Сопротивление тока: формула нахождения сопротивления электротока
Сопротивление – способность материала препятствовать направленному движению заряженных частиц. Определяется величина согласно закону Ома. Точные значения параметра требуются во многих сферах, включая электронику и радиодетали. Определенным уровнем сопротивления обладает каждый материал на планете, вне зависимости от агрегатной формы. Некоторые вещества имеют настолько высокое сопротивление, что проведение через них электрического тока практически невозможно.
Формула удельного сопротивления
Формулировка закона Ома
Закон Ома имеет следующую формулировку. Чтобы рассчитать сопротивления, нужно напряжение разделить на силу тока в электрической цепи. Физическая величина обуславливается количеством свободных заряженных частиц в материале.
Какой буквой обозначается сопротивление? В системе измерений СИ на конгрессе ООН символом для записи физического явления была избрана латинская R (от английского resistance).
Отличные степени величины присущи каждому материалу из-за разной концентрации носителей электрического тока. Наибольшая концентрация присуща металлам, поэтому именно они являются лучшими проводниками. Особенность заключается в максимальном количестве проводящих электронов, представляющих собой заряженные частицы, не принадлежащие ни одной элементарной частице в металле или другом сырье. Возникновение тока и как следствие движение заряженных частиц возникают под действием внешних электрических полей.
Определение единицы сопротивления – Ом
Как обозначается сопротивление? Величина измеряется в Омах (русское обозначение), в то время как в других странах символ для маркировки – омега (Ω). Единица представляет собой значение силы препятствия прохождению электрического тока проводника, по которому течет напряжение в 1В с силой постоянного электрического тока в 1А.
Единица измерения была введена в 1960 году, вместе с принятием международной системы величин в целом. Существующая величина имеет обратное значение в виде проводимости электрического тока, которая измеряется в сименсах.
Расчет сопротивления последовательных резисторов
При последовательном сопротивлении нескольких резисторов соответственно увеличивается эквивалентная величина. Расчет сопротивления нескольких элементов, соединенных между собой последовательно, проводится за счет суммирования номиналов каждого элемента. Например, при соединении нескольких элементов, которые соединены в одну цепь последовательно, величина электрического сопротивления будет равной сумме уровня противодействия каждого из резисторов. Формула имеет одинаковый вид для любого количества резисторов.
Как найти сопротивление формула для последовательной цепи
Если заменить в последовательной цепи один из элементов, то соответственно изменится уровень противодействия направленному движению частиц в этой цепи. Это также повлечет изменение силы тока.
Резистор
Расчет сопротивления параллельных резисторов
Сопротивление формула для параллельного соединения имеет несколько другой вид.
Формула
Относительно большого количества последовательных элементов при увеличении количества резисторов в цепи соответственно возрастает сложность проведения расчета. Удельное сопротивление буква, которая ему соответствует, – латинская ρ.
Использование параллельного соединения оправдано в цепях, в которых требуется высокая величина параметра. Тогда применяются радиоэлементы с одинаковым параметром мощности и сопротивления. Например, 10 элементов, обладающих уровнем сопротивления 1000 Ом, которые объединены в единую цепь с параллельным соединением, на выходе будут иметь величину препятствия движению заряженных частиц в 100 Ом.
Удельное электрическое сопротивление
Удельное сопротивление представляет собой параметр, который определяет уровень препятствия движению электрического тока через проводник определенной длины. Зависит от параметра конкретного вещества, от длины. Для материала с однородными свойствами и известной величиной сопротивления и длиной проводника расчет удельного параметра идет по формуле ниже.-8
Величины сопротивлений для некоторых диэлектриков
Показатели для жидких проводников
Жидкими проводниками электричества чаще всего выступают расплавленные металлы и другие электролиты (кислоты и щелочи). Обычно температура плавления жидких проводников достаточно высока, исключая ртуть. Поэтому в нормальных условиях примерами жидкого вещества, проводящего электрический ток, могут быть только ртуть и галлий.
Величины удельного препятствия направленному движению заряженных частиц у растворенных электролитов (солей и кислот) являются динамическими характеристиками. На величину влияют концентрация активного проводящего вещества и температура. Влияние последней противоположно металлам. Во время нагрева жидких проводников соответственно снижается уровень сопротивления. И, наоборот, при существенных снижениях температуры проводимость падает. При переходе жидких проводников в твердое агрегатное состояние проводимость электрического тока снижается до нуля.
Явным примером последнего является влияние температуры на автомобильные аккумуляторные батареи во время сильного мороза. При этом жидкость, проводящая электрический ток (раствор сернистой кислоты), замерзает, из-за чего сопротивление внутреннего контура аккумулятора возрастает до максимума, и питание стартера и электроники не представляется возможным.
Катушка индуктивности
Катушки индуктивности представляет собой устройство, главной частью которого является проводящий металл, скрученный в некое подобие колец либо обернутый вокруг диэлектрического сердечника. Если через такое устройство проходит электрический ток, то формируется местное магнитное поле. Это происходит из-за концентрации переменного магнитного поля.
Для вычислительной техники используется дроссель, который применяется для питания различного высокоточного оборудования. Устройство требуется для снижения колебаний переменного напряжения. С добавлением частоты сопротивление соответственно увеличивается. Технические параметры дросселя зависят от площади поперечного сечения проводящего материала, числа витков вокруг сердечника из диэлектрика.
Катушка индуктивности
Пример из практики
Последовательно с источником освещения включен тестер. Напряжение осветительного прибора = 220 Вольт. Мощность неизвестна. На показателе амперметра указано 276 миллиампер тока. Какая величина у спирали лампы при последовательном включении в схему резисторов?
Формула нахождения сопротивления спирали
Электросопротивление представляет собой физическую величину, которая соответствует степени препятствия движению электрических частиц у каждого материала. Возможно измерить уровень величины мультиметром. В таком случае придется находить значение по формуле. Для предотвращения попадания электрического тока на непредназначенные для этого участки желательно заземлять линии передачи. Данная физическая величина используется во многих радиодеталях, например, светодиодах. В электрической цепи, чтобы узнать величину, требуется подключить к вольтметру фазу и ноль при известной силе тока, затем рассчитать по закону Ома.
Видео
Что такое электрическое сопротивление проводника тока, сопротивление через площадь поперечного сечения
Любое физическое тело, через которое происходит направленное движение ионов, оказывает току определенное сопротивление. Свойство каждого вида материала проводника не давать заряженным частицам проходить сквозь него – сопротивление электрическое. С учетом разниц противодействия движению ионов строятся многие принципиальные схемы, часть из которых применяется в электронных вычислительных машинах, например, это триггеры в бытовых приборах, наушниках.
Закон Ома
Что такое электрическое сопротивление
Что такое сопротивление в физике? Сопротивление – это физическое значение, которым описывается свойство проводящего материала препятствовать прохождению заряженных частиц сквозь него. Согласно закону Ома, данная величина равна значению напряжения на концевых участках проводника, деленному на силу тока в амперах, проходящего по нему. Значение противодействия направленному току заряженных частиц для цепей с переменным током и полей электромагнитного типа характеризуется полями волнового препятствия изменению потенциала и импедансом.
Интересно. На основании данной характеристики также получила название радиодеталь резистор, от английского Resistance – сопротивление. Эта часть требуется для введения в цепи питания активного препятствия электрическому току.
Определение единицы сопротивления – Ом
В чем измеряется сопротивление тока? Единица измерения в международной системе СИ – Ом. Данная величина равна сопротивлению в цепи между крайними участками, между которыми течет напряжение величиной в 1 В при силе тока в 1А. Слово было получено по фамилии ученого – Георга Ома. Было принято как единица измерения в шестидесятых годах двадцатого века вместе с международной системой единиц СИ.
Средства воспроизведения сопротивления
Для определения меры электрического сопротивления используют:
- Магазин сопротивлений – специальный набор радиоэлементов различного номинала. Данные компоненты специально изготовлены таким образом, чтобы содержать эталонное сопротивление проводников. При подключении электропроводника с постоянным или переменным током к магазину сопротивления можно выбрать подходящий по величине резистор и получить на выходе определенное напряжение, которое затем можно измерить при помощи вольтметра;
- Катушка – устройство, которое работает по сходному с магазином принципу. При подключении на вход прибора можно при помощи имеющихся рычагов и переключателей отрегулировать величину сопротивления агрегата и получить на выходе требуемый вольтаж.
Государственный эталон сопротивления
Данный государственный стандарт под индексом ГЭТ 14-91 принято описывать в следующем виде.
Величины и характеристики эталонного сопротивления
Название характеристики | Величина по государственному эталону 14-91 |
---|---|
Воспроизводимое значение в Омах | 6453 и 12906 |
Хранимое значение в Омах | 1 |
Неточности по первому типу (А) в миллиардных долях | 25 |
Неточности по второму типу (В) в миллиардных долях | 35 |
Сумма стандартной неопределенности, ppb | 45 |
Увеличенная неопределенность при коэффициенте, равном двум, ppb | 90 |
Статическое и динамическое сопротивление
Согласно теории нелинейных цепей, разделяют величину сопротивления на статическую и динамическую. Первая – тождественна закону Ома и равна отношению напряжения на элементе к текущей силе тока. Динамической величиной элемента, которому присущи признаки нелинейности, является значение, полученное при делении минимального увеличения напряжения к соответствующему увеличению силы тока.
Зависимость величины от характеристик проводника
В проводнике носителями электрического тока являются свободные отрицательно заряженные частицы. Поведение в веществе подобно газу. Плотность свободных частиц зависят от плотности среды. Исходя из этого, плотность и структура кристаллической решетки определяются типом проводящего материала и его размерами. Из-за этого на проводимость влияют площадь поперечного сечения и температура. Сопротивление через площадь поперечного сечения считается расчетной величиной.
Расчет по площади поперечного сечения
Сопротивление тела человека
Данная величина нелинейная, зависит от многих параметров и не может считаться омической. Значение может изменяться во времени, снижаясь относительно человека, который взволнован и вспотел. Кроме того, на данную величину оказывает влияние окружающая среда. У сухой дермы величина может превышать 10 тысяч Ом*метр. Поэтому временной график величины у человека может иметь разный вид.
Приборы для измерения сопротивления (постоянного тока)
Для измерения сопротивления можно применять:
- Омметр – непосредственно позволяет показывать уровень нагрузки;
- Мост Витстона;
- Возможно рассчитать по полученным данным амперметра и вольтметра по простым формулам.
Измерение последовательного и параллельного значения
Проводник, когда по нему идет ток
Во время прохождения электрического заряда по проводнику происходит усиленное выделение тепловой энергии. При этом проводник может сильно нагреваться. Энергия рассчитывается по формуле:
А=Р*t, где Р – мощность, рассчитываемая по формуле Р=U*I.
Типичный случай – нагрев алюминия под высоким напряжением.
Влияние температуры на удельное сопротивление
Характеристика удельного сопротивления при увеличении температуры также повышается. Это происходит из-за увеличения темпа движения заряженных частиц в металле, с повышением температуры. Удельное сопротивление веществ, проводящих электрический ток, и угля при нагревании, соответственно, уменьшается, из-за увеличения количества свободных электронов на единицу объема.
Показатели для твердотельных материалов
Удельное сопротивление сплавов и твердотельных металлов практически не меняется при повышении или снижении температуры. Это происходит из-за плотности кристаллической решетки. Характеристика присуща константану, манганину и другим плотным сплавам. Для такой особенности требуется повышенное удельное значение относительно составляющих компонентов.
Таблица сопротивлений твердотельных материалов
Связь с удельной проводимостью
Электрическая проводимость представляет собой характеристику среды по проведению заряженных частиц, а также изменению свойств тел либо среды, из-за которых возникает движение заряженных частиц под воздействием электромагнитного поля. Данное значение считается обратным по величине сопротивлению проводника.
Показатели для жидких проводников
Показатели электросопротивления растворов солей и щелочей являются динамическими. Значения зависят от состава, концентрации вещества. При этом влияние температуры, обратное металлам. Во время нагрева из-за эффекта диффузии значение падает и наоборот. При слишком низких температурах электролит может перейти в твердое агрегатное состояние и не проводить ток. Так, вода, которая кристаллизовалась, не является проводником. Гидравлическое препятствование движению частиц возникает из-за наличия в жидкости производных солей, являющихся проводниками.
Зависимость удельного сопротивления от деформаций
При холодной обработке проводников происходит пластическая деформация сырья с последующим искажением кристаллической решетки, что значительно увеличивает уровень удельного сопротивления.
Электрическое сопротивление – это свойство любого вещества препятствовать движению ионов. Характеристика является динамической и зависит от нескольких факторов. Изоляция и некоторые материалы обладают уровнем сопротивления, при котором электрический ток не способен проходить сквозь вещество. Это может характеризовать некоторые вещества, как плохо проводящие ток из-за малого объема ионов. Что такое сопротивление проводника? Величина, из-за которой происходит потеря мощности при прохождении электричества.
Видео
Последовательное и параллельное соединение резисторов.
Как я и обещал в статье про переменные резисторы (ссылка), сегодня речь пойдет о возможных способах соединения, в частности о последовательном соединении резисторов и о параллельном.
Последовательное соединение резисторов.
Давайте начнем с рассмотрения цепей, элементы которой соединены последовательно. И хоть мы и будем рассматривать только резисторы в качестве элементов цепи в данной статье, но правила, касающиеся напряжений и токов при разных соединениях будут справедливы и для других элементов. Итак, первая цепь, которую мы будем разбирать выглядит следующим образом:
Здесь у нас классический случай последовательного соединения — два последовательно включенных резистора. Но не будем забегать вперед и рассчитывать общее сопротивление цепи, а для начала рассмотрим все напряжения и токи. Итак, первое правило заключается в том, что протекающие по всем проводникам токи при последовательном соединении равны между собой:
I = I_1 = I_2
А для определения общего напряжения при последовательном соединении, напряжения на отдельных элементах необходимо просуммировать:
U = U_1 + U_2
В то же время, по закону Ома для напряжений, сопротивлений и токов в данной цепи справедливы следующие соотношения:
U_1 = I_1R_1 = IR_1
U_2 = I_2R_2 = IR_2
Тогда для вычисления общего напряжения можно будет использовать следующее выражение:
U = U_1 + U_2 = IR_2 + IR_2 = I(R_1 + R_2)
Но для общего напряжение также справедлив закон Ома:
U = IR_0
Здесь R_0 — это общее сопротивление цепи, которое исходя из двух формул для общего напряжения равно:
R_0 = R_1 + R_2
Таким образом, при последовательном соединении резисторов общее сопротивление цепи будет равно сумме сопротивлений всех проводников.
Например для следующей цепи:
Общее сопротивление будет равно:
R_0 = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9 + R_{10}
Количество элементов значения не имеет, правило, по которому мы определяем общее сопротивление будем работать в любом случае 🙂 А если при последовательном соединении все сопротивления равны (R_1 = R_2 = … = R), то общее сопротивление цепи составит:
R_0 = nR
В данной формуле n равно количеству элементов цепи. С последовательным соединением резисторов мы разобрались, давайте перейдем к параллельному.
Параллельное соединение резисторов.
При параллельном соединении напряжения на проводниках равны:
U_1 = U_2 = U
А для токов справедливо следующее выражение:
I = I_1 + I_2
То есть общий ток разветвляется на две составляющие, а его значение равно сумме всех составляющих. По закону Ома:
I_1 = \frac{U_1}{R_1} = \frac{U}{R_1}
I_2 = \frac{U_2}{R_2} = \frac{U}{R_2}
Подставим эти выражения в формулу общего тока:
I = \frac{U}{R_1} + \frac{U}{R_2} = U\medspace (\frac{1}{R1} + \frac{1}{R2})
А по закону Ома ток:
I = \frac{U}{R_0}
Приравниваем эти выражения и получаем формулу для общего сопротивления цепи:
\frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2}
Данную формулу можно записать и несколько иначе:
R_0 = \frac{R_1R_2}{R_1 + R_2}
Таким образом, при параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.
Аналогичная ситуация будет наблюдаться и при большем количестве проводников, соединенных параллельно:
\frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6}
Смешанное соединение резисторов.
Помимо параллельного и последовательного соединений резисторов существует еще смешанное соединение. Из названия уже понятно, что при таком соединении в цепи присутствуют резисторы, соединенные как параллельно, так и последовательно. Вот пример такой цепи:
Давайте рассчитаем общее сопротивление цепи. Начнем с резисторов R_1 и R_2 — они соединены параллельно. Мы можем рассчитать общее сопротивление для этих резисторов и заменить их в схеме одним единственным резистором R_{1-2}:
R_{1-2} = \frac{R1\cdot R2}{R1 + R2} = 1
Теперь у нас образовались две группы последовательно соединенных резисторов:
Заменим эти две группы двумя резисторами, сопротивление которых равно:
R_{1-2-3} = R_{1-2} + R_3 = 5
R_{4-5} = R_4 + R_5 = 24
Как видите, схема стала уже совсем простой 🙂 Заменим группу параллельно соединенных резисторов R_{1-2-3} и R_{4-5} одним резистором R_{1-2-3-4-5}:
R_{1-2-3-4-5}\enspace = \frac{R_{1-2-3}\medspace\cdot R_{4-5}}{R_{1-2-3} + R_{4-5}} = \frac{5\cdot24}{5 + 24} = 4.14
И в итоге у нас на схеме осталось только два резистора соединенных последовательно:
Общее сопротивление цепи получилось равным:
R_0 = R_{1-2-3-4-5}\medspace +\medspace R_6 = 4.14 + 10 = 14.14
Таким вот образом достаточно большая схема свелась к простейшему последовательному соединению двух резисторов!
Тут стоит отметить, что некоторые схемы невозможно так просто преобразовать и определить общее сопротивление — для таких схем нужно использовать правила Кирхгофа, о которых мы обязательно поговорим в будущих статьях. А сегодняшняя статья на этом подошла к концу, до скорых встреч на нашем сайте!
Сопротивление, проводимость и закон Ома
Электрическое сопротивление – физическая величина, характеризующая способность проводника препятствовать прохождению по нему электрического тока.
Сопротивление часто обозначается через R или r и в Международной системе единиц (СИ) измеряется в Омах.
В зависимости от среды проводника и носителей зарядов, физическая природа сопротивления может отличаться. Так, например, в металле движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решетки, теряют свой импульс, и энергия их движения преобразуется во внутреннюю энергию кристаллической решетки (то есть становится меньше).
Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он выполнен.
Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и определяется согласно зависимости
где ρ – удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, мм².
Удельное сопротивление ρ – скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения (рисунок 1). При расчетах это значение выбирается из таблицы.
Рис. 1. Удельное сопротивление проводника, ρСопротивление проводника R зависит от внешнего фактора – температуры T, но для разных групп веществ эта зависимость имеет различные зависимости. Так, при снижении температуры металлов их сопротивление снижается (то есть способность проводить ток увеличивается). Если температура металла достигает низких значений, он переходит в состояние так называемой свехрпроводимости и его сопротивление R стремится к 0. Поведение полупроводников под воздействием температур обратное – при снижении температуры T сопротивление R растет, а при его росте наоборот падает (рисунок 2).
Рис. 2. Зависимость сопротивления R от температуры T для металлов и полупроводниковЗакон Ома
В 1826 году немецкий физик Георг Ом открыл важный в электронике закон, названный впоследствии его фамилией. Закон Ома определяет количественную зависимость между электрическим током и свойствами проводника, характеризующими его способность противостоять электрическому току.
Существует несколько интерпретаций закона Ома.
Закон Ома для участка цепи (рисунок 3) определяет величину электрического тока I в проводнике как отношение напряжения на концах проводника U и его сопротивления R
Рис. 3. Закон Ома для участка цепиИнтерпретировать закон Ома для участка цепи можно следующим образом: если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 В, тогда величина тока I в проводнике будет равна 1 А
На представленном выше простом примере разберем физическую интерпретацию закона Ома, используя аналогию электрического тока и воды. В качестве аналога проводника электрического тока возьмем воронку, сужение в которой возникает из-за наличие в проводнике сопротивления R (рисунок 4). Пусть в воронку из некоторого источника поступает вода, которая просачивается через узкое горлышко. Усилить поток воды на выходе горлышка воронки можно за счет давления на воду, например, силой поршня. В аналогии с электричеством, поршень будет являться аналогом напряжения – чем сильнее на воду давит поршень (то есть чем больше значение напряжения), тем сильнее будет поток воды на выходе из воронки (тем больше будет значение силы тока).
Рис. 4. Интерпретация закона Ома для участка цепи с использованием водной аналогииЗакон Ома может быть применен не всегда, а лишь в ограниченном числе случаев. Так закон Ома «не работает» при расчете напряжения и тока в полупроводниковых или электровакуумных приборов, содержащих нелинейные элементы. В этом случае зависимость тока и напряжения можно определить только с помощью построение так называемой вольтамперной характеристики (ВАХ). К категории нелинейных элементов относятся все без исключения полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.), а также электронные лампы.
Проводимость
Величина обратная сопротивлению, называется проводимостью:
G = 1/R.
Единица проводимости называется сименс (См): G, (g) = 1/Ом = См.
#1. Формула закона для участка цепи Ома
#2. Найдите сопротивление участка цепи использую закон Ома, если к концам проводника приложено U = 12 В, и в нем протекает ток I = 6 А.
Закон Ома гласит I=U/R, следовательно R = U/I = 12/6 = 2 Ом.
#3. В чем измеряется удельное сопротивление?
#4. Сопротивление участка цепи равно 10 Ом. Найдите проводимость участка.
Величина обратная сопротивлению, называется проводимостью:
G = 1/R.
Так как сопротивление участка цепи R = 10 Ом, следовательно G = 1/10 = 0,1 См.
Результат
Отлично!
Попытайтесь снова(
Что такое сопротивление | Самое простое объяснение
Что такое сопротивление?
Сопротивление (электрическое сопротивление) – это свойство какого-либо проводника оказывать сопротивление электрическому току, проходящему через него. Вот так все просто!
Давайте проведем аналогию с гидравликой. В нашем случае получается, что проводник электрического тока – это шланг или труба. Теперь давайте подумаем, какой из предметов будет оказывать бОльшее сопротивление потоку воды: садовый шланг или нефтяная труба?
Понятное дело, что садовый шланг, так как его диаметр в разы меньше, чем диаметр нефтяной трубы.
Тогда другой вопрос. Какой шланг будет обладать бОльшим сопротивлением потоку воды с учетом того, что их длины и диаметры равны?
Разумеется, гофрированный. Вода будет “цепляться” за его стенки, что приведет к тому, что они будут мешать потоку воды.
Тогда еще вот такая задачка. Есть два абсолютно одинаковых шланга, но один длиннее, а другой короче. Какой из шлангов будет оказывать бОльшее сопротивление потоку воды?
Думаю тот, который длиннее. Ответ очевиден.
Сопротивление проводника
Так почему бы все эти свойства не применить также к проводнику? Чем тоньше и длиннее проводник, тем больше его сопротивление электрическому току. Большую роль играет также материал, из которого он изготовлен.
Поэтому, окончательная формула будет принимать вид
В технике до сих пор применяется устаревшая единица измерения удельного сопротивления Ом × мм2 /м. Чтобы перевести в Ом × м, достаточно умножить на 10-6, так как 1 мм2=10-6 м2.
удельное сопротивление веществКак вы видите из таблицы выше, самым маленьким удельным сопротивлением обладает серебро, поэтому провод из серебра будет наилучшим проводником. Ну а самым распространенными и дешевыми проводниками являются медь и алюминий. Именно эти два металла в основном используются во всей электронной и электротехнической промышленности.
Вещества, которые оказывают наименьшее сопротивление электрическому току и обладают очень малым сопротивлением называются проводниками, а вещества, которые обладают ну очень большим сопротивлением электрическому току и почти его не пропускают через себя, называются диэлектриками. Между ними стоит класс полупроводников.
Что такое сопротивление 1 Ом?
Проводник обладает сопротивлением 1 Ом, если на его концах напряжение составляет 1 Вольт при силе тока, проходящей через него в 1 Ампер.
сопротивление 1 ОмЭто самое простое объяснение, что такое 1 Ом. В электротехнике и электронике сопротивление обозначается буквой R .
Как найти сопротивление в цепи?
Его можно узнать из закона Ома, который связывает силу тока, напряжение и сопротивление. В этом случае, оно рассчитывается по формуле
формула сопротивления через закон Омагде
R – сопротивление, Ом
U – напряжение на концах проводника, Вольты
I – сила тока, текущая через проводник, Амперы
То есть нам достаточно замерить напряжение на концах какого-либо проводника и измерить силу тока, проходящую через него. После применить формулу и рассчитать сопротивление проводника. Давайте для закрепления решим простую задачу.
Задача
Рассчитать сопротивление проводника, если известно, что на него подают напряжение 5 Вольт и сила тока, проходящая через него 0,1 Ампер.
Решение
Используем формулу
В электронике и электротехнике используют специальные радиоэлементы, которые обладают сопротивлением электрическому току – резисторы. Более подробно про них можно прочитать в этой статье.
постоянные резисторы
Также вот вам видео, где очень умный преподаватель объясняет, что такое сопротивление
Близкие темы к этой статье
Электрический проводник
Напряжение
Сила тока
Резисторы
Закон Ома
Входное и выходное сопротивление
Формула электрического сопротивления от А до Я
В моей практике много случаев, когда электрик тратит лишнее время на правильный подбор деталей при ремонте оборудования. А решить эту проблему довольно просто: достаточно представлять принцип его работы.
Формула электрического сопротивления, выраженная разными способами для цепей постоянного или переменного тока, позволяет правильно выполнить расчет под исходные данные действующей схемы.
При этом соотношение проходящей через нее мощности, создающей нагрев, должно соответствовать условиям теплоотвода. Выполняя эти требования, вы будете работать быстрее, повысите свой авторитет в глазах окружающих.
Для начинающих электриков я подготовил небольшой теоретический материал про физические процессы, происходящие с электричеством.
Вы же можете сразу перейти к вычислениям, щелкнув по второму подзаголовку из содержания по формулам или третьему через онлайн калькулятор удельного сопротивления.
Содержание статьи
Что надо знать про электрические процессы
Если говорить простым языком, то под сопротивлением принято понимать свойство среды, по которой протекает электрический ток, снижающее его величину.
Так работают провода и изоляторы высоковольтной линии электропередач, показанные на верхней картинке, да и любое вещество.
Изоляторы обладают очень высокими диэлектрическими свойствами, изолируют высоковольтное напряжение, присутствующее на токоведущих шинах от контура земли. Это их основное назначение.
Провода же должны максимально эффективно передавать транслируемые по ним мощности. Их создают так, чтобы они обладали минимальным электрическим сопротивлением, работали с наименьшими потерями энергии на нагрев.
В этом случае передача электричества от источника напряжения к потребителю на любое расстояние будет проходить эффективно.
Приведу для примера картинку из предыдущей моей статьи.
Ее, как и верхнюю, можно представить таким обобщенным видом.
На внешнем участке цепи токоведущие жилы отделены друг от друга воздушной средой и слоем изоляции с высокими диэлектрическими свойствами.
Хорошей проводимостью обладают токоведущие жилы. Подключенный к ним электрический прибор функционирует оптимально.
Как работает резистор
Ток в металлах проходит под действием приложенного напряжения за счет направленного движения электронов. При этом они соударяются, встречаются с положительно и отрицательно заряженными ионами.
Такие столкновения повышают температуру среды, уменьшают силу тока.
За направление электрического тока в электротехнике принято движение заряженных частиц от плюса к минусу. Электроны же движутся от катода к аноду.
Электрическое сопротивление металла зависит от его структуры и геометрических размеров.
Аналогичные процессы протекают в любой другой токопроводящей среде, включая газы или жидкости.
Какие существуют виды сопротивлений
В домашних электрических приборах используется большое разнообразие резисторов с постоянной или регулируемой величиной.
Они ограничивают величину тока всех бытовых устройств, а в наиболее сложных модулях их количество может достигать тысячи или более. Резисторы работают практически во всех схемах.
При использовании в цепях переменного тока они обладают активным сопротивлением, а конденсаторы и дроссели — реактивным.
Причем, на конденсаторах создается емкостное сопротивление, а у дросселей — индуктивное.
Реактивная составляющая на конденсаторах и дросселях сильно зависит от частоты электромагнитного колебания.
2 Шутки электриков о токах через конденсатор и дроссель
Их я привожу потому, что они позволяют запомнить характер прохождения тока через реактивные элементы.
Шутка №1 о емкости
В домашней сети и внутри многих приборов работают переменный и постоянный токи. Они по-разному ведут себя, если встречают на своем пути конденсатор.
Поскольку он состоит из двух токопроводящих пластин, разделенных слоем диэлектрика, то его обозначают на схемах двумя жирными черточками, расположенными параллельно. К их серединам подключены провода, нарисованные перпендикулярными линиями.
Переменный ток имеет форму гармоничной синусоиды, состоящей из двух симметричных половинок.
Такая гармоника движется от начала координат, встречает на своем пути обкладки, переваливается через них и, скатившись, начинает обгонять приложенное напряжение.
Постоянный ток таким свойством не обладает. Его тупой конец просто упирается в обкладку и останавливается. Пройти через конденсатор он не может. Это для него непреодолимое препятствие.
Шутка №2 о дросселе
Индуктивность выполнена витками изолированного провода. Любой ток проходит по нему. Но синусоида своими волнами путается в витках катушки, начинает отставать от напряжения.
Постоянка же спокойно перемещается внутри провода дросселя без ощущения какого-либо значительного противодействия. Поэтому постоянное напряжение может своим током спалить дроссель, созданный для работы на переменке.
Что же это за зверь: сверхпроводимость
Сто лет назад выявлена способность определенных металлов полностью терять свое сопротивление электрическому току при сверхнизких температурах. Выглядит этот процесс следующим образом.
Со сверхпроводниками домашний мастер не работает. Но на верхнюю часть приведенного графика рекомендую обратить внимание: нагрев металла повышает его электрическое сопротивление.
При электротехнических расчетах, требующих получения точного результата, необходимо учитывать температурный коэффициент, взятый из справочников.
Как просто вычислить сопротивление по закону Ома из электрических величин
Шутки и их разъяснения закончились, хотя они приведены для объяснения поведения токов внутри индуктивностей и емкостей. Пора переходить к расчетам.
Его позволяет выполнить одна из формул, приведенных в шпаргалке электрика. Для этого достаточно знать два из трех электрических параметров: ток I, мощность P или напряжение U.
Если же вам лениво вычислять цифры, то можете спокойно использовать онлайн калькулятор закона Ома. Он избавит вас от сложных арифметических действий.
Формула электрического сопротивления по свойствам среды: научный подход
Электротехника давно использует термин: удельное сопротивление. Он учитывает свойства материала токопроводящей среды с ее размерами: длиной и поперечным сечением, через которое протекает электрический ток.
Все данные для него получены в результате многочисленных исследований и сведены в таблицы. Для бытовых вычислений достаточно следующих сведений.
Таблица характеристик металлов, используемых в быту
Металл провода | Удельное сопротивление (Ом∙мм.кв/м) |
Медь техническая | 0,017 |
Алюминий | 0,028 |
Стальные сплавы | 0,11 |
Свинец | 0,21 |
Сплавы нихрома | 1,11 |
На основе этих данных удобно подбирать провода, детали, вычислять их сопротивление R либо определять другие параметры.
Например, нас интересует сопротивление проволоки нихрома диаметром 1 мм, при температуре 20 градусов.
Определяем площадь поперечного сечения через площадь круга.
S = 3.14 x 1 x 1 / 4 = 0,785 мм кв.
Делаем расчет на основе приведенной формулы.
R = 1,1 х 5 / 0,785 = 7 Ом
Простой онлайн калькулятор сопротивления проводов
Его назначение — облегчить работу с формулами и арифметическими действиями. Он позволяет решать одну из двух часто встречающихся задач:
- Определение сопротивления провода.
- Расчет его длины.
Достаточно заполнить исходные данные в соответствующей размерности и нажать кнопку “Рассчитать”.
Формулы расчета электрического сопротивления для переменного тока простыми словами
Переменное напряжение наводится вращением рамки (ротора генератора) в магнитном поле (создается обмоткой или магнитами статора).
Ток потребителя, подключенного к выводам генератора, по-разному ведет себя на резисторе, индуктивности и конденсаторе.
Формула активного сопротивления
Резисторы изготавливают из металлов с повышенными удельными характеристиками для ограничения силы тока без изменения его направления.
Синусоиды токов и напряжений на резисторе совпадают по времени. В векторном выражении они обладают одинаковым направлением.
Активное сопротивление переменному току вычисляется по закону Ома так же, как и при постоянной форме напряжения.
Формула индуктивного сопротивления
В обмотках катушек электромагнитов, дросселей, трансформаторов наводится электродвижущая сила индукции. Она взаимодействует с приложенным переменным напряжением. В результате происходит сдвиг фазы тока относительно направления вращения электромагнитного поля (ротора генератора).
Формула индуктивного сопротивления XL сильно зависит от частоты тока f и индуктивности L.
Ток в такой цепи сдвигается от напряжения и отстает от него на 90 угловых градусов.
Число ∏ в формуле отображает отношение длины окружности к ее диаметру (3,14).
Формула емкостного сопротивления ХС
Конденсатор состоит из двух токопроводящих пластин, отделенных слоем диэлектрика. При появлении на них напряжения они накапливают электрический заряд.
Его энергия постоянно взаимодействует с приложенным переменным напряжением. Поэтому в цепи создается ток, зависящий от частоты электромагнитного сигнала и емкости конденсатора.
Он сдвигается вперед от вектора напряжения по направлению вращения поля.
Формула полного сопротивления
Электротехника, как и сама жизнь, описывает явления, переплетенные между собой, а не в чистом виде.
Электрическая энергия, поступающая к нам в квартиру по проводам и кабелям от трансформаторной подстанции, преодолевает:
- активное сопротивление токоведущих шин;
- емкость кабельных линий;
- индуктивное противодействие обмоток трансформаторов.
Поэтому для расчетов применяют метод полного сопротивления, выражаемый законом прямоугольного треугольника.
Каждая его сторона отображает определенную характеристику сопротивления:
- гипотенуза — суммарную, полную величину Z:
- прилегающий катет — активную составляющую R;
- противолежащий — реактивную X, представленную геометрической суммой емкостного XL и индуктивного сопротивления XC.
Точно так же каждая сторона этого треугольника создает определенную величину затраченной мощности электрической энергии.
На активном участке создается мощность, совершающая полезную для нас работу, обеспечивающую вращение роторов электродвигателей, свечение осветительных приборов, нагрев обогревателей и другие нужные действия.
Полная мощность, расходуемая всеми видами потребителей, состоит из полезной активной и потерь, создающих индуктивными и емкостными составляющими. Они снижают эффективность работы электрической системы. Поэтому с ними борются.
Запомнить роль реактивной мощности помогает простая и наглядная картинка, естественно, выраженная в шутливой форме.
Однако стоит понимать, что угол φ, образованный между гипотенузой и прилегающим к нему катетом, характеризует величину реактивной части, создающей бесполезные потери энергии. Ее всегда стремятся снизить.
Что такое вольтамперная характеристика
Металлы в обычном состоянии формируют электрический ток строго по прямолинейной характеристике в зависимости от величины приложенного напряжения.
У других сложных веществ и индуктивностей этот принцип не соблюдается. Зависимость выражается кривыми линиями и называется вольтамперной характеристикой.
ВАХ индуктивностей
Характер протекания тока зависит от величины индуктивности. Если в рабочей обмотке возникает пробой изоляции, приводящий к образованию короткозамкнутого витка, то вольтамперная характеристика резко изменяет свой вид: падает.
За счет уменьшения индуктивного сопротивления при меньшем значении величины приложенного напряжения в обмотке начинают протекать бОльшие токи.
Они свидетельствуют о возникновении неисправности, требующей немедленного устранения. Поэтому снятие ВАХ является обязательным элементом проверки исправности обмоток всех видов трансформаторов или дросселей.
Она выполняется различными методами с определением состояния точки перегиба характеристики.
ВАХ полупроводникового прибора
На правой картинке показан один из примеров работы нелинейного элемента — диода.
В первой четверти квадранта проходит прямой участок характеристики, а у третьей — обратный.
На прямом участке повышение напряжения выше точки перегиба ведет к открытию переходного полупроводникового слоя и пропусканию через него тока практически по прямой линейной характеристике.
Такие же действия на обратном участке ведут к потере диодом своих свойств.
Закон Шварцнегера или как надо обеспечивать надежную работу резистора под нагрузкой
Знаменитый на весь мир атлет Арнольд постоянно тренировался по методике нашего советского силача Юрия Власова. Он брал его опыт за основу и даже приезжал в Россию погостить к своему кумиру.
В основе метода постоянных результативных тренировок положен принцип не столько полноценного питания и отдыха, сколько подбор правильных нагрузок, которые должен преодолевать организм.
Все это полностью соответствует законам электротехники, применяется в работе любого электрического сопротивления. Рассмотрим его на примере резистора: так проще для понимания.
Его металл не только пропускает электрический ток, но и нагревается, выделяя тепло. Нагрев увеличивается с повышением тока. При этом температура может снижаться за счет теплоотвода в окружающую среду или увеличиваться в герметичном, не теплопроводящем объеме.
Так работает электропроводка, выполненная одним и тем же кабелем, проложенным открыто по стенам или спрятанным в штробах.
В первом случае от нагревающегося током кабеля тепло отводится в окружающий воздух за счет его естественной циркуляции, а во втором нагрев идет более интенсивно.
Однако повышать температуру жил можно только до определенной величины. За ее рабочим диапазоном вначале происходит разрушение слоя изоляции, а потом — простое перегорание металла, когда проводка сгорает.
На этом примере я попытался показать, что любой резистор обладает запасом тепловой мощности, за который его нельзя переводить.
Для облегчения работы электриков всем видам резисторов введен термин мощности теплового рассеивания. Она указывается в технической документации или прямо на корпусе, измеряется ваттами. Ее же показывают на электрических схемах.
Как выбрать резистор по тепловой нагрузке за 2 шага
Действуют по следующему алгоритму:
- Вначале определяют мощность, которая будет проходить через искомый резистор. Достаточно перемножить величину номинального тока на напряжение, выразить полученное значение в ваттах.
- Под эту величину из всего многообразия элементов подбирают тот, который соответствует по значению сопротивления и обладает мощностью теплового рассеивания не меньшего номинала.
Желательно брать его с небольшим резервом. Он не будет лишним для работы в критических ситуациях электрической схемы, но повлияет на габариты устройства.
Полезные примеры из жизни
Как продлить ресурс лампы накаливания
В пожарном депо Ливермоля (Калифорния) зарегистрирован рекорд рабочего режима осветительной лампы: 117 лет. Она практически непрерывно выполняет свою задачу с 1901 года по настоящее время.
Такой ресурс обеспечен за счет:
- правильного выбора сопротивления, ограничивающего ток через нить накала и создания экономного режима освещения;
- беспрерывной работы, исключающей переходные процессы при включениях/выключениях, сопровождаемые бросками токов;
- надежной конструкции.
Как регулировать токи от 100 ампер в силовой цепи
Этот случай я привожу не для повторения, а с целью расширения кругозора и лучшего уяснения процессов, происходящих в электричестве.
Ни один обычный резистор не способен длительно выдерживать токи такой величины. Он просто сгорит. Однако при наладке промышленных генераторов требуется иметь устройство, справляющееся с подобными мощностями.
Это водяной реостат, состоящий из металлического корпуса — ведра прямоугольной формы, служащего одним из контактов для подключения провода от нагрузки.
Второй контакт составляет металлический нож, подключаемый через изоляторы.
Внутрь ведра наливают воду и засыпают соль: создают электролит, хорошо проводящий большие токи.
Перемещение ножа в электролите меняет сопротивление среды и обеспечивает регулировку высоких токов. Проводимость можно изменять концентрацией соли в растворе.
Напоминаю: подобное устройство нельзя использовать в бытовых цепях: оно не отвечает требованиям безопасности.
Таким образом, под каждый конкретный случай расчета используется своя формула электрического сопротивления, которой следует внимательно пользоваться. Исключить ошибки в расчетах помогает специализированный онлайн калькулятор.
По этой теме рекомендую посмотреть видеоролик Владимира Романова.
Если хотите задать вопрос или дополнить информацию, то воспользуйтесь разделом комментариев.
Формула сопротивления воздуху
Сопротивление воздуха — это сила, которая воздействует на объекты, движущиеся по воздуху. Часто задачи физики, используемые при обучении, игнорируют это, но это очень важно для понимания движения быстро движущихся объектов, таких как самолеты. Это зависит от плотности воздуха, площади объекта, скорости его движения и «коэффициента сопротивления», который учитывает другие свойства объекта, такие как шероховатость поверхности и турбулентность. Сопротивление воздуха также называют «сопротивлением», и единица измерения этой силы — ньютоны (Н).
F = сила сопротивления воздуха или сопротивления (Н)
k = константа, учитывающая влияние плотности, сопротивления и площади (кг / м)
v = скорость движущегося объекта (м / с)
ρ = плотность воздуха, в котором движется объект (кг / м 3 )
C D = коэффициент аэродинамического сопротивления, включая трудноизмеримые эффекты (без единиц измерения)
A = площадь объекта, на который воздействует воздух (м 2 )
Формула сопротивления воздуха Вопросы:
1) Большой пассажирский самолет летит со скоростью 250.0 м / с . Площадь крыльев самолета по ветру A = 500,0 м 2 . Коэффициент аэродинамического сопротивления составляет C D = 0,024. На высоте, на которой летит самолет, плотность воздуха ρ = 0,4500 кг / м 3 . Какая сила сопротивления воздуха действует на пассажирский самолет?
Ответ: Силу сопротивления воздуха можно найти по формуле:
F = 168750 N
Сила сопротивления воздуха, действующая на пассажирский самолет, составляет 168750 Н.
2) Женщина плывет к земле на парашюте. Она движется вниз с постоянной скоростью, потому что сила, направленная вверх от сопротивления воздуха, уравновешивается направленной вниз силой тяжести. Сила тяжести, действующая на нее, составляет 500 Н. Плотность воздуха на ее текущей высоте составляет 1,20 кг / м 3 , площадь парашюта составляет 75,0 м 2 , а коэффициент лобового сопротивления составляет парашют C D = 1,75. Какая у нее скорость нисходящего движения?
Ответ: Скорость парашютиста можно найти, переставив формулу сопротивления воздуха:
Она имеет постоянную скорость, поэтому сила тяжести, действующая вниз, должна иметь то же значение, что и сила сопротивления воздуха, действующая вверх.Следовательно, сила F в формуле равна 500 Н. Скорость ее вниз:
v = 2,52 м / с
Скорость спуска парашютиста 2,52 м / с .
Определение силы натяжения, формула, примеры и закон движения Ньютона
Сила — это действие, которое заставляет свободный объект с конечной массой ускоряться относительно неускоряющейся системы отсчета.
Сила может быть разделена на два типа, а именно: Контактная сила и Бесконтактная сила.
Контактные силы — это силы, требующие контакта с другим объектом. Все механические силы — это силы контакта. Контактные силы можно разделить на следующие типы: мышечная сила, сила трения, нормальная сила, приложенная сила, сила натяжения, сила пружины и сила сопротивления воздуха.
Точно так же бесконтактные силы могут действовать без какого-либо контакта с любым объектом. Они делятся на гравитационную, магнитную и электростатическую.
Теперь рассмотрим подробное описание силы натяжения, которая является контактной силой.
Сила натяжения Определение:
Сила натяжения — это сила, которая передается через кабель, канат, проволоку или струну, когда они натягиваются силами, действующими с противоположных концов. Он направлен по длине кабеля и одинаково натягивает предметы на противоположных концах провода.
Натяжение можно также описать как пару сил действие-противодействие, действующих на каждом конце упомянутых элементов.Напряжение могло быть противоположным сжатию.
Каждый физический объект, который находится в контакте, применяет некоторую силу друг к другу. Этим контактным силам будут присвоены имена в зависимости от типа объектов. Если одной из сил, действующих на объект, является трос, цепь или веревка, то это называется натяжением.
Тросы и веревки могут использоваться для приложения силы, поскольку они могут эффективно передавать силу на определенное расстояние. Натяжение — это тянущая сила, поскольку канаты не могут толкать эффективно.При толкании веревкой веревка провисает и теряет натяжение, которое позволяло ей тянуть ее в исходном месте.
Формула натяжения:
Натяжение равно массе объекта × ускорение свободного падения для подвешенных объектов, находящихся в равновесии.
T = мг
T = натяжение, Н, кг-м / с²
m = масса, кг
g = сила тяжести,
Чему равна сила натяжения?
Система имеет постоянную скорость и находится в равновесии, потому что натяжение троса / струны, тянущего вверх объект, равно силе веса, т.е.е. мг. где m — масса, а g — ускорение, вызванное силой тяжести, притягивающей объект.
Работает ли натяжение?
Очень просто, что натяжение никогда не возникает само по себе. Натяжение должно быть приложено к системе, и натяжение всегда является тянущим усилием, поэтому оно тянет с обоих концов, независимо от сложности системы, что делает сеть нулевой. Напряжение не действует само по себе, а только передается.
Почему важна сила натяжения?
Все физические объекты, находящиеся в контакте, могут оказывать друг на друга силу.Важно отметить, что натяжение — это тянущая сила, поскольку веревки просто не могут толкать эффективно. Попытка толкнуть веревку приводит к тому, что веревка провисает и теряет натяжение, которое изначально позволяло ей тянуть.
Почему в безмассовой струне постоянное натяжение?
Понятие натяжения в струне может быть трудным для понимания, потому что струна удлиненная и нежесткая, так что натяжение существует по всей струне, а не в одной точке.
Зависит ли натяжение от массы?
Если груз подвешен к кабелю или проводу за фиксированную точку, провод или кабель будут находиться под натяжением, пропорциональным массе объекта.Проволока находится под натяжением, пропорциональным силе вытягивания.
Сила натяжения и законы Ньютона:
Окончательное применение закона Ньютона касается напряжения. Напряжение обычно возникает при использовании тросов, тросов для передачи силы. Рассмотрим блок, который тянут за веревку. Человек, тянущий за один конец веревки, не контактирует с блоком на другом конце и не может приложить прямую силу к блоку. Итак, на веревку действует сила, которая передает усилие на блок.Сила, которую испытывает блок от веревки, называется силой натяжения.
Классическая механика имеет дело с безмассовыми веревками или тросами. Если трос или веревка безмассовые, то они отлично передают силу от одного конца к другому. Например, если человек тянет безмассовую веревку с силой 30 Н, то блок также будет испытывать силу только 30 Н.
Важным свойством безмассовой веревки должно быть то, что общая сила на веревке всегда должна быть равна нулю.Чтобы доказать это, посмотрим на второй закон Ньютона. Если результирующая сила действует на безмассовую веревку, это вызовет бесконечное ускорение A = F / m, а масса веревки равна нулю.
Ситуация, упомянутая выше, физически невозможна, и, следовательно, безмассовая веревка никогда не сможет испытать результирующую силу.
Таким образом, на всю безмассовую веревку будут действовать две равные и противоположные силы натяжения. В случае, если человек тянет блок с помощью веревки / струны, веревка испытывает натяжение в одном направлении из-за тяги и натяжение в другом направлении из-за реактивной силы блока.
Натяжение и шкивы:
Динамика одиночной веревки довольно проста и легка, поскольку она передает приложенную силу. Но когда вместо канатов используются шкивы, возникают сложности. В динамическом смысле шкивы изменяют направление троса и не меняют величину сил, действующих на трос.
На схеме, приведенной выше, представлен небольшой блок слева, который поднимается большим блоком справа.Обратите внимание на силы T и -T на рисунке. Даже когда используются шкивы, канат должен испытывать две равные и противоположные силы натяжения. На рисунке выше веревка действительно испытывает две силы в одном направлении, что делает ситуацию невозможной.
Наличие шкива меняет ситуацию, делая его физически устойчивым.
Когда появляются трос и шкив, полезно определять направление не по направлению вверх и вниз, а по форме троса.В приведенной выше ситуации мы можем определить положительное направление веревки, как указывающее вверх с левой стороны и направленное вниз с правой стороны шкива. Когда направление определяется вышеупомянутым способом, веревка действительно испытывает две равные и противоположные силы.
Если струна изгибается вокруг одного или нескольких шкивов, она будет иметь постоянное натяжение по всей своей длине в ситуации, когда шкивы не имеют трения и массы.
Натяжение в одном измерении:
Натяжение в одномерной струне является скалярной величиной.Это неотрицательно. Нулевое напряжение слабое / слабое. Канат или струна имеют длину одного измерения, но не имеют массы и имеют нулевое поперечное сечение. Если в канате / струне нет изгибов, которые возникают при колебаниях и шкивах, тогда натяжение будет постоянным вдоль струны, равным величине сил, приложенных концом струны.
По третьему закону Ньютона это силы, прилагаемые к концам струны или веревки объектами, к которым эти концы прикреплены.Вибрирующая струна будет вибрировать с набором частот, которые зависят от натяжения струн. Эти частоты могут быть получены из закона движения Ньютона.
Натяжение в трех измерениях:
Натяжение также используется для описания силы, прилагаемой концами трехмерного непрерывного материала, такого как ферма и стержни. Такие стержни при растяжении удлиняются. Величина удлинения и нагрузка вызовут отказ, и оба будут зависеть от силы, приходящейся на площадь поперечного сечения, а не только от силы, поэтому напряжение = осевое усилие / площадь поперечного сечения.Напряжение представляет собой матрицу 3 × 3. Это называется тензором.
Направление натяжения:
Направление натяжения — это тяга, получившая название натяжение. Таким образом, натяжение будет направлено от массы в направлении струны / веревки. В случае подвешенной массы струна тянет ее вверх, поэтому струна / канат оказывает на массу верхнее усилие, и натяжение будет происходить с верхней стороны.
Концы струны или другого объекта, передающего натяжение, будут прикладывать силы к объектам, к которым привязана струна, в направлении стержня / струны в точке крепления.Силы, возникающие из-за натяжения, называются пассивными силами. Есть два шанса для объектов, удерживаемых струнами / стержнями: либо ускорение равно нулю, и система, следовательно, находится в равновесии, либо есть ускорение, и в системе присутствует результирующая сила.
Система будет находиться в равновесии, когда сумма всех сил равна нулю.
∑ F = 0
Система под сетевым усилием:
Система имеет чистую силу, когда на нее действует неуравновешенная сила; я.е. сумма всех сил не равна нулю. Ускорение и чистая сила всегда существуют вместе.
F 0.
Разница между сопротивлением переменного и постоянного тока
Разница между сопротивлениями переменного и постоянного тока и как ее рассчитать?
Сопротивление
Свойство вещества или материала, которые препятствуют прохождению электрического тока через него, называется сопротивлением ИЛИ,
Сопротивление — это способность цепи или элемента (который называется резистором) противодействовать прохождение тока через него.
Примеры резисторов со способностью к высокому сопротивлению: дерево, воздух, слюда, стекло, резина, вольфрам и т. Д.
Единица сопротивления — « Ом, » и обозначается как Ом и представлена по « R ».
Сопротивление переменного тока
Проще говоря, сопротивление в цепях переменного тока называется импедансом. Или
Общее сопротивление (сопротивление, индуктивное реактивное сопротивление и емкостное реактивное сопротивление) в цепях переменного тока называется импедансом (Z).
Пояснение:
Когда переменный ток проходит через провод (резистор, катушка индуктивности, конденсатор), ток создает магнитное поле на этом проводе, которое противодействует протеканию переменного тока в нем вместе с сопротивлением этого провода. Эта противоположная причина называется индуктивностью, или индуктивность — это свойство катушки (или провода), которое противодействует любому увеличению или уменьшению тока или потока через нее. Кроме того, мы знаем, что индуктивность существует только в переменном токе, потому что величина тока, непрерывно изменяющаяся
Индуктивное реактивное сопротивление X L , является свойством катушки или провода в цепи переменного тока, которое препятствует изменению тока.Единица индуктивного реактивного сопротивления такая же, как и сопротивление, емкостное реактивное сопротивление, то есть Ом (Ом), но типичный символ емкостного реактивного сопротивления — X L .
Аналогично,
Емкостное реактивное сопротивление в емкостной цепи является противодействием протеканию тока только в цепях переменного тока. Единица емкостного реактивного сопротивления такая же, как и сопротивление, индуктивное реактивное сопротивление, то есть Ом (Ом), но типичный символ емкостного реактивного сопротивления — X C .
Измерение сопротивления переменному току
Формулы электрического сопротивления и импеданса в цепях переменного тока
В цепях переменного тока (емкостная или индуктивная нагрузка), сопротивление = импеданс i.е., R = Z
Z = √ (R 2 + X L 2 )… В случае индуктивной нагрузки
Z = √ (R 2 + X C 2 ) … В случае емкостной нагрузки
Z = √ (R 2 + (X L — X C ) 2 … в случае как индуктивной, так и емкостной нагрузки.
Полезно знать:
Где ;
X L = Индуктивное реактивное сопротивление
X L = 2π f L… Где L = Индуктивность в Генри
А;
X C = Емкостное реактивное сопротивление
X C = 1 / 2π f C… Где C = емкость в фарадах.
Сопротивление постоянному току
Мы знаем, что в цепях постоянного тока нет концепции индуктивного и емкостного реактивного сопротивления. т.е. емкостные и индуктивные реактивные сопротивления в цепях постоянного тока равны нулю, потому что в цепях постоянного тока нет частоты, то есть величина постоянного тока постоянна. Следовательно, в игру вступает только исходное сопротивление провода.
Полезно знать:
Вот почему сопротивление, обеспечиваемое проводом, для постоянного тока ниже, чем для переменного, так как линии переменного тока требуют большей изоляции, чем постоянного тока.
Измерение сопротивления постоянному току
Формулы электрического сопротивления
В цепях постоянного тока сопротивление рассчитывается по закону Ома.
R = V / I.
Полезно знать:
При решении электрических цепей для определения сопротивления, и вы не уверены, какое из них следует учитывать, сопротивление переменному или постоянному току, тогда, если проходящий ток является переменным, тогда принимайте сопротивление переменного тока, иначе, если ток пройдено — это постоянный ток, принять постоянное сопротивление.
Что больше — сопротивление постоянному или переменному току?
Поскольку мы знаем, что частота в источнике постоянного тока равна нулю, поэтому отсутствует скин-эффект (поведение переменного тока, протекающего через поверхность i.е. внешний слой проводника вместо сердечника провода). в цепях постоянного тока. Из-за скин-эффекта сопротивление переменному току больше в цепях переменного тока, чем напряжение постоянного тока в цепях постоянного тока .
Формула скин-эффекта
δ = √ (2ρ / ωµ)
Где;
- δ = глубина скин-эффекта
- ρ = удельное сопротивление
- ω = 2π f = угловая частота
- µ = проницаемость проводника
Короче говоря, частота прямо пропорциональна скин-эффекту i.е. если частота увеличивается, скин-эффект также увеличивается там, где нет частотного и скин-эффекта в DC.
Практически;
Сопротивление переменному току = 1,6 x Сопротивление постоянному току
Похожие сообщения:
Физика 9702 Сомнения | Страница справки 45
Стержень вращается вокруг конца C, так что что камень движется по вертикальному кругу радиусом 85 см.
Угловая скорость ω стержня и камня равна постепенно увеличивал с нуля, пока клей не лопнул. Клей, фиксирующий камень щелкает при напряжении в нем 18 Н.
(ii) вычислить угловую скорость ω камень.
Вопрос
272: [Электрический ток> Емкость]
Выпрямленный выход синусоидального Генератор сигналов подключен к резистору R сопротивлением 1,5 кОм, так как показано.
Изменение потенциала во времени t показана разница V по R.
(a) Укажите, как может быть достигнуто исправление, показанное на рис.
(b) Конденсатор А теперь подключен параллельно резистору R.Результат показано изменение во времени t разности потенциалов V на R.
(i) Используя рис, определите
1. средняя разность потенциалов по резистор R
2. средний ток в резисторе
3. время в каждом цикле, в течение которого конденсатор разряжается через резистор.
(ii) Используя ответы в (i), вычислите
1. заряд, проходящий через резистор за один разряд конденсатора
2. емкость конденсатора
(c) Второй конденсатор теперь подключен параллельно резистору R и первый конденсатор.На рис. Проведите линию, чтобы показать изменение во времени t разность потенциалов V на резисторе.
Артикул: Прошлые Экзаменационная работа — Отчет за ноябрь 2003 г., 4 квартал
Решение
272:
(a) Посредством подключения одиночного диода ЛИБО последовательно с резистором R ИЛИ последовательно с переменным током поставка
б)
(i)
1.
{Максимальный V = 6,0 В. Минимум V = 4.8В. Средняя разность потенциалов = (6,0 + 4,8) / 2 = 5,4 В}
(Из графика) 5,4 В
2.
Закон Ома: V = IR
Ток I = 5,4 / (1,5×10 3 ) = 3,6х10 -3 А
3.
{Когда V падает, конденсатор разряжается подачей заряда. Итак, цикл, в течение которого конденсатор разряды через резистор соответствуют каждой области, где V уменьшается.}
Время = 0,027 с
(ii)
1.
Заряд Q = IT = (3,6х10 -3 ) x 0,027 = 9,72×10 -5 C
2.
{С ИЗМЕНЕНИЕМ заряд рассчитан, нужно заменить изменение потенциала разница в формуле для емкости. Изменение V = 6,0 — 4,0 = 1,2 В}
Емкость C = ΔQ / ΔV = (9,72×10 -5 ) / 1,2 = 8,1×10 -5 F
(в)
{Если бы конденсатора не было присутствует (емкость = 0), то получается график, аналогичный части (а).Итак, увеличивая емкость, уменьшение V меньше — эффект сглаживания. Итак, большее значение емкость вызывает больший эффект сглаживания. Подключение конденсаторов в параллельный приводит к увеличению общей емкости в цепи. Таким образом, в график, пульсация должна быть меньше.}
Линия должна иметь разумный форма с меньшей волнистостью
Вопрос
273: [Ток электричества> сопротивление]
Какое эквивалентное сопротивление эта схема?
Решение 273:
Сначала пометьте разные перекрестки присутствует в цепи.Обратите внимание, что перекрестки A и B одинаковы, а точки E и F — тот же самый.
1 Ом резистор находится между B и C, но с учетом верхней части , соединение B такой же, как D (в верхнем проводе, соединяющем B и D). Это означает, что резистор 1 Ом (в настоящее время между B и C) также может быть нарисованным между C и D. Таким образом, схему также можно нарисовать как:
Аналогично, учитывая нижнюю часть между C и E (они такие же, как ни один компонент не подключен между их), схема становится
Итак, эквивалентное сопротивление = [1/1 + ½ + 1/3] -1 = 6/11
Вопрос
274: [Ток электричества> сопротивление]
Схема содержит три одинаковых лампы А, В и С.Схема также содержит три переключателя: S 1 , S 2 и S 3 , как показано.
Одна из ламп неисправна. В целях для обнаружения неисправности подключается омметр (измеритель сопротивления). между клеммами X и Y. При измерении сопротивления омметр вызывает незначительный ток в цепи.
На рис. Показаны показания омметра. для разных положений переключателя.
(a) Определите неисправную лампу и характер неисправности
(б) Подскажите, почему целесообразно проверить схему омметром это вызывает незначительный ток, а не источник питания.
(c) Определите сопротивление одной из исправных ламп, измеренное. с помощью омметра.
(d) Каждая лампа имеет маркировку 6,0 В, 0,20 А.
Рассчитать, для одной из ламп при нормальной яркости,
(i) его сопротивление
(ii) его мощность рассеивания
(e) Комментарий к ответам на (c) и (d) (i).
Ссылка: Отчет о прошедшем экзамене — Отчет за июнь 2006 г. 2 Q7
Решение 274:
(а)
{Когда все переключатели открытый, счетчик показывает бесконечность.Это очевидно, так как цепь закорочена.
В третьем тесте: S 1 : открыто, S 2 : закрыто и S 3 : открыто, счетчик показал сопротивление 30 Ом. Этот потому что тест 2, где замкнут только S 1 , доказывает, что лампа A НЕ неисправен. Итак, третий тест доказывает, что лампа B тоже НЕ неисправна.
В последнем тесте, где открыт только S 1 , показание сопротивления 15 Ом. Это доказывает, что лампа Замыкание C — ток проходит, как будто лампы не было.В данном случае это как если бы параллельно лампе Б был подключен провод незначительного сопротивления.
Ток больше, когда сопротивление меньше. [Из По закону Ома ток I обратно пропорционален сопротивлению R]. Таким образом, весь ток будет течь в этом провод вместо лампы B (так как лампа B имеет некоторое сопротивление). Итак, единственный сопротивление, с которым сталкивается ток, обусловлено только лампой A. Итак, сопротивление, измеренное измерителем, составляет 15 Ом.
Если S 1 и S 2 были закрыты, а S 3 был открыт, счетчик снова будет показывать 15 Ом, так как весь ток пройдет через S 1 (не имеющий сопротивления) вместо прохода через лампу Б.Тогда ток будет проходить через лампу А (которая является единственной лампой, вызывает сопротивление в этом случае).}
Неисправная лампа: Лампа C
Характер неисправности: Короткое замыкание лампы
(b) Короткое замыкание лампы A может привести к повреждению источника питания / лампы / перегорел предохранитель в питании
(c) Сопротивление = 15 Ом
(г)
(i)
V = IR
Сопротивление R (= V / R = 6,0 / 0.20) = 30 Ом
(ii)
Мощность P = VI или I 2 R или V 2 / R
Мощность P = 1,2 Вт
(д)
Нить накала холодная при измерении с омметром в (b).