Схема изготовления сетевого фильтра под напряжение 220В
Работа электротехнических и электронных устройств происходит за счёт питания сетевым током. Энергопоток через провода приносит с собой сателлитные электромагнитные поля. Они несут угрозу точности выполнения своих функций абонентами электросети. Решить этот вопрос могут сетевые фильтры (СФ). Их всегда можно купить в виде сетевых удлинителей. Зная схему сетевого фильтра, устройство несложно собрать своими руками.
Сетевой фильтр
Принцип работы сетевого фильтра
Напряжение переменного тока в сети 220 в изменяется в синусоидальном виде. Правильная форма электрического импульса «загрязняется» электромагнитными помехами. Синусоида выглядит в виде изгибающейся линии чистого сигнала, окружённой вязью блуждающих токов, вызванных фазными перекосами, подсадками и всплесками напряжения.
График сетевого тока
Сопровождающие помехи влияют на чувствительные компоненты электронных схем различных приборов и аппаратуры. Возникает проблема очистки тока от паразитных образований. Для этого применяют сетевой фильтр (СФ).
СФ встраивают между источником сетевого тока и потребителями. Он состоит из соединённых в определённом порядке дросселей и конденсаторов. Работа фильтра – выстраивание индуктивного сопротивления катушек, не пропускающего помехи высокой частоты. Ёмкости устройства отсекают нежелательные помехи. Конденсаторы замыкают цепь и не пропускают паразитные импульсы.
Устройство простого сетевого фильтра
СФ бывают двух видов:
- Встроенные.
- Стационарные – многоканальные.
Встроенные
Компактные платы СФ являются частью внутреннего устройства различного электронного оборудования. Ими оснащается компьютерная и другая сложная техника.
Плата встраиваемого сетевого фильтра
На фото видно устройство СФ. На плате установлены следующие детали:
- VHF – конденсатор;
- тороидальный дроссель;
- добавочные конденсаторы;
- варистор;
- индукционные катушки;
- термический предохранитель.
Варистором называют резистор с переменным сопротивлением. При превышении нормативного порога напряжения (280 в) его сопротивление может уменьшиться в десятки раз. Варистор выполняет функцию защиты от импульсного перенапряжения.
Стационарные – многоканальные
Корпус прибора имеет несколько розеток. Благодаря этому, есть возможность подключить через фильтр всю имеющуюся электротехнику в одном помещении к одной розетке. Для очистки от радиопомех высокой частоты применяется простой LC-фильтр. Несгораемые термопредохранители предотвращают скачки напряжения. В некоторых моделях применяются одноразовые плавкие предохранители.
Самостоятельное изготовление сетевого фильтра
Сделать самый простой сетевой фильтр своими руками в домашних условиях радиолюбителю будет совсем не трудно. Для этого нужно встроить небольшую схему внутрь корпуса сетевого удлинителя с несколькими розетками. На нижнем рисунке показано, как это сделать.
СФ своими руками
Устанавливают СФ в удлинителе следующим образом:
- Вскрывают корпус сетевого удлинителя.
- В параллельные ветви после выключателя и варистора впаивают резисторы R1, R2 и дроссели (индуктивные катушки) L1, L2.
- Затем ветви поочерёдно замыкают через конденсатор С1 и один резистор R3.
- Установка концевого конденсатора С2 может быть сделана в любом месте между розетками.
Важно! Если внутри корпуса удлинителя не найдётся места для второго конденсатора С2, то можно обойтись без него. Достаточно скорректировать параметры С1.
Дроссели применяются с незамкнутыми ферритовыми сердечниками индуктивностью от 10 мкГн. Конденсаторы подбираются в диапазоне 0,22-1 мкФ. Сопротивление резисторов коррелируют с планируемой мощностью потребителей. При нагрузке 500 Вт потребуются резисторы 0,22 Ом. Сопротивление R3 должно быть не меньше 500 кОм.
Видоизменённая схема
Вышеописанную схему нередко модернизируют. Применяя катушки с другими параметрами, обходятся без резисторов. Для этого берут дроссели с высокой индуктивностью – 200 мкГн. Вместо старой ёмкости впаивают конденсатор, рассчитанный на 280 в.
Видоизменённая схема СФ
Схема СФ защиты от сетевых помех
Типовая схема сетевого фильтра является основой всех устройств такого типа за исключением дополнительных мелочей. Классикой является подключение к точкам: Земля, Фаза и Ноль. На входе устанавливается варистор VDR 1. Он подавляет всплески напряжения сетевого тока. При высоком скачке напряжения сопротивление варистора резко падает, этим он не пропускает помеху далее по схеме.
Для гашения небольших изменений напряжения используются дроссель Tr1 и три ёмкости С. Конденсаторы С1, С2 и С3 – реактивные радиодетали, постоянно меняющие уровень сопротивления. Оно при изменении частоты тока резко возрастает.
Нормальный ток беспрепятственно проходит через фильтр. В то же время помехи высокой частоты задерживаются в СФ. Сопротивление фильтра находится в прямой пропорциональной зависимости от величины частоты тока. Оба показатели одновременно возрастают, что позволяет задерживать помехи на пути к потребителю.
Обратите внимание! Трёхпроводная сеть питания может подвергаться возникновению помех на участках фаза – ноль, земля – фаза, земля – ноль. Эффективное подавление таких негативных явлений осуществляется нормальным стандартным заземлением СФ.
Пути улучшения схемы фильтра
Существует множество вариантов улучшения схемы сетевого фильтра. Один из них отличается остроумием и позволяет существенно экономить потребляемую электроэнергию. Суть метода заключается в следующем:
- Вскрывают корпус многоразъёмного СФ удлинителя.
- Одну из токоведущих шин разрезают.
- Отрезки соединяют с 5 вольтовым реле, рассчитанным на коммутацию тока 3А, 250 в.
- Два других контакта реле соединяют проводами с USB разъёмом на конце.
- Разъём подключают к USB входу телевизора.
В результате получается управляемая система питания, состоящая из ТВ, цифровой приставки и блока питания спутниковой антенны. Если ранее при выключении телевизора все части системы оставались в режиме ожидания, то с модернизированным фильтром они полностью отключаются. Стоит с пульта включить телеприёмник, как все коммутированные приборы тоже приводятся в действие и наоборот.
Дополнительная информация. Различные модернизированные СФ всегда можно найти на радиорынке, но стоят они довольно дорого. Поэтому намного выгоднее сделать усовершенствование устройства своими руками.
В другом случае идут по пути добавления в СФ LC-фильтра, который, помимо гашения помех от сети, понижает взаимно возникающие электрические помехи от подключённых потребителей.
Штатный варистор (470 в) часто не вызывает срабатывание автоматического предохранителя. Его меняют на аналогичное устройство, рассчитанное на напряжение 620 в. Это позволяет подавлять помехи от работающей стиральной машины, пылесоса и другой мощной электротехники.
Домашние мастера оснащают сетевые фильтры-удлинители звуковой сигнализацией. При превышении в сети уровня напряжения 280 в фильтр оповещает об этом сигналом.
Сетевой фильтр с 2-х обмоточным дросселем
СФ на основе дросселя с двумя обмотками применяют для чувствительной аудиотехники. Звуковые колонки чутко реагируют на помехи сетевого питания. Если таковые возникают, то динамики искажают звук и испускают посторонний фоновый шум. Радиоаппаратура, подключённая к сети через СФ с 2-х обмоточной катушкой, защищена от таких помех.
Схему собирают на отдельной печатной плате. Потребуются несколько конденсаторов и самодельный дроссель. Его изготавливают следующим образом:
- Кольцо из феррита марки НМ с показателем магнитной проницаемости от 400 до 3000 можно взять из старой электротехники.
- Магнитопровод оборачивают тканью и покрывают лаком.
- Для обмотки применяют провод марки ПЭВ. Его площадь сечения зависит от величины нагрузки. Мощные потребители требуют существенного увеличения этого параметра.
- Намотку ведут двумя проводами в разных направлениях.
- Делают 10, 12 оборотов каждого проводника.
- Конденсаторы устанавливают в начале и конце схемы. Они должны выдерживать напряжение до 400 в.
СФ с 2-х обмоточным дросселем
Обмотки катушки индуктивности включаются в последовательном порядке. Поэтому магнитные поля катушки взаимно поглощаются. При прохождении тока высокой частоты резко возрастает сопротивление дросселя. Ёмкости поглощают и закорачивают помехи.
Печатную плату помещают в отдельный металлический корпус. В крайнем случае схему отгораживают металлическими бортиками. Это делается с целью исключения дополнительных помех от блуждающих электромагнитных полей.
С каждым новым поколением электронного оборудования предъявляются повышенные требования к качественным характеристикам сетевого тока. Чтобы не заниматься ремонтом чувствительной электроники, нужно обязательно подключать её через сетевые фильтры. Если фильтровать ток нужно для небольшого количества потребителей, то можно пойти по экономному пути и изготовить сетевой фильтр своими руками.
Видео
amperof.ru
схема, видео, инструкция по сборке
Для подключения компьютера и периферии к электросети обычно потребуется большое количество розеток. При этом работа блока питания компьютера, монитора, аудиосистемы и других устройств имеет импульсный характер. Такие потребители могут портить качество питающей электросети, насыщая её ненужными гармониками, которые могут мешать работе других устройств, подключенных к ней. Особо чувствительными к качеству питающей сети являются телевизоры, мониторы, зарядки для телефонов и вычислительная техника. Кроме помех в сети могут присутствовать всплески напряжения и тока, которые также могут повредить дорогостоящую аппаратуру. Для решения всех этих проблем рекомендуется подключать устройства через сетевой фильтр. Однако его стоимость может серьезно ударить по карману, особенно если необходимо приобрести несколько приборов в разные места, поэтому домашних умельцев интересует вопрос, можно ли собрать его самостоятельно. В этой статье мы как раз и расскажем читателям сайта https://samelectrik.ru, как сделать сетевой фильтр своими руками и какие материалы для этого понадобятся.Конструкция
Прибор напоминает по своему виду удлинитель с кнопкой выключения, отчасти это так, но кроме колодки с розетками дополнительно расположены и фильтрующие элементы. Они как раз и нужны для защиты от скачков напряжения, фильтрации помех и паразитных гармоник.В самом простом сетевом фильтре внутри стоит только варистор. Это полупроводниковый прибор, который при превышении определенного напряжения превращается в резистор, уходит в короткое замыкание. Вследствие этого, может сработать автоматический выключатель, установленный у вас дома, или, если импульс короткий, то его энергия рассеется варистором в виде тепла. Этот элемент применяют в сетевых фильтрах и блоках питания для защиты от всплесков высокого напряжения. В зависимости от типа варистора он может погасить импульсы разной величины.
Такой вариант исполнения на варисторе самый дешевый, однако кроме всплесков напряжения, он ни от чего не защищает и не фильтрует. Помехи продолжают сочиться в сеть и мешать окружающей и запитанной аппаратуре.
Для фильтрации высокочастотных гармоник широко применяются L, LC и RLC- фильтры, которые также могут быть установлены в сетевом фильтре.
Кроме таких вариантов встречаются еще и модели, где сетевой шнур проходит через ферритовое кольцо, или делает вокруг него пару витков. По сути — это еще один L (индуктивный) элемент, который нужен для фильтрации высокочастотной составляющей помехи.
Сетевой фильтр своими руками
Схема простейшего фильтра состоит из выключателя и варистора, вот как она выглядит:
V1 – это и есть варистор, его маркировка «471», значит, что его напряжение срабатывания 470В, при этом чем больше его диаметр, тем большую энергию он сможет погасить не взорвавшись при этом. Таким образом, чем больших размеров варистор вы поставите, тем лучше, лишь бы он влез по габаритам. Вот пример сетевого фильтра, собранного по этой схеме, но в заводском исполнении. Это дешевый прибор, который гасит лишь импульсы высокого напряжения. При этом он может безвозвратно выйти из строя при особо сильном всплеске.
Чтобы ваш сетевой фильтр еще и действительно был фильтром помех, необходимо добавить еще один фильтрующий элемент – дроссель.
Схемы – это, конечно, хорошо, но как сделать сетевой фильтр из подручных средств? Достаточно просто! Почти всегда у любителя что-нибудь мастерить, можно найти старый ненужный или нерабочий блок питания, в нём есть такой фильтр на входе. Осталось только его выпаять. На фото он стоит в ближнем к нам углу платы. Эта деталь представляет собой ферритовый сердечник и медную лакированную проволоку, намотанную вокруг него.
Это дроссель с двумя обмотками, через одну из них проходит фаза, а через другую ноль, таким образом индуктивность входит в состав сетевого фильтра и снижает уровень помех.
Кстати блок питания может работать и без него, многие китайцы так и делают свои товары, часто это встречается в дешевых БП для компьютера и не только. Из-за этого в сети и возникает такое большое количество нежелательных помех.
Если вы не нашли такого элемента в своих запасах – можно поискать ферритовое колечко с магнитной проницаемостью 400-2000 НМ и обмотать медной лакированной проволокой ПЭВ-2 (можно использовать первичную обмотку с 50 Гц сетевого трансформатора) диметром от 0,5 мм, это зависит от мощности нагрузки, которую вы хотите подключать. Намотать на колечко так, как показано на картинке, предварительно обмотав его несколькими слоями диэлектрика, например: изолентой, лакотканью, каптоновым скотчем.
Используйте провод с качественным, не поврежденным лаковым покрытием. А после намотки для надежности покройте деталь несколькими слоями лака. Петельку на конце нужно разрезать, в идеале – сразу мотать двумя параллельными проводами.
Хорошая схема, которую легко сделать своими руками выглядит следующим образом:
А вот конкретный вариант его реализации «в железе». За основы взята пара фильтров от БП.
Конденсаторы лучше применять керамические или пленочные. Их можно также достать из блока питания, они часто там встречаются возле сетевого разъема в прямоугольном корпусе в виде параллелепипеда.
Если есть ненужный БП можно просто отрезать часть платы с фильтром и использовать её. Вот пример на фото с указанием, что нужно отпилить для получения сетевого фильтра за пару минут. Только будьте осторожны и не перемкните металлическими опилками слои платы, это может привести к короткому замыканию. А готовое устройство обязательно поместите в токонепроводящий корпус для безопасности.
И вот еще один вариант схемы для повторения. Именно она и используется во множестве блоков питания стандарта ATX:
Сетевой фильтр – полезное и простое устройство, которое не сложно сделать самому в домашних условиях. А если учесть, что у многих есть несколько ненужных, неработоспособных приборов, то выходит, что запчасти буквально валяются у нас под ногами. Поэтому изготовление устройства, которое может продлить или даже спасти жизнь дорогостоящей аппаратуре, является очень выгодным занятием. Напоследок рекомендуем просмотреть несколько интересных видео-инструкций по сборке самодельного сетевого фильтра:
Материалы по теме:
samelectrik.ru
Схема простого сетевого фильтра для бытовой техники
Что-то не так?
Пожалуйста, отключите Adblock.
Портал QRZ.RU существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Мы стараемся размещать только релевантную рекламу, которая будет интересна не только рекламодателям, но и нашим читателям. Отключив Adblock, вы поможете не только нам, но и себе. Спасибо.
Как добавить наш сайт в исключения AdBlockСетевые фильтры стали неотъемлемым обязательным аксессуаром оргтехники и некоторой бытовой техники и приборов. Вообще сетевой фильтр, прежде всего, должен представлять собой устройство, которое призвано защищать цепи питания компьютеров, периферии и другой электронной аппаратуры от ВЧ и импульсных помех, скачков напряжения, возникающих в результате коммутации и работы промышленного оборудования.
Все источники питания, как для компьютера, так и для телевизоров защищены фильтром от резких бросков тока в сети. В быту обычно броски токов сети возникают от бытовых приборов: холодильника, СВЧ печи, пылесоса и т. д. Хоть источники имеют хорошую защиту, а всё равно выходят из строя. Особенно телевизоры и реже ПК. Причиной является, как ни странно, потеря ёмкости входного конденсатора фильтра номиналом 0.1мкФ. Эта проблема существует и в других устройствах.
Приведу несколько примеров из практики. Так работая электриком, выполнил монтаж двух десятков датчиков движения HR-S5 (схема на сайте www.cxem.info) и полсотни датчиков HR-S1. Ток вот датчики HR-S5 за год все вышли из строя по причине потери ёмкости конденсатора, выполняющий роль ограничителя тока. А датчики HR-S1 без единой поломки работают более пяти лет. Для ремонта датчиков нужно было снять конденсаторы с фильтров демонтированных телевизоров. Оказалось зря – они были или полупустые или полностью непригодны. Единичный случай был с очень крутым источником питания ПК. Источник был полностью залит массой. О каком- то ремонте и речи не могло быть. Владелец купил новый, а плохой дал мне для анализа. После нудного демонтажа источника – причина опять конденсатор фильтра.
Вывод однозначный – во всех случаях виною были конденсаторы, как в фильтрах, так и в ограничителях тока питания датчиков.
Как уберечь источник питания
Просто нужно проверить С1 фильтра без демонтажа, если имеется индикатор контроля конденсаторов (Радио No9, 1990г.), прямо на вилке сети. При необходимости добавить плёночный конденсатор 0.5мк х630В с тыльной стороны гнезда подключения сети. И последний вариант – приобрести или самому изготовить фильтр. Для этой цели можно применить розетку с выключателем. Выключатель убрать и на его место смонтировать фильтр. Готовый кольцо с намоткой лучше использовать от старых телевизоров или источника ПК. Можно самому изготовить дроссель на ферритовом кольце нужного диаметра марки 2000НМ или 3000НМ, намотав проводом диаметром не менее 0.5мм. Входной конденсатор 0.1мк ~275В или на 630В. С2 можно не ставить, если фильтр назначен для ПК или телевизора.
Комментарии
Отзывы читателей — Скажите свое мнение!
Оставьте свое мнение
Отзывы читателей — Скажите свое мнение!
www.qrz.ru
Качественный фильтр сетевых помех для аудио + своими руками
В последние годы ваш HiFi или даже High-End аудио комплекс всё меньше радует детальностью, сочностью и прозрачностью звучания? Вы подумываете обновить всю систему? Или вы уже подыскиваете качественный сетевой фильтр? Если последнее — вы на верном пути 😉
Посчитаем?
В этом веке количество источников электромагнитных помех в наших домах растёт по экспоненте. Оглядитесь, попробуйте посчитать, сколько на вид безобидных лёгких и маленьких зарядных устройств, экономичных ламп, «электронных трансформаторов» для галогенок, компьютеров, принтеров, и прочей электроники с питанием от сети и/или всевозможными «зарядниками» пришло в ваш дом за последнее десятилетие? Пальцев не хватило, даже вместе с ногами, женой и… то-то! 🙂
Сегодня пожалуй 95% источников сетевого питания построены на базе высокочастотного преобразователя и не используют старые громоздкие и тяжёлые, гудящие трансформаторы на 50 (60) Герц. Ура, партия зелёных торжествует: большинство таких преобразователей весьма экономичны, компактны и… каждый такой импульсный блок питания а) свистит на частоте преобразования и гармониках и б) создаёт броски зарядного тока во входном выпрямителе (весьма широкополосная помеха — и прямиком в сеть).
В по-настоящему качественных (и дорогих) импульсных источниках питания с помехами борются весьма успешно, но всё равно недостаточно, чтобы весь производимый ими электромусор остался незаметным для чувствительных ушей меломана. Да что там меломаны… У нас в доме старый добрый 39-мегагерцовый радио-телефон. Постепенно он начал гудеть и жужжать так, что я серьёзно собирался сменить аппарат. Но пользуемся мы им относительно редко и проблема однажды решилась сама собою, когда я в погоне за красивым звуком повырубал к чертям все импульсные блоки питания вкупе с компьютерами в доме. После того эксперимента, кстати, и появились у нас вот эти бочёнки.
Так что же покупить?
В этой статье я не подскажу, какой сетевой фильтр надо покупать. Причины две: за разумные деньги я не встречал адекватных фильтров; а те фильтры, что я мог бы порекомендовать — стоили совершенно несообразно, да и места занимали много больше, чем выполняемая ими функция того требует. Тем не менее решение существует: для умелых рук — собирать фильтры самому, и я постараюсь разъяснить его работу настолько, что любой, кто дружен с паяльником, сможет снабдить свою аппаратуру адекватной защитой от электромагнитных помех, проникающих из питающей сети. Если же вы не имеете возможности, либо желания дышать канифолью — покажите статью товарищу, который сможет вам помочь.
Грамотные производители должны были всё предусмотреть!
Фиг-вам! (изба такая индейская (с) кот Матроскин)
Открываем CD-проигрыватель, купленный в своё время за шесть сотен «зелёных». И что мы видим: рудиментарный сетевой фильтр тут имеется, но увы, лишь нарисованный шелкографией на плате, на дросселе и конденсаторах сэкономили. Вполне допускаю, что в их комнатах прослушивания, с идеальной фильтрацией питания, фильтр тот был и не нужен — не услышали «гуру» разницы от отсутствия фильтра. Ну и внесли «рацуху» — пошёл аппарат в массы голенький и беззащитный супротиву нового поколения электронных домов…
За работу!
В принципе, качественные фильтры промышленность выпускает. Только стОят они опять же дороговато. Этакие полностью экранированные коробочки со схемкой на боку. Катушечки там, конденсаторчики. Давайте же разберёмся, что там для чего, и соберём сами из доступных деталюх. Кстати, в пику аудиоманьякам я утверждаю, что грамотный сетевой фильтр в устройстве, собранный из качественных обычных (не аудиофильских) компонентов — гораздо эффективнее и «звучит» лучше, нежели любые самые эзотерические кабели питания, а так же и большинство «аудиофильских» же фильтров питания. Спорим? 😉
Скажи мне, кто твой враг
1) Дифференциальное напряжение помехи. Это такой «вредный» сигнал, который приходит вместе с «полезным» напряжением питания (или сигналом), его измеряют между двумя соединительными проводниками, «горячим» и «общим» проводами, или проще говоря — между двумя шинами питания.
2) Синфазное напряжение помехи. Этот сигнал измеряется между корпусом прибора (землей) и любым соединительным проводником. Особенность этой помехи в том, что она будет идентична на обоих проводах питания, т.е. в отличие от дифференциальной помехи её не поймать между проводами и она просачивается внутрь в обход обычных фильтров.
Блокировочный конденсатор
Конденсатор шунтирует дифференциальные ВЧ помехи и не пускает их дальше в аппарат. Надо не забыть разрядить его при выключении аппарата, а то взявшись нечаянно за вилку можно получить весьма ощутимую «мотивацию». Для этого ставим резистор, мирно греющийся в нормальном режиме работы. Ох не водить мне дружбы с «зелёными»…
Дроссель
Индуктивность (обыкновенный небольшой дроссель) формирует уже Г-образный LP фильтр с совместно с конденсатором. Конкретная частота среза фильтра нас не очень интересует. Дроссель потолще (лишь бы был рассчитан на _постоянный_ ток в несколько раз выше тока, потребляемого аппаратом), конденсатор побольше на напряжение не менее 310 вольт — и все довольны.
Синфазный трансформатор
Обмотки в таком трансформаторе идентичны и включены встречно, таким образом он беспрепятственно пропускает всё, что приходит как разница потенциалов между L и N. Иначе можно объяснить так: нормальный ток нагрузки создаёт встречные идентичные поля в сердечнике, которые взаимно компенсируются. Тогда зачем это всё — спросите вы?
Сердечник такого трансформатора остаётся неподмагниченным основной нагрузкой. Если же представить себе провода питания L и N вместе как один провод — то мы имеем немалую индуктивность на пути уже синфазной помехи, т.е. всего того, что наводится на обоих проводах одновременно. Провода же те, будь то обычный кабель питания за доллар, или экзотическое аудиофильское чудо — суть антенна, принимающая и станцию «Маяк», и всё, что излучают домашние электронные вонючки. Внутри же аудио агрегата нам и синфазная помеха ни к чему: через емкостную связь она может проникать в кишочки наших любимцев весьма агрессивно.
Два маленьких компаньона
Два маленьких конденсатора в компанию синфазному трансформатору. Они закорачивают на защитное заземление именно синфазную помеху и создают уже вкупе с синфазным трансформатором тоже своего рода Г-образный фильтр для синфазной помехи, не пускают её дальше в аппарат. Без них синфазная помеха, пусть и встретившая на своём пути немалое сопротивление нашего трансформатора — всё равно пойдёт искать свою жертву внутрь аппарата.
Антизвон
Антизвонная цепочка, или RC-цепь Цобеля. Несколько мистический зверёк, но очень полезный. Тут совместно с первичной обмоткой трансформатора в аппарате мы формируем колебательный контур с низкой добротностью, чтобы «поймать» то, что «выскочит» из первички при отключении питания. Искрогаситель. Защита остального фильтра и самого трансформатора от ЭДС самоиндукции при отключении в неудачный момент (при большом токе через первичку). Он так же вносит свою лепту в перевод ВЧ помех в тепло.
Не было бы конденсатора — такой низкоомный резистор просто взорвался бы от напряжения сети. Не было бы резистора — получили бы относительно высокодобротный контур совместно с первичкой и/или дросселем фильтра.
Другой взгляд: привносим чисто резистивную и весьма низкоомную составляющую импеданса нагрузки на ВЧ… Кто может объяснить лучше — милости прошу, помещу «в книжку» с сохранением авторства 😉
#ground_loop
Разрываем контур заземления
Резистор в параллель со встречно включенными диодами. В другой версии это мог бы быть дроссель. Включено это дело между защитным заземлением и корпусом прибора. Зачем, спросите вы — это, вроде, к фильтрации помех никакого отношения не имеет? Давайте разбираться.
Встречно включенные диоды успешно закоротят любую сильноточную утечку внутри корпуса прибора (коротыш какой, пробой) на защитное заземление. Тем самым мы соблюдаем требования техники безопасности: в случае аварии на корпусе прибора не должно появится опасного для жизни и здоровья человека напряжения. При этом диоды «разрывают» цепь для небольших напряжений.
Резистор создаёт путь для небольших токов. Если бы его не было, а внутренности прибора неплохо отвязаны от земли, то даже небольшие утечки создавали бы избыточный размах напряжения на корпусе относительно земли, и через емкостные связи это всё проникало бы в прибор.
Так для чего же всё-таки «отвязывать» защитную землю от корпуса? Дело в том, что на защитном заземлении могут наводиться напряжения: например той самой синфазной помехой, что мы отфильтровываем. Так же, увы, нередко встречается такая разводка сети, когда защитное заземление одновременно является и возвратным проводом для собственно напряжения сети. В этом случае даже на небольшом сопротивлении проводки немалый ток потребления создаёт ощутимое падение напряжения. Все эти факторы могут «разогнать» в нормальных условиях до десятков и даже сотен милливольт разницы потенциалов между защитными заземлениями разных агрегатов. Теперь, если мы передаём аудио-сигнал через соединения, заведённые одним проводом на корпус (RCA разъёмы «колокольчики», к сожалению так популярные в бытовом HiFi), то эта самая разность потенциалов между корпусами приборов будет напрямую замешана в сигнал.
Итого, отвязывая корпус прибора (а в большинстве случаев это значит — и сигнальную землю оного) от защитного заземления, мы тем самым ощутимо уменьшаем замешивание любых «чудачеств», что могут случиться в розетке — прямиком в сигнал. Конечно же, уважающий себя любитель качественного звуковоспроизведения будет использовать исключительно балансные соединения, иммунные к синфазной помехе. Только, увы, у меня ещё не все аппараты соединены исключительно балансными кабелями. А как с этим дело обстоит у вас, дорогой читатель? 😉
Собираем
Выключатель питания пристроен по принципу — где меньше искра будет. В остальном фильтр не сильно отличается от того, что ставят в дорогих компьютерных блоках питания. Кстати, оттуда же можно и детальками разжиться.
Тот фирменный аппарат, что я упомянул вначале статьи, тоже получил свою дозу фильтрации, подробности здесь.
А ещё лучше — можно?
Можно! Экстремалы включают «встречно» огромные трансформаторы и фильтруют всё в низковольтной части. Результат несколько лучше, бюджет — на порядки выше.
Так же мы опустили MOV (варисторы) «искрогасители» и прочие устройства защиты от импульсных перенапряжений. Этим как раз занимаются все подряд сетевые фильтры за десять баксов. Опять же можно из компьютерного БП вытащить и поставить на входе, сразу за предохранителем. Качества звука это не добавит, но может спасти аппарат в грозу. Так же варистор способен уберечь конденсаторы фильтра от деградации, хоть бы они и были «самовосстанавливающимися». Постепенная деградация фильтров связана с нефатальными пробоями, вызванными кратковременными бросками напряжения сети, неизбежными при наличии коммутируемой индуктивной нагрузки, и кстати, совсем не обязательно в самом защищаемом аппарате.
Если аппарат очень мощный — нелишним будет терморезистор или более сложная схема плавного старта, чтобы не поубивать проводку во всём доме в момент включения аппарата током заряда огромных банок фильтров питания…
Если знаете, как сделать ещё лучше — напишите в комментариях!
Что дальше?
Неужели вы добрались так далеко? 😉 Значит статья чем-то заинтересовала. Тогда может и кто-то из друзей и знакомых скажет Вам спасибо за ссылочку на эту статью, или «лайк» в любимой соц-сети…
Если же вы действительно цените качественное звуковоспроизведение, не омрачаемое всевозможными помехами из электросети — у нас есть готовое решение для вас: набор для самостоятельной сборки качественного сетевого фильтра для аудио-аппаратуры.
Или возможно, вы захотите подарить своему лучшему другу — меломану недорогой подарок, за который он будет вам искренне благодарен? 😉 Взвесьте все за и против, и примите верное решение! Сетевой фильтр в вопросах и ответах.
myelectrons.ru
Схема сетевого фильтра | Микросхема
Сетевые фильтры стали неотъемлемым обязательным аксессуаром оргтехники и некоторой бытовой техники и приборов. Вообще сетевой фильтр, прежде всего, должен представлять собой устройство, которое призвано защищать цепи питания компьютеров, периферии и другой электронной аппаратуры от ВЧ и импульсных помех, скачков напряжения, возникающих в результате коммутации и работы промышленного оборудования. Это основные задачи устройств, носящих название сетевой фильтр. Как бы он ни выглядел, в какой бы корпус его ни запихал производитель, какой бы прочей эргономичности не придумали, главное, чтобы все это внешнее изящество не затмило основных задач. А сегодня можно наблюдать, к сожалению, совершенно иную картину. Производители подобных устройств не задумываются об их функциях, берут простейшую электрическую схему сетевого фильтра, состоящую из двух дросселей и двух конденсаторов, суммарная стоимость которых копейки и камуфлирует это под красивый дизайн. Для примера:
Или:
Причем стоимость такого аксессуара под названием сетевой фильтр немаленькая. В итоге, мы покупаем обычный сетевой удлинитель в красивой обертке. При всем этом показатель цены, что якобы, чем дороже, тем лучше и качественней, в данной ситуации значения не имеет. Этим введением мы хотим показать и раскрыть суть вопроса о сетевых фильтрах. Отчасти это ещё и ответ на комментарий уважаемого радиолюбителя в публикации простейшей схемы сетевого фильтра. Конечно, мы согласны, что начинка очень даже влияет на стоимость. Но всё дело в нерадивых производителях сетевых фильтров, которые не хотят «заморачиваться» над их содержимым, не пытаются разрабатывать принципиально новые электрические схемы для улучшения эффективности. Поэтому многие опытные радиолюбители для ежедневных нужд проектируют схемы сетевых фильтров сами. И качество получается на высоте, и надёжность, и собираются в основном из подручных радиокомпонентов, что сводит затраты к минимуму, и приобретается дополнительный радиотехнический опыт. Также стоит заметить, что в большинстве случаев схемы сетевых фильтров входят в состав более сложных схем сетевых стабилизаторов напряжения, о которых мы неоднократно упоминали на страницах радиолюбительского сайта.
Сегодня мы опубликуем несколько электрических схем и их описаний, по которым вам не составит особого труда изготовить сетевой фильтр своими руками, по функциональности и характеристикам превосходящий покупной. На рисунке ниже приведена электрическая схема сетевого фильтра, предназначенного для защиты питаемого устройства от внешних помех (за это отвечает цепочка C3C4C5C7L1) и импульсных выбросов сети (варистор R5 с характеристическим напряжением 275 вольт). Приведенная схема также защищает сеть от помех, создаваемых питаемым устройством.
Дроссель L1 имеет индуктивность магнитосвязанных встречно включенных электрически изолированных половинок 5,6 мГн. Светодиод D4 светится в рабочем состоянии, а D2 – только при перегорании плавкого предохранителя F1. По сути, схема этого сетевого фильтра является модернизированным вариантом простейшей электрической схемы устройства.
Собранный по следующей схеме универсальный фильтр не пропускает высокочастотные сетевые помехи как в питающий прибор, так и обратно в электрическую сеть.
В фильтре используются конденсаторы С1…С4, С9…С12 — КПБ — 0,022 мкФ — 500 вольт, С5…С8, С13, С14 — КТП-3 — 0,015 мкФ — 500 вольт (керамические, красного цвета, с резьбой М8 — 0,75). Неоновая лампочка VL1 служит обычным индикатором работы. Дроссели Др1 и Др1′ намотаны обычным двойным сетевым проводом в изоляции на семи, сложенных вместе плоских ферритовых стержнях для магнитной антенны. Общее сечение магнитопровода 4,2 см2. Стержни плотно уложены друг на друга и обмотаны тремя слоями лакоткани. Поверх нее намотана обмотка, содержащая 7 витков провода. Получившийся элемент больше похож на проходной трансформатор, чем на дроссель. Дроссели Др2, Др2′ (на керамических стержнях диаметром 12 мм и длиной 115 мм до полного заполнения), Др3 и Др3′ (бескаркасные, содержат по 9 витков, намотаны с шагом для уменьшения межвитковой емкости и лучшей защиты от самых высокочастотных наводок на оправке диаметром 10 мм и длиной 41 мм) намотаны проводом ПЭВ-2 диаметром 1,5 мм. Максимальный ток для дросселей равен: Imax=d2 * плотность тока(4…6) / 1,28 = 1,52*4,5/1,28=7,91 ампер. Отсюда мощность равна P=220*7,91=1740 ватт. Конструктивно, что показано ниже на рисунке, сетевой фильтр собран в трех экранированных секциях, которые помещаются в металлический корпус 190х190х70 мм. Дроссели, находящиеся в соседних секциях, соединяются через проходные конденсаторы, установленные на вертикальных перегородках. Крепятся дроссели с помощью стоек из оргстекла толщиной 10 мм, в которых просверливают отверстия нужного диаметра.
Итак, с этим универсальным фильтром все, надеемся, понятно. Защита включает в себя и НЧ, и СЧ, и, наконец, ВЧ фильтрацию.
Далее рассмотрим знакомые большинству потребителей схемы сетевых фильтров Pilot. Они приведены ниже на рисунках.
Первая примитивная схема – Pilot L с максимальным током до 10 ампер.
Вторая схема более эффективная, от этого и соответствующее название сетевого фильтра производителем – Pilot Pro, максимальный ток которого также 10 ампер; но по существу тоже примитивная.
На последнем рисунке изображена электрическая схема фильтра APC E25-GR. Она идентична схеме Pilot Pro. Главное отличие в том, что вместо конденсатора 1 мкФ x 250 В установлен конденсатор 0,33 мкФ x 275 В и в качестве сердечника у катушек вместо воздуха используется ферритовый стержень. У каждой катушки свой. Оси катушек расположены под углом 90 градусов.
Также стоит сказать, что непосредственно в схемах самих блоков питания компьютера есть, хоть и примитивные, но все-таки сетевые фильтры, схемы которых как раз и копируют большинство нерадивых производителей.
Итак, кроме рассмотренной нами ранее универсальной (а пока только она, как вы, наверно, поняли, заслуживала внимания) мы вплотную подошли к эксклюзивной схеме сетевого фильтра. Функциональную схему работы устройства можно отразить на следующих диаграммах. Т.е. на них показано прохождение переменного тока через функциональные узлы и блоки фильтра, сглаживание посторонних разнородных помех и выделение на выход «чистого» напряжения.
Более детально это можно представить так:
Для реализации поставленных задач отлично справляются сетевые фильтры, собранные по схемам ниже:
Последний рассчитан для питания не только аналоговых приборов, но и цифровой техники.
В схемах можно применять варисторы типа CNR14D221 (S14K140) 220В, 60 Дж или JVR-14N221K (S14K140) 220В или FNR-14K221 220В, 40 Дж. В качестве катушек-дросселей можно применить вот такие уже готовые – скачать. В качестве конденсаторов подавления электромагнитных помех подойдут так называемые Y конденсаторы, которые подключаются между фазой и нейтралью, эффективны при подавлении асимметричной (дифференциальной) помехи.
Подытожим, что две последние, а также универсальная схема сетевого фильтра наиболее предпочтительны. В заключение для интереса приведу стандарты сети электропитания стран мира. Приведены значения напряжения и частоты бытовой электросети различных государств, а также показан внешний вид сетевых разъемов, применяемых для подключения электроприборов.
А вообще, если вы приобрели или собрали сетевой фильтр своими руками, проверить его эффективность можно, подключив к одной розетке, например, системный блок и радиоприёмник. Но до этого стоит проверить их «совместимость» без фильтра. Если при применении сетевого фильтра уровень помех, доносящихся из динамика радиоприемника, становится заметно меньше или вообще пропадает, то устройство выполняет свои непосредственные задачи. И напоследок. Если вы все-таки покупаете готовый сетевой фильтр, то обращайте внимание на устройства, прошедшие испытания по ГОСТ Р 53362-2009, который заменяет предыдущий ГОСТ Р 50745-99.
Обсуждайте в социальных сетях и микроблогах
Метки: полезно собрать
Радиолюбителей интересуют электрические схемы:
Стабилизатор сетевого напряжения
УНЧ на микросхеме TDA7293
xn--80a3afg4cq.xn--p1ai
Элементы самодельного сетевого фильтра
Добрый день! Обзор двух элементов сетевого фильтра. Кого заинтересовало — прошу под кат.Как известно, театр начинается с вешалки, а аудиосистема с розетки. Так вот, что бы разное зло помимо 220В оттуда не шло, и нужен сетевой фильтр.
Можно сразу купить готовый в Китае, можно собрать самому.
Треки:
EMI фильтрВольтметр
EMI фильтр (фильтр электромагнитных помех)
Для чего это
EMI-фильтры предназначены для подавления высокочастотного шума, возникающего в процессе работы различных устройств. Эти фильтры получили широкое распространение как элемент, подавляющий высокочастотные наводки в компьютерном оборудовании, периферии, цифровых схемах, аудио-, видеооборудовании и в других цифровых устройств. Кроме того, эти элементы используются для защиты от электромагнитных помех устройств, работающих в неблагоприятных условиях, таких как салон автомобиля и пр.
Покупал 26го марта с купоном и бесплатной доставкой, потом продавец оставил только платную доставку — цена стала кусачей.
Посылка (китайцы не заморачивались и просто перетянули пупырку скотчем):
Фото:
Line — вход 220В. Хорошо видна принципиальная схема с номиналами элементов.
Ссылка на сайт производителя, там размеры и характеристики. Модель CW4L2
Размеры и масса:
Вольтметр
Ссылка, где я покупал: aliexpress.com/item/AC-Volt-Tester-Digital-Voltmeters-Panel-AC-80-500V-LCD-Digital-Voltage-Meter-Black-Power-Monitor/1299119461.html
Диапазон измерения: 80-500В.
Размеры «окна» для установки: 39х71 мм
На него уже был подробный обзор: mysku.ru/blog/buyincoins/9897.html
Приведу несколько фото:
Упаковка
Сам будущий фильтр
Хотел корпусные розетки тоже взять на али, но потом поставил обычные бытовые.
Спасибо за внимание! Всем сети без помех!
mysku.ru
Фильтры предназначены для защиты цепей электропитания компьютеров, перифери и другой электронной аппаратуры от следующих неблагоприятных факторов: импульсных перенапряжений и выбросов тока, возникающих в результате коммутации и работы промышленного оборудования, высокочастотных помех, распространяющихся по сетям электропитания, импульсных перенапряжений, возникающих в результате грозовых разрядов. Pilot L
Pilot Pro
Источник: shems.h2.ru |
www.qrz.ru