принцип работы, виды, схема подключения + регулировка и маркировка
Долговечность и надежность в эксплуатации любой установки с электрическим двигателем зависит от различных факторов. Однако в значительной мере на срок службы мотора влияют токовые перегрузки. Чтобы их предупредить подключают тепловое реле, защищающее основной рабочий орган электромашины.
Мы расскажем, как подобрать устройство, предсказывающее назревание аварийных ситуаций с превышением максимально допустимых показателей тока. В представленной нами статье описан принцип действия, приведены разновидности и их характеристики. Даны советы по подключению и грамотной настройке.
Содержание статьи:
- Зачем нужны защитные аппараты?
- Устройство и принцип работы ТР
- Базовые характеристики токового реле
- Виды реле тепловой защиты
- Подключение, регулировка и маркировка
- Схема подключения устройств
- Тонкости регулировки релейных элементов
- Маркировка электротепловых реле
- Выводы и полезное видео по теме
Зачем нужны защитные аппараты?
Даже если электропривод грамотно спроектирован и используется без нарушения базовых правил эксплуатации, всегда остается вероятность возникновения неисправностей.
К аварийным режимам работы относят однофазные и многофазные КЗ, тепловые перегрузки электрооборудования, заклинивание ротора и разрушение подшипникового узла, обрыв фазы.
Функционируя в режиме повышенных нагрузок, электрический двигатель расходует огромное количество электроэнергии. А при регулярном превышении показателей номинального напряжения оборудование интенсивно нагревается.
В результате быстро изнашивается изоляция, что приводит к значительному снижению эксплуатационного срока электромеханических установок. Чтобы исключить подобные ситуации, в цепи электрического тока подключают реле тепловой защиты. Их основная функция – обеспечить нормальный режим работы потребителей.
Они отключают мотор с определенной выдержкой времени, а в некоторых случаях – мгновенно, чтобы предотвратить разрушение изоляции или повреждение отдельных частей электроустановки.
Токовое реле постоянно защищает электрический двигатель от обрыва фазы и технологических перегрузок, а также торможения ротора. Это главные причины, из-за которых возникают аварийные режимы
С целью не допустить понижение сопротивления изоляции задействуют устройства защитного отключения, ну а если поставлена задача предотвратить нарушение охлаждения, подключают специальные аппараты встроенной тепловой защиты.
Устройство и принцип работы ТР
Конструктивно стандартное электротепловое реле представляет собой небольшой аппарат, который состоит из чувствительной биметаллической пластины, нагревательной спирали, рычажно-пружинной системы и электрических контактов.
Биметаллическую пластину изготовляют из двух разнородных металлов, как правило, инвара и хромоникелевой стали, прочно соединенных вместе в процессе сварки. Один металл обладает большим температурным коэффициентом расширения, чем другой, поэтому нагреваются они с разной скоростью.
При токовой перегрузке незафиксированная часть пластины прогибается к материалу с меньшим значением коэффициента теплового расширения. Это оказывает силовое воздействие на систему контактов в защитном устройстве и активирует отключение электроустановки при перегреве.
В большинстве моделей механических тепловых реле есть две группы контактов. Одна пара – нормально разомкнутые, другая – замкнутые постоянно. Когда срабатывает защитное устройство, в контактах меняется состояние. Первые замыкаются, а вторые становятся разомкнутыми.
В электронных ТР задействуют специальные датчики и чувствительные зонды, реагирующие на повышение тока. В микропроцессоре таких защитных устройств запрограммированы параметры, определяющие ситуации, когда необходимо отключать подачу электропитания
Ток детектирует интегрированный трансформатор, после чего электроника обрабатывает полученные данные. Если значение тока в настоящий момент времени больше, чем уставка, импульс мгновенно передается прямо на выключатель.
Размыкая внешний контактор, реле с электронным механизмом блокирует нагрузку. Само устанавливается на контактор.
Биметаллическая пластина может быть нагрета непосредственно – за счет воздействия пикового тока нагрузки на металлическую полосу или косвенно, при помощи отдельного термоэлемента. Нередко эти принципы объединяют в одном аппарате тепловой защиты. При комбинированном нагреве прибор имеет лучшие рабочие характеристики.
После остывания пластина возвращается в исходное состояние. Коммутирующие контакты автоматически замыкаются либо нужно принудительно приводить их в замкнутое состояние
Базовые характеристики токового реле
Основной характеристикой коммутатора тепловой защиты является выраженная зависимость времени срабатывания от протекающего по нему тока — чем больше величина, тем быстрее он сработает. Это свидетельствует об определенной инерционности релейного элемента.
Направленное перемещение частиц-носителей заряда через любой электроприбор, и электрокотел, генерирует тепло. При номинальном токе его допустимая длительность стремится к бесконечности.
А при значениях, превышающих номинальные показатели, в оборудовании повышается температура, что приводит к преждевременному износу изоляции.
Обрыв цепи мгновенно блокирует дальнейший рост температурных показателей. Это дает возможность предупредить перегрев двигателя и предотвратить аварийный выход из строя электрической установки
Номинальная нагрузка самого мотора – ключевой фактор, определяющий выбор прибора. Показатель в интервале 1,2-1,3 обозначает успешное срабатывание при токовой перегрузке в 30% на временном отрезке в 1200 секунд.
Продолжительность перегрузки может негативно сказаться на состоянии электрооборудования — при кратковременном воздействии в 5-10 минут нагревается только обмотка мотора, которая имеет небольшую массу. А при длительных нагревается весь двигатель, что чревато серьезными поломками. Или вовсе может потребоваться замена сгоревшего оборудования новым.
Чтобы максимально уберечь объект от перегрузки, следует конкретно под него использовать реле тепловой защиты, время срабатывания которого будет соответствовать максимально допустимым показателям перегрузки конкретного электродвигателя.
На практике собирать под каждый тип мотора нецелесообразно. Один релейный элемент задействуют для защиты двигателей различного конструктивного исполнения. При этом гарантировать надежную защиту в полном рабочем интервале, ограниченном минимальной и максимальной нагрузкой, невозможно.
Повышение показателей тока не сразу приводит к опасному аварийному состоянию оборудования. Прежде чем ротор и статор нагреются до предельной температуры, пройдет некоторое время
Поэтому нет крайней необходимости в том, чтобы защитное устройство реагировало на каждое, даже незначительное повышение тока. Реле должно отключать электродвигатель только в тех случаях, когда есть опасность быстрого износа изоляционного слоя.
Виды реле тепловой защиты
Существует несколько видов реле для защиты электрических двигателей от обрыва фаз и токовых перегрузок. Все они отличаются конструкционными особенностями, типом используемых МП и применением в разных моторах.
ТРП. Однополюсный коммутационный аппарат с комбинированной системой нагрева. Предназначен для защиты асинхронных трехфазных электромоторов от токовых перегрузок. Применяется ТРП в электросетях постоянного тока с базисным напряжением в условиях нормальной работы не больше 440 В. Отличается устойчивостью к вибрациям и ударам.
РТЛ. Обеспечивают двигателям защиту в таких случаях:
- при выпадении одной из трех фаз;
- асимметрии токов и перегрузок;
- затянутого пуска;
- заклинивания исполнительного механизма.
Их можно устанавливать с клеммами КРЛ отдельно от магнитных пускателей или монтировать непосредственно на ПМЛ. Устанавливаются на рейках стандартного типа, класс защиты – IP20.
РТТ. Защищают асинхронные трехфазные машины с короткозамкнутым ротором от затянутого старта механизма, длительных перегрузок и асимметрии, то есть перекоса фаз.
РТТ могут быть использованы в качестве комплектующих частей в различных схемах управления электроприводами, а также для интеграции в пускатели серии ПМА
ТРН. Двухфазные коммутаторы, которые контролируют пуск электроустановки и режим работы мотора. Практически не зависят от температуры внешней среды, имеют только систему ручного возврата контактов в начальное состояние. Их можно использовать в сетях постоянного тока.
РТИ. Электрические переключающие аппараты с постоянным, хоть и небольшим потреблением электроэнергии. Монтируются на контакторах серии КМИ. Работают вместе с предохранителями/.
Твердотельные токовые реле. Представляют собой небольшие электронные устройства на три фазы, в конструкции которых нет подвижных частей.
Функционируют по принципу вычисления средних значений температур двигателя, осуществляя для этого постоянный мониторинг рабочего и пускового тока. Отличаются невосприимчивостью к изменениям в окружающей среде, а потому используются во взрывоопасных зонах.
РТК. Пусковые коммутаторы для контроля температуры в корпусе электрооборудования. Используются в схемах автоматики, где тепловые реле выступают в качестве комплектующих деталей.
Чтобы обеспечить надежную работу электрооборудования, релейный элемент должен обладать такими качествами, как чувствительность и быстродействие, а также селективность
Важно помнить, что ни один вид из выше рассмотренных приборов не является пригодным для защиты цепей от короткого замыкания.
Устройства тепловой защиты лишь предотвращают аварийные режимы, которые возникают при нештатной работе механизма или перегрузке.
Электрооборудование может перегореть еще до начала срабатывания реле. Для комплексной защиты их нужно дополнять предохранителями или компактными автоматическими выключателями модульной конструкции.
Подключение, регулировка и маркировка
Коммутационный прибор перегрузки, в отличие от электрического автомата, не разрывает силовую цепь непосредственно, а лишь подает сигнал на временное отключение объекта при аварийном режиме. Нормально включенный контакт у него работает как кнопка «стоп» контактора и подсоединяется по последовательной схеме.
Схема подключения устройств
В конструкции реле не нужно повторять абсолютно все функции силовых контактов при успешном срабатывании, поскольку оно подключается непосредственно к МП. Такое исполнение позволяет существенно сэкономить материалы для силовых контактов. Намного легче в управляющей цепи подключить малый ток, чем сразу отключать три фазы с большим.
Во многих схемах подключения теплового реле к объекту используют постоянно замкнутый контакт. Его последовательно соединяют с клавишей «стоп» пульта управления и обозначают НЗ – нормально замкнутый, или NC – normal connected.
Разомкнутый контакт при такой схеме может быть использован для инициализации срабатывания тепловой защиты. Схемы подсоединения электромоторов, в которых подключено реле тепловой защиты, могут значительно отличаться в зависимости от наличия дополнительных устройств или технических особенностей.
В стандартной простой схеме ТР подключают к выходу низковольтного пускателя на электрический двигатель. Дополнительные контакты прибора в обязательном порядке соединяют последовательно с катушкой пускателя
Это обеспечит надежную защиту от перегрузок электрооборудования. В случае недопустимого превышения предельных значений тока релейный элемент разомкнет цепь, моментально отключая МП и двигатель от электропитания.
Подключение и установку теплового реле, как правило, производят вместе с магнитным пускателем, предназначенным для коммутации и запуска электрического привода. Однако есть виды, которые монтируют на DIN-рейку или специальную панель.
Тонкости регулировки релейных элементов
Одним из главных требований к устройствам защиты электродвигателей является четкое действие аппаратов при возникновении аварийных режимов работы мотора. Очень важно правильно его подобрать и отрегулировать настройки, поскольку ложные срабатывания абсолютно недопустимы.
Электротепловое реле, которое оптимально подходит к конкретному типу двигателя по всем техническим параметрам, способно обеспечить надежную защиту от перегрузок по каждой фазе, предотвратить затяжной старт установки, не допустить аварийных ситуаций с заклиниванием ротора
Среди преимуществ использования токовых элементов защиты также следует отметить довольно высокую скорость и широкий диапазон срабатывания, удобство монтажа. Чтобы обеспечить своевременное отключение электромотора при перегрузке, реле тепловой защиты необходимо настраивать на специальной платформе/стенде.
В таком случае исключается неточность из-за естественного неравномерного разброса номинальных токов в НЭ. Для проверки защитного устройства на стенде применяется метод фиктивных нагрузок.
Через термоэлемент пропускают электрический ток пониженного напряжения, чтобы смоделировать реальную тепловую нагрузку. После этого по таймеру безошибочно определяют точное время срабатывания.
Настраивая базовые параметры, следует стремиться к таким показателям:
- при 1,5-кратном токе устройство должно отключать двигатель через 150 с;
- при 5…6-кратном токе оно должно отключать мотор через 10 с.
Если время срабатывания не соответствует норме, релейный элемент необходимо отрегулировать посредством контрольного винта.
Для корректной работы обязательно нужно настроить прибор на наибольший допустимый электрический ток двигателя и температуру воздуха
Это делают в тех случаях, когда значения номинального тока НЭ и мотора отличаются, а также если температура окружающей среды ниже номинальной (+40 ºC) более, чем на 10 градусов по шкале Цельсия.
Ток срабатывания электротеплового коммутатора уменьшается с повышением температуры вокруг рассматриваемого объекта, так как нагрев биметаллической полосы зависит от этого параметра. При существенных отличиях необходимо дополнительно отрегулировать ТР или подобрать более подходящий термоэлемент.
Резкие колебания температурных показателей сильно влияют на работоспособность токового реле. Поэтому очень важно выбирать НЭ, способный эффективно выполнять основные функции с учетом реальных значений.
ТР рекомендовано размещать в одном помещении с защищаемой электроустановкой. Их нельзя монтировать близко к теплогенераторам, нагревательным печам и другим источникам тепла
К реле с температурной компенсацией эти ограничения не относятся. Токовую уставку защитного аппарата можно регулировать в диапазоне 0,75-1,25х от значений номинального тока термоэлемента. Настройку выполняют поэтапно.
В первую очередь вычисляют поправку E1 без температурной компенсации:
E1=(Iном-Iнэ)/c×Iнэ,
Где
- Iном – номинальный ток нагрузки двигателя,
- Iнэ – номинальный ток рабочего нагревательного элемента в реле,
- c – цена деления шкалы, то есть эксцентрика (c=0,055 для защищенных пускателей, c=0,05 для открытых).
Следующий шаг – определение поправки E2 на температуру окружающего воздуха:
E2=(ta-30)/10,
Где ta (ambient temperature) – температура внешней среды в градусах Цельсия.
Последний этап – нахождение суммарной поправки:
E=E1+E2.
Суммарная поправка E может быть со знаком «+» или «-». Если в результате получается дробная величина, ее обязательно нужно округлить до целого в меньшую/большую по модулю сторону, в зависимости от характера токовой нагрузки.
Чтобы настроить реле, эксцентрик переводят на полученное значение суммарной поправки. Высокая температура срабатывания уменьшает зависимость работы защитного аппарата от внешних показателей.
Реле тепловой защиты допускает ручную плавную регулировку величины тока срабатывания устройства в пределах ±25% от значения номинального тока электромеханической установки
Регулировка этих показателей осуществляется специальным рычагом, перемещение которого изменяет первоначальный изгиб биметаллической пластины. Настройка тока срабатывания в более широком диапазоне осуществляется заменой термоэлементов.
В современных коммутационных аппаратах защиты от перегрузки есть тестовая кнопка, которая позволяет проверить исправность устройства без специального стенда. Также есть клавиша для сброса всех настроек. Обнулить их можно автоматически или вручную. Кроме того, изделие комплектуют индикатором текущего состояния электроприбора.
Маркировка электротепловых реле
Защитные аппараты подбирают в зависимости от величины мощности электрического двигателя. Основная часть ключевых характеристик скрыта в условном обозначении.
Так выглядит маркировка тепловых реле завода КЭАЗ. Важно при выборе обратить внимание на значение номинального тока рассматриваемой модели, чтобы оно было достаточным
Акцентировать внимание следует на отдельных моментах:
- Диапазон значений токов уставки (указан в скобках) у разных производителей отличается минимально.
- Буквенные обозначения конкретного типа исполнения могут различаться.
- Климатическое исполнение нередко подается в виде диапазона. К примеру, УХЛ3О4 нужно читать так: УХЛ3-О4.
Сегодня можно купить самые разные вариации прибора: реле для переменного и постоянного тока, моностабильные и бистабильные, аппараты с замедлением при включении/отключении, реле тепловой защиты с ускоряющими элементами, ТР без удерживающей обмотки, с одной обмоткой или несколькими.
Эти параметры не всегда отображены в маркировке устройств, но обязательно должны быть указаны в техпаспорте электротехнических изделий.
С устройством, разновидностями и маркировкой электромагнитного реле ознакомит , с которой мы рекомендуем ознакомиться.
Выводы и полезное видео по теме
Устройство и принцип функционирования токового реле для эффективной защиты электродвигателя на примере устройства РТТ 32П:
Правильная защита от перегрузки и обрыва фаз – залог длительной безотказной работы электрического мотора. Видео о том, как реагирует релейный элемент в случае нештатной работы механизма:
Как подсоединить устройство тепловой защиты к МП, принципиальные схемы электротеплового реле:
Реле тепловой защиты от перегрузок – обязательный функциональный элемент любой системы управления электроприводом. Оно реагирует на ток, который проходит на двигатель, и активируется, когда температура электромеханической установки достигает предельных значений. Это дает возможность максимально продлить срок эксплуатации экологически безопасных электродвигателей.
Пишите, пожалуйста, комментарии в находящемся ниже блоке. Расскажите, как вы выбирали и настраивали тепловое реле для собственного электромотора. Делитесь полезными сведениями, задавайте вопросы, размещайте фотоснимки по теме статьи.
Тепловые реле принцип действия
- 238
- Электродвигатели полезное
Тепловые реле предохраняют электродвигатель от перегрева, вызванного главным образом его перегрузкой, а также потерей фазы или отклонениями параметров сети от их номинальных значений.
Принцип действия тепловых реле основан на изгибании биметаллического элемента при его нагреве. Биметаллический элемент выполнен из двух металлических пластин с разными коэффициентами линейного расширения. При нагреве одна из пластин удлиняется в большей степени, а поскольку пластины скреплены, происходит изгиб всего элемента. Таким образом, в случае превышения тока определенного значения биметаллический элемент нагревается и изгибается, приводя в действие контакт реле.
Рис. 1. Характеристика теплового реле
На рисунке 1 приведен пример характеристики реле в холодном состоянии, где Iустн – номинальный ток уставки, а Iуст – ток, который протекает через реле в определенный момент времени. Под номинальным током уставки понимается наибольший ток, который в течение длительного времени при данной настройке реле не приводит к его срабатыванию.
Тепловые реле надежно защищают электродвигатель от перегрузок только в случае его эксплуатации в режиме S1 (продолжительный режим работы). Температурные условия мест, в которых установлены реле и защищаемый двигатель должны быть полностью идентичны. Если двигатель работает в повторно-кратковременном режиме, то защита его от перегрузок тепловым реле неэффективна, кроме того, возможны ложные срабатывания.
В случае, когда величины токов электродвигателя имеют относительно большие значения, тепловое реле может включаться через трансформаторы тока.
Тепловое реле необходимо выбрать таким образом, чтобы его номинальные значения напряжения и тока соответствовали аналогичным значениям двигателя, далее необходимо выставить ток уставки согласно следующим выражениям:
Iустн=Iдн, если Тср=Тн,
где Iдн – номинальное значение линейного тока двигателя, Тср – температура окружающей среды, в которой установлено тепловое реле, Тн – температура калибровки реле;
, если
Современные электродвигатели выполняются с изоляцией класса F и превышением температуры по классу В. Таким образом, даже при температуре окружающей среды 400С обеспечивается температурный запас 250С, благодаря чему электродвигатель может выдерживать кратковременные перегрузки без разрушения изоляции. Реле, подобранные согласно данным рекомендациям, обеспечивают надежную защиту двигателей при длительных перегрузках 15-20%. Таким образом, обеспечивается надежная продолжительная работа электродвигателя и обеспечивается заложенный заводом-изготовителем ресурс работы
Если же нагрузка двигателя неравномерная (в одни короткие периоды времени больше номинальной, в другие наоборот – меньше), во избежание ложных срабатываний защиту необходимо несколько загрубить. С этой целью токи уставки Iуст, полученные по формулам, приведенным выше, следует увеличить на 10%.
Важно! Тепловое реле не защищает двигатель от коротких замыканий, поэтому его использование возможно только совместно с устройствами защиты от токов короткого замыкания (автоматические выключатели, предохранители, реле максимального тока).
Поделись с друзьями
Пока еще нет комментариев, Вы можете быть первым.
Добавить комментарий
Реле тепловой перегрузки: Понимание принципа работы
Электрические двигатели составляют большую часть нагрузки энергосистемы. Требования рынка вынуждают производителей систем управления двигателями постоянно оценивать технологии защиты двигателей. Технологические достижения теперь позволяют индустрии управления двигателем предлагать несколько вариантов защиты двигателя. Эффективный принцип работы делает тепловое реле одним из лучших решений для защиты двигателя.
Что такое тепловое реле перегрузки?
Тепловое реле перегрузки обеспечивает защиту однофазных или трехфазных двигателей. Реле контролирует рабочий ток двигателя и отключает контактор в случае перегрузки. Он также защищает двигатель от повреждения при обрыве фазы.
Тепловое реле перегрузки выполняет следующие функции:
- Обеспечивает безопасные временные перегрузки (например, запуск двигателя) без нарушения цепи.
- Срабатывает и размыкает цепь, если ток достаточно высок, чтобы через некоторое время вызвать повреждение двигателя.
- Может быть сброшен после устранения перегрузки.
Путем выбора соответствующего типа теплового реле перегрузки с соответствующей функциональностью двигатель можно защитить от большинства повреждений, вызванных следующими условиями:
- Неисправность подшипника
- Неисправность стержня ротора
- Внешние неисправности
- Неисправность обмотки статора
- Неисправность муфты вала
Как работает тепловое реле перегрузки?
Контакты теплового реле перегрузки замыкаются или размыкаются в зависимости от степени нагрева, выделяемого током через катушку реле, включенную последовательно с защищаемой нагрузкой. Поскольку существует определенный интервал времени между протеканием тока и выделением тепла катушкой, для защиты от перегрузки используются тепловые реле перегрузки.
Тепло, выделяемое при перегрузке, пропорционально квадрату тока. Это тепло используется либо для расплавления сплава, что позволяет храповому колесу повернуться и разомкнуть контакт управления, либо для нагревания биметаллической пластины, заставляя ее изгибаться и размыкать контакт управления.
Тепловое реле перегрузки предназначено для токозависимой защиты приложений с нормальными условиями пуска от недопустимо высокого повышения температуры в результате перегрузки или обрыва фазы. Перегрузка или обрыв фазы приводят к тому, что ток двигателя превышает установленный номинальный ток двигателя. Это повышение тока нагревает биметаллические пластины внутри реле через нагревательные элементы, которые, в свою очередь, приводят в действие вспомогательные контакты посредством механизма отключения из-за их отклонения. Они отключают нагрузку через контактор. Время отключения зависит от отношения тока отключения к рабочему току Ie и сохраняется в виде характеристики отключения с долговременной стабильностью. Состояние «Отключено» сигнализируется с помощью индикатора положения переключения.
Тепловое реле перегрузки стандартно имеет нормально замкнутый (НЗ) контакт, который сбрасывается вручную после прерывания тока. Более дорогие тепловые реле перегрузки имеют размыкающий контакт с автоматическим сбросом, а также могут быть оснащены нормально разомкнутым (НО) контактом для сигнализации или индикации.
Важное уведомление:
В отличие от своего широко используемого названия, тепловые реле перегрузки являются не реле, как электромеханические реле, а датчиками, обнаруживающими электрический ток. Кроме того, эти реле можно рассматривать или называть «переключателями», но они не являются переключателями, хотя косвенно выполняют действие переключения. Фактически, тепловые реле перегрузки могут прерывать вспомогательную цепь или цепь управления силового реле, то есть реального выключателя, вызывая его деактивацию. С этой точки зрения тепловое реле перегрузки является неотъемлемой частью любого силового реле, питающего электродвигатель. Он механически и электрически связан с силовым реле, и оба они вместе составляют единое силовое устройство, включаемое в силовую цепь электродвигателя. В этом случае реле действует как механизм переключения, а реле перегрузки — как датчик, определяющий ток двигателя. По этой причине все производители силовых реле также выпускают соответствующие тепловые реле перегрузки.
Номинальный штекер реле тепловой перегрузкиЧтобы иметь четкое представление о реле тепловой перегрузки, вы должны знать функции кнопок и клемм на реле.
- Разъем для установки на контакторы
- Кнопка ручного/автоматического сброса
- Кнопка «Тест»
- Настройка тока двигателя
- Кнопка «Стоп»
- Клеммы питания
Классы срабатывания
Классы срабатывания описывают временные интервалы, в течение которых реле перегрузки должно срабатывать при 7,2-кратном рабочем токе Ie для симметричной трехполюсной нагрузки из холодного состояния.
Настройка тока
Тепловое реле перегрузки настраивается на номинальный ток двигателя с помощью поворотного потенциометра. Шкала поворотного потенциометра откалибрована в амперах.
Ручной и автоматический сброс
При выборе ручного сброса сброс можно выполнить непосредственно на устройстве, нажав кнопку «СБРОС». Если выбран автоматический сброс, реле будет сброшено автоматически. Сброс невозможен, пока не истечет время восстановления.
Время восстановления
После срабатывания из-за перегрузки требуется определенное время для охлаждения биметаллических пластин тепловых реле перегрузки.