Закрыть

Схема электроснабжения дома: Схема электропроводки в частном доме своими руками – как сделать схему подключения электрики

Схема электропроводки в доме - 110 фото правильного размещения основных элементов

К проведению электричества в доме следует отнестись с должными вниманием и ответственностью. Особенно важно это в случае, если работа будет проводиться хозяином дома самостоятельно. Стоит также перед началом работы просмотреть фото схем электропроводки.

Содержание

Как действовать

В частных домах проводить электричество лучше перед отделочными работами. Начать можно сразу после того, как будут доделаны стены и покрыта крыша. Начало электропроводки стоит начать с выбора, двухфазным (то есть на 220 Ватт) или трехфазным (380 Ватт) будет ввод. После чего следует разработать схему разводки электропроводки.

Также нужно рассчитать, оборудование какой мощности потребуется и приступать к подаче документов и получению проектного плана. При этом вряд ли технические условия позволят выделить мощность от 5 килоВатт. После этого можно выбирать все составляющие и комплектующие, покупать их, а также счетчик, автоматы и кабели.


Все описанные манипуляции стоит относить к подготовительным. Далее можно переходить к непосредственному подведению электричества к дому.

Самостоятельно этого сделать нельзя, такие действия может выполнять только специализированная организация, владелец дома может решить только, какого типа будет подводка – она может осуществляться по воздуху или под землей.

Затем осуществляется установка автомата и счетчика. После установки щитка электроэнергия заводится непосредственно в дом. При этом следует помнить о схеме подключения электропроводки в частном доме.

После того, как будет закончено подведение электричества к дому, можно приступить к прокладыванию кабеля в самом помещении непосредственно. Также устанавливаются и подключаются розетки и выключатели.


Следующий этап электропроводки в доме – заземление и подключение электричества. После этого систему следует протестировать, затем можно будет получать акт. Получение последнего означает, что электроэнергию можно подключать и использовать.

Такая последовательность действий не является обязательной, это скорее общий порядок. Каждый конкретный случай требует учёта всех нюансов, также важны технические условия, а также проект. Также, важно заметить, что документы лучше начать готовить заранее, к тому же, подготавливать технические условия можно в течение двух лет.

Выбор типа

Частный дом может быть оснащен однофазным или трехфазным напряжением. Первый вариант предполагает напряжение в 220 Ватт, в соответствии с установленными нормами может быть предоставлено максимум от 10 до 15 килоВатт. Второй вариант предполагает, что к дому подводится напряжение в 380 Ватт. А максимально для этого варианта предоставляется 15 килоВатт.


Трехфазное соединение используют, если предполагается подключение оборудования с большой мощностью, например, электрических плит, отопительных котлов или духовок. В то же время, подключение трехфазного подвода предполагает соблюдение более высоких требований, поскольку травмоопасность будет более высокой.

В связи с этим, если в доме отопление не будет электрическим, то устанавливать три фазы не обязательно. Такого подхода следует придерживаться и при установлении электропроводки в гараже. Если оборудование не требует высокого напряжения, то и трехфазную сеть подключать не нужно.

После определения типа, можно разрабатывать план, по которому будет осуществляться электрификация. В таком плане нужно будет указать каждый из электрических приборов и места их расположения, определиться с выключателями и розетками.

После определения с необходимыми электроприборами, следует рассчитать, какое напряжение они потребуют. После определяются группы потребления, в соответствии с чем к разным комнатам будут подводиться разное количество линий.


После описанных манипуляций, стоит определиться с расположением щитка, которое регулируется только в части расположения на относительном состоянии от системы трубопровода. Затем устанавливается автомат и электричество подается в дом.

Если проводка была сделана самостоятельно, то нужно обратиться к специалистам, чтобы была проверена безопасность соединения. Некоторые отличия будет иметь электропроводка в квартире, что обязательно нужно учитывать.

Фото схемы электропроводки в доме

Также рекомендуем посетить:

Электропроводка в частном доме - от схемы до монтажа

электропроводка в доме

Современная человеческая жизнь совершенно не может быть комфортной без электричества. Когда оно отсутствует, кажется, что жизнь остановилась, ведь любая бытовая техника или электрический инструмент требует подключения к электросети. Порой без электричества не получится даже приготовить пищу, не говоря уже о нормальном освещении жилища. Поэтому если вы задумываете строительство, то схема электропроводки в частном доме должна стать первоочередным вопросом, которому следует уделить особое внимание. Необходимо продумать и просчитать всё до мелочей, чтобы никакая малейшая ошибка или неточность в прокладке и подключении электросети не привели в дальнейшем к поломке бытовых приборов, или, что ещё хуже, к возгоранию и пожару.

В чём необходимость схемы?

схема электропроводки в доме

Схема электропроводки в частном доме представляет собой чертёж, на который наносятся все основные узлы электроснабжения:

  • Вводная линия, которая выполняется отводком от магистральной линии электропередачи до самого дома.
  • Место установки распределительного щитка.
  • Защитные устройства и счётчик электрической энергии.
  • Места установки распределительных коробок, выключателей и розеток в комнатах и помещениях.
  • Пути разводки электропроводки от распределительных коробок до коммутационных аппаратов.
  • Места установки элементов осветительной сети (люстры, бра, светильники).

К тому времени как делать электропроводку в доме, желательно уже чётко определиться, где будет расположена основная бытовая техника – холодильник, кондиционер, стиральная машина, водонагреватель, посудомоечная машина. Это нужно для того, чтобы сразу монтировать розетки рядом с техникой, а не протягивать потом через всю комнату переноски.

план электропроводки в котедже

Если ваше строение относится к типовому, которое возводилось строительной компанией (так сейчас строят целые коттеджные посёлки), то вам должны быть предоставлены проект здания и схема разводки. В случае, когда строительство выполняется самостоятельно, для каждого дома разрабатывают свою персональную схему. Но в обоих вариантах основные назначения схемы одни и те же:

  1. Если имеется готовый схематический чертёж, можно составить перечень материалов, которые понадобятся, чтобы выполнить монтаж электропроводки в доме. Это поможет сэкономить денежные средства. То есть, имея на руках перечень, можно пройти по разным торговым точкам, спокойно определиться, выбрать наиболее качественные и подходящие по цене электротовары. Вы не купите ничего лишнего и в то же время избавите себя от ситуации, когда уже делается монтаж, а каких-то материалов не хватает, и вы срочно бегите в первый попавшийся магазин покупать их по любой цене.
  2. Схема разводки даст возможность определить максимальную нагрузку каждого электрического узла, что позволит правильно подобрать сечение проводов, посчитать общую мощность, выбрать нужные защитные устройства и вводной кабель.
  3. Также схема поможет вам грамотно и рационально распланировать очерёдность выполнения работ.

Оформление документации

образец ТУ на подключение к электросети

Будьте готовы к тому, что электропроводка в частном доме потребует ещё и ваших нервов, потому что для получения разрешения на выполнение работ нужно будет:

  1. Обратиться в организацию, у кого на балансе находится линия электропередачи, от которой планируется подключать ввод. Они должны выдать технические условия (ТУ) на это подключение.
  2. Следующей будет организация или коммерческая фирма, которая согласно выданным техническим условиям составит проект.
  3. Снова в энергоснабжающей организации нужно будет согласовать проект, и написать заявление на подключение (на магистральной линии это должны выполнять их электрики).
  4. Сделанная вводная линия должна быть испытана специальной электрической лабораторией, после чего выдаётся протокол о том, что ввод испытание прошёл и пригоден к эксплуатации.
  5. Теперь вводной кабель заводится в распределительный щит и подключается на вход счётчика электроэнергии, который должны опломбировать представители энергосбыта. После счётчика выполняется электропроводка в доме своими руками либо можете пригласить специалистов, никакие другие организации вам больше не понадобятся.
  6. Последнее, что вам останется – заключить договор с энергоснабжающей организацией на поставку электроэнергии с их стороны, и на своевременную оплату потребляемых киловатт-часов с вашей.

Планирование ввода

производство работ по вводу электричества в дом

Самое главное, чем отличается электрика в квартире и в частном доме, это выполнение ввода. В многоэтажных зданиях ввод приходит в щитовую, а оттуда уже идёт разводка по квартирам. А для частного дома необходимо выполнить отводок от проходящей поблизости магистральной линии. От того, насколько грамотно и правильно вы это сделаете, зависит надёжность, качество и безопасность электроснабжения. Существует два способа:

  • Монтаж воздушного ввода кабелем либо изолированным проводом.
  • Прокладка подземного ввода кабелем.

Перед тем, как провести вводную линию для частного дома, очень важно продумать и спланировать её так, чтобы она была устойчива к сильным ветрам, а также не несла опасности поражения человека электрическим током в дождливую, снежную или сырую погоду.

Воздушный ввод

воздушный ввод электричества в дом

Такой ввод по воздуху подразумевает натягивание провода или кабеля от ближайшей опоры магистральной линии электропередачи к домостроению.

Сразу хочется предупредить, воздушный ввод будет рациональным, если расстояние от опоры до дома менее 20 м. В случае, когда пролёт получается больше 20 м, потребуется установка ещё одной дополнительной опоры, которая может оказаться на территории вашего участка. Такая мера необходима для того, чтобы уменьшить механическую нагрузку на провод. Когда пролёт получается сильно большим, есть вероятность того, что провод может порваться под воздействием сильного ветра или под собственным весом.

Как правильно сделать воздушный ввод?

  1. В стене домостроения необходимо просверлить отверстие и вставить в него кусок металлической трубы либо специальную пластиковую гофру (диаметр отверстия и трубы будет зависеть от сечения вводного провода).
  2. На стене снаружи дома закрепляется кронштейн с установленным на нём изолятором.
  3. Теперь необходимо натянуть стальной трос между двумя изоляторами (один – на кронштейне, второй – на траверсе опоры, от которой делается отводок).
  4. Вводной провод или кабель на опоре подсоединяется к проводам линии. Затем прокладывается вдоль троса к дому, где протягивается через проделанное отверстие внутрь здания. Через каждые 0,5-0,6 м желательно закреплять провод к натянутому стальному тросу пластиковыми или металлическими хомутами.

ввод электричества в дом по воздуху

Вот и всё, вводной кабель зашёл в здание, где будет заводиться уже в распределительный щиток. Как видите ничего сложного, но некоторые нюансы следует здесь учесть:

  • Очень важно обеспечить достаточное натяжение стального троса.
  • К тросу провод следует крепить свободно, без натяжки.
  • От земли до провода расстояние не должно быть меньше 3,5 м.
  • Трос и закреплённый на нём вводной провод по всей своей длине не должны касаться никаких подсобных строений, деревьев или высоких кустарников.
  • Место, где провод входит непосредственно в дом, необходимо герметизировать. После того, как он будет протянут в трубу, всё оставшееся пространство надо заполнить монтажной пеной. Можно применить и другой вариант – плотно утрамбовать минеральной ватой из негорючего материала.

Наилучшим вариантом для воздушного ввода на дом является провод марки СИП (самонесущий изолированный провод). Во-первых, его изоляция выполняется из материалов, которые пригодны к эксплуатации в условиях солнечных лучей и атмосферных осадков, а также выдерживают значительные температурные колебания. Во-вторых, под изоляционным слоем помимо алюминиевых токопроводящих жил имеется стальной трос. То есть при монтаже такого провода отпадает необходимость в натяжке отдельного несущего троса.

Если для частного домостроения необходимо однофазное напряжение (220 В), то понадобится двухжильный провод. В случае, когда надо трёхфазное напряжение (380 В), провод потребуется четырёхжильный. Минимальное сечение проводов СИП – 16 мм2.

Как производится монтаж воздушного ввода электричества, можно посмотреть в этом видео:

Подземный ввод

подземный ввод электричества в дом

Прокладка вводного кабеля в земле имеет ряд преимуществ по сравнению с воздушным способом:

  1. Увеличивается надёжность за счёт того, что кабель не подвергается воздействию резких температурных перепадов, атмосферных осадков, сильных ветров.
  2. Стиль и архитектурный дизайн участка имеет завершённый вид, то есть их не портит натянутый трос с закреплённым проводом или дополнительная опора. Как правило, именно по этой причине все фешенебельные коттеджи и загородные дома имеют подземный ввод.
  3. Если это дачный загородный дом, в котором проживают только в летний период, а в зимний домостроение пустует, есть вероятность того, что хулиганы или вандалы вырежут и украдут воздушный ввод. При подземной прокладке такая ситуация маловероятна.
  4. В случае короткого замыкания и возникновения электрической дуги при подземном вводе практически отсутствует вероятность того, что могут пострадать имущество и люди. А при воздушном вводе произошедшее возгорание может перекинуться на постройки. Так что высокая пожарная безопасность при прокладке кабеля в земле – это очень важное преимущество, особенно касается домов, сделанных из дерева.

Но не всё так идеально, грунт тоже среда достаточно агрессивная. Химический состав почвы через время может вызвать коррозийные процессы, что приведёт в негодность кабельную оболочку. При этом сама почва может проседать и вспучиваться, сдвигаться и промерзать. Своё влияние окажут ещё грунтовые воды, грызуны и микроорганизмы, а также давление от корней больших деревьев. Поэтому если решили подвести электричество к дому подземным способом, позаботьтесь о защите кабеля, проложите его в пластиковой либо металлической трубе.

кабель в траншее

Ну а самым главным недостатком подземного ввода являются земляные работы. Во-первых, их надо согласовать с кучей всевозможных организаций, у которых в этой земле может быть что-то проложено – водопроводные, газовые или канализационные трубы; теплотрассы; магистральные кабельные линии электропередач; телефонные линии связи. Во-вторых, для прокладки кабеля в земле потребуется вырыть траншею, а это уже дополнительные (причём приличные) затраты. Если будете делать это сами, потратите много времени и сил. В случае если будете кого-то нанимать для выполнения земляных работ, потратитесь в денежном плане.

Для того чтобы лучше представлять объем работ, рекомендуем посмотреть следующее видео:

Так что перед тем, как сделать электропроводку в доме, сначала взвесьте все «за» и «против», учтите преимущества и недостатки, выберите для себя подходящий вариант выполнения ввода. А когда с внешним электроснабжением вы покончите, можно спокойно приступать к монтажу внутреннего.

Подсчёт нагрузки

мощность потребляемая электроприборами

Монтаж электропроводки в частном доме своими руками требует предварительной работы головой, то есть умственной, а именно – надо посчитать, какая у вашей домашней электросети будет нагрузка. Чтобы вам было легче, разбейте всех потребителей электроэнергии на группы:

  • Элементы освещения.
  • Кухонная техника (холодильник, вытяжка, хлебопечка, электрическая плита и духовка, электрочайник и кофеварка, мультиварка и микроволновая печь и т. д).
  • Маломощная бытовая техника и электроприборы (компьютер, телевизор, музыкальный центр и т.п.).
  • Кондиционеры.
  • Электрическое отопление.
  • Техника для ванной комнаты (водонагреватель, фен и стиральная машина).
  • Электроинструмент, который используется в подсобных помещениях (перфоратор, электродрель, электрическая газонокосилка, насос и т.д.).

Суммируйте мощности всех приборов. Полученную цифру откорректируйте умножением на 0,7 (это общепринятый коэффициент одновременности включения приборов). При этом учтите, что мощность каждой группы не должна превышать 4,5 кВт. Исходя из посчитанной нагрузки, определитесь с сечением и маркой проводов. Разводка электропроводки в частном доме выполняется проводами медными. Для скрытой прокладки выбирайте марки ВВГнг, ПУНП, ВВГ, для открытой прокладки – ПУГВП, ПУГНП. Проводка, выполненная в частном доме такими проводами, будет отличаться приличным сроком службы (около 10 лет), минимальными потерями и безопасной эксплуатацией.

Распределительный щиток

распределительный щиток в доме

Нормативно место, где можно устанавливать щиток, никак не нормируется. Единственное условие, он должен быть расположен не ближе 1 м от трубопроводов (имеются в виду любые трубы – газовые, водные, канализационные).

В каком помещении лучше монтировать щиток, тоже нигде не оговаривается. Многие предпочитают устанавливать его в каких-то подсобных помещениях, где будет удобно выполнять коммутацию, либо располагают у входа в дом. В любом случае постарайтесь придерживаться простых правил:

  1. Это помещение не должно быть пожароопасным (типа, котельной). Рядом с распределительным щитком запрещается хранить баллоны с газом и легковоспламеняющиеся вещества.
  2. Необходимо чтобы помещение, где расположен щиток было сухим, то есть нежелательно устанавливать его рядом с ванной комнатой.
  3. К щитку обязательно должен быть свободный доступ, не устраивайте склад из помещения, где он расположен.

содержимое распределительного щита

В самом щитке монтируются:

  • счётчик электроэнергии;
  • вводной автомат, он отвечает за электроснабжение всего дома;
  • несколько автоматов для подключения отходящих токоприёмников согласно их разбивки по группам;
  • устройство защитного отключения (УЗО), которое работает в паре с вводным автоматом.

Щиток может устанавливаться в специально проделанную под него нишу либо просто навешиваться на стенную поверхность.

Если дом огромный на несколько этажей с банями, саунами, гаражами, то одним щитком тут не обойтись. В таких случаях монтируется один вводной щиток и дополнительные на каждом этаже.

Планировка внутреннего электроснабжения

Провести электропроводку в частном доме можно двумя способами – открытым и скрытым. Рассмотрим вкратце каждый из них по отдельности.

Открытая проводка

открытая проводка в деревянном доме

Открытый способ прокладывания проводов по-другому ещё называют наружным, чаще всего используется в деревянных домах.

Провода могут быть проложены:

  • в специальных пластиковых коробах;
  • на фарфоровых изоляторах с использованием специального кабеля (так называемый ретро-стиль).

На схеме следует отобразить, по какому маршруту вы собираетесь развести кабели и отметить места, где будут устанавливаться фиксирующие элементы (изоляторы).

Для открытой проводки применяют специальные коммутационные аппараты наружного исполнения (розетки, выключатели).

Скрытая проводка

скрытая проводка

Если строение бетонное, с множеством технологических пустот, применяют скрытый способ прокладывания проводов. Он сложнее, так как сначала требуется проделать в стенах специальные бороздки, называемые штробами, в которые будет укладываться провод или кабель. А после этого уложенные проводники надо будет ещё зафиксировать при помощи алебастра или гипсового раствора.

Также понадобятся выключатели и розетки внутреннего исполнения. Прежде чем их устанавливать, в стенах проделываются отверстия, в них также при помощи раствора фиксируются подрозетники и только потом монтируются коммутационные аппараты.

Скрытая проводка своими руками выполняется несложно, единственное, что может вызвать затруднения, отнять много времени и сил – это проделывание штроб и отверстий.

Правила и полезные советы

разводка электропроводки в доме

Всё, что касается электромонтажных работ, регламентируется сводом Правил устройства электроустановок (ПУЭ). Тем, кто серьёзно занимается монтажом электропроводки, полезно познакомиться на досуге с этой книгой. Здесь мы приведём самые основные и важные моменты, которые обязательно следует учесть перед тем, как сделать проводку в доме своими руками:

  1. Все распределительные коробки, розетки и выключатели должны находиться в лёгкой доступности (не заклеены обоями, не спрятаны под гипсокартонные листы, не заставлены громоздкой мебелью, которую нельзя сдвинуть).
  2. Заземляющая жила должна крепиться к бытовым приборам при помощи болтового соединения.
  3. Выключатели монтируют на высоте 60-150 см от уровня пола, провода к ним подводят сверху вниз.
  4. Все соединения проводов следует выполнять в распределительных коробках. Соединительные узлы необходимо надёжно изолировать, запрещено соединять медные проводники с алюминиевыми.
  5. Розетки монтируют на высоте 50-80 см от уровня пола. Расстояние между розетками и газовыми плитами, трубами, радиаторами отопления не должно быть менее 50 см.
  6. Провода электрической проводки не должны касаться металлических строительных конструкций здания (особенно это касается скрытой проводки, обязательно учитывайте этот пункт, когда будете прокладывать провода в штробах).
  7. Количество розеток на одно помещение учитывают из расчёта 1 коммутационный аппарат на 6 м2 площади. Исключение составляет кухня, на ней можно монтировать столько розеток, сколько нужно для подключения всех бытовых приборов.
  8. Горизонтальная прокладка проводов производится не ближе чем 15 см к потолку и полу. Вертикально провода располагают на расстоянии 10 см от дверных и оконных проёмов. К газовым трубам нельзя приближать провода электрической сети ближе, чем на 40 см.

Надеемся, что весь этот разговор мы вели не зря. Монтаж внешнего и внутреннего электроснабжения своего жилища вы обязательно начнёте с составления схемы. Подумайте всей семьёй, где и какую технику вы хотите расположить, нанесите всё на бумагу, нарисуйте все коммутационные аппараты и пути прокладки проводов. Так вам будет гораздо легче посчитать количество необходимых материалов. Потом останется лишь перенести вашу схему с бумаги на реальные стены и заняться монтажными работами.

Однолинейные схемы электроснабжения частного дома

Однолинейные схемы электроснабжения частного дома

Известный факт, что для применения чего-либо на практике, необходимо изначально ознакомиться со структурными и функциональными составляющими того, чем мы собираемся заниматься, либо того, чем мы будем для этого руководствоваться (в нашем случае это необходимость ознакомления с однолинейными схемами электроснабжения частного дома, которые мы будем использовать для обеспечения электрического питания частного дома).

Итак, что же такое однолинейная схема электроснабжения в общем смысле, какие они бывают и их функциональные особенности. Однолинейная схема электроснабжения – это принципиальная схема питающей сети, выполненная в однолинейном изображении, в соответствии с требованиями стандартов Единой системы конструкторской документации.

Пример проекта электроснабжения дома

В большинстве случаев, когда возникает необходимость в обеспечении электроснабжения дома, выбор останавливается на использовании однолинейных схем. И это неслучайно: у нее функции принципиальной схемы, а выполняется она в разы проще, что достаточно удобно в плане ее практической значимости. Все линии электрических сетей (и однофазные и трехфазные) изображаются в виде одной линии, в этом и заключается практическая простота и удобство в использовании однолинейных схем для электроснабжения частных домов. В тоже время, схемы подключения проводки в частном доме предоставляют достаточно хорошую необходимую для работ по электрификации общую оценку строения и оценку отдельных составляющих электрической сети выбранного объекта (частного дома). Выделяют два вида однолинейных схем, которые используются для электроснабжения частных домов. Это расчетные и исполнительные однолинейные схемы. Отличие в практическом их использовании заключается в состоянии, в котором находится электроустановка дома (если она есть, или ее необходимо проектировать). Рассмотрим каждую схему на конкретно приведенных примерах.

Пример использования однолинейной схемы

       

Например, если вы начали строительство частного дома, тогда для обеспечения его электроснабжения вам не обойтись без проектирования однолинейной расчетной схемы. В таком случае применяется именно расчетная, а не исполнительная однолинейная схема, так как у вас еще нет действующей электроустановки.

Обобщая все необходимые работы, которые нужно провести для проектирования расчетной схемы электроснабжения частного дома, можно выделить основные, а именно:

  1. Рассчитываются все нагрузки, которые возникнут при эксплуатации электрической сети.
  2. Выбираются подходящие аппараты защиты (например, устройства защитного отключения, выключатели, предохранители и т. п.). они подбираются исходя из расчета всех предполагаемых нагрузок. Такие аппараты необходимы для предотвращения всевозможных аварийных ситуаций (замыканий, перепадов напряжения). Благодаря их применению осуществляется важнейшая функция, которая должна исполнять свою работу постоянно, без всяких перебоев,- это предоставление надежности при электроснабжении дома. Что, в свою очередь, гарантирует вашу электрическую безопасность.
  3. Подбираются нужные сечения кабелей и проводников, опять же с учетом предстоящих нагрузок.

Практическое применение однолинейной схемы

       

Для раскрытия практического применения исполнительной схемы электроснабжения, приведем пример того, что произошла покупка частного дома. Итак, если вы купили уже готовый дом, но вы хотите переделать его электрическое питание, либо просто модернизировать его, тогда и находит свое применение исполнительная однолинейная схема.

Частный дом уже был в эксплуатации, значит, есть действующая электроустановка. В последствии, необходимо установить ее состояние на данный момент, для чего производится ее зрительное обследование. Затем, даются (на основе обследования) рекомендации по устранению разного рода несоответствий с необходимыми стандартами и устраняются дефекты (если они есть).

На основании приведенных практических примеров использования однолинейных схем электроснабжения частных домов, можно сделать определенные выводы. Изначально то, что такие схемы являются составляющим элементом общего проекта электрификации объекта (частного дома). Также то, что в таких схемах приведены все основные показатели и рассчитаны все нагрузки. В обязательном порядке соблюдаются технические условия (их получают в Энергосбыте) при установке приборов учета электрической энергии, а также проводится расчет потерь электроэнергии во время ее передачи. И самое основное достоинство, повторюсь, благодаря которому однолинейные схемы очень распространены в практическом использовании их при электроснабжении домов: это их структурная полнота и и в тоже время простота в эксплуатации.  

Ниже вы можете воспользоваться онлайн-калькулятором для рассчёта стоимости проектирования сетей электроснабжения:

 

Поделитесь ссылкой

 

Дата публикации: 07.10.2014

Однолинейная Схема Электрических Сетей Заявителя

Если вам нужно создать такую схему, но своими руками вы не осилите эту работу, то необходимо обратиться в конструкторское бюро своего населенного пункта, специалисты которого помогут вам справиться с этой задачей. На чертеже выше Вы можете обратить внимание, что возле перечеркнутых линий косыми штрихами нет цифр.


Какие сведения должны быть указаны на однолинейной схеме? Что должна включать однолинейная схема электроснабжения На однолинейных схемах электроснабжения должна быть отражена следующая информация, а именно: граница зоны ответственности организации, поставляющей электрическую энергию, и её потребителя; К сведению!

Также буду благодарна за примеры. Расчет требуемой мощности потребителя и в соответствии с ним — разработка однолинейной схемы электроснабжения частного дома.
Схема электроснабжения с ИБП, стабилизатором и генератором

Отнеситесь к оформлению однолинейной схемы со всей ответственностью и тогда у вас не будет проблем с согласованием и утверждением проекта. Однолинейная схема — это та же принципиальная схема, только выполненная в упрощенном виде: все линии однофазных и трехфазных сетей изображаются одной линией, отсюда и название.

Различают исполнительную и расчетную однолинейную схему. Поэтому приборы учета электроэнергии допускается устанавливать на фасадах домов, как это показано на рис.

Для находящихся в эксплуатации электроустановок используется исполнительная схема. Также не забывайте о необходимости применения примерных расчетных нагрузок, которые могут быть предельными для той или иной сети электропитания в вашем населенном пункте.

Коммерческий учет электроэнергии..

Обозначения условные графические в электрических схемах. Ведь они, помимо основной функциональности, отображают различное разделение плановых или существующих систем.

Как правильно читать электронные схемы или как научиться пользоваться электронными схемами

Исполнительная однолинейная схема

Многие начинающие электрики могут усомниться в эффективности таких чертежей, ведь кажется, что непонятно, как их отобразить тогда трехфазное или двухфазное питание. Важно: непосредственный монтаж схемы и начало работ возможны только ПОСЛЕ получения разрешительной документации от соответствующих инстанций. В них вы легко сориентируетесь на тему того, как своими руками обозначить в чертеже тот или иной элемент системы. Исходя из однолинейной схемы электроснабжения, определяются границы балансовой принадлежности и эксплуатационной ответственности сторон.


Расчет требуемой мощности потребителя и в соответствии с ним — разработка однолинейной схемы электроснабжения частного дома. Рассмотрим пример однолинейной схемы квартиры также можно использовать для электроснабжения дома : Фото — пример однолинейной схемы Для защиты групповых линий от перегрузки и общей цепи помещения от электрического замыкания, используются автоматические выключатели.

Фото — Принципиальная схема подстанции Именно благодаря такой подаче информации, в итоге получается достаточно простой чертеж, четко передающий основные параметры сети питания.

Согласование разработанного проекта по электроснабжению.

Хотя все отображаемые элементы выглядят аналогично, но само предназначение такой схемы имеет кардинально иную функцию.

Помимо отображения отдельных проводов, также важно изобразить на чертеже дополнительные детали электрической схемы. Проект, помимо ключевых составляющих, таких как кабели ввода или заземления либо УЗО, должна включать в себя информацию о наличии розеток или выключателей света в помещениях.

Название ее чисто условное.
00 Dynamo. Однолинейная схема. Вступление

Смотрите также: Измерение петли

Расчетная схема электроснабжения

И это далеко не весь перечень узлов, входящих в различные части, составляющей любой электросети. В связи с этим их принято разделять на такие виды: Структурные, которые отображают общую картину электросети и установок.

Расчетная однолинейная схема является основой для разработки электрических принципиальных и электромонтажных схем, необходимых для выполнения монтажных работ. В домашних условиях своими руками ее можно начертить вручную или специальной чертежной программы на компьютере. Скиньте посмотреть пожалуйста!


Но вот часть его приложения нет: Что такое: 1. Рассмотрим пример однолинейной схемы квартиры также можно использовать для электроснабжения дома : Фото — пример однолинейной схемы Для защиты групповых линий от перегрузки и общей цепи помещения от электрического замыкания, используются автоматические выключатели. Обозначения условные графические в схемах.

Ниже приведем пример создания однолинейной типовой схемы электроснабжения для жилой квартиры, частного дома, производственного или социального объекта. Её назначение скорее необходимо для выявления недочётов и нарушений и применяется при модернизации и перерасчёте электросети.

Однолинейная схема электроснабжения своими руками Такая однолинейная схема электроснабжения того или иного объекта должна соответствовать нормам ГОСТ. В частности, программа AutoCAD вам поможет создать проект офиса, торгового центра, частного дома или другого строительного объекта.

Что такое однолинейная схема электроснабжения и как ее заказать?


Она выполняется тогда, когда возникает необходимость ввести серьезные изменения в проект по результатам обследования действующей электроустановки и выявления несоответствий существующим нормативам и правилам. Граница зоны ответственности отображается в Договоре на электроснабжение конкретного объекта.

Проектирование однолинейных схем — наиболее важная часть проекта, которая в дальнейшем успешно может заменить и сам проект. По своей сути особо принципиальных различий между ними нет, за исключением назначения каждого из видов. Специальные — отображают проектируемые части по отдельности. Обычно владелец сетей всегда требует установки шкафа учета в точке подключения, поскольку, как было сказано, за участок линии от точки подключения до объекта эксплуатационную ответственность несет потребитель.

Фото — Принципиальная схема подстанции Именно благодаря такой подаче информации, в итоге получается достаточно простой чертеж, четко передающий основные параметры сети питания. В этом документе указываются общепринятые варианты черчения подобных элементов.
Как читать электрические схемы

Возобновляемые источники энергии

На самом объекте могут устанавливаться приборы технического учета для контроля общего потребления и оценки тепловых потерь электроэнергии.

Пример оформления однолинейной схемы электроснабжения промышленного предприятия Виды однолинейных электрических схем В зависимости от того, на каком этапе выполнения работ по созданию электрической сети объекта составляется однолинейная схема, зависит её вид и прямое предназначение.

ИНН, ситуационный план, какие-то документы из Правления поселка? Итак, можно сделать вывод, что однолинейные графические системы должны быть созданы согласно действующим в стране строительным правилам и нормам и включать в себя такую информацию: полные и правдивые сведения об оборудовании; расчеты аварийного выключения электроснабжения объекта как целиком, так и частично; сведения о системе автономного питания, что важно на этапе проектирования частных домов, располагающихся вдалеке от центральных электромагистралей.

Фото — однолинейная схема Существует два типа таких схем : Расчетная; Исполнительная. Однолинейная схема — это та же принципиальная схема, только выполненная в упрощенном виде: все линии однофазных и трехфазных сетей изображаются одной линией, отсюда и название. Она же позволяет определить нахождение запитывающей магистрали.

Пример проекта электрики магазина

В особенности она необходима для подключения к локальной сети дома с АВР: Фото — дом с авр Чтобы бесплатно разработать однолинейную схему электроснабжения детского учреждения, частных построек гаражей, домов, квартир, киосков , многоэтажного жилого здания, завода СНТ , вахтовых вагонов, Вам понадобится ЕСКД. Иногда её проектируют после того, как будет рассчитана потребность проводов и питающих кабелей. На самом объекте могут устанавливаться приборы технического учета для контроля общего потребления и оценки тепловых потерь электроэнергии.

Однолинейная схема — это та же принципиальная схема, только выполненная в упрощенном виде: все линии однофазных и трехфазных сетей изображаются одной линией, отсюда и название. Для проектируемых новых объектов выполняется расчетная однолинейная схема. Если на схеме показано 2 штриха — то питание двухфазное, если 3 — то, соответственно, трехфазное. Согласно нормам, у Вас должно получится изображение 3 фаз, питающих сеть конкретного помещения и линии групповых сетей, которые отходят от питающих.

Этот этап включает в себя все необходимые материалы для прокладки сети, разъяснения по схемам монтажа кабелей, подключение к сети объектов-потребителей, запуск аппаратов защиты в распределительном щитке и вводном устройстве частного дома. Если на схеме показано 2 штриха — то питание двухфазное, если 3 — то, соответственно, трехфазное.

Такие схемы называют мнемосхемами, они имеют вид плакатов, где действующими элементами выступают приборы и сигнализирующая аппаратура и всевозможные имитационные агрегаты. Моя дача находится в МО Одинцовский р-он, пос. ЕСКД — это Единая система конструкторской документации. Этапы проектирования Особенности электроснабжения Значение линейной схемы трудно переоценить. Порядок получения технических условий на подключение к электрическим сетям регламентирован рядом документов.
Вводная видеолекция «Электрические станции и подстанции 2»

Однолинейная схема электроснабжения – общие понятия, виды и проектирование

Монтаж электрической проводки, коммутационных и защитных устройств в квартире, частном доме или на предприятии требует основательного подхода. Для этого предварительно составляется однолинейная схема электроснабжения. Рассмотрим, как и в соответствии с какими требованиями решается указанная задача.

Понятие и назначение однолинейной схемы

Однолинейная схема электроснабжения (ОСЭ) — это документ, упрощенно отражающий расположение силовых линий и мест их соединения, коммутационных устройств, распределительных пунктов и т. д. Это способствует нанесению значительного объема информации на одном чертеже.

Благодаря ей упрощается процесс монтажа электрической цепи. Также она необходима для последующей сдачи в соответствующие органы для подтверждения проекта электроснабжения конкретного объекта. Без ОСЭ не получится подключиться к централизованной магистрали.

Подвод электроэнергии к частному домуПодвод электроэнергии к частному домуПодвод электроэнергии к частному дому к содержанию ↑

Особенности принципиальной электрической схемы

Принципиальная схема дает развернутую информацию о функционировании электрической части объекта. Она в отдельности рассматривает компоненты цепи, отображая рабочие характеристики и разъясняющие чертежи по электрической и электромагнитной связи оборудования. Принципиальный проект электроснабжения является базовым для остальных видов документации.

Составление принципиального чертежа может вестись разнесенным или совмещенным методом. Первый вариант предполагает отображение большого количества коммутационных и защитных устройств. Для обеспечения наглядности работы всех элементов их рассматривают отдельно друг от друга. При последовательном расположении устройств каждому из них присваивается конкретное обозначение в порядке очередности. При наличии отдельных цепей их располагают параллельно.

Пример однолинейной схемы подключения объектаПример однолинейной схемы подключения объектаПример однолинейной схемы подключения объекта

Совмещенная методика основана на отображении всех защитных и коммутационных устройств в непосредственной близости. В оставшемся свободном месте на полях допускается расположить расшифровку условно-графических элементов. В тех случаях, когда устройство задействовано не полностью, следует отразить его целиком на чертеже, обозначив какая часть используется. При этом не применяемую часть разрешается изобразить в укороченном виде.

к содержанию ↑

Разница однолинейной и принципиальной схемы

ОСЭ представляет собой чертеж, на котором изображены компоненты сети с номинальными параметрами. Они указываются на схеме условными значками, которые соединяются одной линией, независимо от количества используемых фаз, что является главным отличием от принципиальных схем. Устройства отображаются в соответствии с установленными правилами.

Принципиальная однолинейная схемаПринципиальная однолинейная схемаПринципиальная однолинейная схема к содержанию ↑

Разновидности однолинейных схем

ОСЭ подразделяются на расчетные и исполнительные. Далее рассмотрим их отличия.

Расчетные

Разрабатываются для объектов, которые впервые подключаются к питающей электросети. В процессе составления чертежа понадобится сделать ряд вычислений. Они касаются нагрузок и потерь напряжения, которые необходимы для подбора кабельных линий, коммутационной аппаратуры и т. д.

При этом расчетная схема может включать в себя следующую документацию:

  1. Структурный проект электрооборудования, который отражает силовую часть между источником и потребителем (точки подключения, ЛЭП, трансформаторные подстанции, распределительные щиты, коммутационные устройства).
  2. Функциональная схема наглядно показывает работу используемого на объекте оборудования, а также определяет категорию опасности. Как правило, разрабатывается для зданий промышленного назначения.
  3. Расположение пожарной сети.
  4. Монтажный проект, утвержденный соответствующими инстанциями.
Проект электроснабжения стройплощадки жилого домаПроект электроснабжения стройплощадки жилого домаПроект электроснабжения стройплощадки жилого дома

Обратите внимание! От правильности составления расчетной схемы зависит будущая безопасность эксплуатации, в т. ч. электрическая и пожарная.

к содержанию ↑
Исполнительные

Создается для объектов с действующей схемой электроснабжения, при необходимости замены или модернизации отдельных участков цепи. В исполнительном проекте отображается:

  • реальное состояние электросети;
  • перечень задействованного оборудования;
  • рекомендации по устранению зафиксированных неисправностей и монтажу дополнительного оборудования.
Схема электроснабжения частного домаСхема электроснабжения частного домаСхема электроснабжения частного дома

При разработке схемы для крупных объектов следует отдельно отразить все элементы. Сначала подготавливается однолинейная схема распределительного щита всего объекта, затем для каждого отдельного помещения с указанием линий связи.

к содержанию ↑

Порядок разработки ОСЭ

При создании однолинейного проекта электросети понадобится соблюдать определенные нормативные правила. При этом подбор отдельных элементов цепи должен вестись согласно ПУЭ.

Какую информацию должна нести ОСЭ

На схеме, предназначенной для формирования проекта электроснабжения, обязательно потребуется отразить:

  • точку подключения к источнику питания;
  • тип вводного аппарата (автомат или распределительный пункт) с указанием номинального тока;
  • сведения об используемых счетчиках для учета электроэнергии;
  • марку, длину, сечение и количество токопроводящих жил кабельных линий;
  • расчетные потери напряжения и нагрузку;
  • используемые защитные устройства;
  • расположение внутренней и наружной сети освещения.

к содержанию ↑

Этапы разработки

Перед началом разработки однолинейного проекта электрической сети понадобится получить техническое условие. Для этого потребуется обратиться в муниципальный участок электросетей. Техническим условием определяется место подключения объекта к питающей сети, а также границы распределения будущего проекта электроснабжения.

После этого потребуется посетить отдел архитектуры и градостроительства по месту жительства. В нем сделать запрос на выдачу генерального плана земельного участка. Это необходимо для точного определения места прокладки питающей линии от точки подключения, исключая пересечения с другими инженерными сооружениями. Также можно определить длину будущей кабельной линии.

Порядок подключения к электрическим сетямПорядок подключения к электрическим сетямПорядок подключения к электрическим сетям

На следующем этапе выполняется расчет планируемых нагрузок, с отображением всех требуемых элементов на однолинейной схеме. На завершающей стадии останется утвердить проект и получить разрешение на подключение к питающей сети.

к содержанию ↑

Требования ГОСТ и нюансы оформления

Построение ОСЭ ведется в соответствии с требованиями ГОСТов ЕСКД. Для этого используются следующие номера ГОСТов:

  • 709-89 — токопроводящие проводники, электрооборудование и контактные соединения;
  • 710-81 — нанесение буквенно-цифровых обозначений;
  • 721-74 — элементы общего использования;
  • 732-68 — обозначение источников света;
  • 755-87 — коммутационные аппараты и контактные соединения;
  • 702-2011 — правила оформления схем.
Буквенно-цифровые обозначения в схемах по ГОСТ 2.710-81Буквенно-цифровые обозначения в схемах по ГОСТ 2.710-81Буквенно-цифровые обозначения в схемах по ГОСТ 2.710-81

При оформлении чертежа рекомендуется придерживаться следующих правил:

  1. Первоначально чертится рамка и штамп установленной формы.
  2. При необходимости можно разнести чертеж на несколько листов, чтобы было легче его читать. В этом случае формируется список со сквозной нумерацией.
  3. Осуществление маркировки элементов цепи производится от источника питания к конечному потребителю. Для этого используются заглавные латинские буквы и арабские цифры. Первые указывают фазу переменного тока, а вторые — последовательность цепи.
  4. Для обозначения положительной полярности используются нечетные цифры, а отрицательной — четные.
  5. Расшифровка маркировки составляющих цепи выполняется в левой части чертежа или непосредственно над каждым элементом.
  6. Основные параметры питающей сети, а также потребителей можно сносить в отдельную таблицу. При этом ее размер не регламентируется.
  7. Допускается использовать свободные участки ОСЭ для отображения технических характеристик кабельных линий в виде текста.
к содержанию ↑

Условно-графическое отображение компонентов цепи

Для составления ОСЭ понадобится использовать определенные условные обозначения. Их большая часть отражена ГОСТами ЕСКД 2.721-74, 2.709-89, 2.755-87 и 2.732-68 в отдельных таблицах.

Проверка и утверждение проекта

После завершения разработки ОСЭ на ней ставится подпись непосредственного исполнителя. В дальнейшем понадобится получить согласование проекта от ответственного специалиста со стороны поставщика, который осуществляет проверку предоставленных данных.

Заключительным этапом станет получение разрешения на реализацию проекта от руководителя муниципальных электросетей. В зависимости от установленного штата указанной организации, проверяющий и утверждающий специалист может совмещать обязанности.

к содержанию ↑

Создание чертежа при помощи специализированных программ

Развитие компьютерных технологий значительно упростило процесс создания ОСЭ. Для этих целей разработаны программы, которые позволяют в кратчайшие сроки выполнить проект в соответствии со всеми государственными стандартами на компьютере. Далее рассмотрим наиболее распространенные варианты.

1 2 3 схема

Относится к категории бесплатных ПО. Как правило, используется студентами и начинающими пользователями. Программа русифицирована и доступна к скачиванию на официальном сайте. С ее помощью можно подобрать серию и размер планируемого корпуса электрического щита, а также обозначить каждый отдельный автомат. Программа разработана для создания однолинейных схем квартирного типа. Для управления функциями достаточно использовать только мышку.

Бесплатная программа 1-2-3 схемаБесплатная программа 1-2-3 схемаБесплатная программа 1-2-3 схема к содержанию ↑

XL Pro² от Legrand

Предназначена для проектирования электрических схем с использованием элементов, которые рассчитаны на низкое напряжение. Для компоновки и размещения распределительных шкафов и щитков серии XL³ можно использовать следующие методики:

  1. В подготовленном программой перечне выбрать компоненты электросети фирмы Legrand.
  2. Посредством формирования однолинейной схемы.
Программа проектирования и расчета создания схемы электро шкафов XL PRO 2Программа проектирования и расчета создания схемы электро шкафов XL PRO 2Программа проектирования и расчета создания схемы электро шкафов XL PRO 2

Программное обеспечение также распространяется бесплатно, но требуется предварительная регистрация. XL Pro² способна в автоматическом режиме определить и разместить на схеме необходимый тип распределительного комплекса, а также обозначит стоимость оборудования.

к содержанию ↑

XL PRO³

Предусматривает возможность использования методик составления электрической схемы аналогичной программы XL Pro². Компоновать ОСЭ можно элементами фирмы Legrand, которые рассчитаны на ток до 6,3 кА. При этом имеется функция автоматической корректировки мест расположения электрооборудования, подбора распределительных щитков с указанием их стоимости. Скачать XL PRO³ можно на официальном сайте.

 Модуль визуализации Legrand XL Pro³ Модуль визуализации Legrand XL Pro³Модуль визуализации Legrand XL Pro³ к содержанию ↑

Rapsodie — компоновка распределительных щитов

Рассматриваемая программа осуществляет быструю компоновку низковольтных распределительных шкафов фирмы Schneider-Electric. Помимо основных элементов в схему можно добавить и различные дополнительные аксессуары, с возможностью добавления недостающих видов электрооборудования. При этом имеется функция автоматической корректировки конфигурации ранее выбранных элементов однолинейной схемы. В конечном итоге можно визуализировать разработанный проект, а также отобразить его стоимость с учетом затрат на монтажные работы.

Rapsodie поставляется в русскоязычном виде с доступным и понятным интерфейсом, с возможностью экспорта или распечатки полученного результата. Для использования продукта понадобится предварительно подать заявку на официальном сайте. После ее одобрения пользователь проходит обучающий курс.

Программа Шнайдер электрик RapsodieПрограмма Шнайдер электрик RapsodieПрограмма Шнайдер электрик Rapsodie

Чтобы правильно начертить ОСЭ, понадобится соблюдать установленные нормы и правила. Для этого необходимо изучить соответствующую техническую документацию. Применение актуальных программ для рисования способствует существенному ускорению процесса создания чертежа.

Однолинейная схема электроснабжения – общие понятия, виды и проектирование

Проект электроснабжения частного дома 15 кВт 3 фазы: однолинейная схема щита

Содержание статьи:

В условиях современной жизни невозможно обойтись без бытовых приборов и электронной аппаратуры, количество которой с каждым годом непрерывно растет. Это приводит к росту потребления энергии от действующей электросети и необходимости контроля ее рабочих параметров. Особое значение приобретает этот вопрос в загородном жилье, где допускается использовать 380 Вольт. По этой причине различные варианты схем подключения трехфазного электричества в частных домах подлежат серьезному исследованию.

Однофазное и трехфазное подключение

Схема трехфазной цепи

При выяснении различий в качестве двух типов энергоснабжения (с одно- и трехфазным подключением) и связанными с ними схемными решениями необходимо отметить следующее:

  • при использовании трехфазной системы для прокладки линии потребуется кабель с 4-мя жилами, при наличии заземляющего контура – с 5-ю, а для однофазного способа достаточно трех жил;

    Схема однофазного подключения

  • в первом случае возрастут расходы на кабельную продукцию, а также на приобретение обслуживающего оборудования – трехфазный электрический счетчик, автоматы и УЗО стоят дороже своих однофазных аналогов;
  • заметно увеличится потребляемая от подстанции мощность, что объясняется значительно возросшими нагрузками в сети 380 Вольт.

Указанные отличия учитываются при подготовке проекта электроснабжения частного дома. Принимаются во внимание и такие важные факторы, как особенности распределения тока и потери мощности в трехфазной нагрузке из-за ее реактивного характера.

Проект подключения и необходимая документация

Проект электроснабжения частного дома 15 кВт 3 фазы включает в себя несколько разделов, каждый из которых касается определенного этапа реализации. На подготовительной стадии проводятся следующие обязательные мероприятия:

  • подготовка и согласование разрешительной документации;
  • прорисовка электрической схемы и выбор потребителей по мощности в реактивной нагрузке;
  • разбивка их на отдельные группы.

Без основательной предварительной проработки всех тонкостей проекта утвердить комплект рабочей документации вряд ли удастся. Поэтому каждый из этапов его подготовки нуждается в отдельном рассмотрении.

Подготовка документации

Документы оформляются на основании технических условий подключения трехфазной сети

Пакет разрешительной документации комплектуется на основе ТУ, определяющих порядок обустройства и эксплуатации трехфазной сети. Они выдаются представителями местного «Энергосбыта». На основании технических условий оформляются следующие документы:

  • договор с поставщиком электроэнергии в регионе;
  • акт осмотра эксплуатируемого оборудования;
  • заключение по функциональности схемы, выбранной для конкретного объекта;
  • акт разграничения действующих электросетей по их балансовой принадлежности.

Помимо этого на данном этапе проектирования учитываются особенности эксплуатации конкретных потребителей электроэнергии – насосного и станочного оборудования в частности.

Схема и выбор мощности

Схема трехфазного электроснабжения

При прорисовке схем подключения трехфазного электричества в частных домах необходимо учитывать следующие детали:

  • На ней обязательно указание трассы прокладки, типа и основных характеристик кабеля электропроводки, а также мест расположения электроустановочных изделий.
  • То же самое проделывается в отношении защитного оборудования: счетчика электроэнергии, вводного и распределительных автоматов, а также УЗО.
  • В схеме также указывается тип используемой системы защиты от поражения током (способ разводки PE и N проводников), а также необходимость повторного заземления.

Кроме того, дается ссылка на использование дополнительного защитного оборудования – реле контроля напряжения в частности.

Расчет потребляемой мощности в киловаттах производится по типовому алгоритму, согласно которому все показатели по предполагаемым нагрузкам просто складываются.

Для «реактивных» потребителей (трехфазных насосов, станков и другого оборудования, оснащенного асинхронными двигателями), вводится поправочный коэффициент, называемый косинусом мощности. Его усредненное по нагрузкам значение составляет 0,97-0,98.

Разбивка на группы

Подключение электричества на участке

Все потребители, указанные на схеме электроснабжения дома 15 кВт (розетки и осветительные приборы) разделяются на отдельные группы. Такое разбиение очень удобно для ремонта и обслуживания обустраиваемой системы электропитания. За функционирование каждой из этих группа «ответственен» отдельный автоматический выключатель, устанавливаемый в электрическом щитке. С его помощью при необходимости ремонта, например, можно отключать только данную ветвь электропроводки, оставляя все другие в рабочем состоянии.

Для каждой такой группы расчет максимальной мощности потребления делается отдельно. Исходя из полученных данных, выбирается подходящий по номинальному току автомат. Кроме того, они являются основой для выбора сечения проводников для этого ответвления домашней электросети.

Линии освещения прокладываются типовым проводом с сечением жил не менее 1,5 мм2, а в электропроводке для подсоединения розеток потребуется увеличить этот параметр до 2,5 мм2.

Все эти данные необходимы, чтобы в соответствии с требованиями ПУЭ подключить обслуживаемый объект к энергосистеме. При их наличии определиться с количеством расходных материалов, защитных приборов и других образцов электрооборудования будет значительно проще.

Особенности обустройства распределительного щитка

Трехфазный щит учета

Однолинейная схема щита учета 15 кВт 380В (как частный случай) – самый распространенный вариант построения этой части системы энергоснабжения. При ее обустройстве рассматриваются следующие варианты комплектации, учитывающие различия однофазного и трехфазного питаний:

  • Использование в качестве защитного оборудования стандартных однополюсных автоматов и УЗО (по одному на каждую фазу).
  • Применение в схеме одних 4-хполюсных дифференциальных приборов.
  • Установка в щитке двухполюсных автоматов, дополненных кросс-модулем и УЗО.
  • Монтаж однополюсных линейных автоматов совместно с 4-х полюсным УЗО и кросс модулем.

Каждый из этих вариантов при наличии места в щитке подходит для обустройства и подключения полноценной трехфазной системы энергоснабжения. Выбор конкретного набора коммутирующих устройств зависит от предпочтений и финансовых возможностей хозяина загородного жилья.

Испытание электропроводки

Проверка и испытание электропроводки

По окончании монтажа электропроводки обязательна ее проверка на работоспособность, сводящаяся к следующим операциям:

  1. Прежде всего, следует «примерить» выбранные расчетным путем параметры по току и предельной мощности к реальным условиям эксплуатации электрооборудования.
  2. Для этого потребуется включить все обозначенные в проекте электроприборы одновременно и проверить электропроводку на нагрев изоляции.
  3. Если проводники на ощупь чуть теплые, а автоматы не выбиваются постоянно – можно с уверенностью сказать, что все параметры выбраны правильно и система готова к эксплуатации в штатном режиме.

Когда программа испытаний полностью исчерпана, переходят к окончательному обустройству элементов энергоснабжения. На завершающем этапе еще раз проверяются все контактные соединения в монтажных колодках и выставляются пределы срабатывания УЗО и реле напряжений, скорректированные по результатам тестовых процедур.

Принципиальная электрическая схема блока питания

Что такое блок питания?

Источник питания - это электронная схема, которая используется для подачи электроэнергии на приборы или нагрузки, такие как машины, компьютеры и т. Д. Эти электрические и электронные приборы требуют различных типов мощности на разных диапазонах, а также с разными характеристиками. Поэтому по этой причине мощность преобразуется в рекомендуемые формы (с желаемыми качествами) с помощью некоторых электронных преобразователей или преобразователей мощности.В этом проекте мы покажем вам принципиальную схему источника питания smps вместе с описанием.

Электрические и электронные нагрузки работают с различными типами источников питания, такими как источники переменного тока, высоковольтные источники питания, источники переменного и постоянного тока, источники бесперебойного питания (ИБП), программируемые источники питания и импульсные источники питания.

Что такое импульсный источник питания?

На самом деле это электронный источник питания, интегрированный с переключающим регулятором для эффективного преобразования электрической энергии из одной формы в другую с заданными характеристиками, который называется импульсным источником питания (кратко smps).Он используется для достижения регулируемого выходного напряжения постоянного тока от нерегулируемого входного напряжения переменного или постоянного тока.

Circuit Diagram Of Smps Power Supply

принципиальная схема источника питания Smps

Как и другие источники питания, импульсный источник питания представляет собой сложную схему, которая подает питание от источника к нагрузкам. Импульсный источник питания необходим для электропотребления электрических и электронных приборов и даже для подготовки электрических и электронных проектов.

Circuit Diagram Of Smps Power Supply

Топологии импульсного источника питания

Существует несколько типов топологий для SMPS, среди которых несколько:

  • DC в DC преобразователь
  • AC в DC преобразователь
  • Конвертер обратного хода
  • Форвард-конвертер
Принцип работы импульсного источника питания

Вот работа нескольких типов топологий импульсного источника питания:

1.Преобразователь постоянного тока в постоянный SMPS Принцип работы

Первоначально высоковольтная мощность постоянного тока напрямую получается от источника питания постоянного тока в преобразователе постоянного тока в постоянный. Затем это высоковольтное постоянное напряжение переключается с чрезвычайно высокой скоростью переключения, обычно в диапазоне от 15 кГц до 50 кГц.

И затем он подается на понижающий трансформатор, который сопоставим с весом и размером трансформаторного блока 50 Гц. Выход понижающего трансформатора затем дополнительно подается на выпрямитель. Эта отфильтрованная и выпрямленная выходная мощность постоянного тока используется в качестве источника нагрузки, а образец этой выходной мощности используется в качестве обратной связи для управления выходным напряжением.Время включения генератора контролируется этим напряжением обратной связи, и формируется регулятор с обратной связью.

Circuit Diagram Of Smps Power Supply

принципиальная схема источника питания Smps DC-DC

Выход smps регулируется с помощью ШИМ (широтно-импульсная модуляция). Как указано в схеме выше, переключатель может приводиться в действие ШИМ-генератором, так что мощность, подаваемая на понижающий трансформатор, управляется косвенно, и, следовательно, выход управляется широтно-импульсной модуляцией, так как это сигнал ширины импульса и выходное напряжение обратно пропорциональны друг другу.

Если рабочий цикл составляет 50%, максимальная мощность передается через понижающий трансформатор, а если рабочий цикл уменьшается, передаваемая мощность также уменьшается за счет уменьшения рассеиваемой мощности.

2. Принцип работы преобразователя переменного тока в постоянный SMPS:

Имеется вход переменного тока в преобразователе переменного тока в постоянный SMPS. Он преобразуется в постоянный ток в процессе выпрямления с использованием выпрямителя и фильтра. Это нерегулируемое постоянное напряжение подается на конденсатор с большим фильтром или схемы коррекции коэффициента мощности (PFC) для коррекции коэффициента мощности при его воздействии.Это связано с тем, что вокруг пиков напряжения, короткий ток проходит через выпрямитель, эти импульсы тока имеют заметно высокочастотную энергию, что приводит к уменьшению коэффициента мощности.

Circuit Diagram Of Smps Power Supply

принципиальная схема источника питания Smps AC-DC

Это несколько похоже на описанный выше преобразователь постоянного тока в постоянный, но вместо прямого источника постоянного тока здесь используется вход переменного тока. Таким образом, комбинация выпрямителя и фильтра, показанная на блок-схеме, используется для преобразования переменного тока в постоянный ток, а переключение осуществляется с помощью мощного усилителя «МОП-транзистор», с помощью которого можно получить очень высокий коэффициент усиления.Этот МОП-транзистор имеет низкое сопротивление и может выдерживать большой ток. Частота переключения выбирается таким образом, что она должна быть недоступна для обычных людей (в основном выше 20 кГц), а переключение контролируется обратной связью с использованием ШИМ-генератора.

Переменное напряжение снова подается на выходной трансформатор. Выход этого трансформатора затем выпрямляется и сглаживается с помощью выходного выпрямителя и фильтра. Для контроля выходного напряжения используется схема обратной связи, сравнивая ее с опорным напряжением.

3. Обратный преобразователь типа SMPS Принцип работы

Цепь источника питания с переключаемым режимом с очень низкой выходной мощностью менее 100 Вт (ватт) обычно является типом обратного преобразователя SMPS, и это очень простая и недорогая схема по сравнению с другими цепями SMPS. Следовательно, он используется для приложений с низким энергопотреблением.

Circuit Diagram Of Smps Power Supply Схема

Smps Блок питания Fly-Back Converter

Нерегулируемое входное напряжение с постоянным значением преобразуется в требуемое выходное напряжение с помощью быстрого переключения с помощью «полевого МОП-транзистора»; частота переключения составляет около 100 кГц.Изоляция напряжения может быть достигнута с помощью трансформатора. Работой переключателя можно управлять с помощью ШИМ-управления, в то же время применяя практичный обратный преобразователь.

Трансформатор обратного хода

отличается по сравнению с обычным трансформатором. Две обмотки обратного трансформатора вступают в действие в качестве магнитно-индуктивных катушек индуктивности. Выход этого трансформатора пропускается через диод и конденсатор для фильтрации и выпрямления. Как показано на рисунке, напряжение на этом конденсаторе фильтра принимается как выходное напряжение SMPS.

4. Форвард-конвертер типа SMPS Рабочий

SMPS прямого преобразователя почти такой же, как SMPS обратного преобразователя, но в прямом преобразователе подключен элемент управления для управления переключателем и на выходе вторичной обмотки трансформатора, а цепь выпрямления и фильтрации сложна как по сравнению с конвертером обратного хода.

Может называться преобразователем постоянного тока в постоянный ток вместе с трансформатором, используемым для изоляции и масштабирования.В дополнение к диоду D1 и конденсатору C, диод D2 и катушка индуктивности L соединены на выходном конце. Если переключатель S включен, то на вход подается первичная обмотка трансформатора и, следовательно, на вторичной обмотке трансформатора создается масштабированное напряжение.

Circuit Diagram Of Smps Power Supply Принципиальная электрическая схема

Smps Блок питания прямого преобразователя

Таким образом, диод D1 смещается в прямом направлении, а масштабированное напряжение подается через фильтр нижних частот, предшествующий нагрузке.Если переключатель S выключен, токи от первичной и вторичной обмоток достигают нуля, но ток через индуктивный фильтр и нагрузку не может быть изменен сразу, и путь к этому току обеспечивается диодом свободного хода D2. Посредством фильтра-индуктора желаемое напряжение на диоде D2 & для поддержания ЭДС необходимо для поддержания непрерывности тока на индуктивном фильтре.

Существуют различные типы топологий, в которых могут быть реализованы SMPS, такие как Buck-конвертер, Buck-Boost-преобразователь, Boost-преобразователь.Но только некоторые из них обсуждаются в этой статье: преобразователь постоянного тока в постоянный, преобразователь переменного тока в постоянный, обратный преобразователь и прямой преобразователь.

Прочитайте >> Электрические приборы над схемой защиты от пониженного напряжения ,

Как спроектировать схему питания 5V 2A SMPS

Блок питания (PSU) является важной частью любого электронного дизайна изделия. Для большинства бытовых электронных устройств, таких как мобильные зарядные устройства, динамики Bluetooth, блоки питания, интеллектуальные часы и т. Д., Требуется схема источника питания, которая может преобразовывать напряжение питания переменного тока в 5 В постоянного тока для их работы. В этом проекте мы построим аналогичную схему питания переменного тока в постоянный с номинальной мощностью 10 Вт. То есть наша схема преобразует сеть переменного тока 220В в 5В и обеспечивает максимальный выходной ток до 2А.Эта номинальная мощность должна быть достаточной для питания большинства электронных устройств, работающих на 5В. Также 5V 2A SMPS схема довольно популярна в электронике, так как есть много микроконтроллеров, которые работают на 5V.

Идея проекта состоит в том, чтобы сделать сборку как можно более простой, поэтому мы спроектируем полную схему на точечной плате (монтажной плате), а также создадим наш собственный трансформатор, чтобы любой мог воспроизвести эту конструкцию или создать аналогичные. Возбужденное право! Итак, начнем.Ранее мы также создали SMPS-схему 12 В 15 Вт с использованием печатной платы, чтобы те, кто интересуется проектированием печатной платы для проекта блока питания (блока питания), тоже могли это проверить.

Схема

5V 2A SMPS - Технические характеристики

Различные типы блоков питания ведут себя по-разному в разных средах. Кроме того, SMPS работает в определенных границах ввода-вывода. Надлежащий анализ спецификации необходимо выполнить, прежде чем идти вперед с фактическим дизайном.

Входные данные:

Это будет SMPS в домене преобразования переменного тока в постоянный. Следовательно, вход будет AC. Для значения входного напряжения рекомендуется использовать универсальный входной номинал для SMPS. Таким образом, переменное напряжение будет 85-265 В переменного тока с номинальной частотой 50 Гц. Таким образом, SMPS может использоваться в любой стране независимо от значения сетевого напряжения переменного тока.

Выходная характеристика:

Выходное напряжение выбрано как 5 В с 2А номинального тока.Таким образом, это будет , мощность 10 Вт, . Поскольку этот SMPS будет обеспечивать постоянное напряжение независимо от тока нагрузки, он будет работать в режиме CV (постоянное напряжение). Это выходное напряжение 5 В должно быть постоянным и устойчивым даже при самом низком входном напряжении во время максимальной нагрузки (2 А) на выходе.

Очень желательно, чтобы хороший источник питания имел пульсирующее напряжение менее 30 мВ pk-pk . Целевое пульсирующее напряжение для этого SMPS составляет менее 30 мВ пик-пик пульсации.Поскольку этот SMPS будет встроен в Veroboard с использованием переключающего трансформатора ручной работы , мы можем ожидать немного более высокие значения пульсации. Этой проблемы можно избежать, используя печатную плату.

Защитные функции:

Существуют различные защитные схемы, которые могут использоваться в SMPS для безопасной и надежной работы. Схема защиты защищает SMPS, а также соответствующую нагрузку. В зависимости от типа, цепь защиты может быть подключена через вход или выход.

Для этого SMPS будет использоваться защита от перенапряжения с максимальным рабочим напряжением на входе 275 В переменного тока. Кроме того, для решения проблем с электромагнитными помехами для устранения сгенерированных электромагнитных помех будет использоваться фильтр синфазного режима . На стороне выхода мы будем включать защиты от короткого замыкания , защиты от перенапряжения и защиты от перегрузки по току .

Выбор IC управления питанием

Для каждой цепи SMPS требуется ИС управления питанием, также известная как коммутационная ИС или ИС SMPS или более сухая ИС.Давайте подведем итоги проектирования, чтобы выбрать идеальную ИС управления питанием, которая будет подходить для нашего дизайна. Наши требования к дизайну

  1. 10 Вт мощности. 5В 2А при полной нагрузке.
  2. Универсальный входной рейтинг. 85-265 В переменного тока при 50 Гц
  3. Защита от перенапряжения на входе. Максимальное входное напряжение 275 В переменного тока.
  4. Защита от короткого замыкания на выходе, перенапряжения и перегрузки по току.
  5. Операции с постоянным напряжением.

Из вышеперечисленных требований есть широкий выбор микросхем на выбор, но для этого проекта мы выбрали Power интеграции .Интеграция питания - это полупроводниковая компания, имеющая широкий спектр ИС драйверов питания в различных диапазонах выходной мощности. Исходя из требований и доступности, мы решили использовать TNY268PN из крошечных семейств коммутаторов II . Ранее мы использовали эту микросхему для построения цепи 12 В SMPS на печатной плате.

Output Power Table For 5V 2A SMPS Power Supply Circuit

На изображении выше показана максимальная мощность 15 Вт. Тем не менее, мы сделаем SMPS в открытом кадре и для универсального входного рейтинга.В таком сегменте TNY268PN может обеспечить мощность 15 Вт. Давайте посмотрим на схему контактов.

TNY268PN Pin Diagram for 5V 2A SMPS Power Supply Circuit

Проектирование 5-вольтовой 2-амперной цепи SMPS

Лучший способ построить 5V 2A SMPS Schematic - это использовать программное обеспечение PI для интеграции с экспертами. Загрузите программное обеспечение PI expert и используйте версию 8.6. Это отличное программное обеспечение для проектирования блока питания. Схема, показанная ниже, построена с использованием программного обеспечения PI Integration Power Power. Если вы новичок в этом программном обеспечении, вы можете обратиться к разделу дизайна этой схемы 12 В SMPS, чтобы понять, как использовать программное обеспечение.

5V 2A SMPS Power Supply Circuit Diagram

Прежде чем приступить непосредственно к созданию прототипа, давайте рассмотрим принципиальную схему 5v 2A SMPS и ее работу.

Схема имеет следующие секции-

  1. Защита от перенапряжения на входе и SMPS
  2. AC-DC преобразование
  3. PI фильтр
  4. Схема драйвера или схема переключения
  5. Защита от понижения напряжения.
  6. Схема зажима.
  7. Магнитика и гальваническая развязка.
  8. EMI фильтр
  9. Вторичный выпрямитель и демпферная цепь
  10. Секция фильтра
  11. Раздел обратной связи.

Защита от скачков напряжения на входе и SMPS :

Этот раздел состоит из двух компонентов, F1 и RV1. F1 - плавкий плавкий предохранитель на 1 В 250 В переменного тока, а RV1 - MOV на 7 мм 275 В (, Металлооксидный варистор ). Во время перенапряжения высокого напряжения (более 275 В переменного тока) MOV замерзает и перегорает входной предохранитель. Тем не менее, благодаря функции замедленного срабатывания, предохранитель выдерживает пусковой ток через SMPS.

AC-DC преобразование :

Этот раздел регулируется диодным мостом. Эти четыре диода (внутри DB107) составляют полный мостовой выпрямитель. Диоды 1N4006, но стандарт 1N4007 отлично справится с этой задачей. В этом проекте эти четыре диода заменены полным мостовым выпрямителем DB107.

PI фильтр :

Разные штаты имеют разные стандарты подавления электромагнитных помех. Эта конструкция соответствует стандарту EN61000-Class 3 стандарта , а PI-фильтр сконструирован таким образом, чтобы уменьшить подавление электромагнитных помех в синфазном режиме .Этот раздел создан с использованием C1, C2 и L1. C1 и C2 - конденсаторы 400 В 18 мкФ. Это нечетное значение, поэтому для этого приложения выбрано 22 мкФ 400 В. L1 - это синфазный дроссель, который принимает дифференциальный сигнал EMI для отмены обоих.

Схема привода или схема переключения :

Это сердце SMPS. Первичная сторона трансформатора управляется цепью переключения TNY268PN. Частота переключения составляет 120-132 кГц. Благодаря высокой частоте коммутации можно использовать трансформаторы меньшего размера.Коммутационная схема состоит из двух компонентов: U1 и C3. U1 является основным драйвером IC TNY268PN. C3 - это байпасный конденсатор , который необходим для работы нашего драйвера IC.

Защита от понижения напряжения :

Защита от понижения напряжения обеспечивается чувствительными резисторами R1 и R2. Он используется, когда SMPS переходит в режим автоматического перезапуска и определяет напряжение в сети. Значения R1 и R2 генерируются с помощью инструмента PI Expert .Два резистора в серии - это мера безопасности и хорошая практика, чтобы избежать проблем с отказом резистора. Таким образом, вместо 2М в серии используются два резистора 1М.

Схема зажима :

D1 и D2 - схема зажима. D1 - это TVS-диод , а D2 - - сверхбыстрый восстановительный диод . Трансформатор действует как огромный индуктор через силовой драйвер IC TNY268PN. Поэтому во время цикла выключения трансформатор создает высокие скачки напряжения из-за индуктивности рассеяния трансформатора.Эти высокочастотные скачки напряжения подавляются диодным зажимом на трансформаторе. UF4007 выбран из-за сверхбыстрого восстановления, а P6KE200A выбран для работы TVS. Согласно конструкции, целевое напряжение зажима (VCLAMP) составляет 200 В. Поэтому P6KE200A выбран, а для проблем, связанных со сверхбыстрой блокировкой, UF4007 выбран как D2.

Магниты и гальваническая развязка :

Трансформатор представляет собой ферромагнитный трансформатор, и он не только преобразует переменный ток высокого напряжения в переменный ток низкого напряжения, но также обеспечивает гальваническую развязку.

EMI фильтр :

EMI фильтрация осуществляется конденсатором C4. Это повышает помехоустойчивость схемы, чтобы уменьшить высокие электромагнитные помехи. Это конденсатор Y-класса с номинальным напряжением 2 кВ.

Вторичная цепь выпрямителя и демпфера :

Выходной сигнал трансформатора выпрямляется и преобразуется в постоянный ток с использованием D6, выпрямительного диода Шоттки . Схема демпфирования на D6 обеспечивает подавление переходного напряжения во время операций переключения.Схема демпфирования состоит из одного резистора и одного конденсатора, R3 и C5.

Секция фильтра :

Секция фильтра состоит из конденсатора фильтра C6. Это конденсатор с низким ESR для лучшего подавления пульсаций. Кроме того, LC-фильтр, использующий L2 и C7, обеспечивает лучшее подавление пульсаций на выходе.

Раздел обратной связи :

Выходное напряжение измеряется U3 TL431 и R6 и R7. После обнаружения линии U2 оптрон управляется и гальванически развязывает участок измерения вторичной обратной связи с контроллером первичной стороны.Оптопара имеет транзистор и светодиод внутри. Управляя светодиодом, транзистор управляется. Поскольку связь осуществляется оптически, она не имеет прямого электрического соединения, поэтому также удовлетворяет гальванической развязке в цепи обратной связи.

Теперь, так как светодиод непосредственно управляет транзистором, обеспечивая достаточное смещение на светодиоде оптопары, можно управлять транзистором оптопары , более конкретно схемой возбуждения. Эта система управления используется TL431.Шунтирующий регулятор. Поскольку шунтирующий регулятор имеет резисторный делитель через опорный вывод, он может управлять светодиодом оптопары, который подключен к нему. Контактная обратная связь имеет опорное напряжение 2.5V . Следовательно, TL431 может быть активен, только если напряжение на делителе достаточно. В нашем случае делитель напряжения установлен на значение 5 В. Поэтому, когда выход достигает 5 В, TL431 получает 2,5 В через опорный вывод и, таким образом, активирует светодиод оптопары, который управляет транзистором оптопары и косвенно контролирует TNY268PN.Если напряжение на выходе недостаточно, цикл переключения немедленно приостанавливается.

Сначала TNY268PN активирует первый цикл переключения, а затем определяет его вывод EN. Если все в порядке, он продолжит переключение, если нет, через некоторое время попробует еще раз. Этот цикл продолжается до тех пор, пока все не станет нормальным, что предотвратит проблемы с коротким замыканием или перенапряжением. Вот почему она называется с топологией обратного хода , поскольку выходное напряжение возвращается в драйвер для определения связанных операций.Кроме того, пробный цикл называется режимом сбоя режима сбоя.

D3 - это диод Шоттки . Этот диод преобразует высокочастотный выход переменного тока в постоянный. 3А 60В Диод Шоттки выбран для надежной работы. R4 и R5 выбираются и рассчитываются экспертом PI. Он создает делитель напряжения и передает ток на светодиод оптрона от TL431.

R6 и R7 - простой делитель напряжения, рассчитанный по формуле TL431 REF Voltage = (Vout x R7) / R6 + R7 .Опорное напряжение 2.5V и Vout является 12V. Выбрав значение R6 23,7 тыс., R7 стал примерно 9,09 тыс.

Построение переключающего трансформатора для нашей цепи SMPS

Обычно для цепи SMPS требуется переключающий трансформатор, эти трансформаторы могут быть приобретены у производителей трансформаторов в соответствии с вашими проектными требованиями. Но проблема здесь в том, что если вы изучаете материал по созданию прототипа, вы не можете найти точный трансформатор с полок для вашего дизайна.Итак, мы узнаем, как построить коммутационный трансформатор на основе требований к конструкции, данных нашим программным обеспечением PI Expert.

Давайте посмотрим на сгенерированную схему построения трансформатора.

Generated Tansformer Construction Diagram for 5V 2A SMPS Power Supply Circuit

Как показано на рисунке выше, нам нужно выполнить 103 витка одного провода 32 AWG на первичной стороне и 5 витков двух проводов 25 AWG на вторичной стороне.

Mechanical Diagram for 5V 2A SMPS Power Supply Circuit

На приведенном выше изображении начальная точка обмоток и направление обмотки описаны в виде механической схемы.Чтобы сделать этот трансформатор, необходимы следующие вещи -

  1. EE19 сердечник, NC-2H или эквивалентная спецификация с зазором для ALG 79 нГн / T 2
  2. Бобина с 5 контактами на первичной и вторичной стороне.
  3. Барьерная лента толщиной 1 мил. Требуется лента шириной 9 мм.
  4. 32 AWG эмалированная медная проволока с паяным покрытием.
  5. 25AWG эмалированная медная проволока с паяным покрытием.
  6. LCR метр.

EE19 ядро ​​ с NC-2H с зазором сердечника 79nH / T2 требуется; как правило, это доступно в парах.Бобина является общей с 4 первичными и 5 вторичными булавками. Однако здесь используется шпулька с 5 штифтами с обеих сторон.

Для барьерной ленты используется стандартная клейкая лента с толщиной основы более 1 мил (обычно 2 мил). Во время действий, связанных с постукиванием, ножницы используются, чтобы разрезать ленту для идеальной ширины. Медные провода закупаются у старых трансформаторов, и их можно купить в местных магазинах. Ядро и шпулька, которые я использую, показаны ниже

Core and Bobbin for 5V 2A SMPS Power Supply Circuit

Шаг 1: Добавьте припой в 1-й и 5-й контакт на первичной стороне.Припой провода 32 AWG на выводе 5 и направление намотки по часовой стрелке. Продолжайте до 103 поворотов, как показано ниже

Coiling Transformer for Primary Side Winding Transformer for 5V 2A SMPS Power Supply Circuit

Это формирует первичную сторону нашего трансформатора, когда 103 витка обмотки завершены, мой трансформатор выглядел следующим образом.

Primary Side of Transformer for 5V 2A SMPS Power Supply Circuit

Шаг 2: Применить клейкую ленту для изоляции, необходимо 3 витка клейкой ленты. Это также помогает удерживать катушку на месте.

Tapping on Transformer for 5V 2A SMPS Power Supply Circuit

Шаг 3: Запустите вторичную обмотку с выводов 9 и 10. Вторичная сторона изготовлена ​​с использованием двух жил из эмалированных медных проводов 25AWG. Припаяйте один медный провод к контакту 9, а другой - к контакту 10. Направление намотки снова по часовой стрелке. Продолжайте до 5 оборотов и припаяйте концы на контактах 5 и 6. Добавьте изоленту, применив клейкую ленту так же, как и раньше.

Forming Secondary Winding on Transformer For 5V 2A SMPS Power Supply Circuit

После того, как первичная и вторичная обмотки выполнены и используется клейкая лента, мой трансформатор выглядел так, как показано ниже

Construction of Transformer For 5V 2A SMPS Power Supply Circuit

Шаг 4: Теперь мы можем надежно закрепить два сердечника с помощью клейкой ленты.После этого готовый трансформатор должен выглядеть следующим образом.

Transformer for 5V 2A SMPS Power Supply Circuit

Шаг 5: Также не забудьте обмотать скотч рядом. Это уменьшит вибрацию при передаче потока высокой плотности.

Transformer Construction For 5V 2A SMPS Power Supply Circuit

После выполнения вышеуказанных шагов и испытания трансформатора с использованием измерителя LCR, как показано ниже. Измеритель показывает индуктивность 1,125 мГн или 1125 э.ч.

Inductance Reading Of 5V 2A SMPS Power Supply Circuit

Построение схемы SMPS:

Когда трансформатор будет готов, мы можем приступить к сборке других компонентов на пунктирной плате.Требуемые детали для схемы можно найти в списке спецификаций ниже

Как только компоненты спаяны, моя плата выглядит примерно так.

5V 2A SMPS Power Supply Circuit on Perf Board

Тестирование цепи 5 В 2A SMPS

Для проверки схемы я подключил входную сторону к источнику питания через VARIAC для контроля входного напряжения переменного тока. Выходное напряжение при 85 В переменного тока и 230 В переменного тока показано ниже-

Testing 5V 2A SMPS Power Supply Circuit

Как видно в обоих случаях, выходное напряжение поддерживается на уровне 5 В.Но затем я подключил выход к своему прицелу и проверил наличие пульсаций. Измерение пульсаций показано ниже

Ripple Measurement of 5V 2A SMPS Power Supply Circuit

Пульсация на выходе достаточно высокая, она показывает выход пульсации 150 мВ pk-pk. Это совсем не хорошо для цепи питания. На основании анализа высокая пульсация обусловлена ​​факторами ниже-

  1. Неправильное проектирование печатных плат.
  2. Отскок от земли.
  3. Радиатор PCB не подходит.
  4. Нет отключения на шумных линиях подачи.
  5. Увеличенные допуски на трансформаторе из-за ручной намотки. Производители трансформаторов применяют лак для погружения во время обмоток машины для лучшей устойчивости трансформаторов.

Если цепь преобразуется в правильную печатную плату, мы можем ожидать пульсирующий выход источника питания в пределах 50 мВ pk-pk даже с трансформатором с ручной намоткой. Тем не менее, поскольку veroboard не является безопасным вариантом для переключения импульсного источника питания в области переменного тока в постоянный, постоянно предлагается установить надлежащую печатную плату перед применением высоковольтных цепей в практических сценариях.Вы можете проверить видео в конце этой страницы, чтобы проверить, как работает схема в условиях нагрузки.

Надеюсь, вы поняли учебник и научились создавать собственные схемы SMPS с помощью трансформатора ручной работы. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев ниже или используйте наши форумы для дополнительных вопросов.

,

12V 1A SMPS Схема источника питания на печатной плате

Каждое электронное устройство или изделие требует надежного блока питания (PSU) для его работы. Почти все устройства в нашем доме, такие как телевизор, принтер, музыкальный проигрыватель и т. Д., Состоят из встроенного в него блока питания, который преобразует напряжение сети переменного тока в соответствующий уровень напряжения постоянного тока для их работы. Наиболее часто используемым типом цепи электропитания является SMPS (импульсный источник питания) , вы можете легко найти этот тип цепей в своем адаптере 12 В или зарядном устройстве для мобильных ПК / ноутбука.В этом уроке мы узнаем , как построить 12-вольтовую SMPS-схему , которая преобразовывала бы сеть переменного тока в 12 В постоянного тока с максимальным номинальным током 1,25 А. Эту схему можно использовать для питания небольших нагрузок или даже адаптировать ее к зарядному устройству для зарядки свинцово-кислотных и литиевых батарей. Если эта цепь питания 12 В, 15 Вт, не соответствует вашим требованиям, вы можете проверить различные цепи питания с разными номинальными характеристиками.

12 В SMPS Circuit - Вопросы проектирования

Прежде чем приступить к проектированию источников питания любого типа, необходимо выполнить анализ требований на основе среды, в которой будет использоваться наш источник питания.Различные виды источников питания работают в разных средах и с определенными границами ввода-вывода.

Входные данные

Давайте начнем с ввода. Входное напряжение питания - это первое, что будет использоваться SMPS и будет преобразовано в полезное значение для питания нагрузки. Так как эта конструкция указана для преобразования переменного тока в постоянный , на входе будет переменный ток (AC). Для Индии вход переменного тока доступен в 220-230 вольт, для США он рассчитан на 110 вольт.Есть и другие страны, которые используют разные уровни напряжения. Как правило, SMPS работает с универсальным входным напряжением в диапазоне . Это означает, что входное напряжение может отличаться от 85 В переменного тока до 265 В переменного тока. SMPS может использоваться в любой стране и может обеспечить стабильный выход при полной нагрузке, если напряжение составляет 85-265 В переменного тока. SMPS также должен нормально работать на частотах 50 Гц и 60 Гц. По этой причине мы можем использовать наши зарядные устройства для телефонов и ноутбуков в любой стране.

Выходная спецификация

На выходной стороне несколько нагрузок являются резистивными, немногие - индуктивными.В зависимости от нагрузки конструкция SMPS может быть разной. Для этого SMPS нагрузка принимается как резистивная нагрузка . Однако нет ничего похожего на резистивную нагрузку, каждая нагрузка состоит по меньшей мере из некоторого количества индуктивности и емкости; здесь предполагается, что индуктивность и емкость нагрузки незначительны.

Выходная спецификация SMPS сильно зависит от нагрузки, например, сколько напряжения и тока потребуется нагрузке при любых условиях эксплуатации.Для этого проекта SMPS может обеспечить 15 Вт выходной мощности . Это 12В и 1,25А. Целевая выходная пульсация выбрана как меньшее из 30 мВ pk-pk при полосе частот 20000 Гц .

Исходя из выходной нагрузки, мы также должны выбрать между проектированием SMPS с постоянным напряжением или SMPS с постоянным током . Постоянное напряжение означает, что напряжение на нагрузке будет постоянным, и ток будет изменяться в соответствии с изменениями сопротивления нагрузки.С другой стороны, режим постоянного тока позволяет току быть постоянным, но изменять напряжение в соответствии с изменениями сопротивления нагрузки. Кроме того, CV и CC могут быть доступны в SMPS, но они не могут работать за один раз. Когда обе опции существуют в SMPS, должен быть диапазон, когда SMPS изменит свою выходную операцию с CV на CC и наоборот. Обычно зарядные устройства в режиме CC и CV используются для зарядки свинцово-кислотных или литиевых батарей.

Функции защиты входов и выходов

Существуют различные схемы защиты, которые можно использовать на SMPS для более безопасной и надежной работы.Схема защиты защищает SMPS, а также подключенную нагрузку. В зависимости от местоположения схема защиты может быть подключена через вход или через выход. Наиболее распространенная защита входов - Защита от импульсных перенапряжений и Фильтры электромагнитных помех . Защита от перенапряжений защищает SMPS от скачков напряжения на входе или от перенапряжения переменного тока . Фильтр EMI защищает SMPS от генерации EMI через входную линию. В этом проекте будут доступны обе функции. Защита выхода включает защиту от короткого замыкания , защиту от перенапряжения и защиту от перегрузки по току .Эта конструкция SMPS также будет включать в себя все эти схемы защиты.

Выбор IC управления питанием

Для каждой цепи SMPS требуется ИС управления питанием, также известная как коммутационная ИС или ИС SMPS или более сухая ИС. Давайте подведем итоги проектирования, чтобы выбрать идеальную ИС управления питанием, которая будет подходить для нашего дизайна. Наши требования к дизайну

  1. 15 Вт мощности. 12 В 1,25 А с пк-рк пульсацией менее 30 мВ при полной нагрузке.
  2. Универсальный входной рейтинг.
  3. Защита от перенапряжения на входе.
  4. Защита от короткого замыкания на выходе, перенапряжения и перегрузки по току.
  5. Операции с постоянным напряжением.

Из вышеперечисленных требований есть широкий выбор микросхем на выбор, но для этого проекта мы выбрали Power интеграции . Интеграция питания - это полупроводниковая компания, имеющая широкий спектр ИС драйверов питания в различных диапазонах выходной мощности. Исходя из требований и доступности, мы решили использовать TNY268PN из крошечных семейств коммутаторов II .

Selection of the Power Management IC

На изображении выше показана максимальная мощность 15 Вт. Тем не менее, мы сделаем SMPS в открытом кадре и для универсального входного рейтинга. В таком сегменте TNY268PN может обеспечить мощность 15 Вт. Давайте посмотрим на схему контактов.

TNY268PN Pinout

Проектирование 12-вольтовой 1-амперной цепи SMPS

Лучший способ построить схему - использовать программное обеспечение PI для интеграции с Power. Это отличное программное обеспечение для проектирования блока питания.Схема построена с использованием интегральной схемы питания. Процедура проектирования описана ниже, в качестве альтернативы вы также можете прокрутить видео вниз, объясняя то же самое.

Шаг -1: Выберите Tiny switch II , а также выберите желаемую упаковку. Мы выбрали пакет DIP. Выберите тип корпуса, адаптер или открытая рамка. Здесь выбран Open Frame.

Затем выберите тип обратной связи. Это важно, так как используется топология Flyback .TL431 - отличный выбор для обратной связи. TL431 - это шунтирующий регулятор, обеспечивающий превосходную защиту от перенапряжения и точное выходное напряжение.

Designing the 12v 1Amp SMPS Circuit

Шаг-2: Выберите диапазон входного напряжения. Поскольку это будет универсальный вход SMPS, входное напряжение выбрано как 85-265В переменного тока. Частота линии составляет 50 Гц.

Select Input Voltage Range for SMPS

Шаг 3:

New PI Expert Design Wizard

Выберите выходное напряжение, ток и мощность.Рейтинг SMPS будет 12V 1.25A. Мощность показывает 15 Вт. Режим работы также выбран как CV, что означает режим работы с постоянным напряжением. Наконец, все делается в три простых шага, и схема создается.

12V SMPS принципиальная схема и объяснение

Приведенная ниже схема немного видоизменена в соответствии с нашим проектом.

12V 1A SMPS Circuit Diagram

Прежде чем приступить непосредственно к созданию прототипа, давайте рассмотрим принципиальную схему 12v SMPS и ее работу.Схема имеет следующие разделы

  1. Защита от скачков напряжения на входе и SMPS
  2. AC-DC преобразование
  3. PI фильтр
  4. Схема драйвера или схема переключения
  5. Защита от понижения напряжения.
  6. Схема зажима
  7. Магнитика и гальваническая развязка
  8. EMI фильтр
  9. Вторичный выпрямитель и демпферная цепь
  10. Секция фильтра
  11. Обратная связь.

Защита от перенапряжения на входе и SMPS

Этот раздел состоит из двух компонентов, F1 и RV1.F1 представляет собой плавкий плавкий предохранитель на 1 В 250 В переменного тока, а RV1 представляет собой 7-миллиметровый 275 В MOV (металлический оксидный варистор). Во время перенапряжения высокого напряжения (более 275 В переменного тока) MOV замерзает и перегорает входной предохранитель. Тем не менее, благодаря функции замедленного срабатывания, предохранитель выдерживает пусковой ток через SMPS.

AC-DC преобразование

Этот раздел регулируется диодным мостом. Эти четыре диода (внутри DB107) составляют полный мостовой выпрямитель. Диоды 1N4006, но стандарт 1N4007 отлично справится с этой задачей.В этом проекте эти четыре диода заменены полным мостовым выпрямителем DB107.

PI фильтр

Разные штаты имеют разные стандарты подавления электромагнитных помех. Эта конструкция соответствует стандарту EN61000-Class 3 стандарта , а PI-фильтр сконструирован таким образом, чтобы уменьшить подавление электромагнитных помех в синфазном режиме . Этот раздел создан с использованием C1, C2 и L1. C1 и C2 - конденсаторы 400 В 18 мкФ. Это нечетное значение, поэтому для этого приложения выбрано 22 мкФ 400 В.L1 - это синфазный дроссель, который принимает дифференциальный сигнал EMI для отмены обоих.

Схема привода или схема переключения

Это сердце SMPS. Первичная сторона трансформатора управляется цепью переключения TNY268PN. Частота переключения составляет 120-132 кГц. Благодаря высокой частоте коммутации можно использовать трансформаторы меньшего размера. Коммутационная схема состоит из двух компонентов: U1 и C3. U1 является основным драйвером IC TNY268PN.C3 - это байпасный конденсатор , который необходим для работы нашего драйвера IC.

Защита от понижения напряжения

Защита от понижения напряжения обеспечивается чувствительными резисторами R1 и R2. Он используется, когда SMPS переходит в режим автоматического перезапуска и определяет напряжение в сети.

Схема зажима

D1 и D2 - схема зажима. D1 - это TVS-диод , а D2 - - сверхбыстрый восстановительный диод .Трансформатор действует как огромный индуктор через силовой драйвер IC TNY268PN. Поэтому во время цикла выключения трансформатор создает высокие скачки напряжения из-за индуктивности рассеяния трансформатора. Эти высокочастотные скачки напряжения подавляются диодным зажимом на трансформаторе. UF4007 выбран из-за сверхбыстрого восстановления, а P6KE200A выбран для работы TVS.

Магнитика и гальваническая развязка

Трансформатор представляет собой ферромагнитный трансформатор, и он не только преобразует переменный ток высокого напряжения в переменный ток низкого напряжения, но также обеспечивает гальваническую развязку.

EMI фильтр

EMI фильтрация осуществляется конденсатором C4. Это повышает помехоустойчивость схемы, чтобы уменьшить высокие электромагнитные помехи.

Вторичный выпрямитель и демпфирующая цепь

Выходной сигнал трансформатора выпрямляется и преобразуется в постоянный ток с использованием D6, выпрямительного диода Шоттки . Схема демпфирования на D6 обеспечивает подавление переходного напряжения во время операций переключения.Схема демпфирования состоит из одного резистора и одного конденсатора, R3 и C5.

Секция фильтра

Секция фильтра состоит из конденсатора фильтра C6. Это конденсатор с низким ESR для лучшего подавления пульсаций. Кроме того, LC-фильтр, использующий L2 и C7, обеспечивает лучшее подавление пульсаций на выходе.

Раздел обратной связи

Выходное напряжение измеряется U3 TL431 и R6 и R7. После обнаружения линии U2 оптрон управляется и гальванически развязывает участок измерения вторичной обратной связи с контроллером первичной стороны.Оптопара имеет транзистор и светодиод внутри. Управляя светодиодом, транзистор управляется. Поскольку связь осуществляется оптически, она не имеет прямого электрического соединения, поэтому также удовлетворяет гальванической развязке в цепи обратной связи.

Теперь, так как светодиод непосредственно управляет транзистором, обеспечивая достаточное смещение на светодиоде оптопары, можно управлять транзистором оптопары , более конкретно схемой возбуждения. Эта система управления используется TL431.По мере того как параллельный стабилизатор имеет резистор делитель через ее опорный штифт, он может контролировать оптрон светодиод, который подключен через него. Контактная обратная связь имеет опорное напряжение 2.5V . Следовательно, TL431 может быть активен, только если напряжение на делителе достаточно. В нашем случае для делителя напряжения установлено значение 12 В . Поэтому, когда выход достигает 12 В, TL431 получает 2,5 В через опорный вывод и, таким образом, активирует светодиод оптопары, который управляет транзистором оптопары и косвенно контролирует TNY268PN.Если напряжение на выходе недостаточно, цикл переключения немедленно приостанавливается.

Сначала TNY268PN активирует первый цикл переключения, а затем определяет его вывод EN. Если все в порядке, он продолжит переключение, если нет, он попытается еще раз через иногда. Этот цикл продолжается до тех пор, пока все не станет нормальным, что предотвращает проблемы с коротким замыканием или перенапряжением. Вот почему это называется топологией обратного хода, поскольку выходное напряжение возвращается в драйвер для определения связанных операций.Кроме того, пробный цикл называется режима сбоя работы в состоянии сбоя.

D3 - это диод Шоттки . Этот диод преобразует высокочастотный выход переменного тока в постоянный. 3А 60В Диод Шоттки выбран для надежной работы. R4 и R5 выбираются и рассчитываются экспертом PI. Он создает делитель напряжения и передает ток на светодиод оптрона от TL431.

R6 и R7 - простой делитель напряжения, рассчитанный по формуле TL431 REF Voltage = (Vout x R7) / R6 + R7 .Опорное напряжение 2.5V и Vout является 12V. Выбрав значение R6 23,7 тыс., R7 стал примерно 9,09 тыс.

Изготовление печатной платы для 12v 1A SMPS Circuit

Теперь, когда мы понимаем, как работают схемы, мы можем приступить к созданию печатной платы для нашего SMPS. Поскольку это SMPS-схема, рекомендуется использовать печатную плату, поскольку она может решить проблему шума и изоляции. Компоновка печатной платы для вышеуказанной схемы также доступна для загрузки в виде Gerber по ссылке

Теперь, когда наш дизайн готов, пришло время изготовить их с использованием файла Gerber.Чтобы сделать печатную плату довольно легко, просто следуйте инструкциям ниже

Шаг 1: Зайдите на www.pcbgogo.com, зарегистрируйтесь, если вы впервые. Затем на вкладке Прототип печатной платы введите размеры вашей печатной платы, количество слоев и количество печатной платы, которое вам требуется. Предполагая, что печатная плата имеет размер 80 см × 80 см, вы можете установить размеры, как показано ниже.

12V 1A SMPS Circuit Diagram

Шаг 2: Продолжите, нажав на кнопку Quote Now .Вы попадете на страницу, где задайте несколько дополнительных параметров, если требуется, например, используемый материал, расстояние между дорожками и т. Д. Но в основном значения по умолчанию будут работать нормально. Единственное, что мы должны рассмотреть здесь, это цена и время. Как видите, время сборки составляет всего 2-3 дня, а для нашего PSB оно стоит всего 5 долларов. Затем вы можете выбрать предпочтительный способ доставки на основе ваших требований.

12V 1A SMPS Circuit Diagram

Шаг 3: Последний шаг - загрузить файл Gerber и продолжить оплату.Чтобы убедиться, что процесс проходит гладко, PCBGOGO проверяет, является ли ваш файл Gerber действительным, прежде чем приступить к оплате. Таким образом, вы можете быть уверены в том, что ваша печатная плата является дружественной к изготовителю и достигнет вас, как и всегда.

Сборка печатной платы

После того, как плата была заказана, она пришла ко мне через несколько дней, хотя курьер в аккуратно размеченной хорошо упакованной коробке и, как всегда, качество печатной платы было потрясающим. Полученная мной печатная плата показана ниже

12v 1A SMPS Circuit PCB Front Side

12v 1A SMPS Circuit PCB Back

Я включил свой паяльный стержень и начал собирать плату.Так как Footprints, колодки, переходные отверстия и шелкография идеально подходят по форме и размеру, у меня не возникло проблем при сборке платы. Моя печатная плата, закрепленная на паяльных тисках, показана ниже.

Assembling PCB for 12v 1A SMPS Circuit

Комплектация Закупки

Все компоненты для этой 12 В 15 Вт SMPS схемы закуплены согласно схеме. Подробную спецификацию можно найти в приведенном ниже файле Excel для загрузки.

Почти все компоненты легко доступны для использования с полки.Вы можете найти проблемы с поиском подходящего трансформатора для этого проекта. Обычно для SMPS-коммутации обратный трансформатор не доступен напрямую от поставщиков, в большинстве случаев вам нужно намотать собственный трансформатор, если вам нужны эффективные результаты. Однако также можно использовать аналогичный трансформатор обратного хода, и ваша схема все равно будет работать. Идеальная спецификация для нашего трансформатора будет предоставлена ​​программным обеспечением PI Expert, которое мы использовали ранее.

Механическая и электрическая схема трансформатора, полученная от PI Expert, показана ниже.

Mechanical diagram of the transformer

Electrical diagram of the transformer

Если вы не можете найти подходящего поставщика, вы можете спасти трансформатор от адаптера 12 В или других цепей SMPS. В качестве альтернативы вы можете также создать собственную покупку трансформатора, используя следующие материалы и инструкции по намотке.

Material of the Transformer for SMPS

Winding Instructions of the Transformer for SMPS

После того, как все компоненты приобретены, их сборка должна быть легкой. Вы можете использовать файл Gerber и спецификацию для справки и собрать плату PCB.После того, как моя печатная плата лицевой и задней стороны выглядит примерно так ниже

12v SMPS Circuit Diagram

12v 1A SMPS Circuit PCB Back Side

Тестирование нашей 15W SMPS схемы

Теперь, когда наша трасса готова, пришло время принять ее во внимание. Мы подключим плату к нашей сети переменного тока через VARIAC и загрузим выходную сторону нагрузочной машиной и измерим пульсации напряжения, чтобы проверить работоспособность нашей схемы. Полное видео процедуры тестирования также можно найти в конце этой страницы.На рисунке ниже показана схема, протестированная с входным переменным напряжением 230 В переменного тока, для которого мы получаем выход 12,08 В

Testing our 15W SMPS circuit

Измерение пульсирующего напряжения с помощью осциллографа

Чтобы измерить пульсационное напряжение с помощью осциллографа, измените вход оптического прицела на переменный ток с коэффициентом усиления 1x. Затем подключите электролитический конденсатор с низкой стоимостью и керамический конденсатор с низкой стоимостью, чтобы уменьшить шум из-за проводов. Вы можете обратиться к странице 40 этого документа RDR-295 от Power Integration для получения дополнительной информации об этой процедуре.

Приведенный ниже снимок был сделан при отсутствии нагрузки на 85 В и 230 В переменного тока. Шкала установлена ​​на 10 мВ на деление, и, как вы можете видеть, пульсация составляет почти 10 мВ пк-рк.

Measuring Ripple at NO Load using Oscilloscope

На входе 90 В переменного тока и при полной нагрузке пульсация может составлять около 20 мВ pk-pk

Measuring Ripple at 85VAC Full Voltage using Oscilloscope

В 230 В переменного тока и при пульсирующем напряжении при полной нагрузке измеряется около 30 мВ pk-pk, что является наихудшим сценарием

Measuring Ripple at 230VAC Full Voltage using Oscilloscope

Вот и все; это то, как вы можете создать свою собственную 12v SMPS схему .Как только вы поймете работу, вы можете изменить схему 12v SMPS в соответствии с вашими требованиями к напряжению и мощности. Надеюсь, вы поняли учебник и получили удовольствие от изучения чего-то полезного Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев или используйте наши форумы для технических обсуждений. Встретимся снова с другим интересным дизайном SMPS, до тех пор, пока не подпишусь ...

,Схема источника питания

DIY на печатной плате

Блок питания - это очень распространенный инструмент, используемый большинством инженеров на стадии разработки. Лично я часто использую его, когда экспериментирую с схемами на макете или включаю простой модуль. Большинство цифровых или встроенных микросхем имеют стандартное рабочее напряжение 5 В или 3,3 В, поэтому я решил построить источник питания , который может подавать 5 В / 3,3 В на силовых шинах макета и плотно прилегать к макету. ,

Блок питания будет спроектирован на печатной плате с использованием EasyEDA. Схема использует 7805 для питания 5 В и LM317 для питания 3,3 В с максимальным номинальным током 1,5 А, который достаточно высок для питания цифровых микросхем и микроконтроллеров. Итак, начнем ....

Необходимые материалы

  • LM317 Регулятор переменного напряжения
  • 7805
  • DC Barrel Jack
  • 330 Ом и 560 Ом Резистор
  • 0.1 и 1 мкФ конденсатор
  • Светодиод
  • кобель Бергстик
  • PCB (от JLCPCB)

Схема

Полная принципиальная схема для этого проекта блока питания приведена ниже. Схема была создана с использованием Easy EDA.

Circuit Diagram for DIY Breadboard Power Supply Circuit on PCB

Чтобы легко понять схему, она разделена на четыре части. Вверху слева и снизу слева находится регулятор 5 В и 3.Регулятор 3В соответственно. Верхняя правая и нижняя правая часть - это выводы коллектора, из которых мы можем получить либо 5 В, либо 3,3 В в соответствии с требованиями, изменив положение перемычки .

Для людей, которые плохо знакомы с этикетками, это просто виртуальный провод, который используется в принципиальных схемах для создания более аккуратного и простого для понимания. В приведенной выше схеме названия + 12В, + 5В и + 3,3В являются метками. Любые два места, где написана метка + 12В, фактически связаны проводом, то же самое применимо для двух других меток + 5В и +3.3В также.

+ 5В Схема регулятора

Positive 5V Regulator circuit using IC7805

Мы использовали регулятор положительного напряжения 7805 для получения регулируемого напряжения + 5В. Вход IC - от адаптера 12 В, поданного через гнездо постоянного тока. Для удаления пульсаций мы использовали конденсатор 1 мкФ во входной секции и конденсатор 0,1 мкФ в выходной секции. Регулируемое выходное напряжение + 5 В может быть получено для контакта 3. При правильном радиаторе мы можем получить около 1.5А образуют 7805 IC.

+ 3,3 В Регулятор Цепи

Positive 3.3V Regulator Circuit using LM317

Аналогично для получения + 3,3 В мы использовали регулятор переменного напряжения LM317 . LM317 - это регулируемый регулятор напряжения, который принимает входное напряжение 12 В и обеспечивает фиксированное выходное напряжение 3,3 В. Выходное напряжение V из зависит от значений внешнего резистора R 1 и R 2 согласно следующему уравнению:

Output Voltage Equation for 3.3V regulator Circuit

Рекомендованное значение для R1 составляет 240 Ом, но может быть и другое значение в диапазоне от 100 Ом до 1000 Ом.Мы можем использовать этот онлайн-калькулятор для расчета значений R1 и R2, я установил значение R1 равным 330R, а значение выходного напряжения - 3,3 В. После нажатия кнопки расчета я получил следующий результат.

Voltage Divider Calculator

Поскольку у нас нет резистора 541,19 Ом, мы использовали наиболее близкое значение, которое составляет 560 Ом. Мы также добавили светодиод через другой резистор 560 Ом, который будет служить индикатором питания.

Размещение выводов

В вышеупомянутых двух блоках цепей мы отрегулировали + 5В и +3.3 В образуют источник 12 В. Теперь мы должны предоставить пользователю возможность выбора между напряжением + 5 В или напряжением + 3,3 В в соответствии с требованиями пользователя. Для этого мы использовали штыревые контакты с перемычками. Пользователь может переключать перемычку для выбора между значениями напряжения + 5 В и + 3,3 В . Мы также поместили еще один контактный разъем в нижней части печатной платы, чтобы мы могли установить его прямо на макетной плате.

PCB Design с использованием EasyEDA

Чтобы спроектировать блок питания для макетной платы , мы выбрали онлайновый инструмент EDA под названием EasyEDA.Ранее я много раз использовал EasyEDA и нашел его очень удобным, так как он имеет хорошую коллекцию следов и с открытым исходным кодом. После проектирования печатной платы мы можем заказать образцы печатной платы с помощью недорогих услуг по их изготовлению. Они также предлагают услугу поиска компонентов, где у них есть большой запас электронных компонентов, и пользователи могут заказать необходимые компоненты вместе с заказом на печатную плату.

При проектировании ваших микросхем и печатных плат вы также можете сделать ваши схемы и печатные платы общедоступными, чтобы другие пользователи могли копировать или редактировать их и получать выгоду от вашей работы, мы также сделали общедоступными все наши схемы и печатные платы для этой схемы, проверьте ссылку ниже:

https: // easyeda.com / circuitdigest / схема источника питания макета

Вы можете просматривать любой слой (верхний, нижний, верхний шёлк, нижний шёлк и т. Д.) Печатной платы, выбрав слой из окна «Слои».

Вы также можете просмотреть печатную плату, как она будет выглядеть после изготовления, с помощью кнопки Photo View в EasyEDA:

After Fabrication Photoview of PCB in EasyEDA

Расчет и заказ образцов онлайн

После завершения проектирования этого блока питания для платы питания PCB вы можете заказать плату через JLCPCB.ком. Чтобы заказать печатную плату у JLCPCB, вам нужен Gerber File. Чтобы загрузить файлы Gerber с вашей печатной платы, просто нажмите кнопку Generate Fabrication File на странице редактора EasyEDA, затем загрузите файл Gerber оттуда или вы можете щелкнуть Order at JLCPCB , как показано на рисунке ниже. Это перенаправит вас на JLCPCB.com, где вы сможете выбрать количество печатных плат, которые вы хотите заказать, сколько слоев меди вам нужно, толщину печатной платы, вес меди и даже цвет печатной платы, как на снимке экрана, показанном ниже:

Calculating Cost for the PCB

После того, как вы выбрали все опции, нажмите «Сохранить в корзину», и вы попадете на страницу, где вы можете загрузить свой файл Gerber, который мы скачали с EasyEDA.Загрузите файл Gerber и нажмите «Сохранить в корзину». И, наконец, нажмите «Оформить заказ безопасно», чтобы завершить заказ, и через несколько дней вы получите свои печатные платы. Они изготавливают печатные платы по очень низкой цене, которая составляет 2 доллара. Их время сборки также очень мало, что составляет 48 часов с доставкой DHL 3-5 дней, в основном вы получите свои печатные платы в течение недели после заказа.

Ordering Breadboard Power Supply Circuit PCB

После заказа печатной платы вы можете проверить Production Progress вашей печатной платы с указанием даты и времени.Чтобы проверить это, перейдите на страницу «Учетная запись» и нажмите на ссылку «Производство» под печатной платой, как показано на рисунке ниже.

Product detail progress of EasyEDA PCB

Production Progress of EasyEDA PCB

После нескольких дней заказа печатных плат я получил образцы печатных плат в красивой упаковке, как показано на рисунках ниже.

Bubbled packing for PCBs from JLCPCB

И после получения этих деталей я спаял все необходимые компоненты на печатной плате.

DIY Breadboard Power Supply Circuit on PCB Front and Back View

Circuit Hardware of DIY Breadboard Power Supply Circuit on PCB

Работа схемы питания макета

После сборки вашей платы убедитесь, что нет холодной пайки, и удалите весь лишний флюс на вашей плате.Закрепите плату на макете, и она должна плотно прилегать к обеим шинам питания макета. Теперь используйте адаптер 12 В для питания платы через разъем постоянного тока, и вы должны увидеть включение индикатора питания (здесь белого цвета). Затем вы можете установить перемычку на сторону 5 В или 3,3 В, используя информацию о шелкографии. Убедитесь, что вы используете перемычки, иначе мы не получим никакого напряжения на выходной стороне.

DIY Breadboard Power Supply Circuit in action

На изображении выше я поместил перемычку, чтобы обеспечить + 5В и измеряя то же самое с помощью мультиметра, который также показывает 4.97 В, что достаточно близко. Точно так же вы можете также проверить 3,3 В. Полная работа и тестирование проекта также показаны в видео ниже .

Теперь вы можете использовать эту плату для питания всех ваших будущих разработок электроники на макете с напряжением 5 В или 3,3 В. Надеюсь, что вы поняли проект и вам понравилось его строить, если у вас возникли проблемы с его работой, вы можете опубликовать его в разделе комментариев или использовать наши форумы для получения дополнительной технической информации.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *