предохранителем или автоматическим выключателем.
  4. Наконец, убедитесь, что существует надлежащее соединение между реле и компонентом, используя функцию непрерывности мультиметра. Если соединение существует, и если предыдущие шаги не указали на другую неисправность, возможно, пришло время заменить реле.

Типы реле

Существует множество типов реле, каждое из которых обеспечивает уникальные функции для множества приложений.Некоторые из более широких категорий включают:

Реле с выдержкой времени Реле

с временной задержкой полезны в любой ситуации, когда требуется, чтобы компоненты были запитаны в течение установленного периода времени или когда компонент должен включаться или выключаться после определенной задержки. Эти реле имеют встроенную функцию задержки времени, что делает их желательными для ряда приложений, основанных на времени.

В эту категорию входят несколько типов реле с выдержкой времени, каждое из которых имеет свое применение.

Большинство реле с выдержкой времени можно разделить на две большие категории:

  • Таймеры задержки включения начинают отсчет времени, когда вводится вход, запитывая вторую цепь после установленного времени ожидания.Это можно использовать для переключения питания нескольких компонентов, предотвращения скачков напряжения или для таких приложений, как системы сигнализации и предупреждения.
  • Таймеры задержки выключения ждут срабатывания триггера после подачи питания на вход. После снятия триггера на выход подается питание, а затем он отключается по истечении времени задержки. Повторное применение триггера сбрасывает задержку. Эти реле могут использоваться для питания устройств в течение заданных интервалов времени, например, в циклах стирки и сушки или в аттракционах.

Другие шаблоны пуска и задержки возможны с помощью мигалок, однократных таймеров или циклов повтора, каждый из которых позволяет включать компонент с разными повторяющимися интервалами.Это делает возможным мигание индикаторов или сигнальных ламп, а также позволяет выполнять определенные типы синхронизированных циклов.

Последовательные реле

Последовательные реле могут использоваться для питания нескольких компонентов по очереди, обычно в установленном порядке. Обычное применение этого типа реле включает в себя питание нескольких систем или наборов огней один за другим, например, в огнях взлетно-посадочной полосы или в последовательности подачи питания.

Автомобильные реле Реле

находят практически неограниченное применение в автомобильных приложениях, и эти приложения охватывают многие из рассмотренных типов реле.Многие автомобильные реле позволяют производителям реализовывать передовые функции безопасности и современные электрические удобства.

Вот лишь несколько примеров реле для питания следующих систем в стандартных легковых и грузовых автомобилях:

  • Газовые клапаны
  • Фары
  • Стеклоочистители
  • Освещение салона
  • Системы охранной сигнализации
  • Системы предупреждения, используемые для ограничения веса, использования ремня безопасности или обнаружения опасности

Где найти следующее реле

Поскольку реле являются неотъемлемой частью схемотехники, очень важно получить высококачественные реле того типа и размера, которые необходимы для вашего приложения.

Amperite предлагает широкий ассортимент реле и других электронных компонентов, предназначенных для экономии времени, денег и энергии.

Мы также специализируемся на производстве продукции на заказ, чтобы решить ваши индивидуальные проблемы.

Если вы хотите узнать больше о наших электронных приложениях и решениях, свяжитесь с нами сегодня!

Что такое реле, его функции, типы и схема подключения реле

Все мы знаем о пультах дистанционного управления телевизора, на которых мы можем нажать одну кнопку, чтобы включить функцию, реле работают аналогично этому.Реле используются, чтобы исключить прямую связь пользователей с электронным оборудованием, чтобы защитить их от ожидаемого высокого напряжения. Если сосредоточены огромные отрасли промышленности, они используют реле большей мощности для оптимизации работы двигателей и насосов.

Общее назначение реле можно понять, проанализировав включение фар. Кнопку переключения фар можно найти на приборной панели автомобиля, и при перемещении она подает небольшое значение тока на катушку, что приводит к включению контактора.Затем срабатывает реле, управляя нагрузкой большой мощности (фары). Есть много других распространенных примеров реле из нашей повседневной жизни.

У каждого дома есть холодильник и реле, управляющие оборудованием, отвечающим за работу и производство холода. Светофоры - еще одно применение реле, где они используются в качестве переключающего компонента. Движение и направление автоматических гаражных ворот также используют реле для оптимального переключения контактов.

Можно с уверенностью сказать, что реле отвечают за подачу питания на электронное оборудование и работают над их функционированием для обеспечения оптимальной работы. Они облегчили нам жизнь, добавив факторы автоматизации наряду с безопасной и бесперебойной работой электронного оборудования. Это означает, что нет никаких угроз, связанных с высоким напряжением, поскольку во время поломки электроники не будет контакта.

На схеме показаны внутренние части реле в цепи.Контрольная монета ограничена железным сердечником. Источник питания соединяется с электромагнитом через контакты нагрузки и переключатель управления. Когда энергия подводится к цепи через управляющую катушку, магнитные поля усиливаются при включении питания. Таким образом, верхние контактные рычаги притягиваются нижним фиксированным рычагом, который замыкает контакты, приводящие к короткому замыканию. Однако, если реле было обесточено, возникает разрыв цепи с противоположным движением контакта.

Когда ток в катушке прекращается, подвижный якорь возвращается в исходное положение с силой, равной половине магнитной силы и электрической силы. Основными причинами этой силы являются сила тяжести и пружина.

Реле выполняют две основные функции, такие как приложение высокого напряжения и приложение низкого напряжения. В случае высокого напряжения искрение уменьшается, в то время как в приложениях с низким напряжением общий шум цепи снижается до минимума.

Теперь отпустите кнопку START, и ток начнет течь вокруг открытого переключателя START.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *