Закрыть

Теплый пол электрический энергопотребление: Сколько потребляет теплый пол – расход электроэнергии в киловаттах в час, на 1 кв м

Содержание

Сколько потребляет теплый пол – расход электроэнергии в киловаттах в час, на 1 кв м

В паспорте каждой системы электрического обогрева пола указывается ее энергопотребление из расчета на квадратный метр. Но сколько в реальности потребляет теплый пол киловатт в течение месяца? Расход электроэнергии у такого отопления во включенном состоянии высок. Однако работает оно далеко не круглые сутки напролет. А при правильном планировании это потребление можно еще и существенно сократить.

Содержание

  1. Расход электричества
  2. Мощность
  3. Пример расчета
  4. Как снизить потребление
  5. Заключение

Расход электричества теплого пола

Если решено укладывать теплый пол в виде электрического кабеля или ИК-пленки, то первый вопрос у любого покупателя – фактический расход ими электроэнергии. Производители и продавцы заявляют для подобных систем КПД под 100% вкупе с высокой эффективностью. Но при изучении технической документации на ТП ситуация выглядит не столь однозначно и привлекательно, как в рекламе.

Сравнение стоимости

Электрический теплый пол потребляет порядка 100–300 Вт/ч на квадратный метр системы. При перерасчете на квадратуру дома или квартиры в 80–150 м2 выходит внушительная сумма в киловаттах. Но есть ряд нюансов.

Кабельный или пленочный напольный электрообогрев:

  1. Работает не круглосуточно, а циклами «нагрев-охлаждение» с потреблением электрической энергии только на фазах разогрева.
  2. Укладывается посередине пола в имеющихся помещениях, а не по всей их площади.
  3. Во включенном состоянии при нагреве потребляет на уровне 60–70% от заявленной в техпаспорте максимальной мощности.

В результате расход потребляемой электроэнергии получается не столь катастрофичным. Конечно, насосная станция для частного дома, включаемая лишь время от времени расходует гораздо меньше. Но и у работающего от электричества теплого пола потребление выходит в итоге вполне приемлемым.

Надо лишь расчет и монтаж такой напольной системы производить правильно.

Затраты электроэнергии на теплый пол

Мощность

У электрического пола есть две мощности в киловаттах за час в перерасчете на метр квадратный – первая «теплоотдачи» и вторая «потребления». Но в силу близкого к 100% КПД эти цифры практически идентичны. Фактически всю электроэнергию ТП преобразует в тепло либо инфракрасные лучи, которые потом нагревают поверхности в комнате.

Мощность теплоотдачи теплого пола в помещении зависит от:

  • толщины стяжки и напольного финиша;
  • шага укладки кабеля или конфигурации раскладки пленки (матов) на полу;
  • доли активной площади системы от всей квадратуры комнаты.

При использовании в качестве основного источника тепла электрические и инфракрасные теплые полы обычно закрывают около 70% площади напольного покрытия. А если такую систему применяют для локального обогрева, то этот процент оказывается и того меньше. Все это придется внимательно учитывать при расчете фактического расхода электричества.

Затраты на теплый пол в зависимости от площади

Итоговая потребляемая мощность электрического пола зависит от:

  • качества утепления помещения, а также наличия в нем окон и дверей;
  • погодных условий за окном;
  • настроек терморегулятора;
  • количества находящихся в доме людей.

Если уровень теплопотерь у комнаты минимален, то тепловой энергии для поддержания в ней комфорта требуется меньше. Пренебрегать здесь регулировкой пластиковых окон на режим «лето/зима» и сезонной перенастройкой вентиляции не стоит.

Сравнение затрат электроэнергии для разных типов полов

Пример расчета

Чтобы рассчитать, сколько потребляет теплый пол, надо:

  1. Определить активную площадь напольной отопительной системы.
  2. Помножить ее на мощность за квадратный метр, указанную в паспорте.

В итоге получится максимально возможный расход электроэнергии. Однако столько кВт/ч пол потреблять будет только в случае включения его на полную и без регулировки термостатом. Но в реальности система электрического ТП работает по 5–20 минут в течение часа. И фактическое потребление будет в разы меньше.

График потребления электричества

Сложного в данных расчетах ничего нет. Разобраться, почему затухает газовый котел или как выполнить подключение бойлера, зачастую и то труднее. С нагревательным полом все проще.

При площади обогрева 12 м2 и мощности ТП в 150 Вт/м2 получаем номинальный расход для помещения – 1,8 кВт/час. Но по факту такой нагревательный пол будет расходовать около 0,3 кВт за каждый час использования. В течение 10 минут он будет греть, а потом 50 минут остывать. Однако многое здесь зависит от температуры за окном и настроек термостата.

Сравнение разных систем обогрева

Как снизить потребление электроэнергии?

Чтобы дополнительно снизить расход киловатт, следует лучше утеплить свое жилье и установить программируемый терморегулятор. Если электрические теплые полы включать не сразу во всем доме, а по отдельности и последовательно в каждой комнате, то потребляемая мощность в конкретный момент будет выходить низкой. Надо лишь грамотно настроить программатор термостата. И тогда электричество он потреблять будет во вполне разумных и приемлемых значениях.

Наиболее экономные варианты теплого пола

Заключение

Прежде чем приобретать теплый пол, следует точно и правильно рассчитать, сколько он будет расходовать электроэнергии на максимуме в зимние месяцы. Если выделенная на коттедж или квартиру мощность окажется меньше потребляемой по расчету, то от напольного обогрева придется отказаться. Подключать слишком мощные электроприборы в не рассчитанную на это сеть нельзя. При этом при грамотном планировании и проведении ряда мероприятий, данное потребление электричества можно существенно снизить.

Смотрите также видео о потреблении теплого пола:

Читайте про другие наши материалы:

Сколько потребляет электрический теплый пол

Системы подогрева поверхности пола уже плотно вошли в жизнь современного человека. Действительно, хозяевам жилья предоставляется возможность сделать пребывание в помещениях максимально комфортным, обеспечить оптимальную градацию температуры воздуха по высоте, забыть о зябнувших на холодных покрытиях пола ногах. Ну а если в семье есть малолетние дети, то своевременно прибранный пол становится идеальной и совершенно безопасной игровой площадкой, без необходимости настила вечно собирающих в себя кучу пыли половиков или ковриков.

Сколько потребляет электрический теплый пол?

Среди разновидностей теплого пола большую экономичность в эксплуатации показывают водяные системы. Но они крайне сложны и дороги в создании и отладке, требуют чрезвычайно масштабных подготовительных и монтажных работ. А во многих случаях, особенно если речь идет о городских квартирах – и вовсе принципиально невозможны.

А вот электрический «теплый пол» для многих хозяев – вполне посильная задача. Затраты на приобретение комплектующих существенно меньше, вместо сложных и громоздких коллекторно-распределительных узлов для управления системой достаточно компактного терморегулятора.

Но вот эксплуатационные расходы многих пугают, по банальной причине — из-за дороговизны электроэнергии. Поэтому нет ничего удивительного, если, оценивая перспективы создания такой системы, владелец жилья всерьез задумается над вопросом, сколько потребляет электрический теплый пол?

Давайте попробуем в этом разобраться.

Вкратце – о разновидностях электрических тёплых полов

Итак, пришла в голову мысль установить в одной из комнат (или в нескольких помещениях) квартиры или дома тёплый пол, работающий от электричества. Прежде всего в этом случае придётся сделать выбор в пользу одной из разновидностей электрических систем подогрева, так как их существует несколько.

Нагревательные кабели

Да, в буквальном смысле слова это, по своей сути – бухта специального кабеля в надежной изоляции, который начинает нагреваться при пропускании через него электрического тока.

Среди кабелей тоже есть свои разновидности. Например, изделия с резистивным нагревом могут быть одно- и двухжильными.

Одножильный приходится обязательно закольцовывать при укладке, что далеко не всегда удобно. У двухжильного должна быть концевая муфта, коммутирующая проводники в одну цепь – к терморегулятору подводится только один конец, что значительно упрощает раскладку.

Сверху вниз – одножильный, двужильный резистивные и саморегулирующийся полупроводниковый нагревательные кабели для теплого пола.

Кроме обычных резистивных, предлагаются и считающиеся более совершенными полупроводниковые саморегулирующиеся кабели. У них греются не проводники, а расположенная между ними матрица, причем интенсивность ее нагрева зависит от температуры окружающей среды на каждом отдельно взятом учаске по все длине кабеля. То есть в том случае, когда где-то на произвольном отрезке температура достигает определённого предела, то именно здесь матрица почти полностью «запирается» и нагрев сводится к минимуму, если не падает вообще до нуля.

Общая особенность кабелей ля теплого пола они нуждаются в закрытии их стяжкой, по некоторой аналогии с водяными системами. Слой стяжки становится не только надежной защитой для кабелей, но и эффективным аккумулятором и распределителем тепла. Такая система после застывания стяжки становится полностью универсальной – это готовое основание для всех без исключения типов напольных покрытий, на выбор хозяев.

Примерная схема – уложенный петлями саморегулирующийся кабель, залитый стяжкой. Синими стрелками показан шаг укладки.

Кабель раскладывается петлями в соответствии с заранее составленной схемой и с просчитанным шагом (расстоянием между соседними витками укладки), так, чтобы обеспечивался задуманный «съём тепловой энергии» с каждого квадратного метра системы.

А чтобы это рассчитать, следует знать основные электротехнические характеристики кабеля – напряжение питания и сопротивление. Но производители практически всегда указывают гораздо более удобную для расчетов величину – линейную мощность, то есть сколько кабель выделяет тепловой энергии с каждого погонного метра. Этот показатель может у разных моделей кабеля варьироваться в очень широком диапазоне: от 5 и до 100 ватт на метр (Вт/м).

Как правило , для домашних «теплых полов» используются изделия с мощностью в пределах 10 – 30 Вт/м.

Готовый комплект нагревательного кабеля с уже соединенными «холодными концами» и установленной концевой муфтой.

Кабели могут продаваться в магазинах метражом, но тогда предстоит самостоятельно, или привлекая мастера-электрика, коммутировать «холодные концы» (обычные провода для подключения к источнику питания), а в случае двухжильного или саморегулирующегося кабеля – еще и устанавливать хорошо изолированную концевую муфту. Работа не столь сложная, но крайне ответственная, и дилетанты могут наделать ошибок.

Поэтому многие предпочитают приобретать готовые комплекты – кабель определенной длины с указанием суммарной тепловой мощности. В магазинах обычно представлен довольно широкий ассортимент таких комплектов – на разные запросы покупателей и по площади помещения, и по необходимой мощности нагрева.

Как правильно подойти к выбору длины, мощности и шагу укладки – мы поговорим несколько ниже.

Нагревательные резистивные маты

По большому счету – это тоже нагревательные кабели (обычно — двухжильные), но уже выложенные зигзагом с определённым шагом на сетчатой стеклопластиковой полосе шириной обычно 500 мм. Изменить шаг – невозможно, то есть каждый такой комплект уже обладает определенной удельной мощностью, измеряемой в ваттах на квадратный метр. Учитывая ширину 500 мм, такую удельную мощность будет выдавать полоса длиной в два метра.

Впрочем, будьте внимательны, так как встречаются маты и иной ширины!

Нагревательный мат – тот же кабель, но уже закреплённый на сетчатую основу.

Никакой мороки — главное, выбрать мат с требуемой для качественного обогрева удельной тепловой мощностью на единицу площади.

Такие системы тоже должны закрываться сверху раствором, по аналогии с кабелем. Правда, есть и очень серьёзное удобство – в ряде случаев, например, при последующей облицовке пола керамической плиткой, заливка стяжки не потребуется. То есть укладывать кафель или керамогранит можно и непосредственно на настеленные маты, только увеличив при этом толщину клеевого слоя. Мало того, если подойти к делу с умом, то можно даже не демонтировать старое плиточное покрытие!

Одно из замечательных качеств сетчатых нагревательных матов в том, что монтаж керамической облицовки можно проводить прямо по ним.

Керамическая плитка по электрическому теплому полу – какие варианты?

Чтобы не показаться голословным, можно порекомендовать читателям посмотреть интересную публикацию, в которой производится расчет расхода клея при укладке керамической плитки по разным типам электрического теплого пола. Переходите по ссылке – там и удобные онлайн-калькуляторы, и необходимые пояснения.

Как, наверное, уже понятно, ограничений по выбору финишного покрытия для такого типа нагревателей нет. Если конечно, это покрытие (например, ламинат) рассчитано на использование в системах «теплый пол – это оговаривается в паспортах изделий.

Стержневые инфракрасные карбоновые маты

Очень интересная разновидность систем электрического подогрева полов. Представляет собой две силовые шины, подключаемые к сети переменного тока. И по всей длине мата через определенные промежутки эти шины соединены карбоновыми стержнями. При прохождении тока через такой стержень последний становится излучателем инфракрасного излучения, поглощаемого оптически непрозрачными телами и тем самым преобразуемого в тепло.

Стержневой инфракрасный мат – удобное и практичное решение проблемы подогрева пола.

Понятно, что и в этом случае готовый мат имеет четко определённую величину удельной мощности на единицу площади. Просчитывать не придётся, но нужно будет правильно выбрать модель и длину мата. Кстати, продаваться такой нагреватель может метражом или уже готовым комплектом. Но в любом случае при укладке мастеру придется выполнять качественную изоляцию, так как технология раскладки предполагает резку токонесущих шин с последующей коммутацией с помощью обычных проводов.

Маты по технологии укладываются на отражающую подложку и должны закрываться тонкой стяжкой или же слоем плиточного клея, если одновременно ведется облицовка пола.

Инфракрасные пленочные нагреватели

А эти нагревательные системы удобны тем, что не требуют вообще никаких мокрых, то есть связанных со строительными растворами, операций. Между двумя слоями прочной пленки рассоложены медные токонесущие шины, соединённые между собой нагревательными полосами с черным карбоновым наполнением. Через определённые промежутки (например, через 250 мм) проставлены линии реза, по которым пленочные элементы можно раскраивать с дальнейшей коммутации таких отрезков с помощью обыкновенных проводов.

Вот такие рулоны представлены в магазинах. Продавец отрежет столько, сколько покупателю надо исходя из размеров комнаты и требуемой тепловой мощности.

Такие обогреватели поступают в магазины в рулонах, которых могут быть десятки, если не сотни метров. Естественно, каждая из моделей пленочных нагревателей имеет паспортную удельную мощность. Кстати, может указываться как в ваттах на метр, линейно, так и в ваттах на квадратный метр, по площади. Но так как ширина обычно кратна 500 мм (а точнее, встречается модели шириной 500 и 1000 мм), выбрать требуемую дину пленки при ее покупке – проблем обычно не составляет.

Например, пленка шириной 500 мм, но указано, что удельная мощность 300 Вт/м². То есть один метр пленки даст нам 150 Вт.

Монтаж таких систем несложен, и с ним обычно спокойно справляется имеющий базовые понятия и умения в электротехнике и строительных работах владелец квартиры или дома.

Ламинированное покрытие (если в его паспорте оговорена возможность использования в системах «теплый пол») и плёночные нагревательные элементы показывают практически идеальную совместимость.

Правда, не все покрытия могут в данном случае использоваться. Например, керамическую облицовку лучше по такой пленке не проводить. А вот уложить ламинат– милое дело. Можно и линолеум или ковролин, но с обязательной фанерной (ДВП или ОSB) подкладкой — чтобы случайно не повредить токонесущие элементы, нагреватели или провода, например, упавшим на пол острым предметом.

*  *  *  *  *  *  *

Вот таковы основные разновидности электрических систем «теплого пола». Теперь посмотрим, как они рассчитываются.

Какая мощность должна быть у теплого пола, и как она достигается

Должно быть, некоторые читатели, узнав о многообразии систем электрического тёплого пола, теперь ждут откровений, какая из них потребляет меньше всего энергии?

Не дождётесь!

И вовсе не потому, что автор скрытный и жадный, не хочет сознаваться и делиться секретами. А просто потому, что ни одна из систем в этом вопросе никаких преимуществ не имеет. Как бы ни уверяли в обратном производители «теплых полов»!

Имеется в виду, что если по расчетам вам требуется подать на квадратный метр площади комнаты, например, 120 ватт, то не имеет особого значения, какая из систем подогрева их выработает. Все равно на это будет затрачено около 120 ватт электрической энергии, так как КПД электрических нагревательных систем всегда очень близок к 100%.

Иное дело – скорость выхода системы на расчетный нагрев поверхности пола. Так, после включения плёночного обогревателя повышение температуры поверхности финишного покрытия (например, ламината) чувствуется уже спустя несколько минут. А вот кабелю или мату, заключённому в стяжку или слой плиточного клея времени потребуется побольше – предстоит сначала нагреть довольно толстый и весьма теплоемкий минеральный слой, а то еще – и «холодную» керамическую плитку. Но зато такая инертность будет в плюс при временном отключении нагревателя – накопленное таким «аккумулятором» тепло дольше будет отдаваться в помещение.

Но в целом, если подсчитать по итогам работы, например, в течение суток, общие затраты энергии в разных системах, но равной тепловой мощности и в равных условиях выйдут на один уровень. Если, конечно, система отлажена и снабжена качественным терморегулятором.

А вот какая должная быть мощность нагрева пола?

А это зависит от того, какая роль возлагается на систему «теплый пол».

  • А. Если она создаётся в качестве полной альтернативы традиционной системе отопления, то расчет должен вестись от величины потребной тепловой мощности для компенсации тепловых потерь в помещении. Все это восполнение должно полностью «лечь на плечи» системы подогрева.

Такую величину часто принимают равной 100 Вт на 1 квадратный метр. Но с этим можно поспорить, так как подобный подсчет несовершенен. Лучше подойди к делу более обстоятельно.

Как определить количество тепловой энергии для полноценного обогрева комнаты?

Для этого можно воспользоваться довольно подробным алгоритмом расчета, принимающим во внимание немало влияющих на конечный результат факторов. Этот алгоритм хорошо изложен и реализован в онлайн-калькуляторе в публикации «Сколько тепла требуется для обогрева дома».

Получается, что это количество тепла нужно разделить на площадь комнаты – получится удельная на квадратный метр, так?

Не совсем так! При электрическом подогреве пола никогда не задействуется вся площадь помещения, даже если разговор идет о полной альтернативе традиционному отоплению. Нет никакого смысла укладывать нагревательные элементы (неважно, какие) под стационарными предметами мебели или крупными бытовыми приборами. Это и бесполезно, и очень вредно для мебели, напольного покрытия и самого нагревателя – из-за отсутствия нормального теплоотвода. Обязательно делаются отступы от стен и от имеющихся приборов отопления. В итоге площади, на которой могут располагаться нагреватели, уменьшается на 25÷30%.

Пример раскладки нагревательного кабеля в помещении – задействуется далеко не вся площадь.

Значит, общую тепловую мощность придется делить на эту, так сказать, «полезную» площадь, отведенную под укладку нагревателей. Это отношение и покажет необходимую удельную мощность системы, Вт/м².

В упрощённом варианте, когда нет желания связываться с расчетом тепловых потерь, удельную мощность принимают примерно равной 180 Вт/м². Если «теплый пол» монтируется на этаже над отапливаемым помещением, то можно снизить мощность и до 150 Вт/м².

Повторимся – это очень приблизительно, и за гарантированно удачный исход при таком выборе мощности не ручаемся.

А по большому счету, электрический теплый пол и вовсе не должен рассматриваться в качестве полноценной альтернативы отоплению. Это слишком расточительное удовольствие.  Если при использовании электрического котла можно вовсю пользоваться льготным ночным тарифом, накапливая выработанное за ночь тепло в теплоаккумулятор (буферный бак) и постепенно расходуя его затем в течение дня, то с теплым полом такое не пройдет.

Поэтому нужно десять раз подумать, прежде чем принимать подобное решение.

  • Б. Иное дело, когда электрический подогрев пола становится средством повышения комфортности проживания. То есть отопление работает само по себе, но в комнатах можно создать «участки особого уюта» с тёплыми поверхностями пола.
Очень часто не видно никакого смысла в сплошном покрытии поверхности нагревательными элементами – они укладываются только там, где действительно желательно иметь подогретую поверхность пола.

Это делается обычно в местах детских игр, в зонах отдыха или работы хозяев квартиры – словом, там, где им приятно ощущать тепло, идущее снизу к по-домашнему босым или обутым в легкие тапочки ногам. Например, имеет смысл разместить такие участки около кровати (утром приятнее будет опустить ноги на подогретый пол), вдоль дивана, под письменным столом, вдоль традиционных «тропинок» из помещения в помещение, на кухне, в ванной и (или) санузле и т.п.

Вот здесь можно не только до необходимого минимума свести площадь «тёплого пола», но и руководствоваться совсем иными показателями тепловой мощности. Обычно вполне достаточно 120÷130 Вт/м², а если комната находится над отапливаемым помещением – то порой можно ограничиться даже 90÷100 ваттами.

*  *  *  *  *  *  *

Ниже расположен онлайн-калькулятор, где реализовано многое из сказанного. Это приложение поможет рассчитать несколько базовых величин электрического «теплого пола»:

  • Для любой системы подогрева – удельную мощность (Вт/м²) и полную, суммарную мощность «теплого пола»
  • Для кабельной системы, то есть с возможностью варьирования плотностью укладки нагревателя – длину кабеля и шаг его укладки. Для того придется дополнительно указать удельную линейную мощность выбранного кабеля.

Кстати, еще один нюанс. Одновременно можно подобрать и оптимальную удельную линейную мощность, и шаг укладки. Дело в том что не рекомендуется располагать витки кабеля слишком близко или слишком далеко один от другого. В первом случае возможно создание зон перегрева, что вредно и для пола, и для кабеля. А во втором – может появиться «эффект зебры», то есть ощущаемое ногой чередование нагретых и холодных полос. Оптимальным видится шаг от 80÷100 до 200 мм. Возможно, имеет смысл несколько изменить линейную мощность кабеля (из имеющегося в магазине ассортимента) чтобы выйти на оптимальный показатель.

Калькулятор расчета основных параметров электрического теплого пола

Перейти к расчётам

А сколько будет потреблять электрический теплый пол

Вот теперь мы почти готовы к тому, чтобы ответить на основной вопрос этой публикации.

Казалось бы – что проще? Осталось лишь умножить мощность системы на длительность ее работы – и получить количество киловатт-часов, как говорится, «к оплате». Однако если мы пойдем по этому пути, то наверняка в очень «серьезную» сумму.

На деле же – электрический подогрев пола, если он организован в помещении с эффективной термоизоляцией (а иначе и быть не должно, категорически!), никогда не будет работать постоянно. Все дело в термостатическом управлении системой.

Нагреватели никогда не подключаются к питанию напрямую – только через терморегулятор. Это – электромеханическое или электронное устройство, обесценивающее выключение питания, если температура на датчике достигает определенной верхней отметки. И, соответственно, включения, если падение температуры доходит до нижней границы. Нечто подобное стоит в любом современном утюге. Датчики температуры чаще всего используются выносные, укладываемые в толщу пола вместе с нагревателями, или встроенными, фиксирующими температуру воздуха в комнате. Такие датчики «по воздуху» обычно применяются в тех «тёплых полах», которые становятся полной заменой системе отопления (не рекомендуемых!)

Надо правильно понимать – такие блоки управления не работают на изменение входных электрических параметров, то есть никак не трансформируют ни ток, ни напряжение, подаваемые на нагревательные элементы. Здесь решающим является исключительно фактор времени работы съемы – включено или выключено.

Один из несложных терморегуляторов с идущим в комплекте термодатчиком

Посмотрите на схему укладки выше – не зря между витками кабеля (между соседними нагревательными элементами) устанавливается термодатчик – именно он снимает температуру нагрева пола и передает ее в блок управления.   То есть после включения системы пол начинает нагреваться и доводится до заданного порога: обычно это 26÷27 ℃ — выше не имеет смысла, так как ощущение комфорта может стать спорным, начинает «припекать», да и неполезно это для покрытия пола. Получив сигнал о достижении нужной температуры, терморегулятор отключает питание на нагревательный элемент. Температура упала — питание снова включилось.

Практика показывает, что хорошо отлаженная система в эффективно утеплённой комнате работает не более 50% общего времени, полностью справляясь со своей задачей. Это, конечно, средний показатель, так как в особо теплые дни он может быть и значительно меньше, или, наоборот, в морозную погоду – и побольше. Но в целом можно прогнозировать именно так.

Но и это еще не все.

Если электрический «теплый пол» обустраивается по наиболее предпочтительному для него принципу, то есть будет работать параллельно с системой отопления и лишь создавать «зоны комфорта», то его работу можно оптимизировать установкой электронного программируемого терморегулятора.

Стоимость такого терморегулятора несколько выше, но это полностью оправдывается последующим эффектом экономии энергии.

Задумайтесь сами – стоит ли «гонять» такую систему сутки напролет? Кому нужен комфортный подогрев ночью или в отсутствие хозяев? Не лучше ли запрограммировать работу «теплого пола» так, чтобы он включался только тогда, когда это действительно требуется.

Например, за полчаса до подъема – чтобы прогреть зону около кроватей в спальной и детской, полы в ванной и на кухне. Затем, когда все разбегается по школам–работам наступает общая пауза. К приходу ребенка из школы можно прогреть пол в детской. К возвращению взрослых – в других комнатах. И так далее – вариантов здесь может быть много. На выходные дни система может программироваться несколько иначе – все в руках хозяев.

Экономия получается более чем чувствительная! Тема более, что и при этом принцип термостатического управления продолжает работать, то есть нагрев осуществляется не постоянно.

Если точнее, то на «время пауз» тоже программируется температура нагрева, но она сопоставима с температурой воздуха в комнате, может – чуть ниже. То есть терморегулятор не включит питание, пока температура пола не станет еще ниже. Чего при работающей общей системе отопления случиться не должно – достигается реальная пауза в работе нагревателей.

Ниже расположен калькулятор, который позволит довольно быстро «прикинуть» примерное потребление электроэнергии электрическим теплым полом в какой-то отдельно взятой комнате.

Надо лишь указать суммарную тепловую мощность системы и выбрать режим ее работы.

  • С непрерывным режимом работы все ясно – можете убедиться, что стоить это будет немало.
  • Если выбирается программированный алгоритм, то для будней можно предусмотреть одну ночную паузу в работе и еще две – в течение дня. В выходные дни можно ограничиться только ночной, но есть возможность добавить и одну дневную паузу.

Калькулятор расчета потребления энергии электрическим тёплым полом

Перейти к расчётам

*  *  *  *  *  *  *

Все равно может показаться многовато. Но резервы экономии всегда в руках хозяев! Повторимся, здесь – очень приблизительный расчет, не учитывающий многих условий. А в реальности, как показывает практика, даже снижение температуры нагрева всего на 1 градус (скажем, с 26 до 25 ℃) может дать еще порядка 5% экономии.

Кроме того, желательно не пожалеть времени на составление схемы – продумать, насколько необходим нагрев на том или ином участке пола. Возможно, где-то без него спокойно можно обойтись. Или же – изменить режим работы системы в сторону уменьшения продолжительности периодов ее включения – калькулятор наглядно показывает, как это уменьшает общие затраты.

В завершение – видеосюжет, в котором его автор предлагает свое видение проблемы расходов электроэнергии на подогрев пола. Интересно, но кое о чем можно и поспорить.

Видео: Насколько прожорливы «теплые полы» по сравнению с другими бытовыми электроприборами

расчет расхода энергии для разных видов

Если владелец помещения решил установить электрические теплые полы, стоит быть готовым к тому, что такое удовольствие понесет за собой значительные растраты. Кроме закупки специальных материалов и монтажа, изделие будет потреблять энергоресурсы, за что потребуется платить в соответствии с тарифом жилого комплекса. В данной статье пойдет речь о том, как рассчитать электрический теплый пол.

Электрические теплые полы — виды и их особенности

В настоящее время на отечественном рынке можно выбрать несколько видов напольных систем электрического типа. Каждой из них характерен свой дизайн, потребление энергии и прочие эксплуатационные характеристики. Ниже в подробностях рассмотрен каждый вариант с учетом того, сколько потребляет электрический теплый пол.

Нагревательные маты

Термомат представляет собой кабельную конструкцию, которая прокладывается на специальной сетке. Это оптимальный вариант для помещения с большим количеством влаги. Нагревательные маты укладываются по специальной схеме под стяжку.

Данный вариант зачастую используют в помещениях с потолками небольшой высоты. Это обуславливается 3 см толщиной и мощностью термомата всего в 0. 2 кВт на м². При этом электрический теплый пол запрашивает следующий расход энергии — 200 Вт в месяц.

Пол стержневого типа

Данный вариант относится к инфракрасным полам, однако в качестве нагревательного элемента используются стержни, а не карбоновые пластины. Мощность качественных электрических теплых полов насчитывает до 200 Вт на м².

Инфракрасная пластина

Данный элемент представляет пленочный теплый пол, укрепленный карбоновым слоем. Именно благодаря последнему материалу пластина обогревает пол. Преимущество в том, что мощность качественного инфракрасного теплого пола составляет 400 Вт на м². Также ИК-пластина положительно влияет на высоту потолков.

Кабель электрический

Подобные материалы всегда собирают положительные отзывы. Все провода в электрических теплых полах размещаются хаотично, однако многие мастера используют технологию укладки по змейке или улитке. После монтажа кабелей изделие заливают бетонным слоем, в результате чего в помещение уменьшается высота (на 5–10 см). Как правило, электрический кабель для полов должен обладать удельной мощностью не менее 0.01 кВт на м². Также при выборе нужно учитывать частоту витков.

Важнейшую роль играет энергоемкость изделия. Ее показатель должен составлять минимум 10 Вт. Для укладки 1 м² пола потребуется примерно 4–5 м электрического кабеля. Что касается обогрева, на «квадрат» будет в среднем уходить 150 Вт.

Методика расчета энергозатрат по видам

Для определения количества потребляемого тока в электрических полах, существует несколько критериев:

  • уровень теплоизоляции комнаты;
  • толщина изделия;
  • потери тепла.

Расчет расхода энергии, которая потребляется при обогреве, осуществляется с помощью формулы:

W=S×P×0.4 (S — площадь, P — мощность, 0.4 — коэффициент прогреваемой площади).

Расчет матов и электрических кабелей

Чтобы определить, сколько электроэнергии потребляет теплый пол, рекомендуется брать во внимание следующие факторы:

  1. Отапливаемая площадь. В этом случае нужно учитывать свободное от мебели пространство. Как правило, показатель варьируется в пределах 12–15 м². Данная зона будет использоваться для прокладки мата или кабеля.
  2. Специальный провод. Питательный элемент должен иметь мощность в пределах 2.2 кВт/ч. Такого показателя хватит для обогрева 15 м² комнаты. На отечественном рынке существует множество вариантов, мощность которых составляет 2.3 кВт и более. Подобные изделия не нужны для жилых помещений постсоветского пространства, так как провода не будут функционировать на всю мощь.
  3. Постоянный обогрев кабеля. Это необходимо для поддержания соответствующей температуры в помещении. Кабель необходимо прогревать 20 минут каждый час.
  4. Максимальная нагрузка. Электрические полы потребляют около 1950 Вт каждый час с учетом максимальной нагрузки. С таким показателем температурный режим может достичь 50 градусов. Однако нормой считается всего 25 °C. В случае максимальной нагрузки, расход энергии будет составлять 960 Вт.

Когда владелец жилища использует двухтарифный счетчик, платить за потребление энергии удастся гораздо меньше. Чтобы рассчитать расход потребляемой электроэнергии во время прокладки кабеля, необходимо посчитать длину изделия. Для этого следует применить калькулятор со следующей формулой:

L=I/a (I – длина кабеля, a — шаг между петлями).

Получить размер потребляемых ресурсов получится, умножив посчитанный параметр на мощность кабеля. В итоге отобразится расход на 1 м².

Расчет инфракрасных теплых полов

По расчетам выявить потребление электроэнергии в инфракрасных теплых полах, получится в том случае, если учесть уровень подготовки комнаты. Также немаловажную роль играет пленка и ее мощность. Если использовать оборудование в качестве дополнительного источника, показатель мощности электрического теплого пола составит 0.15 кВт, а если основного — 0.22 кВт.

Важно! Для прогрева основной и дополнительной пленки потребуется 7 и 12 минут соответственно. Что касается расхода энергии, он будет одинаковым для обоих случаев.

Просмотреть расход электричества в теплых пленочных полах можно на примере помещения площадью 50 м². При этом мощность изделия составляет в пределах 0.15 кВт. Расчет осуществляется с помощью следующей формулы:

W=50×150×0.4=3000 Вт.

Готовый результат потребуется умножить на тарифный план жилого комплекса. Полученная цифра и будет конечным показателем, необходимым для месячной оплаты. Стоит заметить, что при использовании счетчика «Ночь-День», результат будет приблизительным. Если правильно осуществить планирование и прокладку, затраты удастся заметно уменьшить.

Финишное покрытие — влияние на затраты по энергоресурсам

Во время выбора финишного материала для изготовления теплых электрических полов, необходимо убедиться в наличии специального значка, который свидетельствует о вероятности комбинирования с соседним устройством обогрева.

Зачастую в качестве основного материала используют паркет, линолеум, ламинат или плитку из керамики.

Еще одним немаловажным фактором для расчета уровня расхода электрической энергии на «квадрат», является теплопроводимость финишной отделки. К примеру, деревянное покрытие или ламинат обладают незначительной степенью обогрева, следовательно, затраты на изготовление полов заметно вырастут.

Если речь идет об экономии, то лучше отдать предпочтение линолеуму, керамическим плиткам или ковролину. Рассматриваемые материалы быстро прогреваются, что значительно снижает расход энергоресурсов.

Укладка электрического пола с линолеумом:

Как вид помещений влияет на расчет расходов теплых полов

Для каждого помещения рекомендуется использовать оборудование конкретной мощности. Это определяется по следующим стандартам:

  • ванная комната — 0.15 кВт/м²;
  • кухня, коридор, спальная, зал — До 0.12 кВт/м²;
  • лоджия — 0.2 кВт/м².

Кроме того, на мощность может влиять характер оборудования. То есть, для каких целей оно предназначено — для основного или дополнительного обогрева.

Для примера можно взять в учет комнату с площадью 20 м², в которой полезная площадь составляет всего 8 м². С условием использования основного источника, показатель теплопотерь будет варьироваться от 1 до 2 кВт/ч. Мощность можно высчитать по следующее формуле:

2 (теплопотеря) разделить на 8 (площадь). В итоге получается 250 Вт/ч.

Полезно! К расчету потребуется добавить 25 %, если жилище находится в условиях сурового холодного климата.

Теплые полы по видам — сравнительный анализ расходов

Индукционный нагрев верхних слоев происходит во всех электрических полах. Осуществляется процесс за счет электрического тока, вследствие чего из электроэнергии появляется тепловая энергия. При этом коэффициент полезного действия идентичен для всех видов. Стоит заметить, что метод установки и верхний слой напрямую влияют на энергопотребление теплых полов. Огромную роль играют такие нюансы, как коэффициент отражающего материала, слой теплоизоляции и уровень потери тепла в стяжках.

Исходя из приведенной информации, можно сделать вывод, что более производительным считается оборудование, которое устанавливается под верхний слой декоративного материала. Также можно заметно сократить основные отличия между изделиями. Это обуславливается возможностью монтажа надежного утеплителя и отражателя.

Стоит заметить, что отличия между всеми видами электрических полов все же присутствуют. И это несмотря на, казалось бы, незначительные расхождения в материале. К примеру, опытный мастер может заметить, что пленка с учетом расхода 0.22 кВт обогревает до 40 градусов. А стяжке с кабелем для обеспечения аналогичной температуры потребуется всего 0.15 кВт.

В целях экономии рекомендуется прибегать к установке именно кабельной стяжки. В этом случае владелец помещения обеспечит себя достаточным уровнем температуры с минимальными затратами энергоресурсов. Качественная изоляция будет с нуля нагреваться в течение 7-8 часов, после чего обогрев будет происходить исключительно за счет верхних слоев пола.

Однако, если речь идет о небольших комнатах, то отличия в энергоэффективности будут незначительными. Единственное, на что потребуется потратиться, это установка.

Какие факторы снижают расход электроэнергии

Установка электрических теплых полов, независимо от площади помещения, в любом случае требует немалых вложений. Но если придерживаться следующих советов, можно заметно сэкономить на дальнейших расходах энергоресурсов:

  1. Выполнить качественное утепление. В случае успешного покрытия мастер может уменьшить расход на 30–50 %.
  2. Установить нагревательный пол на свободной площади. Как говорилось ранее, монтаж теплых полов должен производиться в том месте, которое исключает нахождение мебели.
  3. Установить многофункциональные счетчики. Ночной тариф всегда подразумевает небольшой расход электроэнергии. В этом случае затрат будет вдвое меньше.
  4. Установить регуляторы с программой. Благодаря специальным тумблерам можно задавать время активации и отключения.
  5. Использовать отделочные покрытия, которым характерен высокий уровень теплопроводимости.
  6. Не поддерживать завышенный температурный режим в помещениях, которые редко посещают люди.

Внимание! Снижение температурных показателей всего на 1 градус позволит сэкономить 5 % затрат энергоресурсов. При этом владелец квартиры практически не ощутит разницы.

Еще одним немаловажным фактором является температура за пределами помещения. Если расхождения между улицей и комнатой будут большими, то затраты энергии увеличатся.

Каждый из приведенных видов теплых полов отличается функциональными и конструктивными особенностями. В то время как один вариант позволяет сэкономить на расходах, другой обеспечивает более высокий уровень обогрева комнаты. Чтобы выбрать подходящий вариант, рекомендуется опираться на приведенную статью и учитывать свои финансовые возможности.

Видео по теме

Мощность теплого пола на 1 м2: порядок расчета

При устройстве системы полового обогрева любого вида важным пунктом становится мощность теплого пола на 1 м2. Изначально это влияет на выбор материала, площадь покрытия и тип нагревательного элемента.

В конечном итоге, эффективность отопления скажется на семейном бюджете в виде ежемесячных плат за электроэнергию. Рассмотрим специфику расчета эффективности отопления полом в зависимости от индивидуальных особенностей.

Необходимые данные

Для начала рассчитайте площадь дома

Для расчета требуемой эффективности элементов необходимо определиться с некоторыми факторами, имеющими непосредственное влияние на этот показатель:

  • отапливаемая площадь;
  • качество теплоизоляции стен и перекрытий;
  • теплопроводность финишного покрытия пола.

Кроме этих данных, важно понимать, в качестве какого элемента будут использоваться полы: основного или дополнительного?

Для беспроблемной работы и гарантированного долгого срока службы отопления она должна работать в режиме, не превышающим 80% от максимальной мощности.

Расчет мощности теплого пола во много зависит от правильности заданной полезной площади.

В качестве основного отопления укладка электрических полов может использоваться только при условии, что покрытие составляет не менее 70% от общей площади помещения.

Для определения эффективности отопления используем формулу P = S*k, где:

P – мощность элемента обогрева;

S – полезная площадь;

k – удельная мощность.

Удельные мощности электрического теплого пола для помещений различного типа:

Тип помещенияУдельная мощность системы теплого пола на 1 м2 (Вт/м2)
1Жилые комнаты, кухня (1 этаж)140-150
2Жилые комнаты, кухня (2 этаж и выше)110-120
3Застекленные и утепленные балконы и лоджии140-180
4Санузлы (1 этаж)120-150
5Санузлы (2 этаж и выше)110-130
6Основное отоплениене менее 180
7Дополнительное создание комфортных условий110-120

Расход электроэнергии при этом весьма приблизительный. Многое зависит от уровня теплоизоляции в целом: уровень теряемого тепла через окна, стены, перекрытия.

Расчет необходимой мощности комфортных полов для санузла общей площадью 10 м2 на втором этаже в качестве основной системы отопления:

Полезная площадь составит: 10/100*70= 7 м2. Удельная сила для санузлов второго этажа 130 Вт/м2, но при этом использование полов как основного элемента системы отопления предполагает мощность не менее 180 Вт/м2.

Принимаем большее значение. Получаем: Р=7*180=1260 Вт (1,26 кВт) – общая теплоотдача пола в санузле.

Не всегда планировка комнаты может позволить использовать половую систему в качестве основного источника отопления. Между нагревательным элементом и мебелью должно быть расстояние не менее 10 см.

В небольших комнатах с широкой мебелью (диван, кровать) использовать систему теплого пола в качестве основной не целесообразно.

Расчет потребления электроэнергии

При проектировании системы обогрева, как правило, составляется чертеж расположения её элементов. Исходя из данных плана, легко высчитать площадь теплого пола. Если чертеж не сохранился, то приблизительно принимаем площадь отапливаемых полов 70% от общей площади.

Условно время работы теплых полов берут из расчета 6 ч в день

Для жилого помещения первого этажа площадью 20 м2, обогревать в качестве основного источника необходимо 14 м2.

Удельная мощность теплого пола для данного типа помещения составляет 150 Вт/м2. Соответственно потребление электроэнергии на систему напольного обогрева составит: 150*14=2100 Вт.

Условно в день полы включены в течение 6 часов, тогда ежемесячная норма составит 6*2,1*30=378 кВт/час. Умножьте полученное число на стоимость 1 кВт в регионе и получите стоимость затрат на электроэнергию в данной комнате.

При условии включения в систему отопления терморегулятора и установки работы в экономичный режим расход на электроэнергию, затрачиваемую полами, можно сократить на 40%.

Мощность системы водяного теплого пола вычислить сложнее, в данных расчетах лучше довериться онлайн — калькулятору или проконсультироваться со специалистом. О том, как рассчитать мощность для пленочных полов, смотрите в этом видео:

Типы нагревательных элементов

Существует несколько видов электрического теплого пола, мощность которых напрямую зависит от типа нагревательного элемента. Электрополы работают на:

Нагревающий элементМощность (Вт/м2)Тип финишного покрытия
Инфракрасная пленка150 — 400Любое
Электрокабель120 — 150Керамическая плитка, керамогранит
Термомат120 — 200Керамическая плитка

Данные приняты среднестатистические, у конкретного бренда показатели могут незначительно отличаться. Таким образом, видно, что устройство любой системы обогрева в помещение любого типа возможно всеми вариантами электрических теплых полов.

Сокращаем затраты

Благодаря применению терморегулятора вы сможете сэкономить до 40 % электроэнергии

Удобство и комфорт, создаваемые отапливаемыми полами, омрачает только один фактор – счет за электроэнергию. Как, не лишая себя удобств, снизить расходы на электроэнергию? Несколько советов по умному потреблению:

  1. Обязательно смонтируйте терморегулятор. Расположить его лучше на максимальном удалении от основной отопительной системы. Регуляторы позволяют сэкономить до 40% электроэнергии за счет необходимого включения.
  2. Максимально снизьте потерю тепла. При необходимости проведите работы по теплоизоляции стен. Согласно опытных статистических исследований, улучшение теплоизоляции снижает расходы на электроэнергию почти в 2 раза.
  3. Установите многотарифную систему оплаты электроэнергии. При этом отопление полами в ночное время обойдется в зависимости от региона в 1,5 – 2 раза дешевле.
  4. Начните экономить ещё на этапе монтажа. Не заводите элементы отопления в места расположения мебели, делайте необходимые отступы от стен и приборов отопления.
  5. И простая математика: понизив температуру всего на 10С, потребление электроэнергии сокращается на 5%.

Подойдите к вопросу укладки теплых полов ответственно. Заранее просчитайте необходимую мощность приборов. Эти данные помогут правильно подобрать элементы нагрева и пользоваться системой без значительного ущерба для семейного бюджета.

Сколько потребляет теплый пол электроэнергии?

  • Расчет по кабельному полу
  • Расчет по инфракрасному полу
  • Дополнительные факторы, влияющие на потребление электричества

Энергопотребление теплого пола – это главный момент, который интересует владельцев домов и квартир, в которых планируется установить такую систему. Энергозатраты зависят от разных факторов, таких как климатические условия, использование в качестве дополнительного или основного источника тепла, наличия теплоизоляции в помещении и требуемого температурного режима.

Наиболее экономичным вариантом будет установка водяного теплого пола, но не всегда это возможно. Поэтому используется альтернатива – электрические системы, которые способны обеспечить соответствующий температурный режим в помещении. Такие конструкции подразделяются на инфракрасные и кабельные. Каждый вид имеет свою особенность, но главное их отличие от водяного пола – это отсутствие необходимости в подаче теплоносителя. Поэтому их монтаж проще и установка возможна в любом помещении, даже на лоджии и балконе.

Наиболее удобным и экономичным считается инфракрасный пол. Он легко монтируется, может использоваться под любые напольные покрытия, а в том случае, если отдано предпочтение не обычной пленке, а стержневой конструкции, она может применяться в помещениях с мебелью потому, как отлично выдерживает нагрузки.

Кабельные системы обходятся дешевле, но они имеют ряд ограничений по мощности для деревянных покрытий и более сложны в монтаже. Также присутствует и меньшая теплоотдача по сравнению с инфракрасной конструкцией. Главное преимущество таких полов – доступная цена, ведь состоят они из одно- или двужильного резистивного кабеля, который можно уложить самостоятельно или же приобрести уже смонтированный на мате.

Обе разновидности имеют экономичный расход электроэнергии и являются основными конкурентами водяного пола. Но перед тем как их устанавливать, стоит заранее сделать расчеты для того, чтобы оценить, будет ли такая система действительно экономичной в каждом конкретном случае. Сколько пол будет потреблять электричества можно определить, зная площадь монтажа и мощность конструкции.

Расчет по кабельному полу

Кабельные системы могут использоваться для основного или вспомогательного обогрева. В первом случае расход будет составлять на каждый метр квадратный около 200 Вт, а во втором – от 100 до 150 Вт. Основное потребление электроэнергии приходится на период разогрева кабеля и достижения заданной температуры, после чего происходит автоматическое отключение. В среднем, пол работает около 15 минут каждый час, соответственно, при режиме постоянного обогрева среднесуточное время функционирования будет составлять от 6 до 8 часов, в зависимости от установленного температурного режима.

Стоит отметить, что теплый пол монтируется не по всей площади помещения, достаточно ее 70%, поэтому в комнате размером 15 м, система займет около 10.5 м² и высчитывать расход нужно с учетом этого момента. Традиционно, витки кабеля укладываются с расчетом, чтобы их номинальная мощность  составляла 150 Вт на квадратный метр. То есть, умножив эти данные на имеющиеся 10.5 квадратов площади, получаем 1.5 кВт энергозатрат в час.

Как уже говорилось ранее, время работы пола составляет 6-8 часов и лучше сразу высчитать максимальное значение. Для этого умножаем 1.5 кВт на 8, и получается, что потребляемая  мощность будет равна 12 кВт в сутки.

Если кабельная отопительная система используется ежедневно и на постоянной основе, то в месяц на отопление комнаты в 15 м² примерно будет израсходовано 360 кВт электроэнергии, и рассчитать ее стоимость можно, умножив данную сумму на цену 1 кВт.

Вернуться к оглавлению ↑

Расчет по инфракрасному полу

Теперь стоит рассмотреть, сколько будет составлять электропотребление в том случае, если для обогрева аналогичного помещения будет применяться инфракрасный пол. Для использования на постоянной основе понадобится пленка мощностью 150 Вт на кв. метр, но такое значение является пиковым и поддерживается только на время разогрева, которое составляет от 3 до 5 минут, в зависимости от установленного температурного режима. После этого энергопотребление снижается до 17 Вт в час, и пол включается только в том случае, если фиксируется снижение температуры.

В помещении площадью 15 квадратов под инфракрасный пол будет задействовано 10.5 м. Режим его включения и выключения зависит от многих факторов, и соотношение интервалов может быть 1/3 или 1/8, и при расчетах учитывается среднее значение. Поэтому в сутки на отопление 10.5 квадратов будет в среднем уходить около 4 кВт, а в месяц соответственно будет 128 кВт, что существенно меньше, чем у кабельного пола.

Высчитать сколько будет потребляться электроэнергии достаточно просто. Для этого необходимо определить мощность на кв. метр и высчитать площадь, которая будет задействована под отопительную систему.

Вернуться к оглавлению ↑

Дополнительные факторы, влияющие на потребление электричества

В первую очередь, на расход электричества влияет наличие теплопотерь. Если помещение не утеплено и они существенные, то соответственно, температура в комнате будет падать значительно быстрее, а значит, пол будет включаться чаще. Чтобы снизить затраты необходимо утеплить дверные и оконные проемы, иначе расход может быть значительно больше, чем в произведенных расчетах, а если невозможно уменьшить потерю тепла, стоит рассмотреть вариант установки водяного теплого пола, как более экономичный и рациональный.

Во-вторых, не стоит уменьшать рекомендуемую площадь отопительной системы в соотношении с площадью помещения. В данном случае, сколько бы электричества не потреблял пол, заданная температура достигнута не будет даже при значительных энергозатратах.

В ходе расчетов необходимо использовать данные производителя. Нагревающие элементы могут иметь различную мощность на кв. метр и поэтому разные системы существенно отличаются друг от друга по энергопотреблению.

Подведя все итоги нужно отметить, что в качестве главного преимущества электрических полов выступает простота монтажа и более широкое применение, в то время как для водяного пола требуются определенные условия для его установки.

Статьи по теме

Теплый пол электрический, расход электроэнергии: отзывы владельцев

При наступлении холодов каждый хозяин стремится качественно отопить свое жилище с минимальными затратами энергоресурсов. Поэтому в последнее время популярности набирает такой обогрев, как теплый пол электрический. Расход электроэнергии, по утверждению производителей, довольно небольшой.

Но существует несколько условий, которые влияют на потребление энергоресурсов подобными системами. Отзывы потребителей позволят сделать правильные выводы и обустроить теплый пол с минимальными эксплуатационными затратами. Только при правильном монтаже система сможет полноценно обогреть помещение, затратив при этом минимум электричества.

Принцип работы

Электрический провод, применяемый для отопления, состоит из нихромовой жилы и различных изоляционных оболочек. Такие устройства обязательно монтируют в раствор. Слой стяжки или плиточного клея нагревается и отдает тепло напольному покрытию. Ламинат, кафель или другие материалы при этом становятся похожими на нагретую поверхность конвектора. Только обогрев, в отличие от такого электроприбора, происходит по другому принципу.

Конвектор посылает потоки нагретого воздуха вверх. У потолка в этом случае определяется максимум температур. У основания комнаты скапливаются холодные массы. Теплый пол электрический, расход электроэнергии которого зачастую меньше, чем у конвектора, создает нагрев внизу помещения. У потолка же воздух холоднее. Поэтому этот тип отопления комфортнее для человека.

Назначение системы

Сегодня в продаже представлено большое количество типов электрического обогрева пола. С их помощью можно создать как комфортное, так и автономное отопление. В первом случае площадь комнаты покрыта менее 50 % системой проводов или пленкой. При этом для обогрева применяется дополнительный прибор (батарея, конвектор).

Полный обогрев помещения без применения дополнительных устройств позволяет создать теплый пол электрический. Расход электроэнергии, отзывы о котором предоставляют эксперты, может быть при этом минимальным. Затраченные энергоресурсы будут в таком случае расходоваться оптимально.

Следует также сказать, что при помощи пленочного теплого пола не стоит создавать автономное отопление. Подобные системы предназначены для комфортного обогрева.

Виды систем

От типа системы зависит расход электроэнергии. Самыми часто применяемыми разновидностями являются кабель, мат и пленка. В первом варианте нагревательный элемент поставляется в бухте. На специальную планку монтажник раскладывает провод самостоятельно. При этом шаг укладки составляет от 7 до 15 см. Чем гуще смонтирован провод, тем больше потребление электроэнергии с 1 м², а также теплоотдача. Провод сечением около 7 мм заливают в стяжку 3-5 см толщиной.

Система мат уже собрана с определенным шагом на ПВХ-сетке. Это теплые полы электрические под плитку. Расход электроэнергии у них фиксирован. Мат укладывают под 5-8 мм плиточного клея. Диаметр такого провода приблизительно равен 3 мм.

Пленочный теплый пол также имеет фиксированную мощность. Эту систему монтируют под ламинат, линолеум без применения раствора.

Выбор мощности

Чтобы теплый пол мог обогреть помещение, необходимо задать достаточную мощность на 1 м². Этот параметр находится в пределах от 110 до 180 Вт/м² для помещений. Уличный обогрев требует мощности в 2 раза больше.

На представленный показатель влияют особенности помещения. Чем больше в нем уровень теплопотерь, тем мощнее система потребуется. Если окна, пол и стены утеплены, потолок стандартной высоты (не более 2,7 м), подходит маломощная система.

Но для холодных помещений, в которых теплопотери значительны, требуется усилить нагрев. Иногда необходимо задать мощность до 300 Вт/м². Для этого применяется особый электрический теплый пол. Расход электроэнергии в гараже, например, будет значительно больше, чем в квартире многоэтажного дома.

Если покрытие будет выполнено из ламината в помещении с минимальными теплопотерями, мощность системы должна составлять 110-130 Вт/м². Для балкона, ванной комнаты, где будет смонтирован кафель, этот показатель увеличивают до 150-180 Вт/м².

Проведение расчета мощности

Чтобы правильно выбрать и смонтировать теплый пол электрический, потребление электроэнергии которого не ударит по семейному бюджету, необходимо произвести предварительный расчет. Сначала выбирают необходимую мощность на 1 м². Например, это будет ванная комната в квартире на 2 этаже (внизу есть соседи, которые отапливают помещение), где напольное покрытие будет выполнено из кафеля.

Потребляемая мощность системы будет составлять 150 Вт/м². Если отбросить площадь, на которой располагается мебель, сантехника, квадратура составляет 3 м². Значит, теплый пол требуется такой:

150 х 3 = 450 Вт.

Метраж провода подбирается на основе этого показателя. Это оптимальная мощность, при которой заданное помещение будет отапливаться с минимальными затратами.

Управление температурой

Представленный расчет позволяет определить показатель максимальной мощности системы. Как правило, рабочая температура нагревательного провода составляет 65ºС. До этого уровня пол не нагреется, так как в помещении присутствуют определенные теплопотери. Но 50-55º С при хорошем утеплении основания система сможет выдать на поверхности.

Человеку комфортно стоять босыми ногами на поверхности, нагретой до 25-28ºС. Чтобы поддерживать этот уровень, теплый пол подключают к терморегулятору. В этом случае устройство при достижении заданного пользователем нагрева размыкает цепь.

Когда пол остынет на несколько градусов, прибор снова включит подачу тока. Поэтому система потребляет меньшее количество электричества в час, чем указано на упаковке.

Отзывы потребителей

Чтобы понять, сколько система будет потреблять энергоресурсов в сутки и в час, необходимо учесть несколько особенностей. Ими обладает любой теплый пол электрический. Расход электроэнергии, отзывы владельцев о котором представлены в разных источниках, неоднозначен.

Чтобы максимально снизить этот показатель, необходимо качественно монтировать утеплитель под системой. Иначе из-за быстрой потери тепла устройство не сможет нагреваться до нужного уровня. Один и тот же провод в комнате и на балконе будет потреблять неодинаковое количество электроэнергии.

Но если сравнить теплый пол и конвектор в комнате площадью 20 м², то проводное устройство, согласно отзывам потребителей, выгоднее. Конвектор потребляет в таких условиях около 2 кВт в час. Теплый пол же в этих условиях в среднем потребует около 1-1,2 кВт.

Какой тип систем экономичнее?

Неодинаковым потреблением энергоресурсов характеризуется различный теплый пол электрический. Расход электроэнергии больше у пленочных разновидностей. При среднем потреблении 220 Вт/м² эта система не нагревает поверхность больше 40°С.

Кабель, установленный в стяжку, или плиточный клей при таком же уровне нагрева затратит в среднем 150 Вт/м². Поэтому, если есть возможность, на стадии проведения ремонта лучше отдать предпочтение проводам. Если основание качественно утеплено, устройство будет работать около 8 часов в сутки. В остальное время стяжка будет отдавать накопленное тепло в окружающую среду.

Рассмотрев основные особенности, можно правильно выбрать теплый пол электрический. Расход электроэнергии этой системы при правильном монтаже меньше, чем у радиаторов и конвекторов. Это выгодная во всех отношениях система.

Interplast Система теплых полов — Скачать PDF бесплатно

Природная геотермальная энергия.

Земляной тепловой насос ROTEX Природная геотермальная энергия.ROTEX HPU заземляет грунтовый тепловой насос, который нагревается за счет бесплатной геотермальной энергии. Компактный, экологически чистый и уникально эффективный.

Дополнительная информация

Laddomat 21-60 Зарядное устройство

Laddomat 21-60 Зарядное устройство Инструкция по эксплуатации и установке ВНИМАНИЕ! На схемах в этой брошюре описаны только принципы подключения. Каждый монтаж должен быть измерен и выполнен в соответствии с

. Дополнительная информация

КОНРАД.Гибридный фанкойл серии

Серия гибридных фанкойлов KONRAD Konrad — это инновационный радиатор, который охлаждает и согревает. Действительно, летом он остывает, а зимой греет; но делает это с несравненной тишиной. Спасибо

Дополнительная информация

Интегрированные солнечные лучистые системы

Интегрированные солнечные лучистые системы William Shady PE Президент Темы Лучистое отопление Качество воздуха в помещении Радиационное охлаждение Проект Фотографии Вопросы и ответы Цель для наших клиентов Здоровый комфорт Почему Radiant

Дополнительная информация

Описание функций

Описание функций Laddomat 21 предназначен. ….. дайте котлу достичь высокой рабочей температуры вскоре после розжига …. для предварительного нагрева холодной воды в баке в нижней части котла, чтобы котел

Дополнительная информация

Приточно-вытяжные установки РПВ — РП — РА

ПРИМЕНЕНИЕ Отопление, вентиляция, охлаждение >> ЗАВОДЫ >> СКЛАДЫ >> ЗАЛЫ >> РАСПРЕДЕЛИТЕЛЬНЫЕ ЦЕНТРЫ >> КОММЕРЧЕСКИЕ ПОМЕЩЕНИЯ >> МЕСТА ПОКЛОНЕНИЯ Приточно-вытяжные установки RPV — RP — RA www.reznor.eu ДПЛА — RP

Дополнительная информация

Готовим со скоростью света!

Готовка в инфракрасной печи Cooking & Colouring Infrabaker — это модульная инфракрасная система непрерывного приготовления, разработанная Infrabaker International. Машина предназначена для приготовления и / или нанесения красок на широкий

Дополнительная информация

Солнечные водонагреватели

Солнечные водонагреватели Три входа воды под высоким вакуумом Винт из нержавеющей стали Гелевое уплотнение и изоляция Выход воды Пылезащитные уплотнения Модели без давления Детали ASWH-1b (окрашенная в цвет 304) ASWH-1c (нержавеющая

) Дополнительная информация

Ленты из вспененного уретана с двойным покрытием

3 Ленты из вспененного уретана с двойным покрытием 4004 4008 4016 4026 4032 4052 4056 4085 Технические характеристики Апрель 2009 г. Описание продукта Ленты из вспененного полиуретана с двойным покрытием 3M представляют собой эластичные пенопласты с высоким сдвигом

Дополнительная информация

19 примеров утепления стен

HUYS ADVIES 19 Примеры технического рабочего документа по изоляции ~ Теплоизоляция № 6 для домов в высокогорных районах в Гималаях Документ: Sjoerd Nienhuys, Советник по возобновляемой энергии Дата:

Дополнительная информация

ECOplus Солнечный цилиндр

ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ Варианты подключения солнечного баллона Wagner & Co для CONVECTROL II Эффективный конвекционный тормоз Технически оптимизированные барьеры разделяют охлаждаемую воду в трубопроводах

Дополнительная информация

Гибридный тепловой насос Daikin Altherma

ваш комфорт.наш мир. Гибридный тепловой насос Daikin Altherma Технология интеллектуального отопления — лучшее из обоих миров Отопление Комплексные решения Вентиляция Кондиционирование воздуха Охлаждение Перспективное мышление Около

Дополнительная информация

1 ОПИСАНИЕ ПРИБОРА

1 ОПИСАНИЕ ПРИБОРА 1. 1 ВВЕДЕНИЕ Чугунные котлы SF представляют собой надежное решение существующих энергетических проблем, поскольку они могут работать на твердом топливе: древесине и угле.Данная серия котлов

Дополнительная информация

Приводы ГЕРЦ-Термал

Приводы ГЕРЦ-Термал Лист данных 7708-7990, выпуск 1011 Размеры в мм 1 7710 00 1 7710 01 1 7711 18 1 7710 80 1 7710 81 1 7711 80 1 7711 81 1 7990 00 1 7980 00 1 7708 11 1 7708 10 1 7708 23 1 7709 01

Дополнительная информация

Модуль 2.2. Механизмы теплопередачи

Модуль 2.2 Механизмы теплопередачи Результаты обучения После успешного завершения этого модуля слушатели смогут: — Описывать 1-й и 2-й законы термодинамики. — Опишите механизмы теплопередачи.

Дополнительная информация

Сбор дождевой воды

Сбор дождевой воды Поскольку изменение климата стало реальностью, а не предполагаемой возможностью, спрос на водные ресурсы вырос, в то время как количество воды, доступной для снабжения, уменьшилось. Форт

Дополнительная информация

Дрейтон Digistat + 2RF / + 3RF

/ + Беспроводной программируемый комнатный термостат 3RF Модель: RF700 / 22090 Модель: RF701 / 22092 Источник питания: Батарея — Термостат Сеть — Digistat SCR Invensys Controls Europe Служба поддержки клиентов Тел .: 0845130 5522 Заказчик

Дополнительная информация

Гибридный тепловой насос Daikin Altherma

Гибридный тепловой насос Daikin Altherma Интеллектуальная технология — лучшее из обоих миров НАЦИОНАЛЬНЫЙ ТЕПЛОВЫЙ НАСОС 19 ИЮНЯ 2014 ПОБЕДИТЕЛЬ ICC BIRMINGHAM WINNER Перспективное мышление Настало время переосмыслить способ обогрева наших домов

Дополнительная информация

Миссия 7: Экономия энергии

Миссия 7: Экономия энергии Как мы можем экономить энергию? Преобразование одного вида энергии в другой часто наносит вред окружающей среде. Например, сжигание угля для производства электроэнергии приводит к загрязнению воздуха. Вот почему мы

Дополнительная информация

Процессы HVAC. Лекция 7

Процессы HVAC Лекция 7 Цели лекции Общее понимание систем HVAC: Типовые процессы HVAC Вентиляционные установки, фанкойлы, вытяжные вентиляторы Типовые водопроводные системы Перекачивающие насосы, отстойник

Дополнительная информация

Спецификация GigaCrete PlasterMax

GigaCrete Inc.6775 Speedway Blvd. Suite M105 Las Vegas, NV 89115 Тел. (702) 643-6363 Факс (702) 643 1453 www.gigacrete.com GigaCrete Specification PlasterMax PlasterMax: огнестойкая штукатурка для прямого нанесения

Дополнительная информация

руководство по сантехнике

Направляющие для труб радиатора и уплотнения для сантехнических изделий. Значительное усовершенствование привода для уменьшения утечки воздуха и потерь тепла. Подобные установки слишком распространены.Детализация плохая

Дополнительная информация

Типовой лист ECC 12 и 22

Применение ECC — это электронный регулятор температуры в помещении для водных систем. ECC can control — фанкойлы — индукционные блоки — системы кондиционирования воздуха — небольшие вентиляционные системы — 2-трубные

Дополнительная информация

Как купить решетку Designo

анальный омпакт анальный Плюс 1 2 3 1.omplete anal Plus, напольный блок 2. Теплообменник и внутренняя отделка воздуховода темно-серого цвета 3. Расширенный ассортимент анальных решеток Plus Принцип работы Опции Гибкий

Дополнительная информация

ТЯЖЕЛЫЙ ХРАНЕНИЕ ГАЗА

Технология дымохода Multi-Fin. Заслонка дымохода экономит энергию. Электронное управление. ТЯЖЕЛЫЕ УСЛОВИЯ ХРАНЕНИЯ НАДЕЖНОСТЬ НА ГАЗ. Газовая серия Rheem для тяжелых условий эксплуатации — это рабочая лошадка отрасли, зарекомендовавшая себя на протяжении многих

Дополнительная информация

Джеймс М.Компания Pleasants

Компания «Джеймс М. Плезантс» ПРЕДОСТАВЛЯЕМЫЕ ДАННЫЕ МЕХАНИЧЕСКИЕ ДАННЫЕ GAINESVILLE 20 ДЕКАБРЯ 2013 ПРОЕКТ: GSU: J-183 ГУМАНИТАРНОЕ ЗАКОНОДАТЕЛЬСТВО BLDG. ЦИТАТА №: 12116 ИНЖЕНЕР: ПЛАСТИНЧАТЫЙ ТЕПЛООБМЕННИК STEVENS & WILKINSON Тег:

Дополнительная информация

ЭЛЕКТРИЧЕСКИЙ КОТЛ ЦЕНТРАЛЬНОГО ОТОПЛЕНИЯ

ЭЛЕКТРИЧЕСКИЙ КОТЛ ЦЕНТРАЛЬНОГО ОТОПЛЕНИЯ EKCO.T Использованный продукт нельзя утилизировать как бытовые отходы.Разобранный прибор необходимо доставить в пункт сбора электрического и электронного оборудования

. Дополнительная информация

УНИВЕРСИТЕТ ДЖАВАХАРЛАЛА НЕРУ

Школа биотехнологии УНИВЕРСИТЕТ ДЖАВАХАРЛАЛА НЕРУ, Нью-Дели 110 067 Тендер № JNU / SBT / DBT-BUILDER / Data Center / 2015-16 Запечатанное предложение на создание центра обработки данных для высокопроизводительных вычислений

Дополнительная информация

Системы отопления

Домашняя биология
    schema.org/SiteNavigationElement»>
  • ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ
    • ИСТОЧНИКИ ИЗЛУЧЕНИЯ
      • Основные источники
      • Какие объекты имеют повышенный уровень радиации
    • ВЫСОКОЧАСТОТНОЕ ИЗЛУЧЕНИЕ
      • Мачты сотового телефона
      • Беспроводные телефоны, маршрутизаторы Wi-Fi, ноутбуки, планшеты, смартфоны
      • Радионяни
      • Сотовые телефоны
      • Умные счетчики
    • НИЗКОЧАСТОТНОЕ ИЗЛУЧЕНИЕ
        schema.org/SiteNavigationElement»>
      • Линии электропередач и трансформаторы
      • Системы отопления
    • ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ (РАДИОАКТИВНОСТЬ)
    • ВЛИЯНИЕ НА ЗДОРОВЬЕ
      • Что тебе нужно знать
      • Часто задаваемые вопросы
      • Предупреждения о вреде для здоровья
      • SOS для детей и беременных
      • Электрогиперчувствительность
      • Бессонница
      • Депрессия
      • Зависимость
      • Лучевая терапия
      • Бесплодие
  • МЕТРОВ
      schema.org/SiteNavigationElement»>
    • Как измерить электромагнитное излучение
    • Пределы безопасного воздействия
    • Измерители высокой частоты
    • Измерители низкой частоты
    • Измерители радиоактивности
    • Радоновые счетчики
    • Комбинированные счетчики и пакеты
  • ЭКРАН
    • Как защитить свой дом
    • Беспроводные бесплатные зоны
  • РУКОВОДСТВО
      schema.org/SiteNavigationElement»>
    • Как уменьшить воздействие радиации
  1. Вы здесь:
  2. Домашняя страница>
  3. ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ>
  4. НИЗКОЧАСТОТНОЕ ИЗЛУЧЕНИЕ>
  5. Системы отопления

Какова потребляемая мощность кондиционеров?

Энергопотребление кондиционера выше, чем у большинства приборов.Потребляемая мощность кондиционеров в среднем составляет 318 Вт ( часовых , для блока 24 000 БТЕ) в большинстве американских домашних хозяйств. Потребляемая мощность блока такого размера в большинстве случаев составляет от 1800 до 2500 Вт.

Среднее значение составляет всего 318 Вт, потому что кондиционеры автоматически включают и выключают свои компрессоры по мере необходимости в течение дня.

Упомянутая средняя мощность в 318 Вт (источник: Министерство энергетики США) составляет 228 кВтч в месяц. Это будет стоить:

Валюта: USD.

27,36 долл. США по тарифу на электроэнергию 0,12 долл. США / кВтч (это средний тариф на электроэнергию в США).

45,60 долл. США (41,87 евро) из расчета 0,20 долл. США / кВтч. 0,20 доллара США — это общепринятая ставка в Европе (во многих европейских странах она колеблется в пределах 0,19–0,25 доллара за кВтч).

79,80 долл. США по ставке 0,35 долл. США / кВтч.

102,60 доллара США по ставке 0,45 доллара США / кВтч.

Калькулятор энергопотребления

В

Kompulsa есть калькулятор энергопотребления, который можно использовать для расчета энергопотребления различных приборов.Его также можно использовать для расчета потребности в топливе для поездки и вашего MPG.

Вы также можете использовать его версию для браузера.

Эксплуатационная стоимость кондиционера зависит от множества факторов. Ключевым фактором является размер охлаждаемой комнаты, а размер блока зависит от размера вашей комнаты. Найдите размер блока, который соответствует охлаждаемой комнате ниже (например: если ваша комната составляет 500 квадратных футов и расположена в Соединенных Штатах, вы должны перейти к разделу 12 000 БТЕ).

Если вам также нужна информация об энергопотреблении холодильника, у Kompulsa есть посвященная этому страница с данными о потреблении энергии, упорядоченными по размеру и конфигурации холодильника.

Конденсаторные агрегаты кондиционеров. Изображение получено с благодарностью от chooyutshing на Flickr.

Обратите внимание, что на потребление энергии кондиционером сильно влияет температура окружающей среды и температура термостата. Приведенные ниже рекомендации по размеру комнаты были получены от U.С. Министерство энергетики.

Совокупное потребление энергии и смета затрат на электроэнергию на этой странице являются приблизительными и не предназначены для бюджетных целей. Все цифры стоимости на этой странице относятся к стоимости электроэнергии, если не указано иное. Используйте предоставленную здесь информацию на свой страх и риск.

Потребляемая мощность кондиционеров определяется двумя факторами: временем работы или скоростью компрессора. В случае неинверторного / односкоростного агрегата скорость компрессора всегда остается неизменной, и агрегат отключается при достижении желаемой температуры.Потребляемая мощность определяется временем работы устройства в часах, умноженным на его мощность .

Энергопотребление инверторных кондиционеров можно контролировать в реальном времени, потому что повышение температуры термостата снижает скорость компрессора, тем самым немедленно снижая потребление энергии. Чтобы определить среднее энергопотребление вашего собственного кондиционера, вы можете подключить его к счетчику потребления энергии.

Как определить эффективность кондиционера?

К счастью, комнатные кондиционеры имеют рейтинг EER.EER означает E nergy E fficiency R atio. EER — это отношение холодопроизводительности кондиционера к его мощности. Следовательно, блок [PDF] на 24 000 БТЕ с EER 10 потребляет 2400 Вт (24000/2400).

Из-за исключительно высокого энергопотребления кондиционеров, идеально покупать агрегат с EER выше 11. Их легко найти.

Этикетка кондиционера 18 000 БТЕ. Щелкните / коснитесь, чтобы просмотреть изображение в полный размер.

Из всех электрических характеристик, напечатанных на этикетке выше, единственная, имеющая отношение к вашему счету за электричество, — это помеченная «STD INPUT POWER».Это мощность устройства.

Устройство не потребляет столько тока, сколько ток заблокированного ротора, если только он не запустится (то есть из-за заблокированного ротора), и «MAX. INPUT CONSUMPTION ’- начальное потребление энергии при запуске. Он не будет потреблять такой большой ток дольше нескольких секунд и, следовательно, не имеет отношения к вашему счету за электричество.

Номинальная мощность в БТЕ / ч — это просто охлаждающая способность кондиционера, измеренная в БТЕ. Это означает, что это 18 000 БТЕ. Теперь мы можем сделать вывод, что EER этого блока равен 9.47, разделив номинальную мощность БТЕ / ч (18 000) на стандартную номинальную потребляемую мощность (1900). Это обычное дело, но не самое лучшее. Помните, чем выше EER, тем лучше!

Из соображений защиты окружающей среды убедитесь, что хладагент (обозначенный на данном устройстве «REFRIG») — это R410A, а не R22, поскольку R410A не вызывает разрушения озонового слоя. Практически все новые бытовые кондиционеры используют R410A, поэтому их легко найти. Ремонт агрегатов с R22 также становится дороже, потому что хладагент постепенно сокращается / становится все более дефицитным.

Дорогие ли кондиционеры в эксплуатации?

Да, кондиционеры дороги в эксплуатации из-за высокого потребления электроэнергии. Если вы кондиционируете только одну комнату, стоимость эксплуатации кондиционера будет значительно ниже, чем если бы вы кондиционировали 3 или более комнат. Размер комнаты также является важным фактором, но в целом — чем больше комнат, тем выше счет за HVAC.

Какой процент энергопотребления вашего кондиционера от общего энергопотребления в вашем доме определяется типом вашей бытовой техники. Например: Если у вас минимальное освещение (одна лампочка на комнату без встроенного освещения), то на освещение должен приходиться меньший процент использования энергии.

Однако, если у вас есть несколько мощных ламп накаливания на комнату, это может быстро привести к огромным счетам за электричество. Стоимость владения определяется тем, сколько энергии кондиционер использует с течением времени, поэтому это совокупное энергопотребление.

Вы можете снизить потребление энергии, включив кондиционер только в той комнате, в которой вы собираетесь проводить большую часть своего времени в течение дня (например, это может быть домашний офис или спальня).В других комнатах ты выживешь, если не останешься в них надолго!

Влияние размера блока на потребляемую мощность кондиционера

В некоторых случаях очень большие блоки имеют немного более низкий EER (это означает, что они потребляют больше энергии), чем средние блоки. Однако кондиционеры меньшего размера могут обойтись вам дороже из-за обычных привычек.

Маленькие устройства долго остывают, если они используются в комнатах, размер которых превышает рекомендуемый, поэтому вы можете не захотеть их выключать, потому что не захотите ждать, пока они остынут позже (это ужасная трата энергии ).До содержания

Если вам также нужна информация об энергопотреблении холодильника, у Kompulsa есть посвященная этому страница с данными о потреблении энергии, упорядоченными по размеру и конфигурации холодильника.

Энергопотребление кондиционеров — по размеру блока

NB: Приведенные ниже данные о размерах кондиционера не относятся к мегатермальному климату и предполагают использование 24 часа в сутки.

Энергопотребление кондиционеров 5000 БТЕ (0.41 тонна / 1,4 кВт)

Кондиционеры 5 000 БТЕ рекомендуются для помещений площадью менее 200 квадратных футов (в идеале менее 150 квадратных футов).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *