Алгоритм составления уравнений по законом Кирхгофа
Алгоритм составления уравнений по законом Кирхгофа:
Составляем уравнения по первому закону Кирхгофа
Для составления уравнений по первому закону кирхгофа любой электрической цепи выполняем следующие действия.
- Количество уравнений по 1 закону киргофа равно количеству узлов минус один.
- Произвольно задаемся направлением токов в каждой ветви электрической цепи.
- Если в ветви присутствует источник тока, то считаем данный ток уже известным, равным величине источника тока.
- Составляем уравнения по первому правилу Кирхгофа для любых узлов кроме одного.
- Расставляем знаки. Токи, которые втекают в узел берем с одним знаком, например с плюсом. Токи, которые вытекают из узла берем с противоположным знаком, например с минусом.
Составляем уравнения по второму закону Кирхгофа
Для составления системы уравнения по 2 правилу Кирхгофа необходимо выполнить следующие пункты.
- Находим независимые контура в электрической цепи (чтобы отличались хотя бы одной ветвью).
- Если в цепи присутствуют источники тока, то данные ветви не учитываем при нахождении независимых контуров.
- Задаемся произвольным направление обхода независимых контуров.
- Составляем уравнения по второму правилу Кирхгофа для каждого выбранного контура.
- Расставляем знаки на участках с нагрузкой. Если направление обхода контура совпадает с направлением протекающего тока, то падение напряжения на заданном участке берем со знаком «+». Если направление протекающего тока не совпадает с направлением обхода контура, то падение напряжения на данном участке берем со знаком «-«.
- Расставляем знаки на участках с источниками ЭДС. Если направление действия ЭДС (направление стрелочки) совпадает с направлением обхода независимого контура, то знак будет «плюс». Если не совпадает, то знак — «минус».
Расчет токов по правилам Кирхгофа
Полученные уравнения объединяем в систему уравнений. Количество уравнений должно быть равно количеству неизвестных. Далее решаем систему уравнений любым известным способом.
Правильность расчета проверяется составлением уравнения баланса мощностей.
p.s. Правила Кирхгофа необязательно использовать в виде систем уравнений. Они справедливы для любого узла и для любого замкнутого контура электрической цепи.
Правила (законы) Кирхгофа простыми словами: формулировки и расчеты
На практике часто встречаются задачи по расчётам параметров токов и напряжений в различных разветвлённых цепях. В качестве инструмента для расчётов используют правила Кирхгофа (в некоторой литературе их называют еще законами, хотя это не совсем корректно) – одни из фундаментальных правил, которые совместно с законами Ома позволяет определять параметры независимых контуров в самых сложных цепях.
Учёный Густав Киргхоф сформулировал два правила [1], для понимания которых введено понятие узла, ветви, контура. В нашей ситуации ветвью будем называть участок, по которому протекает один и тот же ток. Точки соединения ветвей образуют узлы. Ветви вместе с узлами образуют контуры – замкнутые пути, по которым течёт ток.
Первое правило Кирхгофа
Первое правило Густава Кирхгофа сформулировано исходя из закона сохранения заряда. Физик понимал, что заряд не может задерживаться в узле, а распределяется по ветвям контура, образующим это соединение.
Кирхгоф предположил, а впоследствии обосновал на основании экспериментов, что количество зарядов зашедших в узел такое же, как и количество тока вытекающего из него.
На рисунке 1 изображена простая схема, состоящая из контуров. Точками A, B, C, D обозначены узлы контура в центре схемы.
Рис. 1. Схема контураТок I1 входит в узел A, образованный ветвями контура. На схеме электрический заряд распределяется в двух направлениях – по ветвям AB и AD. Согласно правилу Кирхгофа, входящий ток равен сумме выходящих: I1 = I2 + I3.
На рисунке 2 представлен абстрактный узел, по ветвям которого течёт ток в разных направлениях. Если сложить векторы i1, i2, i3, i4 то, согласно первому правилу Кирхгофа, векторная сумма будет равняться 0: i1 + i2 + i3 + i4 = 0. Ветвей может быть сколько угодно много, но равенство всегда будет справедливым, с учётом направления векторов.
Запишем наши выводы в алгебраической форме, для общего случая:
Для использования этой формулы, требуется учитывать знаки. Для этого необходимо выбрать направление одного из векторов тока (не важно, какого) и обозначить его знаком «плюс». При этом знаки всех других величин определить, исходя от их направления, по отношению к выбранному вектору.
Чтобы избежать путаницы, ток, направленный в точку узла, принято считать положительным, а векторы, направленные от узла – отрицательными.
Изложим первое правило Кирхгофа, выраженное приведённой выше формулой: «Алгебраическая сумма сходящихся в определённом узле токов, равна нулю, если считать входящие токи положительными, а отходящими – отрицательными».
Первое правило дополняет второе правило, сформулированное Кирхгофом. Перейдём к его рассмотрению.
Второе правило Киргхофа
Из третьего уравнения Максвелла вытекает правило Кирхгофа для напряжений. Его ещё называют вторым законом.
Это правило гласит, что в замкнутом контуре, на резистивных элементах, алгебраическая сумма напряжений (включая внутренние), равна сумме ЭДС, присутствующих в этом же замкнутом контуре.
При этом токи и ЭДС, векторы которых совпадают с направлением (выбирается произвольно) обхода контура, считаются положительными, а встречные к обходу токи – отрицательными.
Рис. 4. Иллюстрация второго правила КирхгофаФормулы, которые изображены на рисунке применяются в частных случаях для вычисления параметров простых схем.
Формулировки уравнений общего характера:
, где где Lk и Ck – это индуктивности и ёмкости, соответственно.
Линейные уравнения справедливы как для линейных, так и для нелинейных линеаризованных цепей. Они применяются при любом характере временных изменений токов и напряжений, для разных источников ЭДС. При этом законы Кирхгофа справедливы и для магнитных цепей. Это позволяет выполнять вычисления для поиска соответствующие параметров.
Закон Кирхгофа для магнитной цепи
Применение независимых уравнений возможно и при расчётах магнитных цепей. Сформулированные выше правила Кирхгофа справедливы и для вычисления параметров магнитных потоков и намагничивающих сил.
Рис. 4. Магнитные контуры цепейВ частности: ∑Ф=0.
То есть, для магнитных потоков первое правило Кирхгофа можно выразить словами: «Алгебраическая сумма всевозможных магнитных потоков относительно узла магнитной цепи равняется нулю.
Сформулируем второе правило для намагничивающих сил F: «В замкнутом магнитном контуре алгебраическая сумма намагничивающих сил приравнивается к сумме магнитных напряжений». Данное утверждение выражается формулой: ∑F=∑U или ∑Iω = ∑НL, где ω – количество витков, H – напряжённость магнитного поля, символ L обозначает длину средней линии магнитопровода. ( Условно принимается, что каждая точка этой линии совпадает с линиями магнитной индукции).
Второе правило, применяемое для вычисления магнитных цепей, есть не что иное, как альтернативная форма представления закона полного тока.
Примечание: Составляя уравнения с использованием формул, вытекающих из правил Кирхгофа, надо прежде определиться с положительным направлением потоков, функционирующих в ветвях, сопоставив их с направлением обходов существующих контуров.
При совпадении векторов магнитного потока с направлениями обхода (на некоторых участках), падение напряжения на этих ветвях берём со знаком « + », а встречные ему – со знаком « – ».
Примеры расчета цепей
Рассмотрим ещё раз рисунок 3. На нём изображено 4 разнонаправленных вектора: i1, i2, i3, i4. Из них – два входящие ( i2, i3) и два исходящие из узла (i1, i4). Положительными будем считать те векторы, которые направлены в точку соединения ветвей, а остальные – отрицательными.
Тогда, по формуле Кирхгофа, составим уравнение и запишем его в следующем виде: – i1 + i2 + i3 – i4 = 0.
На практике такие узлы являются частью контуров, обходя которые можно составить ещё несколько линейных уравнений с этими же неизвестными. Количество уравнений всегда достаточно для решения задачи.
Рассмотрим алгоритм решения на примере рис. 5.
Рис. 5. Пример для расчётаСхема содержит 3 ветви и два узла, которые образуют три пары по два независимых контура:
- 1 и 2.
- 1 и 3.
- 2 и 3.
Запишем независимое уравнение, выполняющееся, например, в точке а. Из первого правила Кирхгофа вытекает: I1 + I2 – I3 = 0.
Воспользуемся вторым правилом Кирхгофа. Для составления уравнений можно выбрать любой из контуров, но нам необходимы контуры с узлом а, так как для него мы уже составили уравнение. Это будут контуры 1 и 2.
Пишем уравнения:
- I1R1 + I3 R3 = E1;
- I2R2 + I3R3 = E2.
Решаем систему уравнений:
Так как значения R и E известны (см. рисунок 5), мы придём к системе уравнений:
Решая эту систему, получим:
- I1 = 1,36 (значения в миллиамперах).
- I2 = 2,19 мА.;
- I3 = 3,55 мА.
E1 – E2 + I1R1+ I2R2 = 12 – 15 + 1,36 – 4,38 = – 0,02 ≈ 0 (с учётом погрешностей, связанных с округлениями чисел при вычислениях).
Если проверка выполнения второго правила успешно завершена, то расчёты сделаны правильно, а полученные данные являются достоверными.
Применяя правила (законы) Кирхгофа можно вычислять параметры электрической энергии для магнитных цепей.
Первый и второй законы Кирхгофа и их практическое применение
Уравнения, или правила, Кирхгофа относят к основным законам электрических цепей.
Они вытекают из таких фундаментальных законов как, закон сохранения заряда и безвихревости электростатического поля, в своё время описанных уравнениями Максвелла. Уравнения Кирхгофа довольно часто используются благодаря своей универсальности, пригодности для решения многих задач в теории электротехники, в том числе и связанных с расчётами сложных электрических цепей, практичности. Применяя правила Кирхгофа к линейной электрической цепи можно получить систему линейных уравнений, из которых в свою очередь, можно найти значения токов на всех ветвях цепи и все межузловые напряжения.
В правилах Кирхгофа применяют такие понятия электрической цепи, как: узел, ветвь, контур. Участок электрической цепи с одним и тем же током называют ветвью, например отрезок 1-4, на рисунке 1, с протекающим по нему током i1 , есть ветвь. Точку, соединяющую три и более ветви называют узлом, например точки 1,2,3,4 на рисунке 1 есть узлы. Замкнутый путь, проходящий через несколько ветвей и узлов разветвлённой электрической цепи называют контуром. Начав с некоторого узла цепи и однократно пройдя по нескольким ветвям и узлам, и возвратившись в исходный узел, мы пройдём путь, который и называют замкнутым. Проходимые при таком обходе ветви и узлы принято называть принадлежащими данному контуру, при этом надо принимать во внимание, что ветвь и узел могут принадлежать одновременно нескольким контурам.
Рисунок 1Первое правило Кирхгофа построено на основании утверждения о непрерывности электрического тока для любого узла электрической цепи или замкнутого контура.
Первое правило Кирхгофа трактует, что алгебраическая сумма токов ветвей , для любого узла или замкнутого сечения электрической цепи, равна нулю:
Выше сказанное говорит о том, что электрические заряды в узле (например, S2 на рисунок 1) или сечении (например, S14 на рисунке 1) любой электрической цепи накапливаться не могут. Иными словами, сколько тока втекает в узел, столько из него и вытекает.
Второе правило Кирхгофа основано на утверждении, что любая электрическая цепь является потенциальной, а работа по перемещению электрических зарядов в замкнутом контуре равна нулю:
где U – работа(электрическое напряжение), k – число источников выполняющих работу;
Рассмотрим цепь, изображённую на рисунке1, образованную двухполюсными элементами, где ветви в местах соединений образуют узлы 1,2,3,4 и где направления напряжений и токов в ветвях совпадают. Для составления уравнений Кирхгофа выберем произвольно узел S2 , замкнутое сечение S14 (”несколько узлов”) и замкнутый контур 1, направление обхода которого изображено на рисунке 1.
Если принять, что выходящие из сечений и узлов токи считать положительными, а входящие отрицательными, то тогда уравнения составленные по первому правилу Кирхгофа будут иметь вид:
Для составления уравнения по второму правилу Кирхгофа, напряжения совпадающие с направлением обхода контура считаем положительными, а не совпадающие отрицательными. При этом уравнение примет вид:
Рассмотрим второе правило Кирхгофа на более наглядном примере (рисунке 2, см. ниже) и с более понятной для практического применения трактовкой, утверждающей что: алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС в этом контуре
где k – число источников ЭДС; m – число ветвей в замкнутом контуре; Ii, Ri – ток и сопротивление i-й ветви.
Рисунок 2Применяя второе правило Кирхгофа составляем уравнение для замкнутого контура схемы(рисунок 2) :
При составлении полученного уравнения знаки учитывались как:
— ЭДС (E) положительна, если ее направление совпадает с направлением произвольно выбранного обхода контура;
— падение напряжения (IR) на резисторе положительно, если направление тока в нем совпадает с направлением обхода.
Мы рассмотрели применение правил Кирхгофа на простых примерах цепей постоянного тока и напряжений. На самом деле электрические цепи бывают значительно сложнее и состоять из различных элементов (источников ЭДС и тока , нелинейных и т.п.). Например, для второго правила Кирхгофа физическое представление уравнения для переменного тока уже будет иметь вид:
Следует отметить, что для цепей синусоидального(переменного) тока правила Кирхгофа формулируются так же, как и для цепей постоянного тока, но только для комплексных значений токов и напряжений. Чтобы решать уравнения Кирхгофа для цепей синусоидального тока их составляют в комплексной форме, в которой учитываются ”мгновенные” изменения значений токов и напряжений.
Но какие сложные уравнения не приходилось бы составлять и решать, следует помнить, что физически второе правило(закон) Кирхгофа характеризует равновесие напряжений в любом контуре цепи.
Применение законов Кирхгофа (универсальный метод, сложные расчеты системы линейных уравнений).
Порядок расчета цепей, связанный с использованием законов Кирхгофа следующий:
1) Выбирают положительные направления токов в ветвях электрической цепи.
2) Составляют (k-1) независимых уравнений по первому закону Кирхгофа. Уравнения составленные по первому закону Кирхгофа гораздо проще уравнений, составленных по второму закону Кирхгофа. Поэтому их составляют максимально возможное количество.
3) Выбирают (l-k+1-m) независимых контуров электрической цепи. Контуры необходимо выбирать так, чтобы в них вошли все ветви схемы. Контуры взаимно независимы, если каждый последующий выбираемый контур содержит не менее одной новой ветви.
4) Для каждого из выбранных независимых контуров выбирают направления обхода и составляют уравнение по второму закону Кирхгофа.
5) Решают систему из (l-m) линейных уравнений любым удобным способом.
2. Метод контурных токов (универсальный метод)
Расчет сложных электрических цепей методом контурных токов производят в следующей последовательности:
1) Вычерчиваем принципиальную схему и все ее элементы.
2) На схеме выбирают и обозначают контурные токи, таким образом, чтобы по любой ветви проходил хотя бы один выбранный контурный ток (исключая ветви с идеальними источниками тока). Контуры можно выбирать произвольно, лишь бы их число было равно (l-k+1-m), и чтобы каждый новый контур содержал хотя бы одну ветвь, не входящую в предыдущие.
3) Произвольно задаемся направлением протекания контурных токов в каждом из независимых контуров (по часовой стрелке или против). Обозначаем эти токи. Для нумерации контурных токов используют сдвоенные арабские цифры (или римские).
4) Произвольно задаемся направлением реальных токов всех ветвей и обозначаем их. Маркировать реальные токи надо таким образом, чтобы не путать с контурными. Для нумерации реальных токов ветвей можно использовать одиночные арабские цифры.
5) По второму закону Кирхгофа, относительно контурных токов, составляем уравнения для всех независимых контуров. Уравнения составлят в следующем виде:
6) Решаем любым методом полученную систему относительно контурных токов и определяем их.
7) Переходим от контурных токов к реальным, считая, что реальный ток ветви равен алгебраической сумме контурных токов, протекающих по данной ветви. При алгебраическом суммировании без изменения знака берется контурный ток, направление которого совпадает с принятым направлением реального тока ветви. В противном случае контурный ток умножается на минус единицу.
3. Метод узловых напряжений (универсальный метод)
Метод узловы́х потенциалов — метод расчета электрических цепей путём записи системы линейных алгебраических уравнений, в которой неизвестными являются потенциалы в узлах цепи. В результате применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, токи во всех ветвях.
Узловыми напряжениями называют напряжения между каждым из (k-1) узлов и одним произвольно выбранным опорным узлом. Потенциал опорного узла принимается равным нулю. На схеме такой узел обычно отображают как заземленный.
Сущность метода заключается в том, что вначале решением системы уравнений определяют потенциалы всех узлов схемы по отношению к опорному узлу. Далее находят токи всех ветвей схемы с помощью закона Ома.
Расчет сложных электрических цепей методом узловых напряжений производят в следующей последовательности:
1) Вычерчиваем принципиальную схему и все ее элементы.
2) На схеме произвольно выбирают и обозначают опорный узел. В качестве опорного желательно выбирать узел, в котором сходится максимальное количество ветвей.
3) Произвольно задаемся направлением токов всех ветвей и обозначаем их на схеме.
4) Для определения потенциалов остальных (k-1) узлов по отношению к опорному узлу составляем следующую систему уравнений:
5) Решаем любым методом полученную систему относительно узловых напряжений и определяем их.
6) Далее для каждой ветви в отдельности применяем закон Ома и находим все токи в электрической цепи.
Читайте также:
Закон кирхгофа для электрической цепи для чайников
По каждому проводнику, составляющему электрическую цепь, течет ток. В точке, где проводники сходятся, называемой узлом, справедливо правило: ток суммарный, подтекающий к нему, равняется сумме, оттекающих.
{ ArticleToC: enabled=yes }
Законы кирхгофа
Другими словами – сколько зарядов подтечет к этой точке за единицу времени, столько же оттечет. Если принять, что приходящий будет «+», а оттекающий – «-», то суммарная его величина будет нулевой.
Это и есть Первый закон кирхгофа для электрической цепи. Смысл его в том состоит, что заряд не накапливается.
Закон Второй, применим к цепи электрической разветвленной.
Эти универсальные законы Кирхгофа применяют очень широко, поскольку позволяют решить множество задач. Большим их достоинство считают простую и понятную всем формулировку, несложные вычисления.
История
Пополнил ряды немецких ученых Кирхгоф в девятнадцатом столетии, когда в стране, находившаяся на пороге революции индустриальной, требовались новейших технологии. Ученые занимались поиском решений, которые могли бы ускорить развитие промышленности.
Активно занимались исследованиями в области электричества, поскольку понимали, что в будущем оно будет широко использоваться. Проблема состояла на тот момент не в том, как составлять электрические цепи из возможных элементов, а в проведении математических вычислений. Тут и появились законы, сформулированные физиком. Они очень помогли.
Алгебраическая сумма приходящих к узлам токов и исходящих из него равна нулю. Эта одновременно вытекает из другого закона — постоянства энергии.
К узлу подходят 2 провода, а отходит один. Значение тока, текущего от узла, такое же, как сумма его, протекающего по двум остальным проводникам, т.е. идущим к нему. Правило Кирхгофа объясняет, что, при ином раскладе, накапливался бы заряд, но такого не бывает. Все знают, что всякую сложную цепь легко разделить на отдельные участки.
Но, при этом непросто определить путь, по которому он проходит. Тем более, что на различных участках сопротивления не одинаковы, поэтому и распределение энергии не будет равномерным.
В соответствие со Вторым правилом Кирхгофа, энергия электронов на каждом из замкнутых участков электрической цепи равняется нулю – нулю равняется всегда в таком контуре суммарное значение напряжений. Если бы нарушилось данное правило, энергия электронов при прохождении определенных участков, уменьшалась бы или увеличивалась. Но, этого не наблюдается.
Применение
Таким образом, благодаря этим двум, выдвинутым Кирхгофом утверждениям, установлено зависимость токов от напряжений в разветвленных участках.
Формула Первого закона такова:
Для схемы, приведенной ниже, справедливо:
I1 — I2 + I3 — I4 + I5 = 0
Плюсовые — это токи, идущие к точке, а те, что выходят из нее «-».
Записывается это так:
- k — количество ЭДС источников;
- m – ветви замкнутого контура;
- Ii,Ri – их сопротивление i-й и ток.
В данной схеме: Е1 — Е2 + Е3 = I1R1 — I2R2 + I3R3 — I4R4.
- ЭДС принимается «+» при совпадении ее направления с выбранным направлением обхода.
- При совпадении направления тока и обхода на резисторе, с плюсом будет также напряжение.
Расчет цепи
Способ заключается в умении составления систем уравнений, а также решении их, для нахождения токов в каждой ветви (b), а уже, зная их, умении нахождения величины напряжений.
Проще говоря, количество ветвей совпадать должно с неизвестными величинами в системе. Вначале записывают их, исходя из первого правила: число их идентично с количеством узлов.
Но, независимыми будут (y – 1) выражений. Обеспечивается это выбором, а происходит он так, чтобы разнились они (последующий со смежными) минимум одной ветвью.
Далее, составляются уравнения с использованием второго закона: b — (y — 1) = b — y +1.
Независимым считают контур, содержащий одну (или больше) ветвь, которая в другие не входит.
В качестве примера можно рассмотреть такую схему:
Сдержит она:
узлов – 4;
ветвей –6.
По Первому закону записывают три выражения, т.е. y — 1 = 4 – 1=3.
И столько же на основании Второго, поскольку b — y + 1 = 6 — 4 + 1 = 3.
В ветвях выбирают плюсовое направление и путь обхода (у нас — по стрелке часовой).
Получается:
Осталось относительно токов решить получившуюся систему, понимая, что, когда в процессе решения он получается отрицательным, это свидетельствует о том, что направлен он будет в противоположную сторону.
Правило Кирхгофа применительно к синусоидальным токам
Правила для синусоидального, такие же, как для тока постоянного. Правда, учитываются величины напряжений с комплексными токами.
Первое звучит: «в электрической цепи нулю равна сумма алгебраическая комплексных токов в узле».
Второе правило выглядит так: «алгебраическая сумма ЭДС комплексных в контуре замкнутом равняется сумме алгебраической значений комплексных напряжений, имеющихся на пассивных составляющих данного контура.
Видео: Законы Кирхгофа
Закон Кирхгофа для сложных схем | EAGLE
ЗаконОма — ваш золотой билет для расчета напряжения, тока или сопротивления в простой последовательной или параллельной цепи, но что происходит, когда ваша схема более сложная? Возможно, вы разрабатываете электронику с параллельным и последовательным сопротивлением, и закон Ома начинает снижаться. Или что, если у вас нет источника постоянного тока? В таких ситуациях, когда нельзя использовать только V = IR, пора встать на плечи Ома и применить закон Кирхгофа.Здесь мы рассмотрим, что такое закон Кирхгофа для цепей и как его использовать для анализа напряжения и тока сложных электрических цепей.
Что такое Окружной закон Кирхгофа?
Когда вы строите сложную схему, включающую мосты или Т-образные сети, вы не можете полагаться только на закон Ома для определения напряжения или тока. Здесь пригодится закон Кирхгофа, который позволяет рассчитывать как ток, так и напряжение для сложных цепей с помощью системы линейных уравнений.Существует два варианта закона Кирхгофа, в том числе:
- Закон Кирхгофа: Для анализа полного тока сложной цепи
- Закон Кирхгофа о напряжении : для анализа полного напряжения сложной цепи
- Когда вы объединяете эти два закона, вы получаете Окружной закон Кирхгофа
Как и любой другой научный или математический закон, названный в честь их создателя, Закон Кирхгофа был изобретен немецким физиком Густавом Кирхгофом.Густав был известен многими достижениями при жизни, в том числе теорией спектрального анализа, которая доказала, что элементы излучают уникальный световой узор при нагревании. Когда Кирхгоф и химик Роберт Бунзен проанализировали эти световые узоры через призму, они обнаружили, что каждый элемент периодической таблицы имеет свою уникальную длину волны. Открытие этого паттерна позволило дуэту открыть два новых элемента, цезий и рубидий.
Густав Кирхгоф (слева) и Роберт Бунзен (справа)
Кирхгоф позже применил свою теорию спектрального анализа для изучения состава Солнца, где он обнаружил множество темных линий в спектре длин волн Солнца.Это было вызвано тем, что газ Солнца поглощал световые волны определенной длины, и это открытие ознаменовало начало новой эры исследований и исследований в области астрономии.
Немного ближе к дому в мире электроники, Кирхгоф объявил свой свод законов для анализа тока и напряжения в электрических цепях в 1845 году, известный сегодня как Закон Кирхгофа о цепях. Эта работа строится на основе, изложенной в законе Ома, и помогла проложить путь для анализа сложных схем, на который мы полагаемся сегодня.
Первый закон — Действующий закон Кирхгофа
Закон Кирхгофа по току гласит, что величина тока, поступающего в узел, равна величине тока, выходящего из узла. Почему? Потому что, когда ток входит в узел, ему некуда идти, кроме выхода. То, что входит, должно выйти. Вы можете определить узел, в котором два или более пути соединены общей точкой. На схеме это будет точка соединения, соединяющая две пересекающиеся сетевые соединения.
Взгляните на изображение ниже, чтобы визуально понять этот Закон.Здесь у нас есть два тока, входящие в узел, и три тока, выходящие из узла. Согласно закону Кирхгофа, взаимосвязь между токами, входящими в узел и выходящими из него, может быть представлена как I 1 + I 2 = I 3 + I 4 + I 5 .
Текущий закон Кирхгофа, ток на входе должен быть равен току на выходе. (Источник изображения)
Когда вы уравновешиваете это уравнение как алгебраическое выражение, вы делаете вывод, что ток на входе и выходе из узла всегда будет равен 0, или I 1 + I 2 + (-I 3 + -I 4 + -I 5 ) = 0 Все должно уравновешиваться, и Кирхгоф назвал этот принцип Сохранением заряда .
Давайте посмотрим на пример схемы, чтобы увидеть, как это работает. Ниже представлена схема с четырьмя узлами: A, C, E и F. Сначала ток течет от источника напряжения и отделяется в узле A, а затем протекает через резисторы R1 и R2. Оттуда ток рекомбинирует в узле C и снова разделяется, чтобы течь через резисторы R3, R4 и R5, где он встречается с узлом E и узлом F.
(Источник изображения)
Чтобы подтвердить закон Кирхгофа в этой цепи, нам необходимо предпринять следующие шаги:
- Рассчитать полный ток цепи
- Рассчитать ток, протекающий через каждый узел
- Сравните входные и выходные токи в определенных узлах, чтобы подтвердить текущий закон Кирхгофа.
1. Рассчитайте общий ток
Здесь мы используем закон Ома, чтобы получить полный ток нашей цепи с I = V / R . У нас уже есть общее напряжение 132 В, и теперь нам просто нужно найти общее сопротивление во всех наших узлах. Для этого требуется простой метод расчета общего сопротивления резисторов, подключенных параллельно, которое составляет:
Начиная с узла AC, мы получаем следующее сопротивление для параллельных резисторов R1 и R2:
И переходя к узлу CEF, мы получаем следующее сопротивление для параллельных резисторов R3, R4 и R5:
Теперь у нас есть общее сопротивление 11 Ом для всей цепи, которое мы можем затем подключить к закону Ома I = V / R , чтобы получить полный ток в нашей цепи:
2.Расчет узловых токов
Теперь, когда мы знаем, что из нашей цепи выходит 12 ампер, мы можем рассчитать ток в каждом наборе узлов. Мы снова воспользуемся помощью закона Ома в форме I = V / R , чтобы получить ток для каждой ветви узла.
Во-первых, нам нужны напряжения для узловых ветвей AC и CF:
Затем мы можем рассчитать ток для каждой ветви узла:
3. Подтвердите действующий закон Кирхгофа
После вычисления тока для каждой ветви узла у нас теперь есть две отдельные контрольные точки, которые мы можем использовать для сравнения наших входных и выходных токов.Это позволит нам проанализировать нашу схему и подтвердить текущий закон Кирхгофа следующим образом:
Второй закон — Закон Кирхгофа о напряжении
Закон Кирхгофа о напряжении гласит, что в любой цепи с замкнутым контуром полное напряжение всегда будет равно сумме всех падений напряжения в контуре. Вы обнаружите, что при протекании тока через пассивный компонент, такой как резистор, происходит падение напряжения, и Кирхгоф назвал этот закон Сохранением энергии .Опять же, то, что входит, должно выходить наружу.
Взгляните на изображение ниже, чтобы понять это визуально. В этой схеме у нас есть источник напряжения и четыре области в цепи, где напряжение столкнется с пассивным компонентом, что вызовет заметное падение напряжения.
Поскольку эти пассивные компоненты соединены последовательно, вы можете просто сложить общее падение напряжения и сравнить его с общим напряжением, чтобы получить соотношение, которое выглядит следующим образом:
Давайте начнем с простой схемы, чтобы продемонстрировать, как это работает.В приведенном ниже примере у нас есть две известные переменные: полное напряжение и падение напряжения на R1.
(Источник изображения)
Что нам нужно выяснить, так это падение напряжения на R2, и мы можем использовать закон напряжения Кирхгофа, чтобы выяснить это со следующей зависимостью:
Поскольку полное падение напряжения в цепи должно равняться общему напряжению источника, это обеспечивает простой способ вычисления нашей недостающей переменной. Если бы вы хотели выразить это соотношение в виде правильного алгебраического выражения, вы бы получили сумму всех падений напряжения и общее напряжение, равное нулю, как показано здесь:
Давайте посмотрим на другой пример.В схеме ниже у нас есть три резистора, подключенных последовательно с батареей на 12 В.
Чтобы проверить закон напряжения Кирхгофа в этой цепи, нам необходимо предпринять следующие шаги:
- Вычислить полное сопротивление цепи
- Вычислить полный ток цепи
- Рассчитайте ток через каждого резистора
- Рассчитайте падение напряжения на каждого резистора
Сравните источник напряжения с общим падением напряжения , чтобы подтвердить закон Кирхгофа о напряжении
1.Рассчитайте общее сопротивление
Поскольку все наши резисторы соединены последовательно, мы можем легко найти общее сопротивление, просто сложив все значения сопротивления вместе:
2. Рассчитайте общий ток
Теперь, когда мы знаем наше полное сопротивление, мы снова можем использовать закон Ома, чтобы получить полный ток нашей цепи в виде I = V / R, , который выглядит так:
3. Рассчитайте ток через каждый резистор
Поскольку все наши резисторы соединены последовательно, через них будет протекать одинаковый ток, который мы можем выразить как:
4.Рассчитайте падение напряжения на каждом резисторе
.В наших окончательных расчетах мы снова будем использовать закон Ома, чтобы получить полное падение напряжения для каждого резистора в виде В = IR , которое выглядит следующим образом:
5. Подтвердите закон Кирхгофа о напряжении
Теперь у нас есть все необходимые данные, включая полное напряжение нашей цепи, а также каждое падение напряжения на каждом из наших резисторов. Собирая все это вместе, мы можем легко проверить закон напряжения Кирхгофа с помощью следующего соотношения:
Это также можно выразить как:
Как видите, полное напряжение равно общему падению напряжения в нашей цепи.То, что входит, должно выйти, и закон Кирхгофа снова работает!
Процесс использования закона Кирхгофа о схемах
Понимая, как работает Закон Кирхгофа, в вашем наборе инструментов теперь есть новый инструмент для анализа напряжения и тока в полных цепях. При использовании этих законов в дикой природе рассмотрите возможность использования следующего пошагового процесса:
- Во-первых, начните с маркировки всех известных напряжений и сопротивлений на вашей цепи.
- Затем назовите каждую ветвь в вашей цепи текущей меткой, например I1, I2, I3 и т. Д.Ветвь — это один или группа компонентов, соединенных между двумя узлами.
- Затем найдите закон Кирхгофа для каждого узла в вашей цепи.
- Затем найдите закон напряжения Кирхгофа для каждой из независимых петель в вашей цепи.
После расчета законов Кирхгофа по току и напряжению вы можете использовать свои уравнения, чтобы найти недостающие токи. Готовы попробовать это самостоятельно? Взгляните на схему ниже и посмотрите, сможете ли вы подтвердить закон Кирхгофа по току и закон напряжения с небольшой помощью Ома!
Оставьте свои ответы в комментариях ниже!
Стоя на плечах Ома
Имея в руках Закон Кирхгофа о цепях, теперь у вас есть все инструменты, необходимые для анализа напряжения и тока в сложных цепях.Как и многие другие научные и математические принципы, закон Кирхгофа стоит на плечах того, что было раньше — закона Ома. Вы обнаружите, что используете закон Ома для расчета отдельных сопротивлений, напряжений или токов, а затем, основываясь на этих расчетах с законом Кирхгофа, увидите, соответствует ли ваша схема этим принципам тока и напряжения.
Готовы применить закон Кирхгофа в вашем собственном проекте электронного дизайна? Попробуйте Autodesk EAGLE бесплатно сегодня!
Дифференциальные уравнения — Обзор: Системы уравнений
Онлайн-заметки ПавлаНоты Быстрая навигация Скачать
- Перейти к
- Ноты
- Задачи практики и задания еще не написаны.Пока позволяет время, я работаю над ними, однако у меня нет того количества свободного времени, которое я имел раньше, поэтому пройдет некоторое время, прежде чем здесь что-нибудь появится.
- Показать / Скрыть
- Показать все решения / шаги / и т. Д.
- Скрыть все решения / шаги / и т. Д.
- Разделы
- Системы внедрения ДЭ Обзор
- : матрицы и векторы
- Разделы
- Преобразования Лапласа Решения серии
- для DE
- Классы
- Алгебра
- Исчисление I
- Исчисление II
- Исчисление III
- Дифференциальные уравнения
- Дополнительно
- Алгебра и триггерный обзор
- Распространенные математические ошибки
- Праймер для комплексных чисел
- Как изучать математику
- Шпаргалки и таблицы
- Разное
- Свяжитесь со мной
- Справка и настройка MathJax
- Мои студенты
- Заметки Загрузки
- Полная книга
- Текущая Глава
- Текущий раздел
- Practice Problems Загрузок
- Проблем пока не написано.
- Проблемы с назначением Загрузок
- Проблем пока не написано.
- Прочие товары
- Получить URL для загружаемых элементов
- Распечатать страницу в текущем виде (по умолчанию)
- Показать все решения / шаги и распечатать страницу
- Скрыть все решения / шаги и распечатать страницу
- Дом
- Классы
- Алгебра
- Отборочные
- Целочисленные экспоненты
- Рациональные экспоненты
- Радикалы
- Полиномы
- Факторинговые полиномы
- Рациональные выражения
- Комплексные числа
- Решение уравнений и неравенств
- Решения и наборы решений
- Линейные уравнения
- Приложения линейных уравнений
- Уравнения с более чем одной переменной
- Квадратные уравнения — Часть I
- Квадратные уравнения — Часть II
- Квадратные уравнения: сводка
- Приложения квадратных уравнений
- Уравнения, сводимые к квадратичным в форме
- Уравнения с радикалами
- Линейные неравенства
- Полиномиальные неравенства
- Отборочные
Законы Кирхгофа и мост Уитстона | Примечания, видео, контроль качества и тесты | 12 класс> Физика> Электрические схемы
Законы Кирхгофа и мост Уитстона
Законы Кирхгофа
Первый закон
Он гласит, что алгебраическая сумма токов на стыке электрической цепи равна нулю.То есть
$$ \ sum I = 0 \ dots (i) $$
Предполагая, что ток, протекающий по направлению к переходу, положительный, а ток, движущийся от перехода, как отрицательный, затем применяя первый закон Кирхгофа к переходу P , у нас есть
\ begin {align *} (+ I_1) + (+ I_2) + (-I_3) & = 0 \\ \ text {или,} I_1 + I_2 — I_3 & = 0 \\ \ text {или ,} \: I_1 + I_2 & = I_3 \ dots (ii) \\ \ end {align *}
Следовательно, сумма токов, текущих к переходу, равна сумме токов, вытекающих из перехода.Этот закон известен как действующий закон Кирхгофа.
Второй закон
Он гласит, что в замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме произведений токов на сопротивление в различных частях контура. Условно
$$ \ sum E = \ sum IR $$
На рисунке показана сложная электрическая схема. Чтобы найти ток в различных частях цепи, можно использовать закон Кирхгофа. Учтите, что направление ЭДС и тока против часовой стрелки считается положительным, а направление по часовой стрелке — отрицательным.Тогда, применяя второй закон Кирхгофа в замкнутом цикле ABCFA, мы имеем
\ begin {align *} \ sum E = \ sum IR \\ \ text {или,} \: (+ E_1) + (-E_2) & = (+ I_1) R_1 + (-I_2) R_2 \\ \ text {или,} \: E_1 — E_2 & = I_1R_1 — I_2R_2 \\ \ text {Аналогично, в замкнутом цикле FCDEF, мы имеем} \\ \ sum E = \ sum IR \\ \ text {или,} \: ( + E_2) + (-E_3) & = (+ I_2) R_2 + (-I_3) R_3 \\ \ text {или} \: E_2 — E_3 & = I_2R_2 — I_3R_3 \\ \ text {На стыке F с применением формулы Кирхгофа первый закон, мы имеем} \\ \ sum I & = 0 \\ \ text {or,} \: (+ I_1) + (+ I_2) + (-I_3) & = 0 \\ \ text {или,} \ : I_1 + I_2 & = I_3 \\\ end {align *}
Решая эти уравнения, мы можем вычислить токи I 1 , I 2 и I 3 .
Мост Уитстона
Мост Уитстона — это электрическая цепь, которая используется для точного измерения сопротивления проводника.
На рисунке P, Q и R известны три резистора, а X — неизвестное сопротивление. Ячейка E подключена к двум переходам A и C, а гальванометр G — между переходами B и D. Регулировка P и Q является известными значениями, R изменяется так, что ток через гальванометр равен нулю. Итак, гальванометр показывает нулевое отклонение, и в этом состоянии
$$ \ frac PQ = \ frac XR $$
Это называется условием баланса моста Уитстона.В таком состоянии соединения B и D имеют одинаковый потенциал.
Проверка сбалансированного состояния
Предположим, что цепь изначально не была в сбалансированном состоянии, и ток, проходящий через P и Q, равен I 1 и I 3 , а через X и R — I 2 и Я 4 соответственно.
В ADBA с замкнутым контуром, применяя закон напряжения Кирхгофа с соглашением о знаках, мы имеем
\ begin {align *} \ sum E & = \ sum IR \\ \ text {или,} \: 0 & = (+ I_2) X + (-I_g) R_g + (-I_1) P \\ \ text {или,} \: I_1P + I_gR_g & = I_2X \ dots (i) \\ \ text {Аналогично, в BDCB замкнутого цикла мы имеют} \\ \ text {или,} \: 0 & = (-I_3) Q + (I_g) R_g + (+ I_4) R \\ \ text {или,} \: I_3Q & = I_gR_g + I_4R \ dots ( ii) \\ \ text {На стыке B, применяя закон сочленений Кирхгофа,} \\ \ sum I & = 0 \\ \ text {или,} \: (+ I_1) + (-I_g) + (-I_3 ) & = 0 \\ \ text {или,} \: I_1 & = I_g + I_3 \\ \ dots (iii) \\ \ text {и на стыке D,} \\ \ sum I & = 0 \\\ текст {или,} \: (+ I_2) + (+ I_g) + (-I_4) & = 0 \\ \ text {или,} \: I_2 + I_g & = I_4 \ dots (iv) \\ \ end { align *}
\ begin {align *} \ text {В сбалансированном состоянии} \\ \ text {P, Q и R настроены так, что ток не проходит через гальванометр.} \\ \ text {То есть} \: I_g = 0. \\ \ text {При этом условии приведенные выше уравнения изменяются на следующие формы:} \\ I_p + 0 \ times R_g & = I_2X \\ \ text { или,} \: I_1P & = I_2 X \\ \ text {и} \: I_3Q & = 0 \ times R_g + I_4R \\ \ text {или,} \: I_3Q & = I_4 R \ dots (vi) \\ \ text {Аналогично} \: I_1 & = 0 + I_3 \\ \ text {или,} \: I_1 & = I_3 \ dots (vii) \\ \ text {и} \: I_2 + 0 & = I_4 \\ \ text {or,} \: I_2 & = I_4 \ dots (viii) \\ \ end {align *}
\ begin {align *} \ text {Уравнение деления} \: (v) \: \ text {by уравнение} \: (vi), \: \ text {получаем} \\ \ frac {I_1P} {I_3Q} & = \ frac {I_2X} {I_4R} \ dots (ix) \\ \ text {Подставляя значения ток из уравнений} \: (vii) \: \ text {и} \: (viii), \: \ text {получаем} \\ \ frac {I_3P} {I_3Q} & = \ frac {I_4X} {I_4R } \\ \ text {или,} \: \ frac PQ & = \ frac XR \\ \ text {Итак, сбалансированное состояние моста Уитстона получено.} \\ \ end {align *}
ссылка
Ману Кумар Хатри, Манодж Кумар Тапа и др. Принципы физики .