Схема подключения электродвигателя, подключение трехфазного двигателя в однофазную сеть
электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)
Схема подключения электродвигателя во многом определяется условиями его эксплуатации.
Например, подключение «звездой» обеспечивает большую плавность работы, но дает потерю мощности по сравнению с подключением «треугольником».
Иногда бывает нужно подключить трехфазный двигатель в однофазную сеть. В любом случае рассматривать этот вопрос надо по порядку. (Здесь и далее разговор пойдет про асинхронный электродвигатель как наиболее часто встречающийся).
На рисунке 1 представлены две схемы соединения обмоток двигателя.
- Схема соединения «звездой». Начала (или концы) всех обмоток соединяются в одной точке, оставшиеся концы (или начала) подключаются каждый к своей фазе (L1, L2, L3).
Эта схема не позволяет использовать электрический двигатель на полную мощность, но имеет меньший пусковой ток.
- Соединение обмоток электродвигателя «треугольником». При этом начало одной обмотки соединяется с концом другой. Вершины получившегося треугольника подключаются к цепи трехфазного тока.
В отличие от соединения «звездой» эта схема позволяет использовать всю паспортную мощность двигателя, но имеет больший пусковой ток.
- Подключение двигателя к сети одинаково, вне зависимости от способа соединения обмоток, поэтому, рассказывая про различные его подключения я буду использовать приведенное здесь обозначение электродвигателя, чтобы лишний раз не затруднять восприятие схемы.
Подключение двигателя к сети производится через электромагнитный пускатель. Схемы таких подключений приведены здесь.
Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке. (См. на соответствующих рисунках под схемами соединений). Для тех, кто привык разбираться во всем досконально на нижней части рисунка 1.с приведена схема подключения обмоток электродвигателя к соответствующим клеммам.
Следует заметить, что сказанное относится к двигателям не подвергавшимся переделкам (ремонту) и имеющим штатную маркировку обмоток.
В противном случае нужно самостоятельно найти обмотки, их начала и концы. Как это сделать поясняет рисунок 2.
- Прозваниваем обмотки. Для этого один измерительный щуп мультиметра в режиме измерения сопротивления подсоединяем к любой клемме (выводу), другим последовательно проверяем остальные. Точки, сопротивление между которыми составляет единицы или доли ом (близко к нулю), являются выводами одной обмотки.
- Отмечаем найденную обмотку, аналогичным образом прозваниваем оставшиеся выводы, находим остальные.
- Определяем начала и концы обмоток электродвигателя. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Для безопасности лучше ограничиться его величиной 12-36 Вольт. К оставшейся подключаем мультиметр в режиме измерения переменного напряжения. Наличие напряжения свидетельствует, что обмотки соединены синфазно, то есть конец одной подключен к началу другой.
Этот вариант как раз изображен на рисунке. Отсутствие напряжения говорит о том, что обмотки соединены концами (или началами). Маркируем их соответствующим образом. Повторяем указанные действия для оставшейся обмотки, соединенной с любой из первых двух.
Такая необходимость возникает достаточно часто. Сразу замечу — мощность электродвигателя при этом теряется.
Схема подключения трехфазного электродвигателя в однофазную (220 В) сеть требует наличия фазосдвигающего конденсатора Ср. Значение его емкости в микрофарадах (мкФ) для двигателей мощностью до 2,5 кВт можно определить умножив мощность двигателя в кВт на 100.
Конечно, для этого существует специальная формула, но описанным образом емкость можно получить с достаточной степенью приближения.
Наиболее простая схема приведена на рисунке 3.
В зависимости от положения переключателя SB1 будет меняться направление вращения электродвигателя. Подключение двигателя к сети производится выключателем F, в качестве которого лучше использовать автоматический выключатель.
Сразу после его включения для старта (набора оборотов) нужно подключить дополнительный конденсатор Сдоп, емкостью в 2-3 раза большей, чем Сраб. Это достигается нажатием кнопки SB2, которая должна быть отпущена сразу после набора электродвигателем оборотов.
Резистор R служит для разряда конденсатора Сдоп после его отключения. Значение этого резистора некритично и может быть порядка 100 — 500 кОм.
По этой схеме можно подключать электродвигатели с по схеме как «треугольник» так и «звезда».
Следующая схема (рис.4) использует подключение электродвигателя через пускатель. Сделано это так, чтобы включение можно было производить одним нажатием. Давайте посмотрим как эта схема работает.
При нажатии кнопки «пуск» срабатывает пускатель КМ1. Одними своими контактами он подключает дополнительный конденсатор Сдоп, другими — включает пускатель КМ2, который подает на электродвигатель напряжение (контактная группа КМ2.1) и одновременно блокирует контакты КМ1.1 первого пускателя.
После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп. Напряжение на пускатель КМ2 подается им самим, он находится в замкнутом состоянии до нажатия кнопки «стоп», размыкающей цепь питания.
Катушки пускателей должны быть рассчитана на напряжение 220В.
© 2012-2023 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Схема подключения трехфазного электродвигателя на 220 соединение и мощность цепи
Широко применяемые на производствах электродвигатели асинхронные соединяют «треугольником» или «звездой». Первый тип в основном используют для моторов продолжительного пуска и работы. Совместное подключение применяют для пуска высокомощных электродвигателей. Подключение «звезда» используют в начале пуска, переходя затем на «треугольник». Применяется также схема подключения трехфазного электродвигателя на 220 вольт.
Разновидностей моторов много, но для всех, главной характеристикой является напряжение, подаваемое на механизмы, и мощность самих двигателей.
При подключении к 220в на мотор действуют высокие пусковые токи, снижающие его срок эксплуатации. В промышленности редко используют соединение треугольником Мощные электродвигатели подключают «звездой».
Для перехода со схемы подключения электродвигателя 380 на 220 есть несколько вариантов, каждый из которых отличается преимуществами и недостатками.
Содержание:
- Переподключение с 380 вольт на 220
- Схема звезда-треугольник
- Как работает схема
- Другие подключения электродвигателя
- Включение трехфазного двигателя в однофазную сеть
- Использование магнитного пускателя
Переподключение с 380 вольт на 220
Очень важно понимать, как подключается трехфазный электродвигатель к сети 220в. Чтобы трехфазный двигатель подключить к 220в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам. При помощи тестера провода прозванивают, чтобы найти катушки. Их концы соединяем по два – получается соединение «треугольник» (и три конца).
Для начала, два конца сетевого провода (220 в) подключаем к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.
От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него 220 в.
Электромотор должен заработать. Если этого не произошло, или он не вышел на требуемую мощность, необходимо вернуться на первый этап, чтобы поменять местами провода, т.е. переподключить обмотки.
Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить (через кнопку) конденсатор. Он будет в момент пуска давать двигателю толчок, заставляя крутиться.
Видео:
Видео: Как подключить электродвигатель с 380 на 220
Прозванивание, т.е. измерение сопротивления, проводится тестером. Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены – лампа загорается.
Труднее гораздо найти определить начало и концы обмоток. Без вольтметра со стрелкой не обойтись.
Подсоединить потребуется к обмотке батарейку, а к другой — вольтметр.
Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении.
Схема звезда-треугольник
В отечественных моторах часто «звезда» собрана уже, а треугольник требуется реализовать, т.е. подключить три фазы, а из оставшихся шести концов обмотки собрать звезду. Ниже дан чертеж, чтобы разобраться было легче.
Главным плюсом соединения трехфазной цепи звездой считают то, что мотор вырабатывает наибольшую мощность.
Тем не менее, подобное соединение «любят» любители, но не часто применяют на производствах, поскольку схема подключения сложная.
Чтобы она работала необходимо три пускателя:
К первому из них –К1 с одной стороны подключается обмотка статора, с другой – ток. Оставшиеся концы статора соединяют с пускателями К2 и К3, а затем для получения «треугольника» к фазам подключаются и обмотка с К2.
Подключив в фазу К3, незначительно укорачивают оставшиеся концы для получения схемы «звезда».
Важно: недопустимо одновременно включать К3 и К2, чтобы не произошло короткое замыкание, которое может приводить к отключению автомата мотора электрического. Во избежание этого, применяют электроблокировку. Работает это так: при включении одного из пускателей, другой отключается, т.е. его контакты размыкаются.
Как работает схема
При включении К1 с помощью реле времени включается К3. Мотор трехфазный, включенный по схеме «звезда» работает с большей мощностью, чем обычно. После некоторого времени, размыкаются контакты реле К3, но запускается К2. Теперь схема работы мотора — «треугольник», а мощность его становится меньше.
Когда требуется отключение питания, запускается К1. Схема повторяется при последующих циклах.
Очень сложное соединение требует навыков и не рекомендуется к реализации новичками.
Другие подключения электродвигателя
Схем несколько:
- Более часто, чем вариант описанный, применяется схема с конденсатором, который поможет значительно уменьшить мощность. Одни из контактов рабочего конденсатора подключается к нулю, второй – к третьему выходу мотора электрического. В результате имеем агрегат малой мощности (1,5 Вт). При большой мощности двигателя, в схему потребуется внесение пускового конденсатора. При однофазном подключении он просто компенсирует третий выход.
- Асинхронный мотор несложно соединить звездой или треугольником при переходе с 380в на 220. У таких моторов обмоток три. Чтобы изменить напряжение, необходимо выходы, идущие к вершинам соединений, поменять местами.
- При подключении электромоторов, важно тщательно изучить паспорта, сертификаты и инструкции, потому что в импортных моделях встречается часто «треугольник», адаптированный под наши 220В. Такие моторы при игнорировании этого и включении «звездой, просто сгорают. Если мощность более 3 кВт, к бытовой сети мотор нельзя. Чревато это коротким замыканием и даже выход из строя автомата УЗО.
Рекомендуем:
- Классификация электродвигателей
- Схемы подключения электродвигателей постоянного тока
- Защита электродвигателя от перегрузок
Включение трехфазного двигателя в однофазную сеть
Ротор, подключенного к трехфазной цепи трехфазного двигателя, вращается благодаря магнитному полю, создаваемом током, идущим в разное время по разным обмоткам. Но, при подключении такого двигателя к цепи однофазной, не возникает вращающий момент, который мог бы вращать ротор. Наиболее простым способом подключения двигателей трехфазных к однофазной цепи является подсоединение его третьего контакта через фазосдвигающий конденсатор.
Включенные в однофазную сеть такой мотор имеет такую же частоту вращения, как при работе от трехфазной сети. Но о мощности нельзя сказать этого: ее потери значительны и зависят они от емкости конденсатора фазосдвигающего, условия работы мотора, выбранной схемы подключения. Потери на ориентировочно достигают 30-50%.
Цепи могут быть двух — , трех-, шестифазными, но наиболее применяемыми являются трехфазные. Под трехфазной цепью понимают совокупность цепей электрических с одинаковой частотой синусоидальной ЭДС, которые отличаются по фазе, но создаются общим источником энергии.
Если нагрузка в фазах одинакова, цепь является симметричной. У трехфазных несимметричных цепей – она разная. Полная мощность складывается из активной мощности трехфазной цепи и реактивной.
Хотя большинство двигателей справляется с работой от однофазной сети, но хорошо работать могут не все. Лучше других в этом смысле двигатели асинхронные, которые рассчитаны на напряжение 380/220 В (первое — для звезды, второе – треугольника).
Это рабочее напряжение всегда указывают в паспорте и на прикрепленной к двигателю табличке. Также там указана схема подключения и варианты ее изменения.
Если присутствует «А», это свидетельствует о том, что использоваться может как схема «треугольник», так и «звезда». «Б» сообщает о том, что подключены обмотки «звездой» и не могут быть соединены по – другому.
Получится в результате должно: при разрыве контактов обмотки с батареей, электрический потенциал той же полярности (т.е. отклонение стрелки происходит в ту же сторону) должен появляться на двух оставшихся обмотках. Выводы начала (А1, В1, С1) и конца (А2, В2, С2) помечают и подсоединяют по схеме.
Использование магнитного пускателя
Применение схемы подключения электродвигателя 380 через пускатель хорошо тем, что пуск производить можно дистанционно. Преимущество пускателя перед рубильником (или другим устройством) в том, что пускатель можно разместить в шкафу, а в рабочую зону вынести элементы управления, напряжение и токи при этом минимальны, следовательно, провода подойдут меньшего сечения.
Помимо этого, подключение с использованием пускателя обеспечивает безопасность в случае, если «пропадает» напряжение, поскольку при этом происходит размыкание силовых контактов, когда же напряжение вновь появится, пускатель без нажатия пусковой кнопки его не подаст на оборудование.
Схема подключения пускателя асинхронного двигателя электрического 380в:
На контактах 1,2,3 и пусковой кнопке 1 (разомкнутой) напряжение присутствует в начальный момент. Затем оно подается через замкнутые контакты этой кнопки (при нажатии на «Пуск») на контакты пускателя К2 катушки, замыкая ее. Катушкой создается магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя в движение мотор.
Одновременно с этим происходит замыкание контакта NO, с которого подается фаза на катушку через кнопку «Стоп». Получается, что, когда отпускают кнопку «Пуск», цепь катушки остается замкнутой, как и силовые контакты.
Нажав «Стоп», цепь разрывают, возвращая размыкая силовые контакты. С питающих двигатель проводников и NO исчезает напряжение.
Видео: Подключение асинхронного двигателя. Определение типа двигателя.
3-фазная система обучения управлению двигателем с ручным стартером |
Практика практических навыков управления двигателем для различных применений
Трехфазная система обучения управлению двигателем с ручным пуском DAC Worldwide (422-000) представляет собой специальное учебное устройство, связанное с управлением двигателем, которое позволяет развивать навыки в принципы работы, схемотехника, проводка, устранение неисправностей и применение промышленных трехфазных ручных пускателей двигателей. Используя этот тренажер, учащиеся изучат навыки, которыми должен овладеть оператор, чтобы уверенно работать с современным оборудованием управления двигателем, например подключение трехполюсного кнопочного пускателя двигателя в качестве контроллера двигателя и поиск и устранение неисправностей ручного пускателя барабанного типа с реверсивным переключателем.
Фундаментальная система обучения в серии связанных продуктов, ориентированных на управление двигателем, это устройство часто используется независимо из-за его общего использования в базовом промышленном оборудовании и системах, используемых в промышленности, а также благодаря встроенному выбору общих компонентов пилотирования. . Трехфазная система обучения управлению двигателем от DAC Worldwide, используемая в сочетании с другими элементами этой серии, последовательно знакомит учащегося с проектированием, разработкой и, в конечном счете, реализацией схем управления, от самых простых до самых сложных.
Эта 3-фазная система обучения управлению двигателем имеет сварную алюминиевую опорную плиту, стальную опорную конструкцию и корпус, алюминиевые монтажные направляющие двигателя, применимый промышленный однофазный двигатель с конденсаторным пуском и трехфазный двигатель мощностью 56 л. с. Индукционный двигатель. Его алюминиевые монтажные рейки с Т-образными пазами позволяют прикреплять привязной узел двигателя/базовой плиты и подключать к соответствующим устройствам, а стальная конструкция позволяет прикреплять его к базовому узлу или альтернативному монтажному столу.
Вся проводка включает экранированные разъемы типа «банан» с цветовой маркировкой на лицевой панели, а не напрямую к отдельным компонентам. Четыре переключателя неисправности инструктора запрограммированы на создание неисправностей компонентов, что не только имитирует условия отказа, но также позволяет учащимся оценивать навыки и устранять неполадки в реальном времени.
В этой системе также используются компоненты безопасности промышленного класса, обеспечивающие долговечность при частом использовании и помогающие учащимся лучше подготовиться к задачам, с которыми они столкнутся на работе. Некоторые из бортовых компонентов безопасности включают выключатель питания с ключом для инструктора, автоматический выключатель с блокировкой/маркировкой, постоянное внутреннее заземление, большой выключатель аварийной остановки и многое другое. Кроме того, все компоненты, используемые в этой обучающей системе, сертифицированы UL и CE.
Практические упражнения и обучающие мероприятия приводят к реалистичным результатамТрехфазная система обучения контролю моторики DAC Worldwide также включает упражнения и учебные мероприятия, которые больше ориентированы на результаты, а не на второстепенную академическую информацию. Эта комплексная система обучения предлагает часы обучения основным принципам управления двигателем, однофазным/трехфазным двигателям и компонентам, включая темы по терминологии, эксплуатации, поиску и устранению неисправностей и базовой теории. Интегрированный курс включает 21 задание, каждое из которых включает справочную информацию по теме, практические эксперименты и соответствующие контрольные вопросы. Копия Руководства по использованию/упражнениям этого курса включена в систему обучения. Если вы хотите узнать о приобретении дополнительных руководств по использованию/упражнениям для вашей программы, обратитесь за дополнительной информацией к местному представителю DAC по всему миру.
Посетите DAC Worldwide для получения дополнительной информации.
Что такое стартер двигателя? Различные типы пускателей двигателей
Основная функция пускателя двигателей заключается в пуске и остановке двигателя, к которому он подключен. Это специально разработанные электромеханические переключатели, похожие на реле. Основное отличие реле от пускателя состоит в том, что пускатель содержит защиту двигателя от перегрузки. Таким образом, назначение пускателя двоякое: автоматически или вручную переключать питание на двигатель и в то же время защищать двигатель от перегрузки или неисправностей.
Пускатели двигателей доступны с различными номиналами и размерами в зависимости от номинала и размера двигателя (двигателя переменного тока). Эти статеры безопасно переключают необходимую мощность на двигатель, а также предотвращают потребление двигателем больших токов. Давайте посмотрим более подробно о необходимости пускателя двигателя, различных типах пускателя двигателя, а также их электрических схемах. В этой статье мы будем иметь дело только с пускателями двигателей переменного тока, поскольку они являются рабочими лошадками в промышленности и коммерческих приложениях.
Описание
Зачем двигателям нужен пускатель?
Статор необходим для асинхронного двигателя (трехфазного типа) для ограничения пускового тока. В трехфазном асинхронном двигателе ЭДС, индуцированная ротором, пропорциональна скольжению (это относительная скорость между статором и ротором) асинхронного двигателя. Эта ЭДС ротора пропускает ток через ротор.
Когда двигатель находится в состоянии покоя (при пуске), скорость двигателя равна нулю и, следовательно, скольжение максимально. Это индуцирует очень высокую ЭДС в роторе в начальных условиях, и, таким образом, через ротор протекает очень большой ток.
Поскольку ротору требуется большой ток, обмотка статора потребляет очень большой ток от источника питания. Этот начальный ток потребления может в 5-8 раз превышать ток полной нагрузки двигателя.
Этот огромный ток при пуске двигателя может повредить обмотки двигателя, а также вызвать сильное падение напряжения в линии.
Эти скачки напряжения могут повлиять на другие устройства, подключенные к той же линии. Следовательно, для ограничения этого пускового тока необходим стартер, чтобы избежать повреждения двигателя, а также другого соседнего оборудования.
Пускатель — это устройство, которое снижает начальный высокий ток двигателя за счет снижения напряжения питания, подаваемого на двигатель. Такое снижение применяется в течение очень короткого промежутка времени, и как только двигатель разгоняется, значение скольжения уменьшается, и, следовательно, применяется нормальное напряжение.
В дополнение к защите от пускового тока, пускатель также обеспечивает защиту от перегрузки, однофазную защиту и защиту от низкого напряжения.
Защита от перегрузки необходима, поскольку двигатель потребляет больший ток в условиях перегрузки, что приводит к чрезмерному нагреву обмоток. Это дополнительное тепло сокращает срок службы двигателя и может вызвать возгорание обмоток и, следовательно, возгорание.
Все пусковые устройства снабжены элементами защиты от перегрева для ограничения высокого тока при перегрузке. Большинство этих устройств работают по концепции перегрузки по времени, в которой ток перегрузки допускается на короткое время (очень несколько секунд), а затем останавливает двигатель, если ток существует дольше этого времени.
Большинство стартеров оснащены биметаллическими планками для выполнения этой операции.
Некоторые двигатели мощностью менее 5 л.с. подключаются напрямую (с помощью пускателя DOL) без снижения напряжения питания (в исходном состоянии), но они снабжены защитой от перегрузки, пониженного напряжения и однофазной защиты. Это связано с тем, что такие двигатели могут кратковременно выдерживать высокий пусковой ток.
Как работает стартер двигателя?
В основном пускатель представляет собой коммутационное устройство, состоящее из электрических контактов (как входящих, так и выходящих). По принципу действия пускатели в первую очередь делятся на ручные и электрические.
Ручной стартер состоит из рычага сбоку, который можно включить или выключить. Обычно они используются для небольших двигателей, поскольку они не могут работать дистанционно.
Этот тип пускателей двигателей обеспечивает перезапуск двигателей сразу же после отключения питания. Это мгновенное срабатывание двигателя после сбоя питания может привести к протеканию опасных токов в двигатель и, следовательно, к повреждению двигателя. По этой причине большинство стартеров оснащены электрическими выключателями.
В пускателях с электрическим приводом для переключения силовых проводников используются электромеханические реле. Эти реле называются контакторами. Когда катушка в контакторе находится под напряжением, она создает электромагнитное поле, которое притягивает контакты переключателя.
А когда катушка обесточена, контакты возвращаются в нормальное положение под действием пружины. Обычно пускатели электродвигателей снабжены нажимными кнопками (кнопками пуска и остановки) для включения и выключения питания катушки, чтобы контакты срабатывали. Эти пускатели с электрическим приводом не будут перезапускаться после сбоя питания, пока не будет нажата кнопка пуска.
Различные технологии, используемые в пускателях двигателей
В большей части промышленного производства используются трехфазные асинхронные двигатели по сравнению с двигателями любого другого типа. Существуют различные методы запуска трехфазного асинхронного двигателя. Прежде чем знакомиться с различными типами пускателей, давайте сначала обсудим методы, используемые для пускателей асинхронных двигателей.
Метод полного напряжения
Этот метод часто называют прямым пуском от сети (DOL) и является наиболее распространенным способом пуска трехфазного асинхронного двигателя. В этом методе к двигателю прикладывается полное напряжение (или номинальное напряжение), поскольку по своей сути это самозапускающийся двигатель, для запуска которого требуется полное напряжение.
Этот метод применяется только для двигателей мощностью менее 5 л.с., как описано выше. Пускатели двигателей, использующие этот метод, называются пускателями DOL.
Метод пониженного напряжения: Этот метод используется для больших двигателей мощностью от 100 л.с. и выше (или для двигателей, потребляющих очень большие пусковые токи). Как обсуждалось ранее, эти двигатели с высоким номиналом потребляют очень высокие пусковые токи, а также могут вызвать падение напряжения в линии.
В таких случаях используется метод пониженного напряжения, при котором напряжение на двигателе сначала снижается на несколько секунд до тех пор, пока двигатель не начнет вращаться, а затем приложенное напряжение увеличивается до номинального напряжения питания, в результате чего двигатель вращается до номинальной скорости.
Пускатели электродвигателей, использующие метод понижения напряжения, называются пускателями пониженного напряжения. Обычно используемые пускатели с пониженным напряжением включают пускатели с сопротивлением статора, пускатели с автотрансформатором и пускатели с пуском по схеме «треугольник».
Техника двунаправленного пускателя
В некоторых процессах необходимо, чтобы двигатель работал как в прямом, так и в обратном направлении. Как правило, направление трехфазного двигателя можно изменить, заменив любые два провода (т. е. изменив последовательность RYB) трехфазного источника питания.
В этом методе используются два контактора с подходящим соединением и механизмом блокировки между ними для достижения двунаправленной работы.
Многоскоростная техника
В этом методе пускатели двигателей изготавливаются для подачи на двигатель различных напряжений для работы двигателя на разных скоростях.
Как правило, эти пускатели предназначены для работы двигателя на двух или трех различных скоростях с использованием двух или более контакторов. Большинство этих пускателей изготавливаются в версиях с полным и пониженным напряжением.
Типы пускателей двигателей
Ниже перечислены наиболее распространенные типы пускателей, основанные на приведенных выше методах.
- Стартер сопротивления статора
- Пускатель автотрансформатора
- Стартер звезда-треугольник
- Прямой пускатель
- Устройство плавного пуска
Эти пускатели двигателей подробно рассматриваются в следующем разделе.
Пускатель сопротивления статора
В этом методе на асинхронный двигатель подается пониженное напряжение путем последовательного подключения внешних сопротивлений к каждой фазе обмотки статора.
Во время запуска двигателя эти сопротивления удерживаются в максимальном положении, так что на двигатель подается пониженное напряжение из-за большого падения напряжения на сопротивлениях. Принципиальная схема этого типа пускателя показана на рисунке ниже.
Как только двигатель набирает скорость, сопротивление, подключенное к каждой фазе цепи статора, постепенно уменьшается. Когда эти сопротивления удаляются из цепи, на двигатель подается номинальное напряжение (полное напряжение), и, следовательно, он работает с номинальной скоростью.
В этом методе важно поддерживать пусковой момент двигателя при минимальном пусковом токе. Это связано с тем, что ток изменяется пропорционально напряжению, тогда как крутящий момент зависит от квадрата приложенного напряжения.
Предположим, если приложенное напряжение уменьшится на 50 процентов, ток уменьшится на 50 процентов, а крутящий момент уменьшится на 25 процентов.
Конструкция этого пускового устройства проста и является наиболее экономичным из всех методов. Кроме того, этот стартер можно использовать для двигателей независимо от того, соединены они звездой или треугольником. Однако из-за высокого рассеивания мощности на резисторах в двигателе происходят большие потери мощности.
Кроме того, пониженное напряжение вызывает пониженный крутящий момент при пуске двигателя. Из-за этих ограничений метод сопротивления ограничен для некоторых приложений.
Стартер с автотрансформатором
В этом методе трехфазный автотрансформатор подключается последовательно с двигателем. Этот трансформатор снижает напряжение, подаваемое на двигатель, и, следовательно, ток. Принципиальная схема этого типа пускателя показана на рисунке ниже.
Этот пускатель состоит из переключателя, который переключает двигатель между режимами пониженного напряжения и полного напряжения. Когда этот переключатель находится в положении пуска, на двигатель подается пониженное напряжение.
Это напряжение зависит от доли процента витков и регулируется изменением положения ползунка автотрансформатора.
Когда двигатель достигает 80 процентов своей номинальной скорости, переключатель автоматически переключается в положение RUN с помощью реле. Благодаря этому на этот двигатель затем подается номинальное напряжение. Эти трансформаторы также снабжены цепями перегрузки, холостого хода и выдержки времени.
В этом методе напряжение на клеммах двигателя выше для заданного пускового тока на стороне сети по сравнению с другими методами пониженного напряжения. Следовательно, этот метод дает самый высокий пусковой момент на линейный ампер.
Этот статор может быть подключен к трехфазным двигателям как со звездой, так и с треугольником. Однако эти пускатели дороже, чем пускатели сопротивления статора.
Пускатель «звезда-треугольник»
Пускатель «звезда-треугольник» является наиболее часто используемым пускателем с пониженным напряжением, поскольку он является самым дешевым из всех пускателей. В этом методе асинхронный двигатель подключается в звезду при пуске и в треугольник при работе с номинальной скоростью.
Эти пускатели предназначены для работы на статоре асинхронного двигателя, соединенном треугольником. Принципиальная схема этого пускателя показана на рисунке ниже.
В этом пускателе используется переключатель TPDT (трехполюсный на два направления), который соединяет обмотку статора звездой во время пуска. Благодаря такому соединению звездой подаваемое на двигатель напряжение уменьшается в 1/√3 раза. Это пониженное напряжение приводит к меньшему току через двигатель.
Когда двигатель набирает скорость, переключатель TPST автоматически переключается на другую сторону с помощью реле, так что теперь обмотка подключается треугольником к источнику питания. Таким образом, на двигатель подается нормальное напряжение (поскольку при соединении треугольником напряжение одинаковое, VL = VP), и, следовательно, двигатель работает с нормальной скоростью.
Этот метод дешевле и не требует обслуживания по сравнению с другими методами. Однако это подходит только для двигателей, соединенных треугольником, а также нельзя изменить коэффициент снижения пускового напряжения, т. е. 1/√3.
Прямой пускатель
Как обсуждалось ранее, двигатели малой мощности (менее 5 л.с.) не имеют очень высоких пусковых токов. И без использования какого-либо стартера такие двигатели выдерживают пусковые токи.
Нет необходимости снижать напряжение на двигателе при пуске, поэтому двигатель можно подключить непосредственно к питающей сети. Этот тип устройства, используемый в пускателе, называется пускателем прямого включения или просто пускателем DOL.
Несмотря на то, что этот пускатель не снижает пусковое напряжение, он обеспечивает защиту двигателя от перегрузки, однофазности и низкого напряжения. Принципиальная схема прямого онлайн-пускателя показана на рисунке ниже.
Во время пуска нормально разомкнутый контакт (НО) нажимается на доли секунды, что приводит к возбуждению катушки намагничивания. Этот магнитный поток, создаваемый катушкой, притягивает контактор, так что теперь двигатель подключен к источнику питания.
Контактор сохраняет это положение, пока на катушку подается питание от дополнительного выключателя. При нажатии нормально замкнутого (НЗ) выключателя катушка обесточивается, и контактор отделяется подпружиненным устройством, при этом питание двигателя прекращается.
При любой перегрузке двигатель потребляет большой ток, что вызывает перегрев. Этот чрезмерный нагрев приводит в действие тепловые реле, использующие датчики перегрузки. Затем срабатывают контакты перегрузки, чтобы отключить питание двигателя.
Это самый простой, дешевый и надежный метод, поэтому он широко используется. Основным недостатком пускателя DOL является то, что двигатель потребляет очень большой ток во время запуска в течение короткого периода времени.
Устройство плавного пуска
В этом методе полупроводниковые силовые выключатели используются для уменьшения пускового тока асинхронного двигателя. Это другой тип пускателя с пониженным напряжением, и он подключается последовательно с сетевым напряжением, подаваемым на двигатель. Принципиальная схема устройства плавного пуска показана на рисунке ниже.
Этот пускатель состоит из встречных тиристоров или симисторов в каждой фазе обмотки статора. Управляя углом открытия этих тиристоров, напряжение, подаваемое на двигатель, будет уменьшаться бесступенчато. Этот тип снижения напряжения обеспечивает более плавную работу по сравнению с другими методами, описанными выше.
Это приводит к отсутствию пульсаций крутящего момента и, следовательно, к отсутствию рывков при пуске двигателя. Как только двигатель достигает нормальной скорости, к тиристорам применяется такой угол открытия, что они обеспечивают полное напряжение на двигателе.
Для более крупных двигателей используются частотно-регулируемые приводы с функцией плавного пуска.