Закрыть

Сопротивление терморезистора: Терморезисторы. Виды и устройство. Работа и параметры

Терморезисторы. Виды и устройство. Работа и параметры

Полупроводниковые резисторы, сопротивление которых зависит от температуры называются терморезисторы. Они имеют свойство значительного температурного коэффициента сопротивления, величина которого больше, чем у металлов во много раз. Они широко применяются в электротехнике.

Они имеют простую конструкцию, выпускаются разных размеров и формы.

В полупроводниках есть свободные носители заряда двух видов: электроны и дырки. При неизменной температуре эти носители произвольно образуются и исчезают. Среднее количество свободных носителей находится в динамическом равновесии, то есть неизменно.

При изменении температуры равновесие нарушается. Если температура повышается, то число носителей заряда также увеличивается, а при снижении температуры концентрация носителей уменьшается. На удельное сопротивление полупроводника оказывает влияние температура.

Если температура подходит к абсолютному нулю, то полупроводник имеет свойство диэлектрика. При сильном нагревании он идеально проводит ток. Основной особенностью терморезистора является то, что его сопротивление наиболее заметно зависит от температуры в обычном интервале температур (-50 +100 градусов).

Популярные терморезисторы производятся в виде стержня из полупроводника, который покрыт эмалью. К нему подведены электроды и колпачки для контакта. Такие резисторы применяются в сухих местах.

Некоторые терморезисторы располагают в металлическом герметичном корпусе. Поэтому они могут использоваться во влажных местах с агрессивной внешней средой.

Герметичность корпуса создается при помощи олова и стекла. Стержни из полупроводника обернуты металлизированной фольгой. Для подключения тока применяется проволока из никеля. Величина номинального сопротивления составляет 1-200 кОм, температура работы -100 +129 градусов.

Принцип действия терморезистора основан на свойстве изменения сопротивления от температуры. Для изготовления используются чистые металлы: медь и платина.

На электрических схемах терморезисторы обозначаются:

Основные параметры
  • ТКС – термический коэффициент сопротивления, равен изменению сопротивления участка цепи при изменении температуры на 1 градус. Если ТКС положительный, то терморезисторы называют позисторами (РТС-термисторы). А если ТКС отрицательный, то термисторами (NТС-термисторы). У позисторов при повышении температуры повышается и сопротивление, а у термисторов все происходит наоборот.
  • Номинальное сопротивление – это величина сопротивления при 0 градусах.
  • Диапазон работы. Резисторы делят на низкотемпературные (менее 170К), среднетемпературные (от 170 до 510 К), высокотемпературные (более 570К).
  • Мощность рассеяния. Это величина мощности, в пределах которой терморезистор во время работы обеспечивает сохранение заданных параметров по техническим условиям.
Виды и особенности терморезисторов

Все датчики температуры на производстве работают по принципу преобразования температуры в сигнал электрического тока, который можно передавать с большой скоростью на дальние расстояния. Любые величины можно преобразовать в электрические сигналы, переведя их в цифровой код. Они передаются с высокой точностью, и обрабатываются вычислительной техникой.

Металлические терморезисторы

Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к терморезисторам предъявляются некоторые требования. Материал для их изготовления должен иметь высокий ТКС, а сопротивление должно зависеть от температуры по линейному графику в большом интервале температур.

Также проводник из металла должен обладать инертностью к агрессивным действиям внешней среды и качественно воспроизводить характеристики, что дает возможность менять датчики без особых настроек и измерительных приборов.

Для таких требований хорошо подходят медь и платина, не считая их высокой стоимости. Терморезисторы на их основе называют платиновыми и медными. ТСП (платиновые) термосопротивления работают при температурах -260 — 1100 градусов. Если температура в пределах от 0 до 650 градусов, то такие датчики применяют в качестве образцов и эталонов, так как в этом интервале нестабильность составляет не более 0,001 градусов.

Из недостатков платиновых терморезисторов можно назвать нелинейность преобразования и высокую стоимость. Поэтому точные замеры параметров возможны только в рабочем диапазоне.

Практически широко применяются недорогие медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление и неустойчивость к повышенным температурам, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное использование, не более 180 градусов.

Для монтажа платиновых и медных датчиков применяют 2-проводную линию при расстоянии до прибора до 200 метров. Если удаление больше, то применяют трехжильный кабель, в котором третий проводник служит для компенсирования сопротивления проводов.

Из недостатков платиновых и медных терморезисторов можно отметить их малую скорость работы. Их тепловая инерция достигает нескольких минут. Существуют терморезисторы с малой инерционностью, время срабатывания которых не выше нескольких десятых секунды. Это достигается небольшими размерами датчиков. Такие термосопротивления производят из микропровода в стеклянной оболочке. Эти датчики имеют небольшую инерцию, герметичны и обладают высокой стабильностью. При небольших размерах они обладают сопротивлением в несколько кОм.

Полупроводниковые

Такие сопротивления имеют название термисторов. Если их сравнить с платиновыми и медными образцами, то они обладают повышенной чувствительностью и ТКС отрицательного значения. Это значит, что при возрастании температуры сопротивление резистора снижается. У термисторов ТКС намного больше, чем у платиновых и медных датчиков. При небольших размерах их сопротивление доходит до 1 мегома, что не позволяет оказывать влияние на измерение сопротивлению проводников.

Для осуществления замеров температуры большую популярность приобрели терморезисторы на полупроводниках КМТ, состоящих из оксидов кобальта и марганца, а также термосопротивления ММТ на основе оксидов меди и марганца. Зависимость сопротивления от температуры на графике имеет хорошую линейность в интервале температур -100 +200 градусов. Надежность терморезисторов на полупроводниках довольно высока, свойства имеют достаточную стабильность в течение длительного времени.

Основным их недостатком является такой факт, что при массовом изготовлении таких терморезисторов не получается обеспечить необходимую точность их характеристик. Поэтому один отдельно взятый резистор будет отличаться от другого образца, подобно транзисторам, которые из одной партии могут иметь различные коэффициенты усиления, трудно найти два одинаковых образца. Этот отрицательный момент создает необходимость дополнительной настройки аппаратуры при замене терморезистора.

Для подключения термисторов обычно применяют мостовую схему, в которой мост уравновешивается потенциометром. Во время изменения сопротивления резистора от действия температуры мост можно привести в равновесие путем регулировки потенциометра.

Такой метод ручной настройки используется в учебных лабораториях для демонстрации работы. Регулятор потенциометра оснащен шкалой, которая имеет градуировку в градусах. На практике в сложных схемах измерения эта регулировка происходит в автоматическом режиме.

Применение терморезисторов

В работе термодатчиков существует два режима действия. При первом режиме температура датчика определяется лишь температурой внешней среды. Протекающий по резистору ток маленький и не способен его нагреть.

При 2-м режиме термистор нагревается протекающим током, а его температура определяется условиями отдачи тепла, например, скоростью обдува, плотностью газа и т.д.

На схемах термисторы (NТС) и резисторы (РТС) имеют соответственно отрицательный и положительный коэффициенты сопротивления, и обозначаются следующим образом:

Применение термисторов:
  • Измерение температуры.
  • Бытовая техника: морозильники, фены, холодильники и т.д.
  • Автомобильная электроника: измерение охлаждения антифриза, масла, контроль выхлопных газов, системы торможения, температура в салоне.
  • Кондиционеры: распределение тепла, контроль температуры в помещении.
  • Отопительные котлы, теплые полы, печи.
  • Блокировка дверей в устройствах нагревания.
  • Электронная промышленность: стабилизация температуры лазерных фотоэлементов и диодов, а также медных обмоток катушек.
  • В мобильных телефонах для компенсации нагрева.
  • Ограничение тока запуска двигателей, ламп освещения, импульсных блоков питания.
  • Контроль наполнения жидкостей.
Применение позисторов:
  • Защита от короткого замыкания в двигателях.
  • Защита от оплавления при токовой перегрузке.
  • Для задержки времени включения импульсных блоков питания.
  • Мониторы компьютеров и кинескопы телевизоров для размагничивания и предотвращения нарушения цвета.
  • В пускателях компрессоров холодильников.
  • Тепловая блокировка трансформаторов и двигателей.
  • Приборы измерения.
  • Автоматика управления техникой.
  • Устройства памяти информации.
  • В качестве нагревателей карбюраторов.
  • В бытовых устройствах: закрывание дверки стиральной машины, в фенах и т.д.
Похожие темы:
  • Элементы Пельтье. Работа и применение. Обратный эффект
  • Термостаты. Виды и работа. Устройство и применение. Особенности
  • Датчики температуры. Виды и принцип действия, Как выбрать
  • Терморегуляторы. Виды и работа. Применение и особенности
  • Тепловые реле. Виды и устройство. Работа и применение

назначение, сопротивление и характеристики, маркировка, принцип работы, как проверить и подключить

Люди, далекие от радиоэлектроники, смутно представляют назначение и принцип действия терморезистора. Какие функции выполняет этот элемент? Для его он предусмотрен? Как маркируется? О каких тонкостях проверки и подключения необходимо знать? Какие бывают виды, и в чем их особенности? Эти и другие вопросы рассмотрим ниже.

СОДЕРЖАНИЕ:

Что такое терморезистор, общие положения

Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен.

С момента появления терморезистор получил широкое распространение в радиоэлектронике и успешно применяется во многих смежных сферах.

Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.

При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества.

В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов.  Некоторые детали имеют габариты, исчисляемые несколькими микронами.

Основные виды терморезисторов — термисторы и позисторы (с отрицательным и положительным ТКС (температурный коэффициент сопротивления) соответственно. В термисторах с ростом температуры сопротивление падает, а позисторах, наоборот, увеличивается.

Где используется (сфера применения)

Терморезисторы активно применяются в разных сферах, тесно связанных с электроникой. Они особенно важных при реализации процессов, зависящих от правильности настройки температурного режима.

Такой подход актуален для компьютерных технологий, устройств передачи информации, высокоточного промышленного оборудования и т. д.

Распространенный способ применения терморезисторов — ограничение токов, возникающих в процессе пуска аппаратов.

При подаче напряжения к БП конденсатор быстро набирает емкость, что приводит к протеканию повышенного тока. Если не ограничить этот параметр, высок риск повреждения (пробоя) диодного моста.

Для защиты дорогостоящего узла применяется термистор — элемент, ограничивающий ток в случае резкого нагрева. После нормализации режима температура снижается до безопасного уровня, и сопротивление термистора возвращается до первоначального уровня.

Устройство и виды

Терморезистор — полупроводниковый элемент, который в зависимости от вида меняет сопротивление при росте/снижении температуры. Сегодня выделяется два вида изделий:

  1. Термисторы — детали с негативным температурным коэффициентом (NTC). Их особенность состоит в падении сопротивления при росте температуры.
  2. Позисторы — элементы, имеющие «плюсовой» температурный коэффициент (PTC). В отличие от прошлого вида, при повышении T сопротивление, наоборот, растет.

В зависимости от типа полупроводника при его производстве применяются разные элементы. Как отмечалось, при создании резистивных элементов используются оксиды, халькогениды и галогениды различных металлов, а конструктивное исполнение может меняться в зависимости от сферы назначения.

Типы по принципу действия

Терморезисторы различаются по принципу действия. Выделяется два типа:

  1. КОНТАКТНЫЕ. К этой категории относятся термопары, термодатчики, заполненные термометры и термометры биметаллического типа.
  2. БЕСКОНТАКТНЫЕ. В эту группу входят терморезисторы, построенные на инфракрасном принципе действия. Они активно применяются в оборонной сфере, благодаря способности выявлять тепловое излучение ИК и оптических лучей (выделяются газами и жидкостями).

Классификация по температурному срабатыванию

Терморезисторы отличаются по температуре, на которую они реагируют при срабатывании. С этой позиции выделяются следующие типы деталей:

  1. НИЗКОТЕМПЕРАТУРНЫЕ. Такие элементы срабатывают при температуре ниже 170 Кельвинов (минус 1020С). 1 Кельвин = минус 272,150С.
  2. СРЕДНЕТЕМПЕРАТУРНЫЕ. Здесь диапазоне работы выше и находится между 170 и 510 Кельвинами.
  3. ВЫСОКОТЕМПЕРАТУРНЫЕ. Терморезисторы такого класса работают при температурах от 570 Кельвинов.
  4. ОТДЕЛЬНЫЙ КЛАСС. Выделятся также индивидуальная группа высокотемпературных термических резисторов, работающих в диапазоне от 900 до 1300 К.

Вне зависимости от вида (позисторы, термисторы) терморезисторы могут работать в разных температурных режимах и внешних условиях. При эксплуатации в условиях частых изменений температур первоначальные параметры детали могут меняться.

Речь идет о двух параметрах — сопротивлении детали в условиях комнатной температуры и коэффициенте сопротивления.

По виду нагрева

По способу нагревания терморезисторы делятся на два типа:

  1. ПРЯМОГО НАГРЕВА. Подразумевается изменение температуры детали под действием окружающего воздуха или тока, протекающего через деталь. Устройства с прямым нагревом чаще всего применяются для решения двух задач — изменения температуры или восстановления нормального режима. Такие терморезисторы применяются в градусниках, ЗУ, термостатах и других устройствах.
  2. КОСВЕННОГО НАГРЕВА. В отличие от прошлого типа здесь нагрев происходит из-за элементов, находящихся в непосредственной близости от резистора. Узлы никак не взаимосвязаны. При таком подходе сопротивление полупроводника обуславливается изменением тока, который проходит через близлежащий элементы. Терморезисторы, работающие на косвенном принципе, нашли применение в мультиметрах (комбинированных приборах).

Главные параметры терморезисторов

При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей.

При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.

Параметры терморезисторов:

  1. ГАБАРИТЫ. При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме).
  2. СОПРОТИВЛЕНИЯ RT и RT. Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.
  3. ПОСТОЯННАЯ ВРЕМЕНИ Τ (СЕК). Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия.
  4. ТКС (в % на один градус Цельсия). Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at.
  5. Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.
  6. Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне).
  7. Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.
  8. Коэффициент рассевания (измеряется в Вт на один градус Цельсия). Условное обозначение — H. Параметр отражает мощность, которая рассеивается на термическом резисторе при разнице в температурных режимах детали и окружающего воздуха на один градус.

Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.

  1. Теплоемкость (измеряется в Джоулях на один градус Цельсия). Условное обозначение — C. Показатель отражает объем тепла (энергии), необходимой для нагрева терморезистора на один градус.

Некоторые рассмотренные параметры связаны друг с другом. В частности, постоянная времени τ равна отношению между теплоемкостью и коэффициентом рассеивания.

При покупке позитрона, кроме указанных выше параметров, нужно учесть интервал позитивного температурного сопротивления и кратность изменения R в секторе положительного ТКС.

Читайте также:

Базовые характеристики терморезисторов

При оценке терморезисторов нужно учесть и проанализировать их характеристики:

  1. Вольтамперная характеристика — кривая на графике, показывающая зависимость напряжения на образце от проходящего через терморезистор тока. График рисуется с учетом теплового равновесия с окружающей природой. Для позисторов и термисторов графики различаются.
  2. Температурная характеристика. При построении графика снимается зависимость сопротивления от температуры в определенном режиме. По оси R выставляется параметр по принципу десятикратного увеличения (10Х), а по оси времени пропускается участок в диапазоне от нуля до 223 Кельвинов.
  3. Подогревная характеристика. С помощью графика можно увидеть параметры термических резисторов, работающих на косвенном принципе. Иными словами, кривая отражает зависимость сопротивления детали от подаваемой к нему мощности. При указании графика масштаб по сопротивлению берется с учетом 10Х.

Общий принцип действия

Терморезисторы делаются максимально чувствительными к изменению температурного режима, ведь на этом принципе они и работают. При отсутствии нагрева атомы, входящие в состав детали, находятся в правильном порядке и формируют длинные ряды.

В случае нагрева количество активных «переносчиков» заряда растет. Чем больше таких единиц, тем выше проводимость материала.

При изучении кривой зависимости сопротивления от температуры можно увидеть характеристику нелинейного типа. При этом лучшие характеристики терморезистор показывает в диапазоне от -90 до +130 градусов.

Важно учесть, что принцип действия таких деталей строится на корреляции между температурным режимом и металлами в составе детали.

Сам терморезистор изготавливается с применением полупроводниковых составов (оксидов, марганца, меди, никеля, силикатов, железа и других). Такие компоненты способны реагировать на малейшее изменение в температуре.

Создаваемое электрическое поле подталкивает электрон, который перемещается до момента удара об атом. По этой причине движение электрона затормаживается.

При росте температуры атомы двигаются активнее. При таких обстоятельствах исходный актом быстрее столкнется с другим элементом. В результате возникает дополнительное сопротивление.

После снижения рабочей температуры электроны «падают» в нижние валентные уровни и переходят в невозбужденное состояние. Иными словами, они меньше перемещаются и не создают такого сопротивления.

В случае повышения температуры растет и показатель R. Но здесь нужно учесть тип терморезистора, от которого зависит принцип повышения и роста сопротивления при изменении температурного режима.

NTC

Терморезисторы NTC — изделия, имеющие отрицательный температурный коэффициент. Их особенность — повышенная чувствительность, высокий температурный коэффициент (на один или два порядка выше, чем у металла), небольшие габариты и широкий температурный диапазон.

Полупроводники NTC удобны в применении, стабильны в работе и способны выдерживать большую перегрузку.

Особенность NTC в том, что их сопротивление увеличивается при снижении температуры. И наоборот, если t снижается, параметр R растет. При изготовлении таких деталей применяются полупроводники.

Принцип действия прост. При повышении температуры число носителей заряда резко растет, и электроны направляются в зону проводимости. При изготовлении детали, кроме полупроводников, могут применяться и переходные металлы.

При анализе NTC нужно учесть бета-коэффициент. Он важен в случае, если изделие применяется при измерении температуры, для усреднения графика и вычислений с помощью микроконтроллеров.

Как правило, термисторы NTC применяются в температурном диапазоне от 25 до 200 градусов. Следовательно, их можно использовать для измерений в указанном пределе.

Отдельного нужно рассмотреть сфера их использования. Такие детали имеют небольшую цену и полезны для ограничения пусковых токов при старте электрических двигателей, для защиты Li аккумуляторов, снижения зарядных токов блока питания.

Терморезистор NTC также используется в автомобиле — датчик, применяемый для определения точки отключения и включения климат-контроля в машине.

Еще один способ применения — контроль температуры двигателя. В случае превышения безопасного предела, подается команда на реле, а дальше двигатель глушится.

Читайте также:

Не менее важный элемент — датчик пожара, определяющий рост температуры и запускающий сигнализацию.

Терморезисторы NTC обозначаются буквами или имеют цветную маркировку в виде полос, колец или других обозначений. Варианты маркировки зависят от производителя, типа изделия и других параметров.

Пример обозначения 5D-20, где первая цифра показывает сопротивление терморезистора при 25 градусах Цельсия, а расположенная рядом с ней цифра (20) — диаметр.

Чем выше этот параметр, тем большую мощность рассеивания имеет изделие. Чтобы не ошибиться в маркировке, рекомендуется использовать официальную документацию.

PTC

В отличие от рассмотренных выше терморезисторов, PTC — термисторы, имеющие положительный коэффициент сопротивления. Это означает, что в случае нагрева детали увеличивается и ее сопротивление. Такие изделия активно применялись в старых телевизорах, оборудованных цветными телескопами.

Сегодня выделяется два типа PTC-терморезисторов (от числа выводов) — с двумя и тремя отпайками. Отличие трехвыводных изделий заключается в том, что в их состав входит два позитрона, имеющих вид «таблеток», устанавливаемых в одном корпусе.

Внешне может показаться, что эти элементы идентичны, но на практике это не так. Одна из «таблеток» имеет меньший размер. Отличается и сопротивление — от 1,3 до 3,6 кОм в первом случае, и от 18 до 24 Ом для второй такой таблетки.

Двухвыводные терморезисторы производятся с применением полупроводникового материала (чаще всего Si — кремний). Внешне изделие имеет вид небольшой пластинки с двумя выводами на разных концах.

Терморезисторы PTC применяются в разных сферах. Чаще всего их используют для защиты силового оборудования от перегруза или перегрева, а также поддержания температуры в безопасном режиме.

Главные направления применения:

  1. Защита электрических двигателей. Задача изделия состоит в защите обмотки от перегорания при клине ротора или в случае поломки системы охлаждения. Позистор играет роль датчика, подключаемого к управляющему прибору с исполняющим реле, контакторами и пускателями. При появлении форс-мажорной ситуации сопротивление растет, а сигнал направляется к управляющему элементу, дающему команду на отключение мотора.
  2. Защита трансформаторных обмоток от перегрева или перегруза. В такой схеме позистор устанавливается в цепи первичной обмотки.
  3. Нагревательный узел в пистолетах для приклеивания.
  4. В машинах для нагрева тракта впуска.
  5. Размагничивание ЭЛТ-кинескопов и т. д.

Как проверить с помощью мультиметра

Важный вопрос при эксплуатации термисторов — знание принципов их проверки. При оценке исправности нужно понимать, что термисторы бывают двух видов — с положительными и отрицательным температурным коэффициентом (об этом упоминалось выше). Следовательно, сопротивление детали снижается или уменьшается с ростом температуры.

С учетом этого факта для проверки термистора потребуется всего два элемента — паяльник для нагрева и мультиметр.

Алгоритм действий:

  1. Перевод прибора в режим замера сопротивления.
  2. Подключение щупов к клеммам терморезистора (расположение не имеет значения).
  3. Фиксация сопротивления на бумаге и поднесение нагретого паяльника к детали.
  4. Контроль сопротивления (оно растет или падает в зависимости от вида терморезистора).
  5. Если сопротивление снижается или увеличивается, полупроводник работает правильно.

Для примера можно использовать термистор NTC типа MF 72. В нормальном режиме он показывает сопротивление 6,9 Ом при обычной температуре.

После поднесения паяльника к изделию ситуация изменилась — сопротивление пошло в сторону снижения и остановилось на уровне двух Ом. По этой проверке можно сделать вывод, что терморезистор исправен.

Если сопротивление меняется резко или вообще не двигается, можно говорить о выходе детали из строя.

Стоит учесть, что такая проверка очень грубая. Для точного контроля нужно проверить температуру и сопротивление термистора, а после сравнить данные с официальными параметрами.

Как подключить

Принцип подключения термисторов прост (на примере Arduino). Для этого потребуется монтажная плата, деталь и резистор на 10 кОм. Так как изделие имеет высокое сопротивление, этот параметр для проводников не влияет на конечный результат.

Один контакт сопротивления подключается к контакту 5В, а второй — к контакту термистора.

Вторую отпайку терморезистора необходимо посадить на «землю». Центр двух резисторов подключается к контакту «Аналог 0).

Где находится на схеме

Отображение терморезистора на схеме может различаться. Изделие легко найти по обозначениям t и t0. Внешне оно отражается как сопротивление, через которое проходит полоска по диагонали с «подставкой» под t0 снизу. Главные обозначения — R1, Th2 или RK1.

Если возникают сомнения в сфере применения, терморезистор можно нагреть и посмотреть на его поведение. Если сопротивление будет меняться, это нужный элемент.

Терморезисторы используются почти везде — в плате зарядного устройства, в автомобильных усилителях, блоках питания ПК, в Li-Ion аккумуляторах и других устройства. Найти их на схеме не трудно.

SMD и встроенные терморезисторы

Существует также еще два вида терморезисторов, которым стоит уделить внимание:

  1. SMD — детали с особым типом монтажа (для внешнего крепления). Внешне они не сильно отличаются от конденсаторов SMD, изготовленных из керамики. Габариты соответствуют стандартному ряду — 1206, 0805, 0603 и т. д. По виду отличить такие изделия от терморезисторов SMD почти невозможно.
  2. Встроенные. Применяются в паяльных станциях (для контроля температуры жала), в том числе термовоздушного типа.

Читайте также:

В дополнение стоит сказать, что в электронике вместе с терморезисторами используются термореле и термические предохранители, которые работают на похожем принципе и также устанавливаются в электронных приборах.

Расчет температуры по сопротивлению — датчики North Star

Расчет температуры по сопротивлению

Одной из важных характеристик термистора NTC является его способность неоднократно и предсказуемо изменять свое сопротивление в зависимости от температуры тела.

Характеристика зависимости сопротивления от температуры (R/T) (также известная как кривая R/T) термистора NTC формирует эталонную «шкалу» для устройства, используемого в качестве датчика температуры. Характеристика R/T термистора NTC представляет собой нелинейную отрицательную экспоненциальную функцию.

Существует четыре основных способа, которыми производители термисторов NTC определяют характеристики кривой R/T термистора NTC: по уравнению Стейнхарта-Харта , по коэффициенту сопротивления между двумя температурными точками, по коэффициенту бета  ( β) и/или Alpha (α) или отрицательный температурный коэффициент [NTC]  при 25 °C.

Уравнение Стейнхарта-Харта

Уравнение Стейнхарта-Харта обеспечивает превосходную аппроксимацию кривой для конкретных диапазонов температур в диапазоне температур от -80 ̊C до 260 ̊C. 92 члена уравнения, мы в North Star Sensors, основываясь на опубликованных исследованиях, считаем, что эта практика была основана на чрезмерном упрощении уравнения Штейна-Харта Харта и должна использоваться только в относительно узких диапазонах температур. Если вам нужна дополнительная техническая информация, пожалуйста, свяжитесь с нами.

Для определения коэффициентов A, B, C, D для определенного диапазона температур сопротивление термистора NTC измеряется в условиях нулевой мощности в четырех температурных точках, где T1 — самая низкая температура диапазона, T2 и Т3 – это средние температуры, а Т4 – это самые высокие температуры диапазона. Наш любимый метод расчета коэффициентов — умножение матриц в электронной таблице. Мы создали калькулятор, который поможет вам рассчитать коэффициенты:

Калькулятор коэффициентов Стейнхарта-Харта — версия Excel

Важно отметить, что сопротивления и температуры для этого калькулятора ограничены конкретными кривыми NTC.

При использовании уравнения Стейнхарта-Харта необходимо соблюдать определенные меры предосторожности, чтобы пользователь мог достичь желаемой точности и неопределенности вычисляемых данных зависимости сопротивления от температуры. Понимая сильные стороны и ограничения уравнения Стейнхарта-Харта, можно оптимизировать результаты для конкретного приложения. Ниже перечислены некоторые рекомендации, которые показывают величину ошибки интерполяции, вносимую уравнением для каждого из следующих условий, где диапазон температур, для которого должны быть рассчитаны данные R/T, определяется конечными точками tlow и бедренная кость, выраженными в единицах градусы Цельсия (°C):

  1. ≤ 0,001 °C погрешность для 50 °C   интервалы температур в диапазоне температур (t) 0 °C ≤ t ≤ 260 °C.

  2. ≤ 0,01 °C погрешность для диапазона температур 50 °C в диапазоне температур (t) -80 °C ≤ t ≤ 0 °C.

  3. Погрешность ≤ 0,01 °C для диапазона температур 100 °C в диапазоне температур (t) 0 °C ≤ t ≤ 260 °C.

  4. Погрешность ≤ 0,02 °C для диапазона температур 100 °C в диапазоне температур (t) -80 °C ≤ t ≤ 25 °C.

Если в приложении требуется аппроксимация кривой с максимально возможной точностью в диапазоне температур, превышающем 50 °C или 100 °C, желаемый диапазон температур может быть разбит на приращения 50 °C или 100 °C для расчета коэффициенты A, B, C, D и сопротивление в зависимости от температуры. Таблицы соотношения сопротивления (Rt/R25) и температуры, опубликованные North Star Sensors, были получены на основе расчетов по уравнению Стейнхарта-Харта, выполненных для нескольких диапазонов температур 50 °C, таких как от -50 °C до 0 °C, от 0 °C до 50 °C. С, от 50°С до 100°С и от 100°С до 150°С.

Конкретные коэффициенты термистора A, B, C, D зависят как от кривой термистора NTC, так и от R25 этого термистора. Например, часть кривой 44 с R25 10 кОм и часть кривой 40 с R25 10 кОм будут иметь разные коэффициенты A, B, C, D, даже если они имеют одинаковое сопротивление при 25 °C. Кроме того, часть кривой 44 с R25 10 кОм и часть кривой 44 с R25 5 кОм также будут иметь разные коэффициенты A, B, C, D, даже если они имеют одинаковую кривую. Однако любая деталь с такой же кривой и одинаковым R25 будет иметь одинаковые коэффициенты A, B, C, D в пределах своего диапазона допуска.

Нажмите здесь, чтобы увидеть несколько примеров коэффициентов A, B, C, D по кривой и R25

В отличие от коэффициентов A, B, C, D, все термисторы одной и той же кривой имеют одинаковое значение отношения R/R25. Компания North Star Sensors опубликовала таблицы соотношения R/R25 для каждого материала термистора. Таблицы R/T при температуре 1 °C также публикуются для обычных значений R25. Пожалуйста, свяжитесь с North Star Sensors, если вам нужна дополнительная информация или спецификации R/T.

Щелкните здесь для получения дополнительной информации о температурных кривых датчиков North Star

 Бета (β)

Значение бета (β) термистора является индикатором наклона характеристики кривой сопротивление-температура и рассчитывается путем измерения значений сопротивления устройства в условиях нулевой мощности, в двух температурных точках, обычно при 0 ̊C и 50 ̊C. Затем значения сопротивления вводятся в следующее уравнение:

Где T1 = 273,15 K (0 °C) и T2 = 323,15 K (50 °C) и R1 и R2 — сопротивление (Ом) при соответствующих температурах.

 Значение β не является истинной константой материала и зависит от температуры. Однако он полезен для расчета значений сопротивления в узком диапазоне температур. В зависимости от температурного диапазона ошибки, связанные с расчетами бета-версии, варьируются от ошибки 0,01 °C в диапазоне 10 °C до ошибки 0,3 °C в диапазоне 50 °C.

Вот различные температурные диапазоны для значений β кривых датчиков North Star:

Кривая: 44 35 38 40 43 47
0 °C / 50 °C β: 3891 3107 3407 3575 3811 4142
25 °C / 85 °C β: 3978 3192 3486 3694 3943 4262
0 °C / 70 °C β: 3918 3132 3430 3610 3850 4178
25 °C / 125 °C β: 4007 н/д н/д 3746 4001 4313

Отношение сопротивления к температуре

Производители термисторов с отрицательным температурным коэффициентом также определяют свои различные материалы R/T, публикуя отношения сопротивления и допуски отношения для R0/R50, R0/R70 и R25/R125, где «Rt» — сопротивление при нулевой мощности. при соответствующей температуре в градусах Цельсия. Если указан допуск процентного отношения, указанный процент зависит от того, используется ли термистор в качестве точечного согласованного устройства с более широким допуском или сменного устройства с жестким допуском.

Вот различные значения соотношения кривых R/T компании North Star Sensors:

Кривая:
44 35 38 40 43 47
0 ̊C / 70 ̊C Соотношение: 18,65 10,38 12,96 14,82 17,73 22,64
0 ̊C / 50 ̊C Отношение: 9.062 5.814 6.889 7,575 8,659 10.448
25 ̊C / 125 ̊C Соотношение: 29. 248 н/д н/д 23.474 29.098 37.850

Таблицы коэффициентов сопротивления для 1 °C для каждой кривой при каждой температуре можно найти на следующей странице:

Температурные кривые датчиков North Star

Отрицательный температурный коэффициент [NTC]

Температурный коэффициент сопротивления или альфа (∝) термистора определяется как отношение скорости изменения сопротивления с температурой к сопротивление термистора при заданной температуре (T), как показано в следующем выражении:

 Где T  = температура в Кельвинах и R = сопротивление в Омах при температуре T.

Значение альфа используется для расчета температурного коэффициента термистора NTC в температурной точке.

Для термисторов NTC альфа или температурный коэффициент выражается в единицах минус процент изменения сопротивления на градус Цельсия. Из-за полупроводниковой природы термистора NTC температурный коэффициент сопротивления уменьшается с повышением температуры и наоборот. Обычно, когда используется для указания материала кривой R/T, используется NTC на R25.

Компания North Star Sensors использует NTC на R25 для каждого из своих материалов R/T Curve в базовом номере термистора, чтобы упростить сопоставление своих термисторов с кривыми отраслевого стандарта. Например, кривая 44 имеет значение NTC, равное -4,4 %/°C

Поскольку NTC отличается для каждой температурной точки на кривой R/T, взаимозаменяемые термисторы NTC указаны с температурным допуском, а не с допуском сопротивления в диапазоне температур. [т.е. ± 0,2 °С от 0 °С до 100 °С]. Поскольку температурный допуск пропорционален процентному допуску электрического сопротивления в конкретной температурной точке, NTC полезен для расчета допусков сопротивления, выраженных в процентах. Допуск сопротивления в процентах определяется путем умножения заданного допуска температуры на NTC термистора в заданной температурной точке.

NTC (%/°C) × допуск температуры (± °C) =   ± % допуск сопротивления.

Например, для определения допуска сопротивления термистора Curve 44 с допуском ± 0,2 °C при 100 °C, -2,93 % / °C [NTC при 100 °C]  × (±0,2) [Допуск температуры] =  ± 0,586 % Допуск сопротивления .

Вот значения NTC при 25 ̊C для кривых R/T датчиков North Star:

Таблицы значений NTC для 1 °C для каждой кривой при каждой температуре рядом со значениями отношения сопротивлений можно найти на следующей странице. :

Температурные кривые датчиков North Star

Обзор | Термистор | Adafruit Learning System

Термистор – это терморезистор   – резистор, сопротивление которого изменяется в зависимости от температуры. Технически все резисторы являются термисторами — их сопротивление незначительно меняется в зависимости от температуры, но это изменение обычно очень и очень мало, и его трудно измерить. Термисторы сделаны так, что их сопротивление резко изменяется с температурой, так что оно может изменяться на 100 Ом и более на градус!

Существует два типа термисторов: NTC (отрицательный температурный коэффициент) и PTC (положительный температурный коэффициент). В общем, вы увидите датчики NTC, используемые для измерения температуры. PTC часто используются в качестве самовосстанавливающихся предохранителей — повышение температуры увеличивает сопротивление, а это означает, что по мере прохождения через них большего тока они нагреваются и «задерживают» ток, что очень удобно для защиты цепей!

Термисторы имеют некоторые преимущества по сравнению с другими типами датчиков температуры, такими как микросхемы аналоговых выходов (LM35/TMP36), микросхемы цифровых датчиков температуры (DS18B20) или термопары.

  • Во-первых, они намного дешевле, чем все вышеперечисленное! Голый 5% термистор стоит всего 10 центов оптом.
  • Их также намного легче защитить от влаги, так как это всего лишь резистор.
  • Работают при любом напряжении (для цифровых датчиков требуется логика 3 или 5 В).
  • По сравнению с термопарой им не требуется усилитель для считывания мельчайших значений напряжения — для считывания показаний термистора можно использовать любой микроконтроллер.
  • Они также могут быть невероятно точными по цене. Например, термистор 10K 1% в магазине хорош для измерения с точностью ±0,25°C! (При условии, что у вас есть достаточно точный аналоговый преобразователь)
  • Их сложно сломать или повредить — они гораздо проще и надежнее

С другой стороны, им требуется немного больше усилий для интерпретации показаний, и они не работают при очень высоких температурах, как термопары. Без цифро-аналогового преобразователя на борту вам может быть лучше с цифровым датчиком температуры.

Их простота делает их невероятно популярными для базового контроля температуры с обратной связью. Например, предположим, вы хотели иметь вентилятор, который включается при повышении температуры. Вы можете использовать микроконтроллер, цифровой датчик и управлять реле. Или вы можете использовать термистор для питания базы транзистора, поскольку при повышении температуры сопротивление уменьшается, подавая больший ток в транзистор, пока он не включится. (Это грубая идея, вам понадобится еще несколько компонентов, чтобы заставить ее работать)

Даже если вы используете микроконтроллер или сложную систему, по цене вы не сможете их превзойти!

Влагозащищенный термистор 10K 1% можно приобрести в магазине Adafruit

Технические характеристики термистора в нашем магазине

  • Сопротивление при 25°C:  10K ±1%
  • B25/50:  3950 ±1%
  • Тепловая постоянная времени  ? 15 секунд
  • Диапазон температур термистора от -55°C до 125°C
  • Диапазон температур проволоки от -55°C до 105°C
  • Провод ПВХ 28 AWG
  • Диаметр: 3,5 мм/0,13 дюйма
  • Длина: 18 дюймов/45 см
  • Таблица сопротивления/температуры

Обратите внимание, что хотя термистор может нагреваться до 125°C, максимальная температура кабеля составляет 105°C, поэтому этот термистор не подходит для измерения очень очень горячих жидкостей

Это руководство было впервые опубликовано 29 июля 2012 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *