Закрыть

Сопротивление заземляющего контура: Измерение сопротивления заземляющего устройства

Содержание

контур заземления по пуэ нормы

 

Наша электролаборатория производит весь комплекс электротехнических измерений, результаты которых предоставляются в надзорные органы: Энергонадзор Ростехнадзор, пожарным инспекторам. Мы прошли государственную аккредитацию и имеем аттестат установленного образца. Протоколы, выдаваемые нашей организацией, имеют силу юридического документа. Мы располагаем всеми необходимыми средствами измерения. Наши специалисты обладают необходимой квалификацией, владеют методиками электротехнических измерений. Наша лаборатория всегда готова откликнуться на предложения сотрудничества.

Проверка контура заземления на соответствие нормам. Прибор MRU-101

Часто нам задают вопросы, каковы нормы контура заземления по ПУЭ, каковы нормы контура заземления по ПТЭЭП? Действительно многие вопросы, связанные с заземлением у значительной части электриков вызывают определенные трудности. Далеко не все, сдавая ежегодный экзамен, радуются, когда среди вопросов встречается вопрос, связанный с сетью заземления.

Это касается как простых электромонтеров, так и инженеров электриков.

Как правило, в повседневной работе для большей части электротехнического персонала достаточно общих представлений о назначении заземления и правил присоединения частей электроустановок к сети заземления. Для энергетиков предприятий и организаций, лиц ответственных за электрохозяйство ситуация выглядит иначе.

При посещении предприятия представителями надзорных органов, энергетику необходимо предоставить им протоколы установленного образца. Такие протоколы может составить только аккредитованная электролаборатория.

Измерение сопротивления растеканию тока контура заземления на соответствие нормам. Прибор MRU-101

Результаты измерений сопротивления заземляющих устройств должны соответствовать нормам, прописанным в ПУЭ и ПТЭЭП. Оба документа исчерпывающе регламентируют требования к заземляющим устройствам.

В дальнейшем мы будем рассматривать вопросы, связанные с электроустановками до 1000 В:

Что касается норм сопротивления контура заземления, то следует уяснить, что требования ПУЭ относятся к проектируемым, вновь возводимым и реконструируемым электроустановкам. Протоколы измерений в этом случае составляются один раз в процессе приёмосдаточных работ.

В дальнейшем, при эксплуатации электроустановок начинают действовать нормы ПТЭЭП. Эти правила определяют не только нормы сопротивления контура заземляющего устройства, но и периодичность проведения измерений. Заинтересованного читателя отсылаем к ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 и ПТЭЭП, Приложение № 3, таблица 36. В этих пунктах ПУЭ и ПТЭЭП содержится подробная информация о нормах сопротивления заземляющего контура.

Внимательное знакомство с этими документами показывает, что нормы, определяемые обоими документами, совпадают полностью. В них отражаются измерения, проводимые для контуров заземления электроустановок различного рабочего напряжения. Нормы приводятся для измерений сопротивления контура заземления с учетом присоединения естественных заземлителей и повторных заземлений так и без учёта оных. Приводим сводную таблицу:

Напряжение электроустановки (В)220- 127380-220660-380
Сопротивление без повторных заземлителей (Ом)603015
Сопротивление с повторными заземлителями (Ом)842

 

Под повторными заземлителями и естественными заземлителями следует понимать способ устройства заземления присоединяемых к сети электроустановок.

Например, к трансформаторной подстанции присоединена осветительная сеть жилого дома. В этом случае контур заземления дома является повторным заземлением. Понятно, что измерения проводятся с присоединенными потребителями и при отключении их цепей заземления.

Надо заметить, что методика измерений довольно сложна. Например, рекомендуется проводить измерения в летнее и зимнее время года, когда удельное сопротивление грунта минимально. В другое время года к результатам измерений применяются поправочные коэффициенты. Особые требован предъявляются к местам установки измерительных электродов, например, к расположению их по отношению к подземным коммуникациям, металлическим трубопроводам.

Все нюансы проведения подобного рода измерений способны учесть только профессионально подготовленные специалисты. Для проведения измерений используется только сертифицированные измерительные приборы прошедшие государственную поверку и имеющие клеймо Госповерителя.

Если вы заинтересованы в проведении разного рода электротехнических измерений, обращайтесь к нам. Мы сотрудничаем с заказчиками из Москвы и Московской области. Наши специалисты быстро выезжают на место проведения работ и в кратчайшие сроки выполняют измерения. На все возникающие вопросы мы ответим, если вы обратитесь по контактам, размещенным на нашем сайте.

Похожие статьи

Поддержите наш проект, поделитесь ссылкой!

4 ома, 10 или 30 ом? Правильное сопротивление заземления частного дома. | Электромозг

Внимание! При отсутствии специального образования и должного опыта работа с электричеством может быть опасна!

Коснусь сегодня этой животрепещущей темы — каково должно быть сопротивление растеканию электрического тока у заземления дачного домика, и в каком месте вообще его надо делать?

По поводу величины сопротивления мнения сильно расходятся, поскольку в ПУЭ именно о заземлителе возле дома не сказано чётко. Поэтому в этой статье я постараюсь дать исчерпывающую аргументированную конкретику по этому вопросу.

Для нетерпеливых скажу сразу — заземлению подлежит шина заземления в домашнем щитке. Сопротивление заземления по нормативам должно быть не более 30 Ом. Ниже будет обоснование со ссылками на пункты нормативов.

Если же перестраховываться, то лучше сделать 10 Ом или меньше, чтобы при повреждённом на вводе в дом PEN существеннее снизить возникшее напряжение на корпусах оборудования, и чтобы при коротком замыкании во внутренней сети смог отключиться автомат на 16А.

Что именно и как заземлять?

Если очень кратко и упрощённо, то существуют две актуальных для нас системы заземления — TT и TN. Система заземления TT — это отдельный заземлитель у дома (уголок или система сваренных уголков, вбитых в землю), который соединяется напрямую с шиной заземления (PE) в щитке. Далее от шины отходят только проводники заземления кабелей внутренней разводки.

Электроды для заземления

Электроды для заземления

Система заземления TN — это то же самое, только помимо заземления шины PE на уголок, она напрямую заземляется на нулевой провод с магистрали ЛЭП, идущий от подстанции, заземлённый как у самого трансформатора, так и на некоторых опорах ЛЭП.

Какая из систем лучше? Какую применять?

Технический циркуляр № 32/2012, в пунктах 3 и 4 разъясняет требование ПУЭ п.1.7.59 «Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены

Согласно разъяснению циркуляра, если магистраль протянута отдельными воздушными неизолированными проводами, она считается небезопасной для реализации системы TN (высока вероятность отдельного обрыва нулевого проводника, что ведёт к появлению опасного напряжения на проводе заземления), и в этом случае следует временно заземляться по системе TT до реконструкции магистрали. В случае же с магистралью, протянутой проводом СИП, необходимо использовать только систему TN. С этим можно спорить, можно не спорить, но давайте всё же основываться на некотором консолидированном мнении, уже воплощённом в хоть какие-то документы.

Итак, поскольку в большинстве посёлков воздушные линии уже реконструированы и проведены СИПом, нас будет интересовать только система TN.

Итак, мы выяснили, что заземление дачного домика должно представлять собой следующую конструкцию. Магистральный нулевой проводник (т.н. совмещённый нулевой рабочий и нулевой защитный проводник, PEN), заземлённый на трансформаторе и повторно на некоторых столбах воздушной линии, заходит в домашний щиток на шину заземления PE. Эта шина заземляется на заземление у дома (фактически ещё одно т.н. повторное заземление PEN-проводника). В том же щитке располагается шина ноля (N). Шины PE и N соединены перемычкой (т.н. разделение PEN на PE и N). Всё. Вот вам в щитке и ноль, и заземление.

Когда заземлять шину повторно не обязательно?

Согласно ПУЭ п.1.7.61, рекомендуется повторное заземление шины в любом случае, но обязательный характер такое повторное заземление носит лишь в случае воздушного ввода («Повторное заземление электроустановок напряжением до 1 кВ, получающих питание по воздушным линиям, должно выполняться в соответствии с 1. 7.102-1.7.103.»).

Если от столба проложен кабель, то достаточно повторных заземлений на столбах воздушной линии. Считается, что вероятность обрыва PEN в кабеле меньше, чем вероятность обрыва PEN в воздушной линии СИП. Неоднозначное, на мой взгляд, мнение (а как же потенциальные проблемы с контактом PEN в месте ответвления?), но оно закреплено в ПУЭ.

Заготовки для повторного заземления PEN в щитах учёта на столбах. Заземление уличного щита учёта не отменяет необходимость заземления PEN на вводе в дом.

Заготовки для повторного заземления PEN в щитах учёта на столбах. Заземление уличного щита учёта не отменяет необходимость заземления PEN на вводе в дом.

Так что там про сопротивление?

ПУЭ

Про сопротивление повторного заземления воздушного ввода в дом читаем в п. 1.7.102-1.7.103:

«1.7.102. На концах ВЛ или ответвлений от них длиной более 200 м, а также на вводах ВЛ к электроустановкам, в которых в качестве защитной меры при косвенном прикосновении применено автоматическое отключение питания, должны быть выполнены повторные заземления PEN-проводника. ..»

«1.7.103. Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN-проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях.»

То есть, исходя из этих пунктов, наиболее часто встречающаяся трёхфазная магистральная воздушная линия с линейным напряжением 380 вольт должна иметь повторное заземление, как минимум, на своём конце. Все повторные заземления такой воздушной линии должны иметь общее сопротивление не более 10 Ом. То есть, если повторное заземление только одно, то его сопротивление должно быть не более 10 Ом. Если два — каждое не более 20 Ом (в сумме 10). Если три — каждое не более 30 ом (в сумме тоже 10). А вот дальше действует ограничение, что сопротивление каждого повторного заземления этой линии не должно быть больше 30 Ом. То есть, их может быть сколь угодно много, но сопротивление каждого из них выше 30 Ом возрастать уже не должно.

Итак, мы видим, что в п. 1.7.103 речь идёт о ВЛ в целом, а не о магистрали ВЛ. Для сомневающихся приведу терминологию ПУЭ:

«2.4.2. Воздушная линия (ВЛ) электропередачи напряжением до 1 кВ — устройство для передачи и распределения электроэнергии по изолированным или неизолированным проводам, расположенным на открытом воздухе и прикрепленным линейной арматурой к опорам, изоляторам или кронштейнам, к стенам зданий и к инженерным сооружениям

«2.4.3. Магистраль ВЛ — участок линии от питающей трансформаторной подстанции до концевой опоры.
К магистрали ВЛ могут быть присоединены линейные ответвления или ответвления к вводу.
Линейное ответвление от ВЛ — участок линии, присоединенной к магистрали ВЛ, имеющий более двух пролетов.
Ответвление от ВЛ к вводу — участок от опоры магистрали или линейного ответвления до зажима (изолятора ввода).»

То есть, повторные заземления всей линии вместе с заземлениями вводов к домам должны в сумме давать не более 10 Ом, а каждое повторное зазеление, в том числе и у вводов в дома, должно иметь сопротивление не более 30 Ом.

Технический циркуляр

Ещё один аргумент для всё ещё сомневающихся. Уже упоминавшийся мною выше технический циркуляр № 31/2012, в пункте 2 даёт чёткое разъяснение по поводу сопротивления повторного заземления на вводе в дом:

«При питании от ВЛИ сопротивление повторного заземления у потребителя выбирается из условия обеспечения надёжного срабатывания УЗО при повреждении изоляции (однофазное замыкание на землю) при отключенном PEN проводнике ответвления от ВЛИ. Сопротивление рассчитывается по току надёжного срабатывания УЗО, равному 5 IΔn, но должно быть не более 30 Ом. При удельном сопротивлении грунта более 300 Ом·м допускается увеличение сопротивления до 150 Ом.»

То есть, если у вас на вводе стоит УЗО с номинальным отключающим дифференциальным током 300 мА, то при повреждении изоляции (однофазном замыкании на землю) заземление должно дать ток утечки 5*IΔn = 5*300 = 1,5 А. Это возможно при сопротивлении около 230 В / 1,5 А = 150 Ом. Это больше, чем прописанное ограничение не более 30 Ом. То есть, даже в случае УЗО с таким большим номинальным отключающим дифференциальным током сопротивление в 30 Ом всё ещё остаётся актуальным и уменьшаться не собирается.

Разработчики ПУЭ

Приложение журнала «Новости электротехники» №2(26) от 2004 (Виктор Шатров, сотрудник Госэнергонадзора Минэнерго России, г. Москва; Людмила Казанцева, ведущий специалист ОАО «НИИПроектэлектромонтаж», г. Москва):

При электроснабжении электроустановок зданий и сооружений от ВЛ сопротивление повторного заземлителя на опорах принимается по соображениям выноса напряжения по РЕN-проводнику при его обрыве, нормируется 1. 7.103 и составляет 30 Ом.

ПТЭЭП

Ну, и напоследок, цифра в 30 Ом подтверждается ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) Приложение 3.1. Таблица 36. «Наибольшие допустимые значения сопротивлений заземляющих устройств электроустановок», в которой тоже значится цифра 30 Ом.

Процесс вбивания электрода заземлителя для повторного заземления PEN в щите учёта на столбе. Заземление уличного щита учёта не отменяет необходимость заземления PEN на вводе в дом.

Процесс вбивания электрода заземлителя для повторного заземления PEN в щите учёта на столбе. Заземление уличного щита учёта не отменяет необходимость заземления PEN на вводе в дом.

Откуда же вылезло 4 Ома?

Часто люди читают п.1.7.97, а там есть ссылка на п.1.7.101, где прописаны 4 Ома. Но п.1.7.97 написан для заземляющих устройств электроустановок напряжением выше 1 кВ в сетях с изолированной нейтралью, которые используются одновременно для заземления электроустановок напряжением до 1 кВ с глухозаземленной нейтралью.

Сам же пункт 1.7.101 нормирует сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора или выводы источника однофазного тока.

Почему лучше перестраховаться, и вместо 30 Ом сделать всё же 10?

1. Не стоит полагаться на независящие от вас повторные заземления магистрали ВЛ и повторные заземления на вводах у соседей. Их может банально не быть вовсе.

2. Если PEN будет повреждён на вводе в ваш дом, вы останитесь наедине только со своим заземлением.

Всё это приведёт к тому, что если сопротивление вашего заземления будет 30 Ом, то ток короткого замыкания на землю будет приблизительно 230 В / 30 Ом = 7,5 А, а этого недостаточно, чтобы отключить даже 10-амперный автомат освещения. И будет у вас счётчик накручивать…

Кроме того, на корпусах заземлённых приборов появится ещё более опасный потенциал, чем он был бы при 10 Омах.

Ещё один нюанс. При вводе в дом газоснабжения, газовики требуют для газового котла заземления 10 Ом, потому что перестраховываются, не надеясь на часто отсутствующие повторные заземления магистральной ВЛ.

Повторное заземление можно не делать?

Интересный ответ дан в журнале «Новости электротехники» №5(29) от 2004 (Виктор Шатров, сотрудник Госэнергонадзора Минэнерго России,
г. Москва; Людмила Казанцева, ведущий специалист ОАО «НИИПроектэлектромонтаж», г. Москва):

Воздушные линии электропередачи используются во многих случаях для электроснабжения небольших потребителей (повсеместно: сельская местность, дачные участки, поселки), наибольшая мощность каждого из которых редко превышает 10 кВт. В этом случае достаточным является наличие заземлителя повторного заземления ВЛ, если расстояние до него не превышает 100 м. Выполнение повторного заземления непосредственно на вводе в здание не обязательно.

И его ответ на вопрос: «Куда должен подключаться заземляющий проводник повторного заземления индивидуальных домов» (если таковое всё таки имеется)?

Для деревянных зданий при отсутствии металлических коммуникаций, входящих в здание, допускается не выполнять главную заземляющую шину, а нулевой защитный проводник присоединять на изоляторе ввода. При наличии металлических коммуникаций, входящих в здание из любых материалов, необходимо предусматривать главную заземляющую шину и к ней присоединять нулевой защитный (РЕN) проводник питающей линии (ответвления), заземляющий проводник повторного заземления и входящие в здание коммуникации. Размещать главную заземляющую шину в таких случаях следует вблизи вводного устройства таким образом, чтобы она не подвергалась опасности механических повреждений.

Оставлю без комментариев…

Заключение

Итак, если вам проблематично сделать заземление ощутимо менее 30 Ом, то сделайте хотя бы не более 30 Ом, и вы впишитесь в нормативы. Однако, если есть возможность, доведите сопротивление хотя бы до 10 Ом.

Рассчитать конструкцию заземления и количество электродов заземлителя, подогнав её под нужное сопротивление, можно с помощью моих программ для Windows и для Android.

Версия для Windows выглядит так:

Калькулятор расчёта сопротивления (для Windows)

Калькулятор расчёта сопротивления (для Windows)

Версия для Android выглядит так:

Калькулятор расчёта сопротивления (для Android)

Калькулятор расчёта сопротивления (для Android)

Скажу сразу, что для региона московской области и влажных суглинков, для заземления сопротивлением 30 Ом требуется всего один уголок с полкой 50 мм длиной 3 метра, верх которого заглублён на 0,5 метра, а для заземления сопротивлением 10 Ом в тех же условиях требуется 4 уголка с полкой 50 мм длиной 2,5 метра, установленных в линию с интервалом 2,5 метра, верх которых заглублён на 0,5 метра.

На этом всё. Я постарался раскрыть тему максимально исчерпывающе. Ставьте лайки, если статья понравилась, и пишите комментарии не только с критикой. Мне нужна также и ваша поддержка.

Делитесь также этой статьёй в социальных сетях (соответствующие кнопочки рядом со статьёй есть в наличии) и, конечно, подписывайтесь на мой канал! Жду ваших отзывов! Удачи!

Допустимые значения сопротивления заземления, его замер

При пользовании электросетями необходимо строго соблюдать правила эксплуатации, выполнять периодический осмотр системы проводов и замеров показаний тока на защитных деталях системы. Сопротивление заземления нейтрали – одна из основных работ по контролю устройств защиты здания и человека.

Перед началом замеров, необходимо знать основные неисправности и способы их обнаружения.

Причины неисправностей на заземляющем контуре

При нормальной работе системы защиты, ток короткого замыкания фазы на корпус или утечки по глухозаземленной проводке, подходит на контур и через систему заземлителей снимается на землю.

Но при длительном использовании, заземлители окисляются под действием воды, на них происходит образование ржавчины. При продолжении действия вредной среды, очаг поражения расширяется и еще больше поражает металл, ржавчина изъедает сталь, местами коррозия металла разъедает стойки контура насквозь.

При этом меняется значение величины сопротивления электрического тока. При этом колья заземлителей могут разрушаться неравномерно. Это обусловлено неравномерным распределением в грунте химических веществ и щелочных, соляных растворов и некоторых кислот.

Затем происходит отслаивание металла поврежденного ржавчиной и глубинной коррозией, при этом происходит ухудшение или полное размыкание контакта контура и отдельного заземлителя.

Этот процесс идет с нарастанием и в конечном итоге заземление перестает выполнять свои функции из-за изменения уровня сопротивления на контуре и его проводимости потенциала токов КЗ в землю.

Выполняя замеры, периодичность измерения сопротивления должна соответствовать правилам, мы избегаем возникновения аварийных ситуаций и поражение, электротоком человека, вовремя определяя момент выхода из строя защитного контура заземления.

Приборы для замеров

Для измерения сопротивления контура применяются электронные мультиметры, сменившие аналоговые устройства. При этом увеличилась точность уровня измерения при упрощении выполнения операции.

По правилам ПУЭ, сопротивление заземлителя не менее одного раза в шестилетний период. Поэтому не затратно будет вызвать для проведения замеров профессионалов, которые имеют более точные и новейшие разработки промышленности.

Но если вы решили провести эту операцию самостоятельно, потребуется запастись следующими измерительными приборами:

  • измеритель сопротивления типа «МС- 08»;
  • измеритель заземляющего контура типа «М-416»;
  • тестер или мощный мультиметр.

Для более низкого уровня измерения и определения неисправности защиты, можно использовать мультиметр, дополнительно оснащенный токовыми клещами.

Способы выполнения замеров

Способов измерения сопротивления заземляющих устройств много и каждый достаточно точный, поэтому разберем их подробно, а какой из них применить решать вам:

Замеряем значения напряжения и силы тока

Для этого, на удаленности от контура больше 20 метров, забиваем в грунт заземлитель и дополнительный электрод. Затем по проводам, подаем на них нагрузку.

Выставляем мультиметр в сектор замены силы тока, определяем ее значение. Затем переключаем прибор в сектор замера напряжения, измеряем данную величину.

По формуле Закона Ома определяем величину сопротивления на данном участке с глухозаземленной нейтралью.

Теперь проводим замер сопротивления на защитном контуре и определяем износ деталей защиты и возможную замену заземлителей. При этом необходимо учитывать значение сопротивления кабеля земли и проводящих особенностей земли на участке.

К плюсам этого способа относят его простоту выполнения замеров. Недостаток – это малый уровень точности замера, и дополнительное устройство заземлителей для определения номинального значения.

Если не требуется определения точного значения сопротивления на контуре, то процедуру измерений можно завершить. Для более точного замера выполняем следующую работу.

Четырехпроводный метод замера

Работу следует выполнять в следующей последовательности:

Выбираем, с помощью кнопки «Режим», нужный метод выполнения замеров.

Рулеткой, замеряем длину диагонали защитного контура. Затем от контура проводим провода и подключаем их в гнезда на приборе.

Выносной заземлитель, забиваем в грунт. Расстояние до контура больше 20 метров, но не менее, полуторной диагонали устройства.

Второй стержень забиваем в землю на удалении больше 3-х размеров диагонали. Расстояние до контура не меньше 40 метров. Подключаем идущий от него провод на клемму прибора.

Проверяем правильность подключение и выполняем замер. Затем, перемещая заземлитель, с изменением длины на 10% ближе ко 2 стержню, проводим серию измерений.

При установке стержней, располагать их необходимо на одной линии с заземляемым контуром. При помехе напряжения на штырях, измеритель сопротивления покажет это на шкале. В этом случае необходимо перебить стержни и повторить измерение.

Исходя из значений измерения, в зависимости от удаленности от защитного устройства, составляем график. При возрастании величины измерения в средней части графика – в этом случае истинным значением сопротивления будет величина не более 5% превышающая минимальную разницу между двумя точками графика.

Трехпроводной метод замера

Проводится по схеме предыдущей схеме, но перед началом работы следует выбрать режим трехпроводного замера сопротивления.

Способ замера на пробном заземлителе

Перед установкой защитного устройства проводится измерение по этому методу, для расчета контура заземления и замера удельного сопротивления.

Работы выполняются в следующем порядке:

Перед выполнением проверки, забиваем в грунт пробный заземлитель и оставляем небольшую часть над уровнем земли. Длина штыря должна быть такой же, как и предполагаемый заземлитель контура.

При помощи мультиметра, определяем сопротивление заземлителя.

Выполнив расчет, определяемся с размерами стержней и размера треугольника защиты.

Такой метод в основном используется в небольших устройствах в частном доме.

Компенсационная схема измерения.

При этом способе, производится обследование промышленных высокоточных приборов. На одной линии с контуром, забиваем штыри в грунт. Основа для проведения замера – это зонд, подключенный к стержням.

Через первичную обмотку трансформатора, провода, грунт и стержни подается напряжение. На вторичной обмотке наводится электроток. Уравниваем величину напряжений, двигая ручку реохорда. При нулевом значении напряжении, мы получаем величину сопротивления защиты.

Измерение с использованием резистора

В этом способе используется калиброванный резистор, через который на устройство защиты подается напряжение прямо от фазного проводника, подключенного в электрощитовой.

Мультиметр проверяем, выставив на шкале, замер сопротивления и касаемся шупами друг друга. На экране нулевое значение – это устройство готово к работе.

Выставляем максимальную величину сопротивления и измеряем его. Напряжение сети нам известно, сопротивление тоже.

Производим расчет силы тока, который прошел через заземление. Следует помнить, что такое измерение следует проводить при выключенном проводе зануления от контура. На него подается фаза, через калиброванный резистор 46 Ом.

К преимуществам этого вида замеров относят:

  • Отсутствие необходимости забивания длинных стержней в грунт с последующим доставанием после измерения;
  • Не приходится растягивать и собирать многометровые электрические провода;
  • Для выполнения замеров не требуется занимать большую площадь дворовой территории.

Измерение с применением специальных токовых клещей

Выполняя работу по замеру сопротивления, нет необходимости отключения заземляющего проводника.

В электрическую сеть подается нагрузка и по проводам проходит электричество. «Обняв» губками клещей проводник, мы не нарушая изоляции и не прекращая работу цепи, получаем необходимое значение сопротивления заземляющего контура, после расчета по закону Ома используя напряжение и силу тока.

В заключение

Не забудьте, что производить измерения приходится на улице, поэтому нельзя работать в сырую и мокрую погоду.

Наиболее целесообразно проводить проверку контура в летом или зимой, но не при очень жаркой и морозной погоде. Специалисты считают – в это время грунт наиболее уплотняется, при этом его удельное сопротивление становится больше.

Замерить сопротивление заземления в домашних условиях не сложно. Главное помнить закон Ома для участка цепи и проводить расчеты и замеры не реже раза в год.

Измерение сопротивления заземлителей на производстве и многоквартирных домах проводится исходя из графика проверок, по результатам составляется акт приемки, в котором указывается допустимое сопротивление заземляющего устройства и данные замеров заносят в технологический журнал.

В акте ставят росписи члены комиссии, и ставится печать организации проводящей проверку.

Выполнив все эти работы, вы можете спокойно и уверенно пользоваться электричеством в вашем доме.

Какое сопротивление контура заземления?

Единой величины сопротивления контура заземления нет. Все значения существуют в привязке к различному электрооборудованию и регламентируются правилами устройства электроустановок (ПУЭ), а эксплуатационные величины правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

Берём трансформаторную подстанцию с напряжением до 1 киловольта. Согласно ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 при проведении замеров сопротивления в непосредственной близости к подстанции, сопротивление контура заземления должно соответствовать 15 ом для напряжения в 660 вольт, 30ом для 380 вольт и 60 Ом для 220 вольт, при измерении с учетом естественных заземлителей.

ПТЭЭП, Приложение № 3, таблица 36 нам говорит вот что: (трёхфазная/однофазн­ая сеть)сопротивление контура заземления — 15 ом для напряжений 660-380 вольт, 30 ом для напряжений 380-220 вольт и 60 Ом для напряжений 220-127 вольт., а если измерения проводятся с учётом присоединённых повторных заземлений, то значения будут совсем иными, величины должны составлять не более 2, 4 и 8 Ом при соответствующих напряжениях. (660вольт, 380 вольт, 220 вольт)

При напряжением больше 1Кв контур заземления для трансформаторной подстанции и распредпунктов согласно ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 будет иметь величины: при замерах сопротивления в электроустановках с глухозаземленными или эффективно заземленными нейтралями электрическое сопротивление должно быть не более чем 0,5 Ом.

Далее смотрим ПТЭЭП, Прил. № 3, таб-ца 36 сообщает нам: при замерах в электроустановках напряжением от 110 кВ и выше, в электрических сетях с эффективно заземлённой нейтралью, электрическое сопротивление заземляющего контура не должно превышать 0,5 Ом. В электроустановках от 3 до 35 кВ в сетях с изолированной нейтралью не более 10 Ом.

Норма сопротивления контура заземления для воздушной линии электропередачи напряжением выше 1 кВ составит согласно ПУЭ, п. 1.8.39, таблица 1.8.38, п. 2 : Для заземляющих устройств опор высоковольтных линий при величине удельного сопротивления грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10ом, 15ом, 20ом и 30 Ом соответственно.

Если взять ПТЭЭП, приложение № 31, таблица 35, п. 4, то мы узнаем: А. Для воздушной линии электропередачи на напряжениях свыше 1Кв

Б: Для опор, имеющих грозозащитный трос или иные приспособления для грозозащиты, металлические или ж/бетонные опоры ВЛ 35 кВ, а так же опоры ВЛ 3 на 20 кВ в населённых пунктах, заземлители оборудования для опора 110 киловольт и выше: 10ом, 15ом, 20ом и 30 Ом при величине удельного сопротивления грунта, соответственно составит: 100, 100-500, 500-1000, 1000-5000 Ом·м. Б. Для воздушных ЛЭП на напряжение сети до 1Кв: опоры ВЛ с наличием грозозащиты составит 30 Ом, Опоры ЛЭП с повторным заземлителем нулевого провода – 15ом для напряжения 660-380 вольт, 30ом для 380-220 вольт и 60 Ом соответственно для напряжений питающей сети 220-127 вольт (для трёхфазной/однофазно­й сети) соответственно

Контур заземления

Конструкции и размеры контура заземления дома:

Контур заземления представляет собой конструкцию, состоящую из соединённых друг с другом и проложенных в земле заземлителей.

Ориентировочные размеры при устновке в грунт вертикального заземлителя.


Заземлители, выполняя монтаж, устанавливают в ряд или в виде тругольника, квадрата, прямоугольника и т.п., исходя из требований и наличия площади для монтажа. В грунтах с большим удельным сопротивлением один заземлитель [даже глубинный] — может имеет большое сопротивление и для получения требуемой меньшей величины сопротивления растеканию тока приходится устраивать заземление из нескольких, соединённых между собой, единичных заземлителей, включенных параллельно. Такой контур заземления называется многоэлектродным.

Токи, растекающиеся с параллельно соединенных одиночных заземлителей, оказывают взаимное влияние, возрастает общее сопротивление заземляющего контура, которое тем больше, чем ближе расположены вертикальные заземлители друг к другу. Поэтому расстояние между вертикальными заземлителями должно быть не менее их длины.

Верхние слои грунта подвержены значительным изменениям влажности. Вследствие этого сопротивление контура будет тем стабильнее, чем глубже он расположен в грунте.
Для уменьшения влияния климатических условий на сопротивление заземления верхнюю часть заземлителя размещают в грунте на глубину не менее 0,7 метра. Контур устанавливается с меньшими затратами, где грунт имеет низкое удельное сопротивление, эффективность заземления при правильном расчёте выборе его расположения может быть повышена в несколько раз.

Материалы для заземления:

Материалы для контура заземления должны выбираться с учетом защиты от коррозии, соответствующих термических и механических воздействий, эти значения указаны в нормативных документах

Заземлители и проводники, проложенные в земле, должны иметь размеры не менее приведенных в табл. 1.7.4.(ПУЭ)


Дополнения к ПУЭ — это перечень и требования для материалов с антикоррозионными покрытиями ( для омеднённой и нержавеющей стали) — Указаны в ГОСТ Р 50571.5.54-2013 «Выбор и монтаж электрооборудования. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов.»

Виды контуров заземления:

В зависимости от назначения контура заземления, используемой площади и удельного сопротивленя грунта — заземлители, для контура, могут устанавливаться различных видов — некоторые из них:
— Кольцевой контур заземления — чаще всего монтаж производится плоским проводником(полоса). Важный момент — полоса в траншее должна укладываться на ребро. Кольцевой заземлитель является заземлителем поверхности, который должен быть проложен в виде замкнутого кольца на расстоянии 1,0 м и на глубине 0,5/0,7 м в земле вокруг фундамента дома.
— Многоэлектродный контур заземления — это совмещённый монтаж горизонтального и вертикальных заземлителей, чаще всего выполняется в виде треугольника, а при необходимости — с большим количеством электродов.

Для монтажа «треугольника» или контура с большим числом вертикальных заземлителей, могут использоваться модульные электроды — установка выполняется сборным вертикальным стержнем, который поэтапно наращивается и забивается электроинстументом с большой ударной силой на требуемую глубину с одной точки. Такие заземлители в зависимости от вида почвы могут прокладываться в земле вручную или с помощью соответствующих электрических, бензиновых или пневматических молотов.

Сопротивление контура заземления частного дома:

Электросеть загородного частного дома относится к электроустановкам напряжением до 1кВ (1000 Вольт), соответственно сопротивление заземляющего контура не должно превышать допустимые параметры.

Значения сопротивления заземляющих устройств для каждого вида электроустановок должны удовлетворять значениям, приведенным в соответствующих главах Правил(ПУЭ) и таблице 1.8.38.

Наибольшие допустимые значения сопротивлений заземляющих устройств(ПУЭ)

Расчёт контура заземления:

Чтобы правильно произвести расчет- длину и количество заземлителей, входящих в будущую конструкцию контура, нужно знать знать максимальное значение удельного сопротивления слоя грунта на глубине, приблизительно в три раза превышающей глубину закладки заземлителя. Это значение определяется путем измерений удельного сопротивления грунта в месте устройства заземления с учетом коэффициентов влажности.
Если взять значение удельного сопротивления грунта из таблиц(как чаще всего это делают при проектировании в офисе и не выезжая на место строительства), то после монтажа такого контура заземления — расчетное значение может не совпасть с измеренным после выполнения работ..
Поэтому часто в проектах заземления указывают, что если значение сопротивления установленного контура будет превышать допустимое, следует увеличить количество заземлителей, т.е. увеличить объём работ, соответсвенно увеличивается заложенная в смете цена.
Для заземления газового котла расчетное сопротивление не должно превышать 10 Ом.

Подключение контура заземления к электросети дома:

Следует иметь в виду, что только монтажа и подключения контура заземления — не достаточно для обеспечения электробезопасности, например дачи или частного дома и т.п. Для этого, должны быть соблюдены требования к электроустановкам указанные в гавах ПУЭ:
Глава 1.7. «Заземление и защитные меры электробезопасности»
Глава 7.1. «Электроустановки жилых, общественных, административных и бытовых зданий»
Эти требования являются взаимосвязанными и их частичное выполнение может привести к непредсказуемым последствиям, как для электро, так и пожарной безопасности..

Чтобы произвести монтаж и подключение заземления, нужно обладать знаниями по устройству электроустановок и нормативных документов.
Если при монтаже самой конструкции контура своими руками проблем особо не возникает, то при проверке сопротивления и подключении заземляющего устройства в электросеть дома, часто совершаются ошибки.
Когда нет ответа на часть из многих существенных вопросов, неоходимых для монтажа и подключения контура заземления — например:
— Чем отличается система заземления ТТ от системы заземления TN(три типа)?
— Почему эксплуатация электросети дома с системой заземления ТТ без УЗО — запрещена?
— Какая система заземления будет применяться в вашем доме?
— Почему сопротивление растеканиЮ тока является основным показателем качества контура заземления и как оно проверяется во время монтажа?
— и т.п.

В этом случае, чтобы не совершать ошибок, следует изучить правила.

Проверка:

Основной критерий качества установленного контура заземления для частного дома (и не только) — это сопротивление растеканию тока, точное значение которого возможно узнать только после поверки измерительным прибором.

Производить замеры нужно в обязательном порядке и сопротивление заземления должно соответствовать нормативам. Но чаще всего владельцы загородных частных домов при самостоятельном монтаже(или нанятые работники), пренебрегают замерами, без которых нельзя оценить в полной мере качество установленного заземляющего устройства.
При профессиональном монтаже, после установки выполняются приемо-сдаточные испытания согласно ПУЭ и выдаётся электроизмерительной лабораторией протокол. В дальнейшем, измерение сопротивления растеканию тока заземляющих устройств должно производиться в сроки, установленные ПТЭЭП, а также после каждого капитального ремонта.
Периодичность проверки в полном объеме производится не реже 1 раза в 12 лет.
Проверка коррозионного состояния элементов, находящихся в земле:
Локальные коррозионные повреждения в земле выявляются при осмотрах со вскрытием грунта. Если элементы конструкции выполнены из чёрного металла (уголков, труб, полосы и т.п.), то самыми уязвимыми для коррозии являются сварные соединения и такие места проверяются в первую очередь.

Контур заземления для молниезащиты III Категории.

Молниезащита III Категории (РД 34.21.122-87)
2.26…..каждый токоотвод молниеприемников должен быть присоединен к заземлителю, состоящему минимум из двух вертикальных электродов длиной не менее 3 м, объединенных горизонтальным электродом длиной не менее 5 м;

…….Во всех возможных случаях заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановки, указанным в гл. 1.7 ПУЭ.
Из этого следует, что для электорустановки и молниезащиты дома устанавливается общий контур заземления.

Измерение сопротивления заземляющего устройства — ЧПТУП «Электротехлабсервис»

Заземление — это ЗУ (заземляющее устройство), предназначенное для электрического соединения с «землей» различных заземляемых частей электрооборудования. Для каждой системы заземления (TN-C, TN-C-S, TN-S, TT и IT) существуют свои требования к сопротивлению заземляющего устройства.

Сопротивление ЗУ очень сильно зависит от: типа грунта, структуры грунта, состояния грунта, глубины залегания электродов, количества электродов, свойств электродов.

Контур заземления — это и есть, соединенные между собой, горизонтальные и вертикальные электроды, которые заложены на определенной глубине в грунте . Все вышеописанные свойства грунта определяются его сопротивлением растекания тока. И чем это сопротивление меньше, тем лучше для монтажа контура заземления. 

Все вышеописанные свойства грунта определяются его сопротивлением растекания тока. И чем это сопротивление меньше, тем лучше для монтажа контура заземления.

Грунты, идеально подходящие для монтажа контура заземления:

торф, суглинок, глина с высокой влажностью.

 

Грунты, не подходящие для монтажа контура заземления: камень, скала.

Перед началом работ по измерению сопротивления заземляющего устройства по мере возможности и доступности необходимо произвести осмотр видимой его части без вскрытия грунта. При осмотре оценивается состояние контактных соединений, наличие антикоррозийного покрытия и отсутствие обрывов.Качество сварных швов проверяется простукиванием молотком, а ослабление болтовых соединений — с помощью гаечных ключей. Также во время осмотра нужно убедиться в том, что монтаж заземляющего устройства, сечения заземлителей и заземляющих проводников, монтаж шины ГЗШ и правильность подключения к ней заземляющего проводника и проводников системы уравнивания потенциалов (СУП) соответствуют проекту и требованиям ТНПА. Если при визуальном осмотре не выявились какие-либо замечания и нарушения, то можно приступать к проведению замера. Для этого в «парке приборов» нашей электролаборатории имеется переносной электроизмерительный прибор Ф4103-M1, который включен в Госреестр средств измерений РБ. Межповерочный интервал (МПИ) у него составляет 1 год. Данный прибор применяется для замера сопротивления заземления, удельного сопротивления грунта и активного сопротивления. Принцип его работы основан на компенсационном методе измерения с использованием вспомогательного заземлителя и потенциального электрода (зонда).

Когда нужно проводить измерения сопротивления заземляющего устройства?

Чтобы при измерении сопротивления заземления получить достоверные показания, их необходимо проводить в период наибольшего высыхания (летом в сухую погоду) или промерзания грунта (зимой), т.е. при наибольшем удельном сопротивлении грунта. Если замер проводился в другие погодные условия, то в полученный результат необходимо внести поправочный сезонный коэффициент Кс. Наибольшие допустимые сопротивления заземляющих устройств установлены п.4.4.28.6 ТКП 339, в таблице Б.29.1 ТКП 181.

Заказать услугу вы можете по телефонам: 8(029)1275853 Вел.,  8(029)5577616 МТС

Смотрите так же:

Испытание электрозащитных средств

Техническое обслуживание электрооборудования

замер, проверка, испытания по выгодной цене от Testvolt

Методика работы заземляющих систем

Устройство предназначено для отведения опасности поражением электрическим током человека при появлении напряжения на оборудовании. Тело является отличным проводником, и его противодействие составляет 1000 Ом. 

Поэтому для того, чтобы электричество отходило в сторону (в землю), необходимо намного меньше сопротивляемости. Как правило, по нормам ПУЭ значение не должно превышать 4 Ом. В случае неисправности электрооснащения, например, при появлении пробоя в изоляционном слое, ток может пройти при прикосновении рукой через все тело и дойти до ног. Это в итоге может привести к летальному исходу. Поэтому для предотвращения негативных последствий необходима установка защитной системы. Также следует периодически осуществлять проведение проверки заземления и измерения сопротивления изоляции. 

Как происходит защита человека

Представим ситуацию, что у вас сломалось оборудование. При выходе из строя изолирующего слоя, если вы прикоснетесь рукой за корпус, то почувствуете легкое жжение и покалывание, даже в специальной одежде. Так как мы знаем, что ток течет по пути наименьшего сопротивления, а вы являетесь не самым лучшим проводником, то через тело пройдет меньшее количество энергии, а основная масса отводится в землю. 

В противном случае, когда контур нарушен или неправильно установлен, то ток выбирает путь протекания через тело человека, находящегося между потенциалами грунта и поврежденного электрического оборудования. В итоге такая ситуация может привести к гибели или к серьезным проблемам со здоровьем. Поэтому необходима проверка сопротивления заземлителей и заземляющих устройств. 

Для чего нужны периодические испытания

Ваше оборудование должно выполнять свои функции в полной мере. Для этого исследуют состояние системы защиты при помощи замеров специальным аппаратом – мультиметром. При нормальной работе контура во время возникновения нештатной аварийной ситуации ток будет уходить в грунт по заземляющему проводнику беспрепятственно и равномерно. 

Со временем на металлических поверхностях происходит образование окисной пленки из-за постоянной связи с землей и химически активными веществами. Что, в свою очередь, приводит к коррозии металла. Отслоенные чешуйки мешают нормальному электрическому контакту. Постепенно таких мест становится больше, что ведет к увеличению противодействия, иными словами, к потере электропроводности (ведь отведенные токи проникают в землю недостаточно легко). 

Поэтому в лабораторных условиях необходимо проводить проверку цепи заземления и сопротивления контура, чтобы определить реальное состояние оборудования. Данный процесс предполагает

 точное соблюдение правил и методик для измерения. Процедуру невозможно выполнить самостоятельно в домашних условиях.

Как часто нужны лабораторные испытания и проверка цепи заземления

Услуга производится по заказу. Есть различные ее составляющие:

  • Визуальный осмотр. Каждые 6 месяцев ответственный электрик обязан обследовать приборы на предмет обрывов, повреждений, механических дефектов, сильных загрязнений, окисления контактов или образования коррозии с последующей записью в паспорт технического средства. Если у вас нет штатного специалиста, доверьте процедуру нашей электролаборатории.
  • Методика замеров специальными приборами. Состояние элемента электросети можно проверять летом или зимой, когда почва сильно промерзает.
  • Анализ функционирования высоковольтных линий требуется осуществлять раз в год, а также после ремонта и модернизации.

Почему и как возникают неисправности у защитного устройства

При некорректной работе оборудования ток беспрепятственно протекает по шинам обнуления и поступает на отводящие электроды, а затем от них на потенциал земли.

В грунте содержатся большое количество химически активных веществ (солей, щелочей, кислот). Поэтому при длительном нахождении в агрессивной среде почвы металлические элементы токоотводов постепенно покрываются оксидной пленкой, что приводит к ржавчине. Чешуйки отслаиваются от железа и мешают местному электроконтакту. Через короткое время ненадежных мест становится еще больше, что влечет за собой потерю электрической проводимости. В итоге, защитное устройство теряет свою непосредственную функцию по отводу опасного потенциала в землю. 

Часто в процессе реорганизации производства или переналадки технологии приходится производить манипуляции с оборудованием. Зачастую к безопасности монтажники относятся халатно. Контакт, присоединенный не по нормативам, со временем теряет свои свойства. Что приводит к травмам.  

Методы измерения сопротивления изоляции и заземления

В электролаборатории «Тествольт», применяется несколько способов для выяснения надежности приборов с довольно высокой точностью. Рассмотрим каждый метод более подробно.

Применение профессионального измерительного аппарата – мультиметра

Он необходим для выявления скрытых разрывов в цепи, пропадания контактов. Такая методика позволяет выявить грубые нарушения в работе контура. 

Алгоритм:

  • Проводится оценка напряжения между фазой и «нулем».
  • Измеряется эта же величина по отношению к корпусу.
  • Сопоставляются оба значения.

Если отличия минимальные, то оборудование заземлено. В противном случае это говорит о появившейся проблеме. 

С помощью амперметра и вольтметра 

Измерения сопротивления заземляющих устройств можно условно поделить на проверку целостности подводящих проводников и эффективности контакта «Земля – оборудование». Для контроля второго пункта используется метод вычисления по закону Ома. Для этого необходимо собрать цепь. Между исследуемым контуром и дополнительным соединением на некотором удалении создается напряжение. Ток, инициированный источником, контролируется амперметром. Между тестируемой точкой и зондом делается замер.

Использование спецтехники

Для упрощения работы и исключения вычислительных процессов применяются автоматизированные приборы, выдающие сразу значения в Омах. Принцип функционирования такой же, как мы писали выше.  

Измерения токовыми клещами

Метод позволяет оперативно оценить работоспособность без демонтажа системы и дополнительных электродов. Под рабочим напряжением контуром прибора снимается величина протекающего тока. По закону Ома вычисляются значения. 

Периодичность проверок и измерений сопротивления защитного и рабочего заземления

Операцию проводят, чтобы оценить состояние токоведущих металлических систем. Ведь неисправность влечет за собой поражение человека током и, как следствие, гибель. Поэтому по нормативному предписанию исследования необходимо проводить в четырех случаях. Подробно рассмотрим каждый вид.

Плановые проверки

При установке электрооборудования вы должны прочитать прилагающуюся к ней инструкцию. По нормативам ПУЭ обязаны проводить исследования:

  1. Один раз в шесть месяцев – визуальный осмотр всех видимых элементов конструкции.
  2. Через 6 лет – измерение контура.
  3. Обследование металлического оборудования со вскрытием земли – не реже одного раза в 12 лет. 

Всю ответственность за исследовательские работы берут на себя организации, уполномоченные соответствующими органами. Протокол, подписанный такими электролабораториями, имеет законную силу.

Внеочередные 

Измерение сопротивления изоляции заземляющих устройств и электроустановок проводится после появления нештатных ситуаций, то есть, если были произведены ремонтные работы, внесены технологические изменения в конструкцию во время введения ЗК в эксплуатацию или после аварийного разрушения и последующего восстановления.

Пусковые 

Перед запуском нового оборудования приглашается специалист из электролаборатории, например, из компании «Тествольт». После проверки подписывается акт приемки, на основании которого можно запускать устройство в эксплуатацию.

При каких условиях необходимо проводить обследование

Согласно действующим нормативам ПУЭ испытания возможны только в летнюю сухую погоду. Объясняется тем, что в это время получают наиболее реальные результаты. В дождь показатели будут значительно искажены, так как влажный грунт увеличивает параметры проводимости почвы. 

Приборы для замеров контура заземления и сопротивления заземляющих устройств

До сих пор остаются актуальными аппараты, сделанные несколько десятилетий назад в Советском Союзе: МС-08, М 4116, Ф4103-М1. Сейчас стали использовать усовершенствованные цифровые и микропроцессорные приборы. С их помощью проводятся наиболее точные исследования. Последние вычисления хранятся в карте памяти, что значительно упрощает процесс работы.  

По каким правилам проходят исследования

Любая электролаборатория использует множественные методы, о которых мы расскажем чуть позже. Но стандартная проверка всегда начинается с визуального осмотра болтовых соединений и сварных швов. Далее, проверяется удельная сопротивляемость земли и проводятся замеры заземления. 

Трехпроводный способ 

Прибор подсоединяется к контуру и к двум зондам, вбитых в грунт на определенном расстоянии. Между дальними контактами наводится ЭДС и замеряется ток. В промежутке до ближайшего штыря оценивается падение напряжения. Для этой операции используется специализированное устройство. 

Четырехточечный метод 

Отличается от предыдущего тем, что разность потенциалов измеряется с помощью заземленных электродов на участке между контуром и тестовым зондом.

Способ с токоизмерительными клещами

Этот инструмент позволяет оценить протекающий в проводнике ток без прямого подключения за счет снятия наводок с шины.

Без разрыва цепи

В данном случае клещи дают возможность произвести замер без демонтажа точек соединения.

Способ двух клещей

ЭДС в проводнике можно навести с помощью встроенной катушки. При измерениях один элемент является источником, а второй оценивает величину протекающего тока. По правилам необходимо разнести зонды на расстояние не менее 30 сантиметров для получения корректных данных. 

Формулы расчета

Общая конечная цифра сопротивления вычисляется по закону Ома. Суммирование величин зависит от схемы подключения (параллельная/последовательная) и подчиняется общим физическим принципам.

Амперметр и вольтметр 

Приборы – базовые. С помощью них можно получить точные результаты. Недостатком является необходимость производить простейшие вычисления, и учитывать погрешности.

Проверка в бытовых приборов

Операция сводится к оценке потенциала от фазы к «нулю» и к «земле». Результаты не должны отличаться более чем на 5%. 

В нашей статье мы рассказали о необходимости и способах диагностике защитных систем. Простым выходом для поддержания уровня безопасности является привлечение специалистов. Цена замеров сопротивления контура заземления, измерения растекания тока заземлителя зависит от того, сколько их делалось и в каких условиях. Более подробно можно узнать на сайте.

По каким нормам мы работаем

Основные нормативные документы, которыми пользуются наши сотрудники, – это ПЭУ и ПТЭЭП. Они предлагают формулу для расчета величин противодействия с учетом ряда факторов: количество фаз источника, сила тока, напряжение, расстояние до заземлителя и состояние грунта. Именно поэтому обследования должны проводиться в такую погоду, когда земля обладает лучшим удельным сопротивлением.

Мы работаем только по официальному методу снятия показаний с использованием лучшего современного оборудования. У него высокая точность и результативность, поэтому он дает безошибочный результат.

Этапы нашей работы

Мы приступаем к деятельности сразу после подписания договора с заказчиком. Бригада выезжает на объект и реализует сперва камеральные исследования (на месте), а затем лабораторные.

Вся процедура состоит из следующих фаз:

  1. Изучение документации. По электрической схеме здания уже можно понять многое: каким моментам стоит уделить особое внимание, где максимально возможны допущенные при монтаже ошибки. Также внимательный просмотр чертежей и расчетов определяет последовательность действий.
  2. Визуальный осмотр системы. Все контакты, крепления, соединения исследуются на предмет деформаций, появления коррозии.
  3. Замеры и испытания.
  4. Расчеты и заполнение необходимых бумаг.

В результате вы получаете отчет по проведенной деятельности.

Страница не найдена | MIT

Перейти к содержанию ↓
  • Образование
  • Исследовать
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О Массачусетском технологическом институте
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О Массачусетском технологическом институте
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

Основы контура заземления

Что такое контур заземления?

Контур заземления возникает, когда есть более одного пути заземления между двумя единицами оборудования.В дублированные наземные пути образуют эквивалент рамочной антенны, которая очень эффективно улавливает помехи токи. Преобразование сопротивления свинца эти токи превращаются в колебания напряжения. Как следствие замыкания на землю индуцированные напряжения, заземление в система больше не стабильная потенциал, поэтому сигналы движутся на шуме. Шум становится частью программы сигнал.

Контур заземления — это обычное состояние проводки, при котором ток заземления может проходить по нескольким путям, чтобы вернуться к заземляющему электроду на СЕРВИСНОЙ ПАНЕЛИ.Все компьютеры с питанием от переменного тока подключены друг к другу через заземляющий провод в общей проводке здания. Компьютеры также могут быть соединены кабелями передачи данных. Поэтому компьютеры часто соединяются друг с другом более чем одним путем. Когда существует многолучевое соединение между компьютерными цепями, результирующее устройство известно как «контур заземления». Всякий раз, когда существует контур заземления, существует вероятность повреждения из-за ВНУТРЕННЕГО ЗЕМНОГО ШУМА.

Контур заземления в силовом или видеосигнале возникает, когда некоторые компоненты в одна и та же система получает питание от другого заземления, чем другие компонентов, или потенциал земли между двумя частями оборудования не идентичный.

Обычно разность потенциалов в заземлении вызывает протекание тока. в межкомпонентных соединениях. Это, в свою очередь, модулирует вход схемы и обрабатывается как любой другой сигнал, подаваемый через нормальный входы. Вот пример ситуации, когда два заземляющего оборудования соединены между собой через заземление сигнального провода и заземляющий провод сети. В этой ситуации в проводе течет ток 1А. что вызывает разницу в напряжении 0,1 В между этими двумя устройствами. точки заземления.

Поскольку между электронными приборами существует разность напряжений, сигнал в соединительном проводе видит эту разницу, добавленную к сигналу. Это можно услышать как гудение на проводе, потому что переменный ток привести к тому, что разность напряжений этих потенциалов земли также будет Напряжение переменного тока. Это одна из причин шума 50 или 60 Гц, который вы слышите. в аудиосигнале (или увидеть в видеосигнале раздражающие горизонтальные полосы).

Еще одна проблема — ток, протекающий в заземляющем проводе сигнального кабеля.Этот ток проходит по кабелю и через оборудование. Принадлежащий способ, которым curren parsses не разработан, это может вызвать много шума к оборудованию или другим проблемам (например, зависанию компьютера). Многие дизайнеры рассчитывают на то, что земля будет заземлена, и не оптимизируют их конструкция исключает их чувствительность к шумам от земли. Если вы дизайнер продукта, не забудьте позаботиться о том, чтобы контур заземления ток не вызывает проблем в вашем оборудовании, проектируя правильная схема заземления внутри оборудования.

Почему контур заземления является проблемой?

Контур заземления — распространенная проблема при подключении нескольких аудиовизуальных компоненты системы вместе, есть хорошее изменение, чтобы сделать неприятный контуры заземления. Проблемы контура заземления — одна из самых распространенных проблем с шумом в аудиосистемах. Типичным признаком проблемы с контуром заземления является слышно 50 Гц или 60 Гц (в зависимости от частоты сетевого напряжения, используемой в ваша страна) шум в звуке. Наиболее частая ситуация, когда вы сталкиваетесь с проблемами контура заземления, — это когда ваш система включает оборудование, подключенное к заземленной розетке, и антенная сеть или оборудование, подключенное к разным заземленным розеткам по комнате.

Все подключено к единой электросети, которая обычно подключается к все контакты заземления во всех розетках в одной комнате. Тогда антенная сеть также заземлен к той же точке заземления. Обычно это нормально, поскольку заземления соединены друг с другом только звездообразным образом от центрального заземляющего провода (ведущего к реальной Земле через заземление кабель или металлическая труба) кабели заземления проходят через силовые кабели в оборудование.

Как только вы примете во внимание, что часть вашего оборудования связана с экранированный кабель вы, скорее всего, столкнетесь с некоторыми проблемами.Вполне возможно, что токи могут течь от одной части оборудования в кабель заземления, в другую часть оборудования, а затем обратно в первую часть через экранированный аудиокабель. Эта проволочная петля также может улавливать помехи от близлежащих магнитных полей и радиопередатчиков.

В результате нежелательный сигнал будет усиливаться до тех пор, пока не будет слышно и явно нежелательно. Даже разница в напряжении ниже чем 1 мВ может вызвать раздражающий жужжащий звук в вашей аудиосистеме.

Проблема со слышимым шумом, исходящим от вашей аудиосистемы, когда другой электронные компоненты (холодильник, кулер для воды и т. д.)) может быть результатом загрязненного заземляющего / нейтрального проводника в вашей проводке кондиционера и контур заземления в нашей аудиосистеме. Этот может произойти при включении определенного типа устройств. Обычно их мощность поставки нелинейны и выбрасывают мусор обратно на нейтраль и / или заземляющие проводники. Обычно линейные кондиционеры или устройства ИБП не подходят. что-нибудь, чтобы помочь решить эту проблему.

Распространенные причины проблем с компьютерной системой

Много раз, когда пользователь думает, что его система «плохая» или «испортилась» неисправность имеет электрическую или магнитную природу.Проблемы с монитором очень часто вызваны близлежащими магнитными полями, гармоники нейтрального провода или наведенные / передаваемые электрические помехи. Периодические зависания компьютеров очень часто вызваны: контур заземления, электрическое явление, которое иногда проявляется сам, когда система и ее периферийные устройства неправильно подключены к различных электрических цепей . Многие даже не знают, что их стена розетка правильно подключена и заземлена, что абсолютно необходимо для компьютера и периферийное оборудование для надежной и безопасной работы.

Вы исключили заземление в своей компьютерной системе? Контуры заземления могут вызвать проблемы с подключениями к локальной сети, если не правильно подключен. Контур заземления, вызванный подключением RS-232 к другому компьютеру может вызвать зависание компьютера.

Когда контур заземления не является проблемой

Контур заземления не вызывает проблем при соблюдении всех перечисленных ниже условий. вещь верна:

  • Ни один из проводов контура не пропускает ток
  • Петля не подвергается воздействию внешних изменяющихся магнитных полей.
  • Рядом нет радиопомех

Если в каких-либо проводах есть ток, значит, есть потенциальная разница, которая заставляет ток течь и по другим проводам что вызывает проблемы.Петля также будет действовать как катушка и забирать ток из изменяющегося магнитного поля. поля вокруг него. Проволочная петля также действует как антенна, принимающая радио. сигналы.

О каком размере проблемы разности потенциалов земли идет речь?

В литературе говорится о синфазном шуме от 1 до 2 вольт в «хорошо заземленных» установках и более 20 Вольт в «слабо заземленных» установках. В литературе также говорится о токе, измеряемом в сети. служебное заземление (в большом здании) в амперах.

Откуда эта разница тока и напряжения?

Утечка тока конденсаторов между горячим и заземленным и между нейтралью и землей в течение Например, основные фильтры, вызовите ток в проводах заземления (и контурах заземления). Ток утечки обычно измеряется в миллиамперах (обычно меньше чем 1 мА в компьютерном оборудовании) на одно оборудование. Когда вы подводите итог, может быть, сотни такого оборудования вы легко можете получить в амперах.

Емкость между линией и землей больших нагревателей и двигателей, для Например, может быть намного больше, чем емкость конденсаторов фильтра.Токи от этого источника обычно порядка 1 ампер (а не 0,1 А или 10 А)

Даже очень небольшое индуцированное напряжение может вызвать очень большой ток в контур заземления, потому что сопротивление (и индуктивность) очень низкий. Эти токи действительно могут составлять десятки ампер. Индукция тока может быть вызвана, например, кабелями, по которым проходят большие токи. и от трансформаторов.

На что способны эти заземляющие токи и разность напряжений?

Небольшая разница в напряжении просто приводит к добавлению шума к сигналам.Это может вызвать жужжание звука и помехи для видеосигнала. и ошибки передачи в компьютерные сети.

Более высокие токи могут вызвать более серьезные проблемы, такие как искрение в соединениях, повреждает оборудование и сгорает проводка. Мой собственный опыт в этой области ограничен к искрообразующим разъемам, нагревательным кабелям и поврежденным платам последовательного порта компьютера. Я читал о сгоревших сигнальных кабелях и дымящих компьютерах из-за перепад заземления и вызванные ими большие токи.Так что будьте осторожны об этой потенциальной проблеме и не выполняйте глупых установок.


Томи Энгдал <[email protected]>

Измерители сопротивления заземления | Instrumart

Измерители сопротивления заземления — это класс приборов, предназначенных для проверки сопротивления почвы прохождению электрического тока. Как правило, сопротивление заземления проверяется для определения адекватности заземления электрической системы. Хотя почва обычно плохо проводит электричество, если путь прохождения тока достаточно велик, сопротивление может быть довольно низким, обеспечивая путь для токи короткого замыкания.Это незаменимый компонент безопасной, правильно функционирующей электрической системы.

Как правило, чем ниже сопротивление заземления, тем безопаснее электрическая система. Регулирующие органы устанавливают максимально допустимое сопротивление заземления. Национальный электротехнический кодекс требует, чтобы электрические системы должны иметь сопротивление заземления не более 25 Ом. Управление по охране труда и технике безопасности на шахтах требует, чтобы сопротивление заземления составляло 4 Ом или лучше. Электроэнергетические компании проектируют свои системы заземления таким образом, чтобы поддерживайте сопротивление на больших станциях ниже нескольких десятых ома.

Хотя обилие земли обычно обеспечивает подходящий путь для токов короткого замыкания, ограничивающим фактором в системах заземления является то, насколько хорошо заземляющие электроды контактируют с землей. В Сопротивление поверхности раздела грунт / заземляющий стержень, а также сопротивление заземляющих проводов и соединений необходимо измерять с помощью измерителя сопротивления заземления.

Зачем измерять удельное сопротивление земли?

Зная удельное сопротивление почвы, понимая его влияние и имея возможность «читать» результаты, измерения удельного сопротивления почвы могут предоставить важную информацию по ряду различных Приложения.

Поскольку состав грунта влияет на его удельное сопротивление, измерения сопротивления грунта можно использовать для удобного проведения геофизических исследований под поверхностью. Это позволяет идентифицировать руду местоположения, глубины до коренных пород и других геологических явлений.

Удельное сопротивление почвы также оказывает прямое влияние на степень и скорость коррозии подземных трубопроводов для воды, нефти, газа, бензина и т. Д. Снижение удельного сопротивления обычно связано с к увеличению коррозионной активности.Измерители сопротивления заземления могут помочь выявить эту проблему, а также помочь определить, где необходима катодная защита.

Однако в основном измерители сопротивления заземления используются для проектирования и проверки заземляющих электродов. Правильно установленные заземляющие электроды обеспечивают путь для токов короткого замыкания, вызывая их важные элементы для повышения безопасности, предотвращения повреждений оборудования и минимизации времени простоя. При проектировании системы заземления измерения сопротивления заземления полезны для определения области минимального удельного сопротивления почвы, чтобы обеспечить наиболее экономичную установку заземления.

Системы заземления

«Земля» определяется как проводник, который соединяет электрическую цепь или оборудование с землей. Соединение используется для установления и поддержания максимально возможного потенциала заземлить цепь или подключенное к ней оборудование. Как правило, система заземления состоит из заземляющего проводника, соединительного соединителя, его заземляющего электрода (ов) и земли, контактирующей с электрод.

Есть веские причины, по которым необходимо заземление электрической системы.В первую очередь, заземление обеспечивает безопасный путь для непредвиденного электрического тока, вызванного неисправностями в электрической системе. Путем предоставления пути тока короткого замыкания с низким сопротивлением, заземления способны максимально быстро рассеивать ток — до получения травм персонала или повреждения оборудования.

Есть много типов электрических неисправностей, вызванных множеством проблем. Многие неисправности непродолжительны, часто вызваны ударами молнии или кратковременным контактом, например, с деревом или животным. касаясь провода.Ухудшение изоляции проводов, повреждение грызунами, сломанные изоляторы и неправильная проводка могут вызвать кратковременные или постоянные неисправности.

Поскольку электрические системы становятся все более сложными, а электрические приборы становятся все более чувствительными, хорошее заземление становится как никогда важным для предотвращения дорогостоящих повреждений и простоев. из-за перебоев в работе и неработающей защиты от перенапряжения из-за плохого заземления.

Заземляющие стержни и их соединения подвержены опасностям окружающей среды, таким как высокое содержание влаги, высокое содержание солей и высокие температуры в почве, все из которых могут вызвать разрушение система со временем, потенциально снижая ее эффективность.Системы заземления следует проверять один раз в год в рамках графика профилактического обслуживания.

Измерение сопротивления заземления

Измерители сопротивления заземления — довольно простые инструменты. Как и большинство инструментов, они доступны в различных диапазонах и разных точностях, предлагая при этом целый ряд опций для настройки инструмент к приложению.

Измерители сопротивления заземления обычно доступны в двух стилях. Более традиционный стиль включает в себя колья, которые вставляются в землю с расположением кольев, определяемым тип проводимого испытания на сопротивление.Когда колья прикреплены к устройству с помощью проводов, через один из столбов пропускается ток. Когда ток достигает другой ставки (ей), он измеряется. и сравнивается с генерируемым напряжением, при этом прибор вычисляет и отображает сопротивление системы.

Для более простых измерений сопротивления заземления были разработаны накладные измерители сопротивления заземления, которые позволяют точечно измерять компоненты системы заземления без необходимости настройки. колышки или отсоединение заземляющего стержня.

Факторы, влияющие на удельное сопротивление почвы

Удельное сопротивление окружающей почвы является ключевым компонентом, определяющим, каким будет сопротивление заземляющего электрода и на какую глубину он должен быть установлен, чтобы получить низкое сопротивление заземления. Удельное сопротивление почвы широко варьируется от места к месту из-за различий в составе почвы и факторах окружающей среды.

Удельное сопротивление почвы во многом определяется количеством содержащейся в ней влаги, минералов и растворенных солей.Чем больше их концентрация, тем ниже удельное сопротивление почвы. Наоборот, сухие почвы с небольшим количеством растворимых солей и минералов обладают высоким удельным сопротивлением. Удельное сопротивление почвы с содержанием влаги 10% по весу будет в пять раз ниже, чем у почвы с содержанием влаги 2,5%. Температура почвы также помогает определить ее удельное сопротивление, при этом более высокие температуры приводят к более низкому удельному сопротивлению. Удельное сопротивление почвы при комнатной температуре будет в четыре раза больше. ниже, чем на 32 градуса.

Поскольку влажность и температура оказывают такое прямое влияние на удельное сопротивление почвы, само собой разумеется, что сопротивление системы заземления будет варьироваться, возможно, значительно, от сезона к сезону. время года. Поскольку и температура, и влажность становятся более стабильными на больших расстояниях от поверхности земли, их влияние на удельное сопротивление можно уменьшить, установив заземление. электроды глубоко в землю. Наилучшие результаты достигаются, если заземляющий стержень достигает уровня грунтовых вод.

Методы измерения удельного сопротивления почвы

В зависимости от того, какой аспект системы заземления измеряется, и имеющегося оборудования, в распоряжении техника имеется несколько методов измерения.Каждый различается несколько по сложности, точности и применимости результатов.

Двухточечный метод: Двухточечный метод просто заключается в измерении сопротивления между двумя точками. Два колья помещают в землю, через один проходит ток и измеряют. другим. Разница преобразуется в показание сопротивления. Двухточечные тесты обычно используются в городских условиях, где правильное размещение вспомогательного электрода может быть затруднено из-за препятствия.Измерения производятся относительно хорошего местного заземляющего проводника.

4-точечный метод: В большинстве случаев метод 4-точечного тестирования является наиболее точным методом измерения удельного сопротивления почвы. Как следует из названия, 4-балльный метод предполагает размещение четырех тестов. колья в земле, в линию и на равном расстоянии. Между внешними электродами пропускается известный ток от генератора постоянного тока. Падение потенциала (функция сопротивления) равно затем измеряется на двух внутренних электродах.

Измерение удельного сопротивления по 4 точкам следует проводить до фактической установки системы заземления. Этот тест сообщает инженеру, где находится наиболее проводящий грунт и на какой глубине это происходит.

Метод падения потенциала (3 точки): Для метода падения потенциала заземляющий электрод отключается от электрической системы и подключается к тестеру. Два Тестовые стержни вставляются в землю линейно на равном расстоянии от заземляющего электрода.Генерируется и применяется известный ток, и измеряется результирующее сопротивление. В внутренний кол затем перемещается в любую сторону с приращениями с измерениями, сопровождающими каждое перемещение. Когда эти дополнительные измерения согласуются с исходным измерением, расстояния между тремя точками считается правильно расположенными, и удельное сопротивление может быть определено путем усреднения результатов. Метод падения потенциала лучше всего подходит для существующих наземных систем, которые не покрыть большую площадь.

62% Метод: Метод 62% представляет собой разновидность метода падения потенциала и подходит для областей, которые считаются слишком большими для измерений падения потенциала. В то время как с Метод падения потенциала: стойки размещаются равномерно и регулируются, чтобы найти оптимальное положение, при методе 62% внутренняя стойка размещается на 62% расстояния между заземляющим электродом. и внешний кол. При приложении напряжения разность потенциалов между кольями преобразуется в показание сопротивления.

Метод выборочного тестирования / с зажимом: Измерители сопротивления заземления с зажимом позволяют проводить испытания без отключения заземления, что делает их очень удобными для проверки соединения и общие сопротивления соединений систем заземления. Это позволит проверить целостность отдельных заземлений и определить, что потенциал заземления является равномерным по всей заземляющей поверхности. система.

На что следует обратить внимание при покупке измерителя сопротивления заземления:

  • Какой тип теста больше всего подходит для вашего приложения?
  • Какие аксессуары (электроды, колья) потребуются?
  • Требуется память или связь?
  • Какой диапазон измерения желателен?
  • Требуются ли утверждения агентств или экологические рейтинги?

Если у вас есть какие-либо вопросы относительно измерителей сопротивления заземления, не стесняйтесь обращаться к одному из наших инженеров, отправив нам электронное письмо по адресу sales @ instrumart.com или по телефону 1-800-884-4967.

Выявление и снижение обратной связи контура заземления

Краткое введение

Большинство рабочих уже знают, что правильное заземление является основной мерой безопасности для всех видов электрического оборудования. Однако менее известно, что, хотя заземление может предотвратить и решить многие проблемы с питанием, оно также может создавать серьезные проблемы сами по себе.

Одна из наиболее распространенных проблем известна как обратная связь контура заземления — электрическое явление, часто возникающее, когда различные электрические цепи питают систему и ее периферийные устройства.Это также может быть сезонной проблемой, так как горячие сухие температуры могут вызвать обратную связь контура заземления, поэтому специалисты по приложениям в CAS DataLoggers составили это краткое введение по этому вопросу.

Для получения более подробной информации, включая решения по устранению неисправностей электрических явлений, позвоните в CAS DataLoggers по телефону (800) 956-4437 или запросите дополнительную информацию.

Разъяснение обратной связи контура заземления

Обратная связь по контуру заземления — это часто встречающаяся проблема с проводкой, возникающая, когда два или более подключенных электрических устройства получают доступ к более чем одному пути к земле.Вместе пути заземления образуют петлю, по которой проходит непреднамеренный ток. В свою очередь, сопротивление преобразует эти токи в колебания напряжения, которые вызывают шум сигнала из-за нестабильности заземления системы, что искажает программные сигналы устройств.

Независимо от того, используются ли разные защитные заземления или защитное заземление и заземление, пользователи заметят эту обратную связь в виде экранных полос, гудящих / гудящих звуков, а также отключений или разрывов в компьютерах и их передаче данных — это обычно наблюдается в A / V приложений и сетевых компьютеров.Пользователи, собирающие данные, часто обнаруживают, что их показания и данные становятся неточными из-за шума сигнала.

Это может даже привести к катастрофе, поскольку многие предприятия в значительной степени полагаются на свои измерительные системы для мониторинга оборудования, качества продукции, тестирования и т. Д., Однако контуры заземления часто не исследуются при поиске и устранении неисправностей и в равной степени игнорируются как фактор во многих установках, возникающий позже, когда здания расширить и / или добавить больше заземленных соединений.

Естественно, компьютеры, регистраторы данных и системы сбора данных часто соединяются друг с другом более чем одним путем: все компьютеры с питанием от переменного тока подключаются друг к другу через заземляющий провод в общей проводке здания.Компьютеры также могут быть соединены кабелями передачи данных. Все эти многолучевые соединения между компьютерными цепями образуют контуры заземления, и всякий раз, когда контур заземления существует, существует вероятность повреждения из-за межсистемного шума заземления.

Например, на предприятии есть автоматический выключатель с медным экранированным кабелем, который прикреплен к стержню в земле. На этом заземляющем проводе не должно быть сопротивления и падения напряжения. Однако поблизости есть еще один автоматический выключатель с собственным заземлением, и благодаря этому новому пути на заземляющем проводе теперь есть сопротивление.Это создает падение напряжения на выходе, поскольку заземление цепей не имеет надлежащего потенциала, и цепи больше не изолированы. Это вызывает обратную связь контура заземления, которую рабочие в здании заметят в виде проблем с аудио / видео, потери данных и т. Д.

Обратная связь по контуру заземления все чаще представляет угрозу для промышленных процессов, учитывая чувствительность нового электрического оборудования. Например, более поздние приводы переменного тока (например, те, которые используются в двигателях переменного тока) имеют очень избирательный входной каскад, особенно при возникновении любого вида шума в линии.В этих случаях накопители могут испытывать ошибки или даже перегорать. В этих случаях пользователи могут обнаружить, что обширное заземление необходимо только для одной единицы оборудования.

Диагностика обратной связи контура заземления

Этот тип обратной связи особенно распространен, поскольку заземление необходимо в качестве меры предосторожности от поражения электрическим током, но у конечных пользователей есть дополнительная потребность в максимально возможном снижении электронных шумов, используя заземление для сдерживания помех сигнала.

Это означает, что на практике хорошее заземление часто является балансирующим действием.Между каждой точкой заземления всегда существует определенное сопротивление электрическому току (на которое влияют влажность, температура, периферийные устройства и т. Д.), Поскольку ничто не заземлено идеально. Когда ток течет, это сопротивление позволяет электрическому напряжению проходить между этими точками заземления, увеличивая обратную связь.

Контуры заземления чаще всего возникают в заземляющих проводниках электрического оборудования, если две или более цепи имеют общий провод или путь тока.Например, вы, вероятно, столкнетесь с обратной связью контура заземления, когда ваша система включает оборудование, подключенное к разным заземленным розеткам в одной комнате. Таким образом, слаботочная проводка также особенно чувствительна к помехам.

Снижение шума сигнала

Для предотвращения обратной связи контура заземления необходима хорошая схема заземления. Фактически, проблемы с проводкой и заземлением составляют большую часть всех проблем с качеством электроэнергии, связанных с аудио / видео устройствами и другим электронным оборудованием.

Перед установкой оборудования важно найти любые неправильно заземленные розетки или проводку и убедиться, что они правильно заземлены. Как всегда, постарайтесь уменьшить или удалить близлежащие радиочастотные помехи.

Проблема контура заземления может возникнуть в нескольких точках системы, и каждое возникновение проблемы необходимо устранять индивидуально. Ни производитель, ни установщик системы обычно не могут предсказать, где возникнет петля, потому что только после установки можно определить, возникнет ли проблема.

Хотя это правда, что заземление никогда не бывает полностью свободным от шума, проблемы с контуром заземления можно исправить и избежать; однако это может быть многоэтапное мероприятие. Контур заземления не создаст заметной обратной связи, если провода в контуре не пропускают ток, хотя это может быть невозможно при данной схеме. Если по данному проводу течет ток, он будет течь по другим проводам, и ток может попасть в контур из соседних флуктуирующих магнитных полей, поэтому следует соблюдать осторожность, чтобы избежать этого.Ток также может протекать через сами электронные устройства через их кабели.

Предотвращение замыкания на землю

Вы можете предотвратить образование контуров заземления, отправив все сигнальные заземления в одну и ту же точку. Если необходимо использовать более одной точки заземления, сигнал должен быть изолирован с одной стороны и заземлен от своего соседа (ов). Экранированные кабели можно использовать для малых токов.

Что касается вашего оборудования, многие производители устройств разработали свои системы для использования с хорошим заземлением, поэтому их системы не так хорошо работают с входящим током и сопутствующим шумом, как в противном случае.Поэтому пользователи могут столкнуться с помехами и / или отключениями оборудования, хотя дифференциальные сигналы будут менее подвержены шумам. Если у вас есть устройства с высокими требованиями к мощности, устанавливайте их рядом с источником питания. При работе с приложениями системы сбора данных / сбора данных полезно выбрать регистратор данных с гальванически изолированными входами, которые менее уязвимы для улавливания шума земли.

Сводка

Как установщики, так и конечные пользователи должны учитывать обратную связь контура заземления во время установки и эксплуатации, чтобы предотвратить шум сигнала и последующее устранение неисправностей.Хотя этот источник обратной связи является распространенным и трудноразрешимым, его можно устранить, используя хорошо спроектированную систему, надлежащее заземление / проводку и расположение объекта. Пользователи, принимающие эти меры предосторожности, должны обнаружить, что их системы улавливают гораздо меньше шума и собирают более точные данные с более плавной передачей.

Для получения дополнительной информации о решениях по устранению неполадок обратной связи контура заземления или для поиска решения для конкретных потребностей вашего приложения, свяжитесь со специалистом по приложениям CAS DataLoggers по телефону (800) 956-4437 или запросите дополнительную информацию.

контуров заземления

контуров заземления

[Home] [ Вверх]

Ground Loops Radio Оборудование

Контуры заземления Транспортные средства

Контуры заземления Аудио Системы

Как заземлить Петли возникают (технические)

Автостоянки и Заземление

Примечание. обсуждение применяется только к основаниям внутри платформы или системы.Оно делает не применяется к кабелям или проводке вне здания, где повреждение светом или другие скачки напряжения вызывают беспокойство.

Проблемы контура заземления обычно возникают, когда соединительные порты заземлены к пунктам, работающим с перепады напряжения. Разница напряжений обычно возникает из-за высоких токов. на другом заземленном пути. Проблемные перепады напряжения обычно возникают из-за падение напряжения вдоль Сильноточный провод, заземленный с обоих концов на общую землю.Это может создают разность потенциалов вдоль пути заземления сигнального провода, и это напряжение передается в чувствительную схему.

Нежелательное взаимодействие, которое мы называем «контур заземления», обычно является непреднамеренным результат плохой техники подключения, плохого планирования порта источника или нагрузки или сочетание всего.


Примечание: «Порт» по определению подключение входа или выхода сигнала, обычно через гнездо, соединитель или терминал полоска. «Порты» — это точка соединения, где соединительный провод или кабель входит или выходит Устройство.

Использование шины заземления вдоль стола не вызывает «заземления». петля ». Замена проводов на звезду или прокладка отдельных заземляющих проводов на дальние общая точка, как и стержень, не исправляет контуры заземления. Несколько заземляющих проводов в далекую точку не исправьте контуры заземления или радиопомехи, кроме как по чистой случайности. Длинные изолированные заземляющие провода от оборудования на столе до общего места вне рабочего стола, например, удочка, не годится наука.

Низкая частота оборудования или контуры заземления постоянного тока вызваны мощностью падение напряжения на кабеле и отсутствие использования одноточечного заземления на одном конце пути.RFI вызваны синфазным RF на антенных кабелях или нарушение целостности экрана. Более короткий и более низкий путь заземления сопротивление между оборудованием в одной точке, тем лучше! Исключение составляет как правило, любой сильноточный источник питания или нагрузка. Сильноточные источники или нагрузки в целом НЕ должен быть привязан к наземная шина более чем в одной точке. Что-то вроде сильноточной мощности Отрицательный провод питания должен быть заземлен только со стороны оборудования. В идеале отрицательная шина должна плавать на источнике питания, но должна иметь предохранительный зажим, который это высокий импеданс при нормальных условиях при ограничении отрицательной клеммы поднимаются при неисправностях.

С за исключением сильноточного источника питания с заземленным отрицательным полюсом, который должно быть заземлено непосредственно на сильноточное оборудование, которое оно обслуживает, и только на том оборудовании, которое оно обслуживает. Самый короткий путь с наименьшим сопротивлением между оборудованием всегда является лучшим. Этот обычно требует наличия тяжелой заземляющей шины с низким сопротивлением и короткой гибкой плетеные провода, соединяющие настольное оборудование с этой настольной шиной.

Отрицательный вывод предохранители на оборудовании — тоже вообще плохая идея, но мы видим это повсюду.Из-за плохих инструкций по подключению потребовались предохранители с отрицательным выводом!

Современные автомобили используют микропроцессорную систему для изучения многих аспекты состояния двигателя. Процессор считывает внешние датчики и, используя эти данные, вычисляет время зажигания, топливо форсунка открывает окна, включает насосы и вентиляторы, управляет системой рециркуляции отработавших газов, регулирует двигатель холостой ход и множество других функций. Несколько датчиков сообщают компьютеру множество различных параметров включая положение дроссельной заслонки, втекающую в двигатель воздушную массу, охлаждающую жидкость температура, барометрическое давление, содержание кислорода в выхлопных газах, положение коленчатого вала, и другие параметры.Разница между подачей топлива на 15 лошадиных сил или подача топлива на 500 лошадиных сил может быть менее 3 вольт, на некоторых датчики! Изменение на десятые доли вольта может значительно изменить критические параметры двигателя, и изменения датчика в сотых долях вольта могут существенно изменить смесь. количество. Эта чувствительность к относительно небольшим изменениям напряжения датчика является корнем Проблемы с контуром заземления системы управления двигателем. ключ к правильному управлению сложными функциями. читает датчики низкого напряжения с высоким сопротивлением, обычно работающие в диапазоне от нуля до пять вольт, точно.Шум может особенно повлиять на точность чувствительной синхронизации. функции.

Повреждение оборудования может произойти из-за проблемы с контуром заземления. Из-за плотного Упаковка и миниатюрная конструкция, современная электроника использует небольшие проводники (следы фольги) и компоненты. Контур заземления может расплавить следы фольги, повредить полупроводники или микросхемы или разрушить малые резисторы. Контур заземления может вывести из строя дорогую электронную систему за доли секунды. второй. Хуже того, контур заземления, влияющий на дозирование топлива или время зажигания, может разрушить двигатель.

Мои проблемы с Послепродажная система EFI — хороший пример того, что ошибка контура заземления угрожает ресурс двигателя.

Высокая чувствительность к малым уровням напряжения лежит в основе шум или гудение контура заземления звука.

Второстепенная проблема — повреждение оборудования. Из-за плотного упаковка, современная аудиоэлектроника часто использует небольшие проводники из фольги и текущие чувствительные компоненты. Полупроводники малой мощности могут быть непоправимо повреждены под действием нескольких вольт или нескольких тысячных долей напряжения. амперный ток.Как и в случае с домашними компьютерами и автомобилями, контур заземления может расплавить следы фольги, повредить полупроводники или микросхемы или разрушить небольшие резисторы или конденсаторы. Дорогой аудиокомпонент может быть испорчен доли секунды.

На заре работы в сфере радиовещания наземные пути между различными частями аудиооборудования были изолированы. Инженеры заземлили щиты на симметричных линиях в одной точке пути, обычно на терминалах входного порта. Экраны на несимметричных линиях, если оборудование не было смонтировано в той же стойке, были с одной стороны плавает изолирующим трансформатором.

Единственными общими соединениями шасси были провода питания, радио частотные основания и основания безопасности. Заземляющие экраны аудио или сигналов низкого уровня были всегда изолирован от шасси или заземления на одном конце. Это было универсально верно для всех низкоуровневых сигнальные линии. Изоляция предотвратила нежелательные сигналы контура заземления, обычно выглядящие как гул или шум, из-за фоновый мусор. Было очень плохой практикой балансировать и заземлять шасси постоянного тока. несбалансированные линии, особенно линии с экранами толщиной менее нескольких толщин кожи или чрезмерно резистивные экраны более чем в одной точке кабельной трассы.

Низкоуровневые аналоговые измерения и сигнальные заземления также нарушены землей петли. Как правило, по крайней мере один конец участка должен быть независимым от земли или земля изолирована. Это предотвратит нарушение критического сигнала контурами заземления. напряжения и выдача ложных показаний.

Самый простой контур заземления показан ниже:

Если мы рассмотрим систему постоянного тока с «A» как источник и «B» в качестве нагрузки, напряжение «C» подтолкнет «B -» вверх на.5 вольт. Это означает, что разница между плюсом и минусом «B» будет 2,5 вольта.

И наоборот, если «B» был источником 2,5 В, а «A» нагрузка, «C» подтолкнет «A -» к более отрицательному значению, а разница «A» между + и — будут 3 вольта.

Вот почему мы должны быть уверены, что ничто не заставляет внешнее напряжение на заземляющем проводе. Единственный способ исключить возможность заземления петля, нарушающая чувствительное напряжение или даже вызывающая повреждение, будет плавать один или оба конца системы полностью заземлены.По крайней мере, один конец, либо конец источника или конец нагрузки должен быть в дифференциальном режиме. «Дифференциальный» означает только разность напряжений между + и -, а не внешнее источник. Если поместить один конец в дифференциал, он будет выглядеть так:

В приведенном выше случае «B -» будет иметь единственный точка заземления. В точке «А -» не могло быть земли. Незаземливание любого конца отрицательный, и создание дифференциала нагрузки или источника устраняет контур заземления.

Решение проблемы с контуром заземления с помощью заземляющего проводника больше — это, как правило, не лучший способ что-то делать, хотя, безусловно, помочь за счет уменьшения падения напряжения (уменьшения сопротивления тракта).Проблема в том, что кондукторы, какими бы большими они ни были, всегда есть неизбежное падение напряжения с током. Это падение напряжения определяется законом Ома, где ток, умноженный на сопротивление, — это падение напряжения на пути тока. Если проводник передает высокочастотные сигналы, проблема осложняется сопротивлением и эффекты стоячей волны. Для большинства систем аудио, питания и управления мы можем просто рассмотреть сопротивление. Для более высоких частот или резко возрастающих форм волны (например, зажигания системные импульсы), мы должны учитывать реактивные части импеданса проводки.

Системы со смесью больших токов и чувствительных линии нижнего уровня доставляют гораздо больше хлопот, чем другие системы. Сильные токи могут легко создавать перепады напряжения, которые составляют значительную часть низкого сигнала уровни. Когда системы высокого и низкого уровня имеют общую основу, текущее падение напряжения по заземляющей или нейтральной проводке может передаваться на другие наземные пути. Это передает часть высокого тока в низкий система уровней.

В схемах ниже, даже с тысячными долями Ом сопротивление проводника и соединения, сильноточная цепь заземления Падение на 1/10 вольт.Сигнальный провод, даже с проводом гораздо меньшего размера, имеет только падение на несколько милливольт. Это потому, что ток нагрузки очень низкий.

Давайте рассмотрим несколько основных несбалансированных систем. В этих схемах:

R1 — R4 сигнальный провод и сопротивления соединений
R5 индикатор или сопротивление нагрузки
R6 Сильноточная нагрузка
R7-R10 Сопротивление проводника сильноточной нагрузки
VS1 Источник сигнала
VS2 Источник для сильноточной нагрузки

В системе ниже мы видим, что напряжение сигнала не зависит от чего-либо, кроме небольшое падение напряжения в сигнальных проводниках.Нет тока нагрузки большой мощности и нет контура заземления.

В системе ниже общий провод заземления между верхней и нижней нейтралью. был добавлен в левом конце. Мы видим, что на напряжение сигнала ничего не влияет, кроме небольшое падение напряжения в сигнальных проводниках. Нет контура заземления и нет высокого сила тока нагрузки. Датчик низкого уровня считывает только 0,004 вольт от источник.

В системе ниже мы видим, что напряжение сигнала не зависит от чего-либо, кроме небольшое падение напряжения в сигнальных проводниках.Ток нагрузки в R6 составляет 118 ампер, но ток не влияет на напряжение сигнала, потому что заземление сигнала у свинца только одно основание точка. Нет контура заземления.

В системе ниже мы видим, что напряжение сигнала сильно зависит от высокого текущая нагрузка. Это потому, что в вышеупомянутой системе есть контур заземления. Сигнал провод заземлен с каждого конца.

В системе ниже тяжелая заземляющая шина с очень низким сопротивлением была добавлена ​​в попытаться уменьшить сопротивление шасси или нейтрального тракта.Хотя снижается, напряжение сигнала остается под влиянием падения напряжения в верхнем токопроводы. Этот пример демонстрирует, почему лучшее исправление — избегать контуров заземления, вместо того, чтобы пытаться уменьшить количество контуров заземления за счет лучшего заземления между точками заземления системы.

Автостоянка в Типичные легковые автомобили unibody — это особая ситуация. Механический строительные методы, которые делают платформу жесткой, также работают, чтобы сформировать большой тракт заземления шасси большой площади с очень низким сопротивлением.Сварная оболочка образует заземляющий провод с очень низким сопротивлением и является отличным местом для обычных заземление для сигнального и силового заземления. Хотя это и не нулевое сопротивление, Оболочка тела — самое близкое к нему. Использование четырехпроводного измерения сопротивления Мой Мустанг 1989 года измеряет менее 0,002 Ом от заземления задней батареи. к земле рельса рамы переднего внутреннего крыла. Это приблизительный эквивалент 15 футов медного провода и разъемов AWG № 0. Большая часть этого сопротивления концентрируется вокруг клемм заземления (до того, как ток сможет распространение), а не по пути тела.Если я улучшил точки подключения, я может значительно снизить то небольшое сопротивление, которое сейчас имеет моя система. Это не совсем необходимо, поэтому я не заморачивался.

Нет смысла запускать тяжелый медный минус от двигатель к батарее, когда шасси уже есть и корпус, включая потери при случайном подключении, имеет меньшее сопротивление, чем хорошо сделанный кабель.

Пример пути заземления сопротивление:

Сопротивление любого однородного проводника обратно пропорционально площади поперечного сечения и прямо пропорционально к удельному сопротивлению и длине.Проще говоря, если мы удвоим крест площадь сечения проводника мы разрезаем сопротивление (и падение напряжения) в половина. Если мы удвоим длину, мы удвоим сопротивление и удвоим падение напряжения.

Медный провод номер 1 AWG имеет эффективный диаметр около 0,3. дюймы. Площадь круга равна пи * р в квадрате. У этого провода был бы крест площадь сечения около пи * 0,15 * 0,15 = 0,071 квадратного дюйма.

Предположим, что толщина стального корпуса составляет около 16 калибра, или около 0,06. дюймов толщиной.Площадь в один фут будет иметь 12 * 0,06 = 0,72 кв. дюймы площади поперечного сечения. Физическое сечение около десяти раз больше, чем площадь поперечного сечения медного провода.

Удельное сопротивление стали около 15 Ом на 10-6 см. В удельное сопротивление меди 1,7 Ом на 10-6 см. Мы можем разумно предположить сталь имеет примерно 15 / 1,7 = 8,8-кратное сопротивление меди для того же длина и одинаковая площадь поперечного сечения. В то время как оболочка корпуса выше материал удельного сопротивления, тело также имеет гораздо большее поперечное сечение область.

Это означает длину стального корпуса шириной в один фут, если этот корпус имеет толщину всего 0,06 дюйма, сопротивление примерно на 10% меньше, чем у аналогичного длина пути через медный провод. Легко понять, почему наземный путь через кузов автомобиля, который, вероятно, несколько футов шириной и намного толще во многих областях это малая часть сопротивления медного провода.

Площадь поддона пола шириной четыре фута и толщиной всего 0,06 дюйма, будет иметь поперечное сечение около 2.88 квадратных дюймов. Эквивалент медный проводник должен быть 2,88 / 8,8 = 0,327 квадратных дюйма, или диаметр = 2 * квадрат A / pi, или 0,645 дюйма в диаметре! Сопротивление тонкой стальной напольной поддона шириной 4 фута с медный кабель требует кабеля больше 4/0, а у нас даже нет рассчитывал на помощь каркасных реек, рокеров или дорожек на крыше!

Давайте посмотрим, почему Ford сделал систему определенным образом и как схемы могут вводить в заблуждение.Это схема отрицательного вывода аккумуляторного кабеля. Фокс Мустанги:

Правильная схема вышеуказанного:

В системе, описанной выше, отрицательный вывод EEC не заземлен на отрицательный полюс аккумуляторной батареи. Отрицательный EEC фактически подключается к шасси автомобиля рядом с пусковым реле, где он имеет общую точку заземления шасси с отрицательной клеммой аккумулятора. Основания как это работает только тогда, когда аккумулятор установлен спереди и сделан точно так, как изначально сделано.Эта система приемлема, потому что:

1.) Изначально Мустанг имел довольно низкое потребление тока от система зарядки.

2.) Заземлил блок от головы до файрволла.

3.) Очень короткий и тяжелый провод аккумуляторной батареи был надежно подключен. к блоку.

Схема альтернативного метода для передней батареи во избежание контуров заземления:

Задняя батарея для предотвращения опасности возгорания контура заземления и заземляющего провода:

Соединения отрицательного полюса аккумуляторной батареи:

С аккумулятором на задней панели нет причин долго работать отрицательные выводы от ничего до аккумулятора.Исключение составляют определенные устройства зоны багажника с плавающей площадкой, например, топливные насосы или другие электродвигатели. Это предполагает цельный автомобиль или раму большой площади. со сварной конструкцией в качестве шины заземления. В Европе основания для отрицательные клеммы АКБ для средств связи запрещены из-за пожара и угрозы безопасности.

Устройство с аккумулятором сзади Всегда допустимо до нег пост Допустимо, но часто нежелательно Никогда не допустимо до отрицательного сообщение
Усилитель с минусом, общим с корпусом и домкраты Х
Усилитель с минусом с плавающей запятой шкаф и домкраты Х * Х **
Электродвигатель или насос с изолированным земля Х * Х **
Блок зажигания с общим минусом корпус или другие провода Х
Инвертор мощности с отрицательным общим выводом к жилью и торговым точкам Х
Инвертор мощности с минусом изолирован от шкафа и домкратов Х
Радиосистема, включая стереосистемы и системы двусторонней связи с общим минусом шкаф и домкраты Х
Радиосистема, включая стереосистемы и системы двусторонней связи с минусом, изолированным от шкафа и гнезд Х * Х *

* если рядом с аккумулятором ** если далеко от аккумулятор

С аккумулятором на передней панели, надежные заземляющие устройства вообще может быть подключен к минусовой батарее практически любым удобным вам способом.

Устройство, с аккумулятором спереди Всегда допустимо до нег пост Допустимо, но обычно нежелательно Никогда не допустимо до отрицательного сообщение
Усилитель с общим минусом к шкафу и домкраты Х
Усилитель с минусом с плавающей запятой шкаф и домкраты Х * Х **
Электродвигатель или насос с изолированным земля Х
Блок зажигания с минусовой общей к корпусу или другим выводам Х
Инвертор мощности с отрицательным общим выводом к шкафу и розеткам Х
Инвертор мощности с минусом изолирован от шкафа и домкратов Х
Радиосистема, включая стерео и двустороннюю с общим минусом к шкафу и гнездам Х
Радиосистема, включая стерео и двустороннюю с минусом, изолированным от шкафа и гнезд Х

Тестеры заземления | Тестеры сопротивления заземления

Почему выбирают тестеры заземления AEMC

® ?

Мы знаем, что для вас очень важно иметь возможность правильно измерять сопротивление заземления, чтобы предотвратить дорогостоящие простои из-за перебоев в обслуживании из-за плохого заземления.Вот почему мы предлагаем один из самых больших выборов простых в использовании тестеров сопротивления заземления.

Пионеры инноваций

Мы первыми начали использовать испытание сопротивления заземления с помощью зажимов, и мы регулярно пересматриваем и улучшаем характеристики наших инструментов, поэтому вы можете ожидать, что тестеры сопротивления заземления AEMC будут самого высокого качества, наиболее полным комплектом и самым простым способом узнать о обеспечить целостность заземления.

Наши революционные клещи для измерения сопротивления заземления сэкономят ваше время и деньги благодаря возможности измерять сопротивление без отключения системы заземления.

Мы разработали и представили единственный наземный тестер, способный тестировать опоры электропередачи под напряжением (модель 6472). Он также может проверять сопротивление заземления отдельных опор опоры ЛЭП (а также общее сопротивление) без отсоединения воздушного провода заземления.

Самый широкий выбор приборов для измерения сопротивления заземления

Выполняете ли вы упрощенное двухточечное, более полное трех- или четырехточечное испытание падения потенциала, испытание удельного сопротивления грунта или испытание потенциала прикосновения, в AEMC ® найдется подходящий прибор для вашего применения.

Аккредитованные семинары по испытаниям сопротивления заземления

Наши специалисты понимают процессы испытаний на сопротивление заземления, указанные в стандарте IEEE № 81. Мы хотим, чтобы вы тоже понимали это с уверенностью. Мы проводим аккредитованные однодневные семинары по техническому обучению сопротивлению грунту по всей стране. Наш курс, состоящий из группового и полевого обучения, предоставит вам всю информацию, необходимую для понимания правильного определения размеров и тестирования систем заземления.

Частные семинары и демонстрации

Мы также предлагаем индивидуальные частные семинары.Есть вопросы о том, как использовать тестеры сопротивления заземления AEMC®? Мы рады провести демонстрацию с нашими техническими экспертами. Свяжитесь с нами по телефону (800) 343-1391 или напишите нам по адресу [email protected]

Техническая поддержка

Наши специалисты доступны для поддержки на местах лично или по телефону, пока вы находитесь на рабочем месте.

AEMC обеспечивает полную техническую поддержку по горячей линии 800-945-2362 (доб. 351), поговорите напрямую с одним из членов нашей группы технической поддержки. Или отправьте вопросы о токоизмерительных клещах по электронной почте в нашу техническую команду techsupport @ aemc.com

Проверка сопротивления заземления может улучшить время безотказной работы

Автор: Джит Патель

Электрические системы должны быть заземлены, чтобы в случае удара молнии или перенапряжения в электросети ток нашел безопасный путь к земле. Заземляющий электрод обеспечивает контакт между электрической системой и землей. Чтобы обеспечить надежное соединение с землей, в электротехнических правилах, технических стандартах и ​​местных стандартах часто указывается минимальное сопротивление заземляющего электрода.

Плохое заземление может привести к простоям в электрических, кабельных и телекоммуникационных сетях. Кроме того, отсутствие хорошего заземления опасно и увеличивает риск выхода оборудования из строя. Без эффективной системы заземления мы могли бы подвергнуться риску поражения электрическим током, не говоря уже о приборных ошибках, проблемах гармонических искажений, проблемах с коэффициентом мощности и множестве возможных прерывистых дилемм. Если токи короткого замыкания не имеют пути к земле через правильно спроектированную и обслуживаемую систему заземления, они обнаружат непредусмотренные пути, которые могут затронуть людей.

Из-за важности заземления Международная ассоциация электротехнических испытаний предписывает проводить испытания заземляющих электродов каждые три года для системы в хорошем состоянии со средними требованиями к работоспособности. Кроме того, у этих организаций есть рекомендации и / или стандарты по заземлению для обеспечения безопасности:

  • OSHA (Управление по охране труда)
  • NFPA (Национальная ассоциация противопожарной защиты)
  • ANSI / ISA (Американский национальный институт стандартов и приборное общество Америка)
  • TIA (Ассоциация телекоммуникационной индустрии)
  • IEC (Intl.Электротехническая комиссия)
  • CENELEC (Европейский комитет по электротехнической стандартизации)
  • IEEE (Институт инженеров по электротехнике и электронике)

Зачем тестировать системы заземления?

Со временем коррозионные почвы с высоким содержанием влаги, высоким содержанием соли и высокими температурами могут разрушить заземляющие стержни и их соединения. Таким образом, хотя система заземления при первоначальной установке имела низкие значения сопротивления заземления, сопротивление системы заземления может увеличиться, если заземляющие стержни проржавели.

Тестеры заземления — незаменимые инструменты для поиска и устранения неисправностей, помогающие поддерживать время безотказной работы. С неприятными, периодически возникающими электрическими проблемами проблема может быть связана с плохим заземлением или плохим качеством электроэнергии.

Вот почему настоятельно рекомендуется проверять все заземления и заземляющие соединения не реже одного раза в год в рамках обычного плана профилактического обслуживания. Если во время этих периодических проверок измеряется увеличение сопротивления более чем на 20 процентов, техник должен исследовать источник проблемы и внести коррекцию, чтобы снизить сопротивление, заменив или добавив заземляющие стержни в систему заземления.

Почему заземление?

Национальный электротехнический кодекс США (NEC) указывает две основные причины для заземления объекта:

  • Стабилизируйте напряжение относительно земли во время нормальной работы.
  • Ограничьте рост напряжения, вызванный молнией, скачками напряжения в сети или непреднамеренным контактом с линиями высокого напряжения.

Ток всегда найдет путь с наименьшим сопротивлением и вернется к своему источнику, будь то сетевой трансформатор, трансформатор на объекте или генератор.Между тем молния всегда найдет способ добраться до земли.

В случае удара молнии в линии электропередач или в любом месте рядом со зданием заземляющий электрод с низким сопротивлением поможет передать энергию в землю. Системы заземления и соединения соединяют землю возле здания с электрической системой и строительной сталью. При ударе молнии объект будет иметь примерно такой же потенциал. Поддерживая низкий градиент потенциала, ущерб сводится к минимуму.

Если электрическая линия среднего напряжения (более 1000 В) входит в контакт с линией низкого напряжения, на близлежащих объектах может возникнуть резкое перенапряжение.Электрод с низким импедансом поможет ограничить повышение напряжения на объекте.

Заземление с низким импедансом также может обеспечить обратный путь для переходных процессов, генерируемых электросетью.

Тестеры заземления и принцип их работы

Существует два типа тестеров сопротивления заземления: трех- и четырехточечные тестеры заземления и зажимные тестеры заземления. Оба типа подают напряжение на электрод и измеряют результирующий ток.

Трехполюсный или четырехполюсный тестер заземления сочетает в себе источник тока и измерение напряжения в «коробке для завтрака» или в упаковке в стиле мультиметра.Они используют несколько кольев и / или зажимов. Наземные тестеры имеют следующие характеристики:

  • Испытательный ток переменного тока. Земля плохо проводит постоянный ток.
  • Испытательная частота, близкая к промышленной частоте и ее гармоникам, но отличимая от нее. Это предотвращает влияние паразитных токов на измерения импеданса заземления.
  • Отдельный источник и измерительные выводы для компенсации длинных проводов, используемых при этом измерении.
  • Входная фильтрация, предназначенная для улавливания собственного сигнала и экранирования всех остальных.
Бесстоечные измерения

Зажимные тестеры заземления отличаются тем, что в них есть как истоковый трансформатор, так и измерительный трансформатор. Исходный трансформатор подает напряжение на тестируемый контур, а измерительный трансформатор измеряет результирующий ток. Тестер заземления использует расширенную фильтрацию для распознавания собственного сигнала и отсеивания всех остальных.

В качестве примера, зажим заземления Fluke 1630-2 FC может измерять сопротивление контура заземления для многозаземленных систем с использованием метода бесстоечного тестирования.Этот метод тестирования исключает опасные и трудоемкие операции по отключению параллельных заземлений, а также процесс поиска подходящих мест для дополнительных заземляющих стержней. Земные наземные испытания также можно проводить в местах, которые не рассматривались: внутри зданий, на опорах электропередач или в любом месте, где нет доступа к почве.

В этом методе испытаний зажим заземления помещается вокруг стержня заземления или соединительного кабеля. Столбы заземления не используются. Известное напряжение индуцируется одной стороной зажимной губки, а ток измеряется другой стороной зажимной губки.Зажим автоматически определяет сопротивление контура заземления на этом стержне заземления. Этот метод особенно полезен для многозаземленных систем, обычно используемых на коммунальных предприятиях, коммерческих объектах или промышленных предприятиях.

Fluke 1630-2 FC работает по принципу, согласно которому в параллельных / многозаземленных системах общее сопротивление всех путей заземления будет чрезвычайно низким по сравнению с любым одиночным трактом (тестируемым). Таким образом, полное сопротивление всех сопротивлений параллельного обратного пути фактически равно нулю.Бесстоечное измерение измеряет только сопротивление отдельных заземляющих стержней параллельно системам заземления. Если система заземления не параллельна земле, то вы либо имеете разомкнутую цепь, либо измеряете сопротивление контура заземления.

Безопасность при наземных испытаниях

При подключении всегда используйте изолированные перчатки, средства защиты глаз и другие соответствующие средства индивидуальной защиты. Небезопасно предполагать, что заземляющий электрод имеет нулевое напряжение или нулевой ток.Чтобы выполнить базовое испытание заземления (называемое падением потенциала) на электроде, электрод необходимо отсоединить от здания. Новые методы, такие как зажимы заземления, позволяют проводить точные испытания с подключенным электродом.

Что такое хорошее значение сопротивления заземления?

Существует неясность в отношении того, что является хорошим заземлением и каким должно быть значение сопротивления заземления. В идеале заземление должно иметь нулевое сопротивление.

Не существует единого стандартного порога сопротивления заземления, признанного всеми агентствами.Однако NFPA и IEEE рекомендуют значение сопротивления заземления 5,0 Ом или меньше.

NEC заявила: «Убедитесь, что полное сопротивление системы относительно земли меньше 25 Ом, указанного в NEC 250.56. В помещениях с чувствительным оборудованием оно должно быть 5,0 Ом или меньше ».

В телекоммуникационной отрасли часто используется номинальное сопротивление 5,0 Ом или меньше для заземления и соединения.

Целью сопротивления заземления является достижение минимально возможного значения сопротивления заземления, которое имеет смысл с экономической и физической точек зрения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *