Закрыть

Схема мегаомметра – устройство прибора, описание принципа действия электронного агрегата megger

Содержание

устройство прибора, описание принципа действия электронного агрегата megger

Как работать мегаомметромМегаомметр является прибором для замеров электрического сопротивления. Единицей изменения выступают мегаомы. Приспособление используется при работе с электрическими цепями, отсоединенными от питания, диэлектрической изоляцией, которая часто встречается в электродвигателях, проводах, кабелях, трансформаторах.

Прибор в применении

Как использовать мегаомметр

В основу принципа работы мегаомметра положен закон Ома для отдельного участка цепи. Измерение осуществляется за счет элементов, помещенных в единый корпус. Основа — источник напряжения, имеющий откалиброванную постоянную величину. Дополнением выступают выходные клеммы, непосредственно определитель тока.

Модели от разных производителей кардинально отличаются по конструкции источника, но имеют одно назначение. В бюджетных вариантах и выпущенных в годы СССР агрегатах присутствуют обыкновенные динамомашины ручного типа. Усовершенствованные аналоги оснащены встроенными или внешними источниками. Выходная мощность генератора и его напряжение изменяется в широких диапазонах или же остается в неизменном фиксированном состоянии. К клеммам описываемого устройства подводятся провода, встроенные в измеряемую цепь. Для обеспечения более надежного контакта задействуются зажимы, называемые «крокодилами».

В электрической обозначенной схеме обязательно присутствует амперметр, который определяет величину тока по цепи. Напряжение отображается в точном значении, соответственно, и шкала на измерительном приборе размечается в необходимых единицах сопротивления — килоомах или мегаомах. Существуют мегаомметры с табло, на котором одновременно отображаются оба значения, выводимых на удобный дисплей.

Особенности устройства

Правила использования мегаомметраУстройство мегаомметра стандартного типа представлено генератором, переключателем, выставляемым на необходимые пределы измерения, измерительной головкой, токоограничивающими резисторами.

Перечисленные детали правильно удерживаются в прочном диэлектрическом корпусе, оснащенном ручкой для удобства перемещения, генераторной рукояткой складывающегося типа. Для начала выработки напряжения она изначально раскладывается и раскручивается. Корпус оснащен тумблером с клеммами выходного типа, к ним и подводятся соединительные провода. Выделяется три выхода со значением на экран (Э), линию (Л), землю (З):

  • Что касается клемм на электронном мегаомметре с обозначением «Л «и «З», они задействуются в ходе работы всегда при необходимости замера изоляционного сопротивления относительно контура земли.
  • Вывод «Э» предназначается для нейтрализации действия токов утечки во время проведения измерения между параллельными жилами, аналогичными им токоведущими частями. Данная клемма функционирует в паре с измерительным устройством с экранированными концами, соединяется с экраном или кожухом. Она помогает выполнить самые точные замеры.

Применение мегаомметра

Если рассматривать специфику работы изделий с внешними и внутренними источниками, они практически ничем не отличаются от конструкций, оснащенных ручкой. Выдача напряжения на схему запускается нажатием соответствующей кнопки с последующим ее удерживанием. Некоторые модели устройств способны одновременно подавать различные комбинации напряжения, для чего нужно одновременно работать с несколькими пусками.

Модернизированные модели мегера представлены многоступенчатым внутренним наполнением. Если рассматривать напряжение, которое исходит от генераторов нескольких конструкций, оно представлено примерно таким рядом величин: 100, 250, 500, 700, 1000, а также 2500 вольт. Одни модели устройств функционируют в пределах только обозначенного диапазона, другие — одновременно в нескольких.

Мегаомметры различны по описанию, выходной мощности. С помощью одних устройств диагностируется изоляция на высоковольтном оборудовании. Другие приборы уместны для работы (проверить изоляцию) только с бытовой проводкой. Соответственно, такие изделия отличаются по размерам, общим масштабам.

Повышенное напряжение на агрегате

Устройство мегаомметраРабота с помощью мегаомметра определяется особенностями, которые должны учитываться. Первое, на что нужно обратить внимание, это напряжение устройства. Дело в том, что генератор встроенного типа выдает выходную мощность, которой хватает не только для качественной проверки изоляции, но и для серьезного травматизма. Следовательно, использовать измерительные агрегаты должны специально обученные специалисты.

При эксплуатации завышенное напряжение распространяется на обрабатываемый участок вместе с соединительными проводами и клеммами. Надлежащую защиту создадут щупы с усиленным изолированным покрытием. Что касается краев таких приспособлений, они ограничиваются запретной зоной через предохранительные кольца. Это необходимо для предотвращения контакта с ними открытых частей тела.

Щупы имеют рабочую зону, которая задействуется при выполнении измерения. Вот за обозначенный участок человек смело может браться руками. Что касается подключения в общую схему, оно производится посредством специальных зажимов «крокодилов» с достаточной изоляцией. Недопустимо применение другого вида щупов, проводов.

Когда проводятся мероприятия с помощью мегаомметра, в пределах обследуемой зоны не должны присутствовать люди. Особенно актуален этот вопрос при работе на длинномерных кабелях.

Наведенный ток

Особенности использования мегаомметраЭлектроэнергия, присутствующая в проводах ЛЭП, характеризуется существенным магнитным полем, которое изменяется согласно синусоидальному закону. В результате металлические проводники приобретают ток I2 и вторичную электродвижущую силу. Если рассматривать ощутимую протяженность кабеля, вырастает и величина наведенного напряжения.

Этот фактор следует учитывать, т. к. он сказывается на точности проводимых замеров. Сложность заключается в том, что величина и направление электротока, протекающего через используемый прибор, остаются неизвестными. Подобный ток образует наведенное напряжение, а его показатели накладываются на значения мегаомметра. В результате получается сумма из токовых величин неизвестного диапазона, поэтому метрологическую задачу будет сложно разрешить. Специалисты указывают на тот факт, что измерительные мероприятия на изоляции бессмысленно проводить в случае присутствия малейшего напряжения в сети.

Остаточное явление в действии

Что измеряет мегаомметрКогда генератор описываемого устройства вырабатывает напряжение, поступающее впоследствии в измеряемую сеть, образуется разность потенциалов между контуром заземления и проводом. Впоследствии создается емкость, в которой присутствует определенный заряд.

При отключении измеряющего провода имеющаяся в мегаомметре цепь разрывается. Но частичному сохранению подлежит потенциал из-за появления емкостного заряда в шине, проводе. Контакт человека с подобным участком приведет к электротравме токовым зарядом, который пройдет через тело. Избежать такой опасности поможет переносное заземление с обязательной изоляцией его рукоятки для безопасного устранения емкостного напряжения.

Прежде чем включать мегаомметр для работы, следует убедиться в отсутствии в проверяемой схеме напряжения остаточного заряда. В этом случае рекомендуется воспользоваться вольтметром, специальными индикаторами, подающими необходимый сигнал. Описываемый прибор дает возможность выполнять ряд процедур, в частности это:

  • проверка изоляции десятижильного кабеля по отношению к земле;
  • проведение необходимых замеров в каждой жиле относительно друг друга;
  • определение качества изоляции между жильными проходами.

В любом случае обязательно должно использоваться переносное заземление. Для обеспечения правильной и безопасной работы предварительно заземляющий проводник замыкается с контуром на грунте. В таком состоянии он находится до завершения всех мероприятий. Другим концом проводник соединяется с изоляционной штангой, с помощью которой и обеспечивается заземление для последующего устранения остаточного заряда.

Безопасное использование

Как применить мегаомметрПриступая к выполнению измерения, нужно убедиться в полной исправности устройства. Более того, оно должно проверяться перед эксплуатацией в лабораторных условиях на предмет исправности комплектующих деталей, собственной изоляции. В ходе проводимых испытаний обычно задействуется высокое напряжение, а по окончании проверки мегаомметр получает разрешение на работу. Определяется класс точности агрегата, а после контрольных замеров на корпус наносится клеймо, подлежащее сохранности на протяжении всего времени применения прибора.

Безопасность при использовании мегаомметра определяется и правильной областью его использования. Каждому замеру предшествует определение величины выходного напряжения. Перед испытанием изоляции в проверяемой зоне специально задаются экстремальные условия, т. е. подается не номинальное, а завышенное напряжение. Так выявляются дефекты, предотвращается их недопущение в будущем.

В каждой схеме, проходящей проверку, имеются особенности, угрожающие безопасной работе измерительного агрегата. Важно перед работой устранить все неисправности, поломки в цепи. В современной технике присутствует множество:

  • конденсаторов;
  • полупроводников;
  • микропроцессоров и пр.

Такие детали не рассчитаны на экстремальное напряжение, выдаваемое генератором в мегаомметре. Их рекомендуется перед проверкой изоляции шунтировать, полностью извлекать из общей схемы.

Измерение сопротивления в изоляции

Поняв, как работать мегаомметром, перед его использованием стоит ознакомиться со схематическими особенностями, убедиться в исправности и надлежащем обеспечении защиты. Обрабатываемая зона выводится из эксплуатации. Прибор на предмет исправности проверяется следующим образом:

  • Как правильно пользоваться мегаомметромкрая измерительного провода между собой закорачиваются;
  • далее генератором на них подается напряжение;
  • если устройство полностью исправно, в закороченной цепи показатели измерения равняются нулю;
  • следующий шаг — разъединение проводов, отведение их в стороны с проведение повторного замера;
  • в норме на стрелочной шкале megger высвечивается сигнал безопасности.

Процедура проверки изоляции осуществляется в строго обозначенной последовательности. Заземление переносного типа подводится к контуру, на участке полностью исключается наличие напряжения. После этого создается измерительная схема. В нее подается напряжение калиброванного типа до момента выравнивания емкостного заряда. Следующим этапом фиксируется отсчет и вырабатываемая генератором энергия выравнивается. Остаточный заряд нейтрализуется переносным заземлением.

Прибор мегаомметр

Сопротивление изоляции проверяется мегаомметром при самом высоком пределе МΩ. Принцип действия некоторых моделей основан на прерывистом режиме. Следовательно, в течение 1 минуты подается напряжение, создается пауза в 2−3 минуты.

Узнав, для чего нужен мегаомметр и как он работает, следует разобраться в простых нюансах. Модели со стрелочным корпусом должны ориентироваться на горизонтальное размещение во время работы. В противном случае дополнительных погрешностей не избежать. Что касается усовершенствованных установок,

они работают в любом положении с максимальной точностью.

rusenergetics.ru

Как пользоваться мегаомметром и его помощью замерить сопротивление изоляции

Многие начинающие электрики задаются вопросом, как пользоваться мегаомметром и что собой представляет этот измерительный электроприбор. О том, какие параметры имеет аппарат, каков принцип его работы, область применения и другое далее.

Что это такое

Мегаомметр является специальным измерительным прибором, используемым профессиональными электриками, для того чтобы вычислять электросети и электроприборы. Отличается от омметра работой с высоким напряжением. Напряжение генерируется самостоятельным образом встроенным механическим генератором или батареей. Величина его равна 100-2500 вольт. Выпускается в двух вариантах — в виде индукторного и безындукторного аппарата.

Мегаомметр в помощь электрикам

Он является универсальным переносным электродвигательным устройством, который бывает как ручным, цифровым, аналоговым или электронным, так и механическим и высоковольтным.

Обратите внимание! Стоит указать, что первая модель была изобретена с ручкой. Сегодня самыми стильными являются электронные измерительные модели.

Полное понятие из области электродинамики

Технические характеристики

Современный измерительный мегаомметр состоит из электромеханического генератора, имеющего ручной привод, или из электронного инвертора с частью выпрямителя, который питается от того, что в прибор встроен аккумулятор или у него есть сменные гальванические элементы. Как индикатор используется стрелочный логометр или жки.

Что касается диапазона измерений, есть модели от 0 до 200 кОм. Масса колеблется от 1 до 2,2 килограммов. Габариты примерно такие: длина 210-220, ширина 140-156, а высота — 61-250 миллиметров.

Стоит отметить, что точные параметры у каждого прибора разные из-за отличного внешнего и внутреннего исполнения. В некоторых моделях есть табло со школой и механической стрелкой, где-то имеется аккумуляторная батарея или блок питания.

Технические характеристики цифрового электроприбора Мегом 300

Принцип работы

Работает измерительный аппарат очень просто. Напряжение попадает на испытуемый электросетевой участок, чтобы проверить, как произолированы кабели. В зависимости от того, какая номинальная нагрузка у устройства, используется конкретная энергия. До испытания выбирается прибор, подходящий к сети.

То есть, работа с мегаомметром выполняется на законе Ома. Он подает ток на кабельный участок для проверки изоляции. Показатели того, что утечка происходит, возвращаются на прибор. Согласно этим данным делается вывод о том, нормально ли работает кабель или есть проблемы. При большом значении утечки, изоляция повреждена. Тогда может произойти короткое замыкание. Стоит отметить, что неисправность лучше убрать сразу, поскольку в любой момент может произойти кабельное возгорание при отсутствии работы автоматики контактного отключения.

Принцип работы устройства

Правила работы

Мегаомметр — травмоопасный аппарат из-за высокого напряжения. Работать с ним может только тот человек, который имеет знания и опыт.

Начинать работу с мегаомметром можно только обученным людям и знающим технику безопасности. Работа в электрических установках, где напряжение больше 1000 вольт, производится с разрешительной документацией, то есть наряд-допуском. При этом выдача документа для нескольких работ не разрешается. Также выполнение трудовой деятельности при подобном сетевом напряжении разрешается людям, которые имеют третью и четвертую группу электробезопасности.

Обратите внимание! До начала необходимо проверить целостность аппарата. В момент работы с устройством необходимо использовать диэлектрические перчатки и ни в коем случае не прикасаться к токоведущим элементам. После деятельности, необходимо снимать остаток заряда заземлением.

Соблюдение техники безопасности как одно из главных правил работы с электроприбором

Где используется

Изоляция, подобно любому материалу, со временем и в связи с погодными условиями портится и изнашивается. Чтобы своевременно обнаружить изоляционный дефект, применяется мегаомметр. Он нужен, чтобы измерять изоляционное сопротивление силового кабеля, электроразъема, трансформаторной межобмотки, электромашины. Также он необходим, чтобы измерять поверхностные и объемные диэлектрики. Достоинство прибора в полной автономности, независимости от источников питания и автоматическом вычислении абсорбционного и резисторного процесса.

Применение в условиях промышленности как основная сфера

Как подключить

Каждая модель устройства имеет свою выходную величину напряжения, по этой причине для эффективного испытания изоляции либо замера ее сопротивления, необходим правильный подбор мегаомметра.

Чтобы проверить кабельную изоляцию, необходимо сформировать случай, при котором на участок энергия будет подана выше номинальной, но в пределе, описанной в техническом документе. К примеру, если напряжение подается в количестве 500, то необходимо немного превысить эту величину.

Длительность измерения сопротивления изоляции мегаомметром, обычно должна быть не более 30 секунд. Это нужно, чтобы точно можно было выявить дефекты, а также исключить их последующее появление при сетевых перепадах.

Основой измерений является подготовка с выполнением и финальным этапом. На каждом этапе происходят свои манипуляции, которые нужны, чтобы достигнуть поставленную цель.

Обратите внимание! Подготавливая работу, нужно понимать действия, изучить электрическую установку в схематичном виде для исключения возможной поломки и обеспечения безопасности.

Делая начало работы, следует осуществить проверку прибора на исправность. Далее нужно подсоединить переносное заземление к земляному контуру, проверить и обеспечить отключение напряжения на участке, установить переносной вид заземления, собрать схему измерения, убрать поступающую энергию и остаток заряда. После отключить провод соединения.

На финальном этапе восстанавливаются разобранные цепочки, снимаются шунты и закоротки, а также подготавливаются схемы для рабочего режима. Позднее документируются результаты измерений слоя изоляции в проверочном изоляционном акте

Профессиональное подключение мегаомметра по инструкции

Как пользоваться

Чтобы правильно проводить испытания важно сделать правильное выставление измерительных диапазонов и тестовой энергии. Самый простой метод этого выполнения, использовать специальные таблицы с указанием параметров для разных тестируемых объектов.

Важно понимать, что во время тестирования необходимо использование диэлектрических перчаток. Также необходимо убрать посторонних с вывешиванием соответствующих предупреждающих плакатов. Во время подключения щупов, необходимо только касаться тех частей, которые заизолированы. До измерения следует сделать переносной вид заземления для отключения контрольных кабелей. При этом сами измерения нужно проводить при сухой изоляции до превышения допустимых пределов влажности.

Использование аппарата по руководству к эксплуатации как возможность его правильной работы и отсутствия поломок

Как прозвонить кабель

Проверить одножильный кабель можно несколькими манипуляциями, выставив тестовый вид напряжения. Первый щуп должен быть прицеплен на часть жилы, а второй должен быть прицеплен на броню. После этого будет подано напряжение. Если не имеется брони, то необходима земляная жила. При нахождении показаний до 0,5 мОм, значит кабель неизношен и его можно использовать дальше и не заменять.

Обратите внимание! Прозванивая многожильный кабель, нужно осуществлять проверку каждой жили, а из остальных полупроводников сделать сбор единого жгута. Чтобы получить достоверные результаты, необходимо обеспечение хорошего контакта.

Правильный прозвон кабеля путем аппарата

Проверка изоляции

Проверка изоляции — еще одна функция измерительного прибора. Изоляция позволяет защитить жилу от соприкосновения с другой жилой. Характеристика изоляционного качества — сопротивление. Это измеряется в омах с производными. Сопротивление является величиной, которая обратна производимости. То есть она может показать возможность непропуска электротока.

Чем меньше изоляция, тем больше возможность нахождение тока пути и распространение из кабеля к токопроводящим поверхностям и материалам. То есть может быть изоляционный кабельный пробой. Важно понимать, что изоляция стареет, ухудшается из-за влажности и механического повреждения. Также ухудшается из-за воздействия агрессивной внешней среды.

Проверка изоляции как одно из условий использования

Как проверить мегаомметр на исправность

Осуществить проверку мегаомметра на исправность необходимо по следующему способу. К выводам устройства сделать подключение проводов и закоротить выходы. Потом подать энергию и проследить за результатами. Исправный прибор покажет ноль. Потом разъединить и попробовать заново. Во второй раз должна появиться бесконечность. Это показатель — воздушный промежуток.

Неисправности мегаомметра

Неисправности заключаются в отсутствии горения индикаторного табло измерительных результатов в момент включения омметра питания. Также они заключаются в нестабильности измерительных результатов. Причина этих явлений в перегорании предохранителя, неисправности кабеля сетевого питания, ненадежном заземлении и ненадежном контактировании с измерительным объектом.

Неправильная эксплуатация прибора и заводской брак как неисправность

Ремонт мегаомметра

Ремонт заключается в замене предохранителя, устранении неисправности кабельного повреждения, восстановления надежного заземления и достижения надежного контакта для измерительного объекта. Стоит отметить, что техническое обслуживание является лучшей профилактикой для бесперебойной работы. Также оно нужно, чтобы поддержать эксплуатационную надежность и повысить эффективность омметра.

Обратите внимание! В случае обнаружения брака, следует сделать замену оборудования или обратиться в сервисный центр для оказания профессиональной помощи.

Необходимость обращения к мастерам для ремонта оборудования

Что следует выполнить после окончания измерения мегаомметром

Сразу после выполнения измерений, необходимо сделать три главные вещи. Нужно внесение в протокол измерительных результатов, приведения в порядок рабочего места с инструментами и приспособлениями, а дальше снятие с токоведущих частей остаточного заряда кратковременным заземлением.

Важно отметить, что по требованию охраны труда, в конце работы должна быть отключена измерительная аппаратура, разряжена цепь, которая находится под мегаомметровым воздействием. Далее нужно сделать отсоединение приборных проводов от тока, записать измерительные результаты в ведомость. Потом сообщить лицу, который ответственен за производственные работы. Обо всех недостатках, которые были замечены в процессе деятельности, нужно доложить, чтобы были приняты меры.

Правильное отключение как залог сохранения работоспособности прибора

В целом, мегаомметр — измерительный прибор, позволяющий изучить показания сопротивления электросетевых и приборных обмоток. Отличается от других аппаратов работой на высоком напряжении. Напряжение генерируется самим устройством благодаря встроенной батареи. Область применения его обширна: обычно используется во всех видах промышленности, где есть высокое напряжение. Использовать несложно, главное — изучить инструкцию по применению мегаомметра эс0202 2г и соблюдать технику безопасности. В противном случае, возможна поломка и, как следствие, необходимость ремонта.

rusenergetics.ru

Устройство и принцип работы мегаомметра | Полезные статьи

Понравилось видео? Подписывайтесь на наш канал!

Для измерения сопротивления различных диэлектриков, таких как изоляция кабелей, электрических разъемов и т.д. используют специальный прибор – мегаомметр. Сегодня в нашей статье мы представим описание мегаомметра и принцип его работы.

Устройство мегаомметра

Рассмотрим конструкцию на примере элементарного индукторного аналогового мегаомметра, который состоит из следующих частей:

 

• корпус мегаомметра, выполненный из пластика;

 

• ручка для вращения генератора; 

 

• контактные зажимы, которые могут иметь обозначение «МΩ» (МегаОм) или «Л» (линия), « - » (минус) или   («земля»), а также «kΩ» (килоОм). К ним подключаются соединительные провода с зажимами. Стоит отметить, что зажим «МΩ» используется для подключения к «Линии», а « - » - к «земле» (если сопротивление измеряется в мегаОмах). При измерении в килоОмах линия подключается к зажиму «kΩ», а «МΩ»  и  « - » закорачиваются и подключаются к «земле».

 

• табло со шкалой измерения, имеющей градацию в мега- и килоОмах.

 

• генератор (индуктор) переменного тока с поворотной рукоятью, состоящий из:

 

- статора, выполненного в виде цилиндрической катушки со множеством витков, которая помещена в магнитопровод с полюсами в виде пластин, загнутыми внутрь отверстия катушки; 

- ротора, представляющего собой постоянный магнит с 8 полюсами, который приводится в движение ручным приводом через зубчатую передачу;

- пружины для расцепления при обратном ходе;

- центробежного регулятора, который обеспечивает стабильность выдаваемого напряжения при увеличении скорости вращения ротора генератора выше номинальной (номинальная скорость вращения ручки - 120 об/мин).

 

• умножитель напряжения (несимметричная мостовая схема), состоящий из двух диодов и двух конденсаторов. Данный модуль обеспечивает преобразование низкого переменного (пульсирующего) напряжения, вырабатываемого генератором, в выпрямленное высоковольтное;

 

• добавочные резисторы измерительной (рабочей) и противодействующей рамок логометра.

 

• логометр магнитоэлектрической системы, состоящий из стрелки, рабочей и противодействующей рамок. Обе рамки и укрепленная с ними на одной оси стрелка образуют подвижную систему, которая поворачивается внутри магнитного поля постоянного магнита. Вращающиеся моменты рамок направлены противоположно друг другу, причем у противодействующей рамки направление - по часовой стрелке.

Принцип работы мегаомметра

Принцип действия мегаомметра заключается в создании искусственным путем тока утечки и его последующем измерении, значение которого зависит от подключаемого к прибору сопротивления.

Рассмотрим принцип работы. В качестве измеряемого сопротивления будем использовать резистор на 5,6 МОм, который подключаем к зажимам «МΩ» и «-».

 

Далее начинаем крутить рукоять мегаомметра со скоростью около 120 об/мин. Генератор начнет вырабатывать переменное напряжение, которое, проходя через  несимметричный мост, выполненный на диодах VD1…2 и конденсаторах С1…2, будет увеличиваться и выпрямляться. После преобразования напряжение подается на измерительное устройство логометрического типа с рабочей R01 и противодействующей R02 рамками. Обе рамки и закрепленная с ними на одной оси стрелка образуют подвижную систему, которая поворачивается внутри магнитного поля постоянного магнита.

 

Ветвь с добавочными резисторами R2 и R1 предназначена для создания противодействующего момента в логометре. В ней возникает ток I2, а ветвь c резистором R3 и током I1 служит для создания вращающего момента.

 

В зависимости от величины измеряемого сопротивления, протекающий в цепи рабочей рамки ток I1 будет изменяться на угол, соответствующий измеряемому сопротивлению, что приведет к отклонению подвижной части. При этом через противодействующую рамку логометра протекает постоянный ток I2, создающий противодействующий момент.

 

Таким образом, нами рассмотрена схема мегаомметра и принцип его работы. Также вы можете посмотреть наше видео, в котором показано, как работает мегаомметр и какие элементы он в себя включает.

cable.ru

Как пользоваться мегаомметром ЭСО210

Этот прибор компактный, запитывается от сети. Данный мегаомметр может использоваться для следующих целей:

  • Измерение сопротивления изоляции
  • Определение величины напряжения

Определение величины напряжения присутствует для того, чтобы убедиться в отсутствии напряжения на испытуемом объекте.

Измерение Rx данным прибором производится только на обесточенном оборудовании.

Как замерить сопротивление изоляции мегаомметром ЭСО

Первым делом необходимо правильно подключить измерительные провода к самому устройству. На данном этапе могут возникнуть вопросы. Это происходит из за того, что на панели подключения есть четыре отверстия (хотя встречается и три). Рассмотрим их подробнее слева-направо:

  • "Минус" - сюда одинарный конец измерительного провода
  • "Rx" - сюда второй конец двойного провода
  • Данное отверстие в описываемой модели мной не опознано. Однако в ЭСО210/2 сюда перебрасывается провод с Rx при измерениях на пределе 0-5 МОм (отверстие подписано 0,1Rx).
  • "Э" - экран; сюда вставляется штырь двойного провода. А нужен он для устранения влияния тока утечки на измерения. Используется при измерении между фазами.

Подача напряжения осуществляется при нажатии кнопки "сеть". Провод питания подключается в нижней части прибора. Напряжение питания составляет 220В. Берем от розетки или, если она далеко, от удлинителя. Порой кроме компактного мегаомметра надо брать с собой на объект и удлинитель. Хотя, можно и одолжить у местных.

Перед началом измерений надо проверить исправность измерительных проводов, необходимо проверить их целостность. Для этого надо подключить провода и далее:

  • При соединенных проводах сопротивление изоляции должно быть равно нулю
  • При разведенных проводах значение Rx должно быть максимально возможным (говорим, бесконечность - сопротивление воздуха бесконечно, проводимость равна нулю)
  • Если бесконечность при замкнутых, значит провод обломан и надо его заменить
  • Если ноль при разведенных, значит либо они касаются, либо внутри прибора пробой или другая неисправность (не встречал такую ситуацию)

Лично я испытывал следующее оборудование мегаомметром: кабель (жилы, оболочка), турбогенератор (статор, ротор, подстуловая, патрубков), трансформатор, шины, электродвигатель, релейные цепи, трансформаторы тока и напряжения.

Таблица пределов измерения мегаомметров ЭСО

Разные модели мегаомметров ЭСО отличаются:

  • регулируемыми пределами измерений (разные шкалы для разных величин измеряемого сопротивления изоляции )
  • подаваемым напряжением постоянного тока (100, 250, 500, 1000, 2500 В)
  • а также способом подачи напряжения (либо просто нажатие кнопки, либо вращение ручки генератора со скоростью 120-144 об/мин, о чем говорит наличие буквы Г в названии модели, ну и ручки собственно).

Характеристики мегаомметров ЭСО210

Основными элементами прибора являются: генератор или трансформатор, преобразователь и электронный измеритель. Электронный измеритель в моделях ЭСО210/1(Г) и ЭСО210/3(Г) выполнен на двух логарифмических усилителях. А в моделях ЭСО210/2(Г) - на двух логарифмических усилителях и повторителе напряжения на операционном усилителе - но эта информация, скорее всего, мало кому пригодится.

Также стоит отметить, что при использовании прибора рекомендуется использовать прерывистый характер работы - одну минуту измерение, две минуты перерыв.

Класс точности прибора 2,5, относительная погрешность 15% от измерененного сопротивления изоляции. То есть намерили 100МОм, а на самом деле это будет сто плюс минус пятнадцать мегаомм. Но и это не точно, так как существуют и другие влияющие факторы - это подробно описано в руководстве мегаомметра по экспуатации…

Как не запутаться в шкалах стрелочного мегаомметра ЭСО210

При работе с данным прибором чаще всего путаются какие концы куда вставлять, а также не сразу ориентируются на какую шкалу смотреть. Но с опытом глаз наметывается и трудностей не возникает.

Шкалы подписаны справа римскими цифрами I и II. Также и на крутилке на фото снизу синей (аналогичный цвет как у шкал) видно, какой предел мы выбираем - первый, второй или второй умножить на десять.

У первой шкалы нуль справа, у второй и второй умножить на десять нули слева. Не путайте никогда. Нижняя черная шкала, как легко догадаться используется при измерении напряжения, и судя по надписи - как постоянного, так и переменного.

Возможно неопытного юнца испугает логарифмическая шкала, но бояться не стоит. Главное не торопиться и перепроверить несколько раз перед записью в протокол.

Например, первая шкала идет справа налево

0

… 0,1-0,2-0,3-0,4-0,5-0,6-0,7-0,8-0,9 …

1

… 2-3-4-5-6-7-8-9 …

10

… 20-30-40 …

50

К этому привыкаешь) На второй шкале максимум десять в четвертой - это 10 000 МОм или же 10 ГОм.

50

… 60-70-80-90 …

100

… 200-300-400-500-600-700-800-900 …

1000 (1к)

… 2к-3к-4к-5к-6к-7к-8к-9к …

10000 (10к)

А на "второй умножить на десять" - 100 000 МОм или 100 ГОм.

Некоторые пишут, но никогда не говорят, не ЭСО, а ЭС0. Расшифровки на просторах интернета я не нашел, но кажется мне, что правильно писать букву о, а не ноль. Если вдруг знаете аргументированный ответ как правильно, отпишитесь на почту.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

как выбрать трансформатор тока

pomegerim.ru

Ремонт мегаомметра своими руками

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен – зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) – мегаомметры старого образца. Аналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Упрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

  • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
  • На отображаемые данные влияет равномерность вращения динамо-машины.
  • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, – вращает ручку генератора.
  • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объект Уровень напряжения (В) Минимальное сопротивление изоляции (МОм)
Проверка электропроводки 1000,0 0,5>
Бытовая электроплита 1000,0 1,0>
РУ, Электрические щиты, линии электропередач 1000,0-2500,0 1,0>
Электрооборудование с питанием до 50,0 вольт 100,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с номинальным напряжением до 100,0 вольт 250,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт 500,0-1000,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В 2500,0 0,5 или более в зависимости от параметров, указанных техническом паспорте

Перейдем к методике измерений.

Пошаговая инструкция измерения сопротивления изоляции мегаомметром

Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм 2 . Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

  • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Правила безопасности при работе с мегаомметром

При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:

  • При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
  • Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
  • При подключении щупов необходимо касаться их изолированных участков (рукоятей).
  • После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
  • Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.

Мегаомметр является прибором для замеров электрического сопротивления. Единицей изменения выступают мегаомы. Приспособление используется при работе с электрическими цепями, отсоединенными от питания, диэлектрической изоляцией, которая часто встречается в электродвигателях, проводах, кабелях, трансформаторах.

Прибор в применении

В основу принципа работы мегаомметра положен закон Ома для отдельного участка цепи. Измерение осуществляется за счет элементов, помещенных в единый корпус. Основа — источник напряжения, имеющий откалиброванную постоянную величину. Дополнением выступают выходные клеммы, непосредственно определитель тока.

Модели от разных производителей кардинально отличаются по конструкции источника, но имеют одно назначение. В бюджетных вариантах и выпущенных в годы СССР агрегатах присутствуют обыкновенные динамомашины ручного типа. Усовершенствованные аналоги оснащены встроенными или внешними источниками. Выходная мощность генератора и его напряжение изменяется в широких диапазонах или же остается в неизменном фиксированном состоянии. К клеммам описываемого устройства подводятся провода, встроенные в измеряемую цепь. Для обеспечения более надежного контакта задействуются зажимы, называемые «крокодилами».

В электрической обозначенной схеме обязательно присутствует амперметр, который определяет величину тока по цепи. Напряжение отображается в точном значении, соответственно, и шкала на измерительном приборе размечается в необходимых единицах сопротивления — килоомах или мегаомах. Существуют мегаомметры с табло, на котором одновременно отображаются оба значения, выводимых на удобный дисплей.

Особенности устройства

Устройство мегаомметра стандартного типа представлено генератором, переключателем, выставляемым на необходимые пределы измерения, измерительной головкой, токоограничивающими резисторами.

Перечисленные детали правильно удерживаются в прочном диэлектрическом корпусе, оснащенном ручкой для удобства перемещения, генераторной рукояткой складывающегося типа. Для начала выработки напряжения она изначально раскладывается и раскручивается. Корпус оснащен тумблером с клеммами выходного типа, к ним и подводятся соединительные провода. Выделяется три выхода со значением на экран (Э), линию (Л), землю (З):

  • Что касается клемм на электронном мегаомметре с обозначением «Л «и «З», они задействуются в ходе работы всегда при необходимости замера изоляционного сопротивления относительно контура земли.
  • Вывод «Э» предназначается для нейтрализации действия токов утечки во время проведения измерения между параллельными жилами, аналогичными им токоведущими частями. Данная клемма функционирует в паре с измерительным устройством с экранированными концами, соединяется с экраном или кожухом. Она помогает выполнить самые точные замеры.

Если рассматривать специфику работы изделий с внешними и внутренними источниками, они практически ничем не отличаются от конструкций, оснащенных ручкой. Выдача напряжения на схему запускается нажатием соответствующей кнопки с последующим ее удерживанием. Некоторые модели устройств способны одновременно подавать различные комбинации напряжения, для чего нужно одновременно работать с несколькими пусками.

Модернизированные модели мегера представлены многоступенчатым внутренним наполнением. Если рассматривать напряжение, которое исходит от генераторов нескольких конструкций, оно представлено примерно таким рядом величин: 100, 250, 500, 700, 1000, а также 2500 вольт. Одни модели устройств функционируют в пределах только обозначенного диапазона, другие — одновременно в нескольких.

Мегаомметры различны по описанию, выходной мощности. С помощью одних устройств диагностируется изоляция на высоковольтном оборудовании. Другие приборы уместны для работы (проверить изоляцию) только с бытовой проводкой. Соответственно, такие изделия отличаются по размерам, общим масштабам.

Повышенное напряжение на агрегате

Работа с помощью мегаомметра определяется особенностями, которые должны учитываться. Первое, на что нужно обратить внимание, это напряжение устройства. Дело в том, что генератор встроенного типа выдает выходную мощность, которой хватает не только для качественной проверки изоляции, но и для серьезного травматизма. Следовательно, использовать измерительные агрегаты должны специально обученные специалисты.

При эксплуатации завышенное напряжение распространяется на обрабатываемый участок вместе с соединительными проводами и клеммами. Надлежащую защиту создадут щупы с усиленным изолированным покрытием. Что касается краев таких приспособлений, они ограничиваются запретной зоной через предохранительные кольца. Это необходимо для предотвращения контакта с ними открытых частей тела.

Щупы имеют рабочую зону, которая задействуется при выполнении измерения. Вот за обозначенный участок человек смело может браться руками. Что касается подключения в общую схему, оно производится посредством специальных зажимов «крокодилов» с достаточной изоляцией. Недопустимо применение другого вида щупов, проводов.

Когда проводятся мероприятия с помощью мегаомметра, в пределах обследуемой зоны не должны присутствовать люди. Особенно актуален этот вопрос при работе на длинномерных кабелях.

Наведенный ток

Электроэнергия, присутствующая в проводах ЛЭП, характеризуется существенным магнитным полем, которое изменяется согласно синусоидальному закону. В результате металлические проводники приобретают ток I2 и вторичную электродвижущую силу. Если рассматривать ощутимую протяженность кабеля, вырастает и величина наведенного напряжения.

Этот фактор следует учитывать, т. к. он сказывается на точности проводимых замеров. Сложность заключается в том, что величина и направление электротока, протекающего через используемый прибор, остаются неизвестными. Подобный ток образует наведенное напряжение, а его показатели накладываются на значения мегаомметра. В результате получается сумма из токовых величин неизвестного диапазона, поэтому метрологическую задачу будет сложно разрешить. Специалисты указывают на тот факт, что измерительные мероприятия на изоляции бессмысленно проводить в случае присутствия малейшего напряжения в сети.

Остаточное явление в действии

Когда генератор описываемого устройства вырабатывает напряжение, поступающее впоследствии в измеряемую сеть, образуется разность потенциалов между контуром заземления и проводом. Впоследствии создается емкость, в которой присутствует определенный заряд.

При отключении измеряющего провода имеющаяся в мегаомметре цепь разрывается. Но частичному сохранению подлежит потенциал из-за появления емкостного заряда в шине, проводе. Контакт человека с подобным участком приведет к электротравме токовым зарядом, который пройдет через тело. Избежать такой опасности поможет переносное заземление с обязательной изоляцией его рукоятки для безопасного устранения емкостного напряжения.

Прежде чем включать мегаомметр для работы, следует убедиться в отсутствии в проверяемой схеме напряжения остаточного заряда. В этом случае рекомендуется воспользоваться вольтметром, специальными индикаторами, подающими необходимый сигнал. Описываемый прибор дает возможность выполнять ряд процедур, в частности это:

  • проверка изоляции десятижильного кабеля по отношению к земле;
  • проведение необходимых замеров в каждой жиле относительно друг друга;
  • определение качества изоляции между жильными проходами.

В любом случае обязательно должно использоваться переносное заземление. Для обеспечения правильной и безопасной работы предварительно заземляющий проводник замыкается с контуром на грунте. В таком состоянии он находится до завершения всех мероприятий. Другим концом проводник соединяется с изоляционной штангой, с помощью которой и обеспечивается заземление для последующего устранения остаточного заряда.

Безопасное использование

Приступая к выполнению измерения, нужно убедиться в полной исправности устройства. Более того, оно должно проверяться перед эксплуатацией в лабораторных условиях на предмет исправности комплектующих деталей, собственной изоляции. В ходе проводимых испытаний обычно задействуется высокое напряжение, а по окончании проверки мегаомметр получает разрешение на работу. Определяется класс точности агрегата, а после контрольных замеров на корпус наносится клеймо, подлежащее сохранности на протяжении всего времени применения прибора.

Безопасность при использовании мегаомметра определяется и правильной областью его использования. Каждому замеру предшествует определение величины выходного напряжения. Перед испытанием изоляции в проверяемой зоне специально задаются экстремальные условия, т. е. подается не номинальное, а завышенное напряжение. Так выявляются дефекты, предотвращается их недопущение в будущем.

В каждой схеме, проходящей проверку, имеются особенности, угрожающие безопасной работе измерительного агрегата. Важно перед работой устранить все неисправности, поломки в цепи. В современной технике присутствует множество:

  • конденсаторов;
  • полупроводников;
  • микропроцессоров и пр.

Такие детали не рассчитаны на экстремальное напряжение, выдаваемое генератором в мегаомметре. Их рекомендуется перед проверкой изоляции шунтировать, полностью извлекать из общей схемы.

Измерение сопротивления в изоляции

Поняв, как работать мегаомметром, перед его использованием стоит ознакомиться со схематическими особенностями, убедиться в исправности и надлежащем обеспечении защиты. Обрабатываемая зона выводится из эксплуатации. Прибор на предмет исправности проверяется следующим образом:

  • края измерительного провода между собой закорачиваются;
  • далее генератором на них подается напряжение;
  • если устройство полностью исправно, в закороченной цепи показатели измерения равняются нулю;
  • следующий шаг — разъединение проводов, отведение их в стороны с проведение повторного замера;
  • в норме на стрелочной шкале megger высвечивается сигнал безопасности.

Процедура проверки изоляции осуществляется в строго обозначенной последовательности. Заземление переносного типа подводится к контуру, на участке полностью исключается наличие напряжения. После этого создается измерительная схема. В нее подается напряжение калиброванного типа до момента выравнивания емкостного заряда. Следующим этапом фиксируется отсчет и вырабатываемая генератором энергия выравнивается. Остаточный заряд нейтрализуется переносным заземлением.

Сопротивление изоляции проверяется мегаомметром при самом высоком пределе МΩ. Принцип действия некоторых моделей основан на прерывистом режиме. Следовательно, в течение 1 минуты подается напряжение, создается пауза в 2−3 минуты.

Узнав, для чего нужен мегаомметр и как он работает, следует разобраться в простых нюансах. Модели со стрелочным корпусом должны ориентироваться на горизонтальное размещение во время работы. В противном случае дополнительных погрешностей не избежать. Что касается усовершенствованных установок, они работают в любом положении с максимальной точностью.

Прибор ЭС0202/2Г и его неисправность — отсутствуют постоянные показания стрелки при вращении ручки генератора.

Эта неисправность может возникнуть вследствии пробоя регулирующих транзисторов V11-V12 (отсутствует стабилизация высокого напряжения, которое может превышать 3 кВ). Также возможно, что при этом вышли из строя микросхемы D1 и D3.

г. Рязань, ул. Урицкого, д. 35

© 1995—2019 ТЦ ЖАИС

Вся информация на сайте носит справочный характер и не является публичной офертой.

mytooling.ru

Мегаомметр, что это такое и как им пользоваться? | ENARGYS.RU

Мегаомметр или мегомметр как правильно говорить? Такой вопрос возникает у многих. С точки зрения русского языка правильно мегомметр, без идущих друг за другом гласных. Но если посмотреть с профессиональной стороны, то правильно будет мегаомметр, «мега» приставка, показывающая диапазон измерения прибора на высоком напряжении, и «Ом» единица сопротивления, то есть то, что измеряет прибор, ведь не зря во многих рабочих журналах проверок средств защиты пишут именно мегаомметр. Слово «метр» означает измеряю.

Прибор используется для определения большого значения сопротивления, отключенных от электропитания, электрических цепей и диэлектриков, применяемых для изоляции кабельной продукции, изолированных проводов, двигателей, трансформаторных и электротехнических устройств, установок телекоммуникаций и прочих электрических машин.

Прибор также осуществляет измерительные действия по определению поверхностных и объемных сопротивлений изоляции, определяющей состояние безопасности установки.

Безопасное пользование мегаомметром

Пользоваться мегаомметром можно только согласно правилам техники безопасности, измерения могут производить только два квалифицированных специалиста один из которых должен иметь группу допуска по электробезопасности IV. Не подготовленный пользователь не может пользоваться прибором, это чревато поражением электрическим током.

Мегаомметр принцип работы и его схема


Работу c мегаомметром рассмотрим на примере самого распространенного прибора с маркировкой ЭС0202/2Г. Прибор произведенный еще в советское время, на Уманском приборостроительном заводе, мегаомметр получил распространение по территории всего Советского Союза и успешно работает в настоящее время. Надежность, неприхотливость, а что самое важное, точность измерений зарекомендовали этот прибор с положительной стороны. В России прибор под этой маркировкой производится в Белгороде и на многих других приборостроительных заводах.

Прибор предназначен для проведения измерений с большими величинами сопротивлений, и рекомендуется для проверки высоковольтного оборудования, рассчитанного на большую мощность, а также для силовых кабелей большого сечения или раскинутых на значительное расстояние.

Рис №1: Внешний вид мегаомметра

Мегаоомметр этого типа относится к индукторным устройствам, работает за счет встроенного в конструкцию генератора, что позволяет прибору работать без постороннего источника питания, и без аккумуляторных батарей.

Принцип работы построен на использовании принципиальной схемы логарифмического измерительного устройства отношений. В измерительном процессе задействованы: электромеханический генератор напряжения, преобразователь и электронный измеритель.

Для работы рекомендуется использовать прерывистый режим, в котором 1 минута отводится на измерение, 2 минуты – пауза. При первом ознакомлении прибором внимательно изучите мегаомметр и инструкцию по эксплуатации.

Рис №2. Принципиальная схема мегаомметра ЭС0202/2Г

Как проверить мегаомметр

Перед началом измерительных работ выполняется операция по проверке исправного состояния прибора и его поводков, для этого, провода, подсоединенные к прибору замыкают накоротко, и вращают ручку генератора, стрелка должна показать «0» короткое замыкание в положении переключателя «I». При проверке, во время замыкания проводов, нельзя касаться их голыми руками, можно получить удар током.

Как пользоваться мегаомметром или последовательность проведения измерительных работ:

  1. Присоединение мегаомметра к гнездам измерения сопротивления.
  2. Присоединение заземляющего проводника к гнезду экрана (кожуха).
  3. Установка переключателя в нужный предел проведения измерения, всего их два, чем выше мощность оборудования, тем больше диапазон измерения.
  4. Проверяем работу прибора замкнув измерительные щупы, одновременно вращая ручку.
  5. После присоединения измерительных шнуров вращаем ручку мегаомметра (генератора питания), скорость должна быть не менее 120 об в мин.
  6. Установление стрелки измерения в определенное положение является началом отчета измерения.
  7. Чтобы понизить время измерения сопротивления мегаомметром по II шкале гнезда сопротивления закорачиваем (перед началом замера) и вращаем ручку прибора примерно 5 сек.
  8. После применения мегаомметра переключатель устанавливаем в нейтральное положение.

 

Рис №3. Схема присоединения мегаомметра

Допустимая погрешность в работе мегаомметра составляет 0,05 Мом +-15%. Предел дополнительной погрешности связанный с наличием в цепи измерения токов с промышленной частотой в виде помех, составляет около 500 мкА. Прибор может эксплуатироваться при температуре в границах от 30 до +50оС. На зажимах присутствует измерительное напряжение мегаомметра от 500 до 2500В, в зависимости от диапазона используемого измерения, поэтому по окончании измерения необходимо разрядить генератор, касаясь измерительными щупами «земли» или закоротить их на секунду, между собой, до электрического разряда.

Современные мегаомметры

В настоящее время наряду с традиционными, но все еще работоспособными и надежными мегаомметрами, используются электронные аналоговые и цифровые приборы. Они имеют источники тока, это аккумуляторы или гальванические батареи. Использование цифрового табло позволяет более точно проводить измерения и фиксировать их. Многие модели оснащаются немало важными функциями такими как, например: автоматическое определение коэффициентов абсорбции и поляризации. Кроме этого, для большего удобства эксплуатации они конструируются с возможностью подсветки экрана, и сохранения измеренных показаний в память прибора с последующей передачей на компьютер, для отслеживания динамики измерений.

Например, цифровой мегаомметр ЦС202-2 может фиксировать в своей памяти до 10 последних измерений. Кроме измерения изоляции, им можно автоматически выполнить определение коэффициента абсорбции. Диапазон замера этим прибором равен от 0 до 200 ГОм.

enargys.ru

принцип действия и область применения прибора, правила безопасной эксплуатации, инструкция по измерению сопротивления

Мегаомметры — удобные и функциональные приборы для измерения сопротивления изоляции, позволяют не только выполнить точные замеры, но и убедиться в целостности изоляционного материала. Измерителями изоляционного сопротивления пользуются преимущественно профессиональные электрики и специалисты, обслуживающие высоковольтное электрическое оборудование, что обусловлено особенностями такого устройства. Прибор позволяет замерять большие значения в сопротивлении цепей, изоляционных материалах, двигателях, телекоммуникационных установках и других видах техники, а основным назначением является определение безопасности эксплуатации проверяемых объектов.

Мегаомметр: что такое, область применения и принцип действия

Мегаомметр — специальный измеритель, посредством которого выполняются замеры высоких показателей сопротивления. Основное отличие от традиционных омметров представлено тем, что замеры осуществляются на значительном уровне напряжения, самостоятельно генерируемым изоляционными измерителями.

Функционирование измерителей изоляционного сопротивления объясняется законом Ома, действующем на участке электроцепи: I=U/R. Основные составные части, установленные внутри корпуса, представлены источником напряжения, имеющим постоянную и откалиброванную величину, а также токовым измерителем и клеммными выходами.

На клеммах фиксируются при помощи обычных зажимов-«крокодилов» соединительные провода, а присутствующим амперметром замеряются токовые величины электроцепи. Для некоторых моделей характерно наличие шкалы с двумя видами значений или цифрами, отображающимися на экране.

Схема работы мегаомметра

Принип работы мегаомметра

Мегаомметры используются в замерах изоляционного сопротивления, а также с целью определения коэффициента изоляционной абсорбции электрического оборудования, которое не пребывает в условиях рабочего напряжения. Измерители изоляционного сопротивления классифицируются в зависимости от типовых особенностей схемы и способа индикации.

Цифровые модели являются более дешёвыми приспособлениями, а аналоговые приборы имеют высокую стоимость, но отличаются высокими показателями точности осуществляемых измерений. Основная область применения в настоящее время представлена производственными и распределительными системами электрической энергии, системами контроля эксплуатации электрического оборудования в промышленности, лабораториях и в полевых условиях. В быту такие приборы не слишком востребованы.

Как устроен прибор

Разные модели измерителей отличаются своими конструкционными особенностями. Внутри старых приборов есть динамо-машины ручного типа, а новые устройства снабжаются источниками наружного и внутреннего типа.

Схема устройства мегаомметра

На схеме изображены элементы мегаомметра

  • «Л» – зажим «Линия»;
  • «Э» – зажим «Экран».
  • «З» – зажим «Земля»;
Схема устройства мегаомметра

Выходная мощность приборов, созданных для проверки изоляции промышленного высоковольтного оборудования может в несколько раз превышать характеристики моделей, предназначенных для работы в условиях бытовой электропроводки

Конструктивной особенностью измерительной головки является рамочное взаимодействие, а переключательный тумблер отвечает за коммутационное обеспечение. Надёжный и прочный диэлектрический корпус снабжается переносной ручкой, портативным генератором-рукоятью складного типа, переключателем и специальными выходными клеммными элементами.

Особенности эксплуатации прибора

Любые измерительные мероприятия в электрических установках осуществляются исключительно исправными, обязательно испытанными и полностью проверенными электрическими приборами или устройствами со строгим соблюдением всех правил производимых замеров.

Последовательность работы с мегаомметром

Прежде чем приступать к измерениям, убедитесь в исправности мегаомметра

Мегаомметры подбираются с целью проверки изолирующих свойств и замеров показателей сопротивления диэлектриков по установленным показателям.

Влияние наведённого напряжения

Электроэнергией, которая переносится проводами линий электрических передач, создаётся большое магнитное поле, изменяемое согласно синусоидальному закону. Такая особенность провоцирует наведение в проводниках из металла появление электродвижущей вторичной силы и токовых показателей значительной величины.

Образование магнитного поля рядом с линиями электропередач

Электроэнергия, передаваемая линиями элекропередач, образуется мощное магнитное поле

Этой особенностью оказывается ощутимое воздействие на уровень точности всех выполняемых замеров, а образуемая сумма пары неизвестных величин тока может сделать метрологическую задачу весьма проблемной. Именно по этой причине замеры сопротивления сетевой изоляции в условиях напряжения — мероприятие абсолютно бесперспективное.

Действие остаточного напряжения

Формирование генератором параметров напряжения, которое поступает в замеряемую электросеть, способствует появлению разницы потенциалов между заземляющим контуром и проводами, что сопровождается ёмкостным образованием с наличием определённого заряда.

Схема действия остаточного напряжения

Перед подключение для выполнения замеров нужно убедиться в отсутствии остаточного напряжения

Непосредственно после отсоединения измерительного проводника происходит быстрый разрыв электроцепи, что способствует частичному сохранению потенциала за счёт создания ёмкостного заряда внутри шины или проводной системы. При случайном или преднамеренном касании данного участка есть риск получения электрической травмы при прохождении разряда тока через тело. Предотвращение травматизма обеспечивается использованием мобильной системы заземления с рукоятью, обеспеченной качественной изоляцией.

Прежде чем подключиться для выполнения замеров изоляции, важно убедиться в полном отсутствии остаточного заряда или напряжения внутри проверяемой схемы. С этой целью используются специализированные индикаторные устройства или вольтметры, обладающие соответствующими номинальными значениями. Для быстрой и абсолютно безопасной эксплуатации потребуется выполнить подсоединение одного конца заземляющего проводника к контуру заземления. Другому концу на проводнике обеспечивается контакт со штангой изоляции, что позволяет получить заземление для устранения остаточного заряда.

Как пользоваться прибором

При вращении рукояти ручного прибора или в результате нажатия кнопки электронных устройств на клеммные выходы подаются высокие показатели напряжение, которые посредством проводов поступают на измеряемую электроцепь или к электрическому оборудованию. При замерах на шкале или экране отображаются значения сопротивления.

Таблица: параметры мегаомметра при замерах

Правила безопасности при работе с прибором

Современными мегаомметрами генерируется уровень напряжения в пределах 2500 В, поэтому выполнять работу таким прибором могут исключительно работники, прошедшие полный курс специальной подготовки и ознакомленные с правилами техники безопасности. В работе могут использоваться только полностью исправные и поверенные измерительные приборы. Замеры на раскороченных проводах показывают величину изоляционного сопротивления.

На измерителях показателей сопротивления более старого образца такая величина равна «бесконечности».

Мегаомметр

Обязательно изучите правила безопасности при работе с прибором

При эксплуатации электронного прибора, оснащённого современным цифровым дисплеем, показатели замеров всегда фиксированные.

  • Во время выполнения замеров изоляционного сопротивления категорически запрещены любые прикосновения к выходным клеммам измерительного прибора и контакт с оголёнными частями соединительных проводов в виде концов щупа. Нельзя касаться неизолированных металлических частей замеряемой электрической цепи в оборудовании, находящемся под высокими показателями напряжения.
  • Измерение изоляционного сопротивления производить категорически запрещается без проверки отсутствия напряжения, если запланированы мероприятия с жилами электрического кабеля или с любыми токоведущими частями электрических установок. Проверка на наличие или отсутствие в проводах и установках напряжения выполняется при помощи индикатора, специального тестера или указателя напряжения.
  • Запрещены мероприятия по замерам при наличии остаточного заряда на электрическом оборудовании. Для снятия остаточного заряда должны использоваться штанга изолирующего типа или заземление с кратковременным подсоединением к токоведущим участкам устройства. Остаточный заряд устраняется после проведения всех замеров.

Использование прошедшего проверку и стандартные испытания мегаомметра возможно только после того, как будет подтверждена его работоспособность. Убедиться в корректной работе такого измерительного прибора необходимо непосредственно перед проведением замеров изоляционного сопротивления. С этой целью осуществляется подключение соединительных проводов к клеммам на выход, после чего производится проводное закорачивание, что позволяет приступить к измерениям. Следует помнить, что в условиях закороченных проводов показатели сопротивления должны быть нулевыми, а закороченные соединительные провода позволяют убедиться в их целостности.

Есть ли альтернатива мегаомметру

На сегодняшний день реализуется огромное количество мультиметров с измерениями уровня сопротивления в диапазоне до 100 МОм. Несмотря на солидный рабочий диапазон, такие тестеры не могут стать достойной заменой мегаомметру, которым попутно проверяется электрическая изоляционная прочность и обеспечивается работа с измерительным напряжением 250, 500, 1000 В и даже больше.

Измерение сопротивления изоляции мегаомметром

Принцип измерения сопротивления изоляции мегаомметром

В настоящее время к числу наиболее распространённых измерительных приборов относятся мегомметры М-4100, ЭСО202/2Г и MIC-1000, а также MIC-2500.

Сертифицированные мегаомметры: обзор производителей

К основным, наиболее значимым техническим характеристикам и параметрам мегаомметров относятся:

  • сопротивление — в пределах 0–49 900 Мом;
  • напряжение — 100–5000 В;
  • рабочие температурные диапазоны — от -20 до + 40°С.

Мегаомметры, проходящие периодическую проверку своей работоспособности в МЕТРОЛОГИИ и внесённые в Реестр средств измерения России, выпускаются многими производителями, но лучше всего зарекомендовали себя гарантировано безопасные и надёжные модели измерительного прибора.

Таблица: список приборов с характеристиками

Менее популярные у потребителей, но хорошо зарекомендовавшие себя модели цифровых и аналоговых мегаомметров.

Таблица: характеристики цифровых и аналоговых мегаомметров

Мегаомметр — безусловно, один из самых необходимых приборов в работе с высоковольтным оборудованием. К выбору модели и, главное, к правилам безопасности его использования следует относиться с максимальной ответственностью.

aqua-rmnt.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *