Закрыть

Типы электроустановок – Электроустановки — классификация и характеристики

Содержание

Электроустановки - классификация и характеристики

Электроснабжение потребителей включает в свою систему использование технологических процессов через различные типы электроустановок и токоприемников.

В соответствии с правилами устройства электроустановок (ПУЭ), электроустановка включает в свой состав машины, коммутирующие устройства и аппараты, воздушные (ВЛ) и кабельные (КЛ) линии электропередачи. В состав электроустановки входит различное оборудование, использованное для осуществления помощи, необходимой для преобразования, накопления, различных способов передачи и упорядоченного распределения электрической энергии, и для преобразования электроэнергии в любой другой тип энергии, например, в тепловую или кинетическую.

Различия типов электроустановок

Электроустановки-их классификация и характеристики

По правилам устройства, электроустановки существуют нескольких типов и делятся на установки, в зависимости от уровня напряжения, до или выше 1 кВ, зависит от величины тока замыкания (500 А — малый ток замыкания, более 500 А — большие токи замыкания).

В зависимости от напряжения, например, для крупного металлургического предприятия, целесообразно иметь электроустановки с рациональным числом трансформаций. Это могут быть электроустановки, величина напряжения которых составляет: высокое напряжение: 500; 220; 110; 35; 10; 6; 3, низкое напряжение: 0,5; 0,38, 0,22 кВ. Использование рациональных напряжений позволяет достичь значительной величины экономии потерь электроэнергии.

Различия типов электроустановок в зависимости от нейтрали

Электроустановки, рассчитанные на напряжение менее 1 кВ, используют в своей конструкции глухо-заземленную или изолированную нейтраль. Оборудование в электроустановке, которое осуществляет работу на постоянном токе, используют нулевую точку, относящуюся к глухо-заземленному или изолированному типу.

Изолированная нейтраль позволяет использовать электроустановки в условиях, обязывающих к применению повышенных требований по электробезопасности, с обязательным контролем за целостностью изоляции и предохранительных элементов. С требованием быстро обеспечить поиск замыкания на «землю», со своевременным предотвращением аварии и автоматическим выводом в отключенное состояние поврежденного элемента или участка электроустановки.

  1. Изолированная нейтраль используется в электроустановках напряжением до 35 кВ.
  2. Для электроустановок высокого напряжения до 35 кВ и иногда 110 кВ, используется нейтраль, подключенная посредством реактивного сопротивление, это действие призвано компенсировать токи утечки и емкостные токи.
  3. Электроустановки со значением высокого напряжения от 110 кВ и более, используется в сети с глухозаземленной нейтралью.

Типы электроустановок в зависимости от частоты

В зависимости от частоты тока электроустановки (электроприемники), различаются следующих типов:

  1. Электроприемники и электроустановки промышленной частоты со стандартным значением 50 Гц.
  2. С высокой частотой от 10 кГц и частотой повышенной величины до 10 к Гц, применяются в основном для металлургических предприятий.
  3. Пониженной частоты до 50 кГц.

Основные виды электроустановок

Существует 5 основных видов самых распространенных электроустановок:

  1. Силовые установки, оборудование, предназначенное для промышленного назначения. Электроустановки предназначены для компрессорных, вентиляционных, насосных агрегатов и других целей, отличаются постоянством токов нагрузки в самых широких пределах величины мощности. Эти установки отличаются симметричной нагрузкой и равномерно распределенной по всем фазам. Категория надежности этого типа электроустановок – 1.
  2. Установки для преобразования тока переменного в постоянный ток, от частоты, числа фаз, величин напряжения, и для инвертирования. Категория надежности, в основном из недоотпуска энергии относит электроустановки к II категории.
  3. Установки для электротермических операций: дугового действия, индукционного, диэлектрического нагрева, электронно-лучевого и других видов нагрева. Электротермические установки всех видов, за исключением дуговых печей относятся к категории – 2. Дуговые печи относят к категории надежности электропитания — 1.
  4. Установки, применяемые для электросварочных работ. Нагрузка этого вида установок носит неравномерный график, по надежности питания принадлежит к 3 категории надежности.
  5. Электроосветительные установки имеют однофазную нагрузку. Симметричность распределения нагрузки (несимметрия от 5 до 10%) достигается при использовании незначительной мощности электроосветительных приборов, путем равномерного распределения по фазам.

Типы электроустановок в зависимости от конструктивных особенностей помещений использования

Электроустановки по конструктивному типу подразделяются на открытые, находящиеся вне помещения, защищенные от атмосферных выпадений осадков навесом и на закрытые, располагаемые внутри помещения.

По виду используемого помещения электроустановки делятся на сухие и влажные, и установки, расположенные в сырых, а также в особо сырых помещениях. Помещения с повышенной температурой (жаркие) и с высоким содержанием пыли, которая в свою очередь подразделяется на пыль токопроводящую и не токопроводящую. Особо опасными считаются помещения, содержащие химически активную и, в том числе, органическую среду с содержанием агрессивных видов пара, газа, жидкости, разъедающей оборудования плесенью.

Взрывозащищенные электроустановки

К взрывозащищенному оборудованию относится особый вид электроустановок, работающих в опасной среде. Взрывозащита достигается использованием конструктивного электрооборудования, предназначенного для защиты от взрыва или применением схемного расположения решения взрывозащиты.

Конструктивные взрывозащищенные элементы должны выдерживать как нормальный рабочий режим, так и режим, который происходит в случае аварийного отключения: КЗ, или замыкания на «землю».

Для достижения улучшенных условий противодействия взрыву применяется: взрывозащищенный трудногорючий материал, а также такие элементы, как уплотнительные кольца, трубный ввод, Ех-компоненты (кнопочный или концевой выключатель, амперметр и т. д.), устанавливаются полностью или частично внутри оболочек электрооборудования. Материалы, предназначенные для изготовления кабельных оболочек, не должны иметь в своей конструкции более 7,5% магния.

Для защиты кабеля используют специальные кабеля с масляным (о), а также кварцевым (g) наполнением внешней оболочки силового кабеля, взрывозащищенная оболочка кабеля (d), заполнение, а в некоторых случаях продувка кабельной оболочки происходит с использованием избыточного давления, герметизация выполняется при помощи полимерной смолы (компаунда), защиты типа (е) и (n), особый тип взрывоозащиты (s).

Взрывозащищенное оборудование электроустановок характеризуется повышенными показателями надежности, способными оказать противодействие взрыву.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

podvi.ru

Типы электроустановок по условиям электробезопасности, бесплатный монтаж

Как разделяются электроустановки по условиям электробезопасности?

В соответствии с правилами устройства электроустановок ПУЭ электроустановки по условиям электробезопасности разделяются:

  • На электроустановки напряжением выше 1000 В в сетях с эффективно заземленной нейтралью с большими токами замыкания на землю.
  • На электроустановки напряжением выше 1000 В в сетях с изолированной нейтралью с малыми токами замыканиями на землю.
  • На электроустановки напряжением до 1000 В с заземленной нейтралью.
  • На электроустановки напряжением до 1000 В с изолированной нейтралью.

Какие факторы должны учитываться при выборе технических способов и средств защиты?


Технические способы и средства защиты обеспечивающие электробезопасность, должны устанавливаться с учетом:

  • Номинального напряжения, рода и частоты тока электроустановки.
  • Способа электроснабжения от стационарный сети, от автономного дизель генератора электроэнергией.
  • Режима нейтрали средней точки источника питания электроэнергией изолированная, заземленная нейтраль.
  • Вида исполнения стационарные, передвижные, переносные.
  • Характеристики помещений по степени опасности поражения электрическим током.
  • Возможности снятие напряжения с токоведущих частей, на которых или вблизи которых должна производиться работа.
  • Характера возможного прикосновения человека к элементам цепи тока однофазное прикосновение, двухфазное прикосновение, прикосновение к металлическим нетоковедущим частям, оказавшимся под напряжением.
  • Возможности приближения к токоведущим частям, находящимся под напряжением, на расстояние меньше допустимого или попадания в зону растекания тока.
  • Видов работ: монтаж, наладка, испытание, эксплуатация электроустановок.

Что может быть использовано в качестве источника малого напряжения?
Источниками малого напряжения могут быть специальные понижающие трансформаторы с вторичным напряжением 12-36В, батареи гальванических элементов аккумуляторы, выпрямительные установки и преобразователи. В понижающих трансформаторах, чтобы обеспечить безопасность при переходе напряжения сети из первичной оболочки со стороны высшего напряжения во вторичную обмотку, со стороны низшего напряжения последнюю заземляют. Применения автотрансформаторов для получения малого напряжения не допускается. В этом случае сеть малого напряжения оказывается электрически связанно с сетью высшего напряжения, что небезопасно.

Какие требования должны выполняться при применении разделяющих или понижающих трансформаторов?
В электроустановках напряжением до 1000В в местах, где в качестве защитной меры применяются разделяющие или понижающие трансформаторы, вторичное напряжение трансформаторов должно быть, для разделяющих не более 380В, для понижающих не более 42В. При применении этих трансформаторов необходимо руководствоваться следующим.

Разделяющие трансформаторы должны удовлетворять специальным техническим условиям в отношении повышенной надежности конструкции и повышенных испытательных напряжений.

От разделяющего трансформатора разрешается питание только одного электроприемника с номинальным током плавкой вставки или расцепителя автомата на первичной стороне не более 15А. Заземление вторичной оболочки разделяющего трансформатора не допускается. Корпус трансформатора в зависимости от режима нейтрали сети, питающей первичную обмотку, должен быть заземлен или занулен. Заземление корпуса электроприемника, присоединенного к такому трансформатору, не требуется.

Понижающие трансформаторы со вторичным напряжением 42В и ниже могут быть использованы в качестве разделяющих, если они удовлетворяют требованиям. Если понижающие трансформаторы не являются разделяющими, то в зависимости от режима нейтрали сети, питающей первичную обмотку, следует заземлять или занулять корпус трансформатора, а также один из выходов одну из фаз или нейтраль среднюю точку вторичной обмотки.

Каковы схемы включения разделяющих трансформаторов?
Схемы включения разделяющих трансформаторов выглядят следующим образом. Вторичная обмотка разделяющего трансформатора или корпус электроприемника, питающегося через него, не должны иметь ни заземления, ни связи с сетью зануления. Тогда при прикосновении к частям, находящимся под напряжением, или к корпусу с поврежденной изоляцией не создается опасность, поскольку вторичная сеть коротка и сила токов утечки в ней и емкостных токов ничтожно мала при исправной изоляции.

Если возникшее замыкание одной фазе точке А не будет восстановлено, а затем повредится изоляция на другой фазе вторичной цепи, то предохранитель может сгореть только при металлической связи между точками А и В. Если такой связи нет, на корпусе электроприемника будет напряжение по отношению к земле, величина которого зависит от соотношения. Это напряжение если вторичное напряжение превышает соответственно 12 и 42 В может оказаться опасным, если человек стоит на земле или на токопроводящем полу и обувь имеет малое сопротивление. Чтобы уменьшить вероятность двойных замыканий на землю, к разделяющим трансформаторам на вторичной стороне нельзя подключать сколько-нибудь разветвленную сеть. Так, при двух и более электроприемниках возможно замыкание в них со связью с землей в двух разных фазах. Такие двойные замыкания влекут за собой электропоражения. Поэтому каждый электроприемник должен иметь свой разделяющий трансформатор.

Каковы особенности эксплуатации передвижных электроустановок?
Передвижные электроустановки с точки зрения электробезопасности имеют свои особенности эксплуатации, которые определяют прежде всего преимущественно тяжелыми условиями применения, источники электроэнергии и исполнительные механизмы работают, как правило, под открытом небом, кабельные сети подвержены механическим воздействиям, на единицу установленной мощности имеется гораздо большее количество контактных соединений, штепсельных муфт и разъемов чем в стационарных установках. Кроме того, передвижные электроустановки из-за открытого расположения на местности доступны лицам, которые выполняют те или другие работы с применением механизмов и устройств, получающих электроэнергию от передвижных источников. Все это существенно ухудшает электробезопасность в передвижных установках. От сюда электроустановки, из электрические схемы и конструктивное исполнение требует весьма квалифицированного и грамотного технического обслуживания.

Каковы основные условия безопасности в передвижных электроустановках?
В передвижных электроустановках в соответствии с действующим стандартом принят как обязательный режим изолированной нейтрали. При ограниченной протяженности сети с ограниченным числом потребителей электроэнергии безопасность эксплуатации может быть обеспечена поддержанием сопротивления изоляции на определенном заданном уровне. Тогда прикосновение к токоведущей части или к корпусу, на которых произошло замыкания фазы, не опасно. Только двухфазное замыкание, т.е. замыкание на землю или на корпус двух разных фаз, будет опасным режимом и должно ликвидироваться защитным отключением. Следовательно, сочетание постоянного контроля сопротивления изоляции с быстродействующим защитным отключением необходимое условие безопасного обслуживания передвижных электростанций с изолированной нейтралью.

Может ли осуществляться в одном помещении заземление одних электроприемников и зануление других?
В трансформаторе или генераторе с заземленной нейтралью заземление электроприемников без соединения с нейтралью т.е. без зануления недопустимо. В одном помещении могут находиться электроприемники, питаемые от трансформаторов и генераторов с изолированной нейтралью и с заземленной нейтралью, например 6 кВ и 380/220В др. Их сети заземления и зануления разделить трудно и большей частью невозможно. Надо, чтобы совмещенная сеть заземления и зануления удовлетворяла требованиям как к заземлению, так и занулению.

Что положено в основу выбора режима нейтрали?
Выбор схемы сети, а следовательно, и режима нейтрали источника тока производят исходя из технологических требований и условий безопасности. При напряжении до 1000 В широкое распространение получили обе схемы трехфазных сетей, трехпроводная с изолированной нейтралью и четырехпроводная с заземленной нейтралью. По технологическим требованиям предпочтение часто отдается четырехпроводной сети, она использует два рабочих напряжения линейное и фазное. Так, как от четырехпроводной сети 380 В можно питать как силовую нагрузку трехфазную, включаю ее между фазными проводами на линейное напряжение 380 В, так и осветительную, включая между фазным и нулевым проводами на фазное напряжение 220В. При этом становиться значительно дешевле электроустановка за счет применения меньшего чмсла трансформаторов, меньшего сечения проводов.

По условиям безопасности выбирают одну из двух сетей исходя из положения, по условиям прикосновения к фазному проводу в период нормального режима работы сети более безопасной является сеть с изолированной нейтралью, а в аварийный период сеть с заземленной нетралью. Поэтому сети с изолированной нейтралью целесообразно применять, когда имеется возможность поддерживать высокий уровень изоляции сети и когда емкость сети относительно земли незначительна. Это могут быть мало разветвленные сети, не подверженные воздействию агрессивной среды и находящиеся под постоянным надзором квалифицированного персонала. Примером могут служить сети небольших предприятий передвижные установки.

Сети с заземленной нейтралью применяют там, где невозможно обеспечить хорошую изоляцию электроустановок из-за высокой влажности, агрессивной среды и пр. или нельзя быстро отыскать и устранить повреждения изоляции, когда емкостные сети вследствие значительной ее разветвленности достигают больших значений, опасных для жизни человека. К таким сетям относятся сети крупных промышленных предприятий, городские распределительные и пр. Существующие мнение о более высокой степени надежности сетей с изолированной нейтралью недостаточно обоснованно.

Статические данные указывают, что по условиям надежности работы обе сети практически одинаковы. При напряжение выше 1000 В вплоть до 35 кВ сети по технологическим причинам имеют изолированную нейтраль, а выше 35 кВ заземленную. Поскольку такие сети имеют большую емкость проводов относительно земли, для человека одинаково опасно прикосновение к проводу сети как с изолированной, так с с заземленной нейтралью. Поэтому режим нейтрали сети выше 1000 В по условиям безопасности не выбирается.

Как защищать людей от поражения электрическим током при прикосновении к металлическим корпусам торговых киосков, автоматов газированной воды, летних павильонов и навесов разных торговых учреждений, указателей переходов через улицы и других металлоконструкций имеющих на себе электропроводку освещения 380/220В? Основной защитой людей в данном случае служит система зануления. Эффективность ее работы может быть обеспечена, если выполнены требования, предъявляемые к ней. В частности, правильно выбраны сечения фазного и нулевого проводов, предохранители, автоматы равномерно распределена нагрузка, правильно и квалифицированно ведется эксплуатация например, исключается замена местами фазного и нулевого проводов. В соответствии с правилами упомянутые объекты должны быть занулены либо получать питание через разделительные трансформаторы без зануления на вторичном напряжении. Однофазные ответвления к этим объектам для безопасности выполняют тремя проводами фазным, нулевым и защитным зануляющим, присоединенным к нулевому проводу в месте ответвления.

Что понимается под малым напряжением?
Малым называется номинальное напряжение не более 42 В, используемое для уменьшения опасности поражения электрическим током. Применение малых напряжений резко снижает опасность поражения, особенно когда работа ведется в помещении с повышенной опасностью, особо опасном или вне помещения. Однако электроустановки и с таким напряжением представляют опасность, причем значительную при двухфазном прикосновении.

Малые напряжения используют для питания электроинструмента, светильников стационарного местного освещения например, установленных на металлорежущих станках, переносных ламп в помещениях с повышенной опасностью и особо опасных, а также светильников общего освещения обычной конструкции, если они размещены над полом на высоте менее 2,5 м имеют в качестве источников света лампы накаливания.

Их использование является эффективной мерой защиты, однако область ее применения невелика, что обусловлено трудностями создания протяженных сетей и мощных электроприемников малого напряжения. Известно что уменьшения напряжения ведет к возрастанию силы тока, поэтому возникает необходимость в увеличении сечения проводов и токоведущих частей электроустановки, что экономически невыгодно.

Чем характеризуется электрическое разделение сети?
Под электрическим разделением сети понимается разделение сети на отдельные, не связанные между собой участки. Для этого применяют разделяющие трансформаторы, которые изолируют электроприемники от общей сети, и следовательно, предотвращают воздействие на них возникающих в сети токов утечки, емкостных проводимостей, замыканий на землю, последствий повреждений изоляции, исключают обстоятельства, которые повышают вероятность электропоражения. Применение разделяющих трансформаторов лучшая мера, чем питание через понижающие трансформаторы с заземлением вторичных обмоток. Защитное разделение сетей обычно используют в электроустановках напряжением до 1000 В, эксплуатация которых связана с особой и повышенной опасностью передвижные электроустановки, ручной электрифицированный инструмент.

Что необходимо для обеспечения электробезопасности работ в цепях трансформаторов тока и напряжения?
Для обеспечения безопасности работ, проводимых в цепях измерительных приборов и устройств релейной защиты, все вторичные обмотки измерительных трансформаторов тока и напряжения должны иметь постоянное заземление. В сложных схемах релейной защиты для группы электрически соединенных вторичных обмоток трансформаторов тока независимо от их числа допускается заземление только в одной точке. При необходимости разрыва токовой цепи измерительных приборов и реле цепь вторичной обмотки трансформатора тока должна быть предварительно закорочена на специально предназначенных для этого зажимах. Запрещается производить в цепях между трансформатором тока и зажимами, где установлена закоротка, работы, которые могут привести к размыканию цепи. При работе на трансформаторах тока или в их вторичных цепях необходимо соблюдать следующие меры безопасности.

Шины первичных цепей не должны использоваться в качестве вспомогательных токопроводов при монтаже или токоведущих цепей при сварочных работах.

Присоединение к зажимам указанных трансформаторов тока цепей измерений и защиты должно производиться после полного окончания монтажа вторичных схем.

При проверке полярности приборы, которыми она производиться, до подачи импульса тока в первичную обмотку должны быть надежно присоединены к зажимам вторичной обмотки. При работах в цепях трансформаторов с подачей напряжения от постороннего источник необходимо вынуть предохранители со стороны высшего и низшего напряжения и отключить автоматы от вторичных обмоток.

Каковы основные правила электробезопасности при эксплуатации внутреннего освещения?
Главным условием обеспечения надежности и безопасности эксплуатации является проведение осмотров и проверки осветительной сети в установленные сроки:

  • Исправность автомата и аварийного освещения не реже одного раза в три месяца в дневное время.
  • Исправность системы аварийного освещения не реже одного раза в квартал.
  • Состояние стационарного оборудования и электропроводки рабочего и аварийного освещения на соответствие номинальным токам расцепителей и плавких вставок расчетным один раз в год.
  • Испытание и измерение сопротивления изоляции проводов и кабелей и заземляющих устройств один раз в три года.
  • Измерение нагрузок и величин напряжения в отдельных точках электрической сети один раз в год.
  • Испытание изоляции стационарных трансформаторов с вторичным напряжением 12-36В не реже одного раза в год, переносных трансформаторов один раз в три месяца.

Следует иметь в виду, что установка и очистка светильников, смена перегоревших ламп и плавких вставок, ремонт сети выполняется электротехническим персоналом при снятом напряжении. Недопустимо питание светильников, требующих применения напряжения 36 В и ниже, от автотрансформаторов.

В чем заключаются основные требования электробезопасности, предъявляемые к сварочному оборудованию?
На электросварочную установку сварочный трансформатор, агрегат, сварочный генератор, преобразователь, выпрямитель должны быть паспорт, инструкция по эксплуатации и инвертарный номер, под которым она записана в журнале учета и периодических осмотров.

В качестве источников сварочного тока могут применяться трансформаторы, выпрямители и генераторы постоянного тока, специально для этого предназначенные. Непосредственное питание сварочной дуги от силовой или осветительной распределительной цеховой сети не допускается. Источники сварочного тока можно присоединять к распределительным электрическим сетям напряжением не выше 660 В. Нагрузка однофазных сварочных трансформаторов равномерно распределяется между отдельными фазами трехфазной сети. В передвижных электросварочных установках для подключения их к сети следует предусматривать блокирование рубильников, исключающее возможность присоединения и отсоединения провода, когда зажимы находятся под напряжением. Электросварочные установки должны включать в электросеть и отключать от нее, а также ремонтировать только электромонтеры. Выполнять эти операции сварщиком запрещается. Длина первичной цепи между пунктом питания и передвижной сварочной установкой не должна превышать 10 м. Токоведущие части сварочной цепи необходимо надежно изолировать и защищать от механических повреждений. Сопротивление изоляции электрических цепей установки измеряют при текущих ремонтах в соответствии с ГОСТом на эксплуатируемое электросварочное оборудование. Сроки текущих и (капитальных ремонтов сварочных установок) определяет лицо, ответственное за электрохозяйство предприятия, исходя из местных условий и режима эксплуатации, а также указаний завода изготовителя. Установку и пусковую аппаратуру следует осматривать и чистить не реже одного раза в месяц. Все отрытые части сварочной установки, находящиеся под напряжением питающей сети, надежно ограждаются. Сопротивление изоляции необходимо проверять не реже одного раза в три месяца, а при автоматической сварке под флюсом один раз в месяц. Изоляция должна выдерживать напряжение 2 кВ в течение 5 мин. Корпуса электросварочного оборудования, агрегатов, сварочные столы, плиты и т.д., а также обратные провода заземляются.

Для защитного заземления корпуса источников питания, снабженные специальными болтами, присоединяют к проводу заземляющего устройства. Свариваемое изделие также заземляют. При этом каждую сварочную установку необходимо непосредственно соединять с заземляющим проводом. Последовательное соединение установок между собой и применение общего заземляющего провода для группы установок не допускается. Несоблюдение этого требования может привезти к тому, что при обрыве провода, последовательно соединяющего установки, некоторые из них окажутся незаземленными. Сопротивление заземления при напряжении до 1000 В должно быть не более 4 Ом. Разрешается не заземлять корпус двигателя, подающего электродную проволоку, если он установлен на корпусе сварочной головки и имеет с ней надежный металлический контакт.

Что можно использовать в качестве обратного провода при электросварке?
В качестве обратного провода, соединяющего свариваемое изделие с источником сварочного тока, можно использовать гибкие провода, а также, где это возможно, стальные шины любого профиля достаточного сечения, сварочные плиты и саму свариваемую конструкцию. Использование в качестве обратного провода сети заземление металлических строительных конструкций зданий, коммуникаций и не сварочного технологического оборудования запрещается. Зажим вторичной обмотки сварочного трансформатора, к которому подключается обратный провод, а также аналогичны зажимы сварочных выпрямителей и генераторов, к которым возбуждения подключается к распределительной электрической сети без разделительного трансформатора, следует заземлять. Отдельные элементы, используемые в качестве обратного провода, тщательно соединяют между собой сваркой или с помощью болтов, струбцин или зажимов. В установках для дуговой сварки в случае необходимости например, при выполнении круговых швов допускается соединение обратного провода со свариваемым изделием с помощью скользящего контакта.

Как подразделяются электрические изделия, выпускаемые промышленностью по способу защиты человека от поражения электрическим током?
Все электрические изделия по способу защиты человека от поражения электрическим током подразделяются на пять классов:

  • К классу 01 относятся изделия, имеющие рабочую изоляцию и без наличия элементов заземления или другой защиты от поражения электрическим током.
  • К классу 1 относятся изделия, имеющие рабочую изоляцию и элемент для заземления. В случае, если у изделия класса 1 есть провод для присоединения к источнику питания, то он должен иметь заземляющую жилу и вилку с заземляющим контактом для включения с специальную розетку с дополнительным гнездом.
  • К классу 2 относятся изделия, имеющую двойную изоляцию или усиленную изоляцию и без элементов для заземления.
  • К классу 3 относятся изделия, не имеющие ни внутренних, ни внешних электрических цепей выше 42В.

К каким классам по способу защиты человека от поражения электрическим током относятся бытовые электроприборы?
Большинство бытовых электроприборов выпускается класса 0. Ввиду отсутствия в быту заземления электрические приборы и машины классов 01 и 1 для быта не могу быть использованы. Электроизделия класса 3 не нашли широкого применения в быту, кроме электрической игрушки. Из всех классов защиты, обеспечивающих определенную электробезопасность приборов, следует отдать предпочтение классу 2. В настоящее время значительное количество машин и аппаратов электробритвы, полотеры, стиральные машины выпускаются 2 класса защиты. Однако и их нельзя считать вполне безопасными, питающий машинку провод как и вся электропроводка квартирной сети при нарушении изоляции может стать источником электротравмы. Это положение усугубляется тем, что периодическая проверка состояния изоляции в бытовых сетях, к сожалению, не производится.

В каких электроустановках должно быть выполнено заземление или зануление?
Заземление или зануление электроустановок следует выполнять, при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока во всех случаях. При номинальных напряжениях от 42 В до 380 В переменного тока и от 110 до 440 В постоянного тока при работах с повышенной опасностью и особо опасных.

Заземление или зануление электроустановок не требуется при номинальных напряжениях до 42 В переменного тока и до 110 В постоянного тока кроме электроустановок во взрывоопасных зонах любого класса.

mobylplus.ru

Типы электроустановок и их особенности - Статьи

Электроустановка представляет собой группу электроприборов и оборудования, находящихся на одной территории и взаимосвязанных между собой. К электроустановкам относят различные инструменты и оборудование, аппараты и производственные линии, осуществляющие следующие типы операций:

  • преобразование,
  • трансформирование,
  • распределение и многие другие.

Электроустановки активно используются в быту, промышленности, во время проведения строительных работ и прочих сферах деятельности человека. В случае, если некоторое оборудование, входящее в состав электроустановки, находится под напряжением либо если его можно подать с помощью коммутационных устройств, такая система называется действующей электроустановкой.

Общая классификация электроустановок

В зависимости от назначения эти электротехнические комплексы делятся на:

  • силовые (характеризуются высокой мощностью и надежностью, поэтому активно эксплуатируются в производственных целях),
  • трансформирующие (созданные для преобразования в постоянный ток переменного),
  • электрооперационные (разработанные для решения различных задач, связанных с током),
  • электросварочные ( используемые для соединения различных металлических элементов),
  • осветительные (разработанные для организации освещения).

Силовые электроустановки широко используются для регулирования работы насосных систем, вентиляционных устройств. Они отличаются стабильностью даже в экстремальных условиях работы. Яркий пример применения электрооперационных решений — нагрев посредством индукции, луча либо дуги. В зависимости от того, какие именно задачи будет решать электроустановка, выбирается тот или иной ее вид.

Исходя из конструкционного исполнения данные устройства делятся на:

  • открытые (они могут использоваться на открытом воздухе, поскольку отличаются повышенной степенью защиты от температурных перепадов и осадков),
  • закрытые (использовать которые можно только внутри помещений, так как изменения температуры и влажности оказывают на их функционирование негативное воздействие),
  • под навесом (системы, которые нет надобности располагать в помещении, но при этом степень их пылевлагозащищенности небольшая).

Типы электроустановок по условиям электробезопасности

По условиям электробезопасности эти устройства делятся на технические решения с мощностью до 1000 В и модели с мощностью более 1000 В.

Маломощные электроустановки отличаются максимальной безопасностью, поэтому их активно используют в детских садах и школах, частных коттеджах, а также многоэтажных домах. Они могут обеспечить электроснабжением оборудование, мощностью до 1 кВ.

Комплексы мощностью более 1000 В разработаны для производственных целей. Кроме того, их используют когда нужно организовать питание сразу нескольких зданий и сооружений.

Особенности эксплуатации электрических установок

При работе с электроустановками важно соблюдать правила технической эксплуатации. К основным относят:

  • запрет на осуществление техобслуживания или ремонта оборудования во включенном состоянии,
  • при работе с проводами и электроприборами следует использовать специальные инструменты с диэлектрическими рукоятками, а руки защищать резиновыми перчатками,
  • проводить любые работы с электрооборудованием имеют право только те специалисты, которые имеют допуск работ.

Особое внимание важно уделять заземлению, а также изоляции. Электроизмерения и испытания должны проводиться регулярно для анализа системы.

Нейтрали в электрических установках

Маломощные системы могут работать на изолированной либо глухо-заземленной нейтрали. Аппаратура на постоянном токе может включать изолированную нулевую точку или же глухо-заземленного типа.

В случае использования электроустановки в опасных условиях, когда требуется соблюдение повышенных требований по электробезопасности, а также внимательного контроля за целостностью предохранителей лучше всего применять изолированную нейтраль. Это позволяет быстро отыскать замыкания в случае автоматического вывода в состояние отключения и предотвращения аварийных ситуаций.

В установках напряжением до 35 кВ применяется изолированная нейтраль. В случае если с помощью системы питается оборудование мощностью от 35 до 110 кВ, идеальным выбором является нейтраль, которая подсоединяется с помощью реактивного сопротивления. Такое решение позволяет компенсировать емкостные токи и токи утечки.

Если же речь идет об эксплуатации комплексов, работающих с напряжением свыше 110 В, тогда применяется глухозаземленная нейтраль.

Взрывозащищенные системы

Для работы в опасной среде разработаны специальные взрывозащищенные электроустановки. Защита в данном случае осуществляется посредством применения конструктивного электрооборудования. Принцип его работы базируется на схемном расположении компонентов.

Такие электроустановки могут работать как в обычном режиме, так и в состоянии замыкания на землю, а также аварийного отключения. Они изготавливаются из специального трудногорючего материала и содержат дополнительные элементы защиты — Ех-компоненты, уплотнительные кольца, трубные вводы, которые монтируются частично либо же целиком внутри оболочек электроаппаратуры.

Для обеспечения защиты кабелей в взрывозащищенных комплексах используются специальные типы проводов — с кварцевым, масляным наполнением.

 

voltline.ua

Электроустановки-их классификация и характеристики | Компания "Вольт"

Электроснабжение потребителей включает в свою систему использование технологических процессов через различные типы электроустановок и токоприемников.

В соответствии с правилами устройства электроустановок (ПУЭ), электроустановка включает в свой состав машины, коммутирующие устройства и аппараты, воздушные (ВЛ) и кабельные (КЛ) линии электропередачи. В состав электроустановки входит различное оборудование, использованное для осуществления помощи, необходимой для преобразования, накопления, различных способов передачи и упорядоченного распределения электрической энергии, и для преобразования электроэнергии в любой другой тип энергии, например, в тепловую или кинетическую.

 

Различия типов электроустановок

Электроустановки-их классификация и характеристики

 

По правилам устройства, электроустановки существуют нескольких типов и делятся на установки в зависимости от уровня напряжения, до или выше 1 кВ, зависит от величины тока замыкания (500 А — малый ток замыкания, более 500 А — большие токи замыкания).

В зависимости от напряжения, например, для крупного металлургического предприятия, целесообразно иметь электроустановки с рациональным числом трансформаций. Это могут быть электроустановки величина напряжения, которых составляет: высокое напряжение: 500; 220; 110; 35; 10; 6; 3, низкое напряжение: 0,5; 0,38, 0,22 кВ. Использование рациональных напряжений позволяет достичь значительной величины экономии потерь электроэнергии.

 

Различия типов электроустановок в зависимости от нейтрали

Электроустановки-их классификация и характеристики

 

Электроустановки, рассчитанные на напряжение менее 1 кВ, используют в своей конструкции глухо-заземленную или изолированную нейтраль. Оборудование в электроустановке, которое осуществляет работу на постоянном токе, используют нулевую точку, относящуюся к глухо-заземленному или изолированному типу.

Изолированная нейтраль позволяет использовать электроустановки в условиях, обязывающих к применению повышенных требований по электробезопасности с обязательным контролем за целостностью изоляции и предохранительных элементов. С требованием быстро обеспечить поиск замыкания на «землю», со своевременным предотвращением аварии и автоматическим выводом в отключенное состояние поврежденного элемента или участка электроустановки.

1. Изолированная нейтраль используется в электроустановках напряжением до 35 кВ.

2. Для электроустановок высокого напряжения до 35 кВ и иногда 110 кВ используется нейтраль, подключенная посредством реактивного сопротивление, это действие призвано компенсировать токи утечки и емкостные токи.

3. Электроустановки со значением высокого напряжения от 110 кВ и более используется в сети с глухозаземленной нейтралью.

 

Типы электроустановок в зависимости от частоты

 

В зависимости от частоты тока электроустановки (электроприемники) различаются следующих типов:

1. Электроприемники и электроустановки промышленной частоты со стандартным значением 50 Гц.

2. С высокой частотой от 10 кГц и частотой повышенной величины до 10 к Гц, применяются в основном для металлургических предприятий.

3. Пониженной частоты до 50 кГц.

 

Основные виды электроустановок

 

Существует 5 основных видов самых распространенных электроустановок.

1. Силовые установки, оборудование, предназначенное для промышленного назначения. Электроустановки предназначены для компрессорных, вентиляционных, насосных агрегатов и других целей, отличаются постоянством токов нагрузки в самых широких пределах величины мощности. Эти установки отличаются симметричной нагрузкой и равномерно распределенной по всем фазам. Категория надежности этого типа электроустановок – 1.

2. Установки для преобразования тока переменного в постоянный ток, от частоты, числа фаз, величин напряжения, и для инвертирования. Категория надежности, в основном из недоотпуска энергии относит электроустановки к II категории.

3. Установки для электротермических операций: дугового действия, индукционного, диэлектрического нагрева, электронно-лучевого и других видов нагрева. Электротермические установки всех видов, за исключением дуговых печей относятся к категории – 2. Дуговые печи относят к категории надежности электропитания — 1.

4. Установки, применяемые для электросварочных работ. Нагрузка этого вида установок носит неравномерный график, по надежности питания принадлежит к 3 категории надежности.

5. Электроосветительные установки имеют однофазную нагрузку. Симметричность распределения нагрузки (не симметрия от 5 до 10%) достигается при использовании незначительной мощности электроосветительных приборов, путем равномерного распределения по фазам.

 

Типы электроустановок в зависимости от конструктивных особенностей помещений использования

 

Электроустановки, по конструктивному типу подразделяются на открытые, находящиеся вне помещения, защищенные от атмосферных выпадений осадков навесом и на закрытые, располагаемые внутри помещения.

По виду используемого помещения электроустановки делятся на сухие и влажные, и установки, расположенные в сырых, а также в особо сырых помещениях. Помещения с повышенной температурой (жаркие) и с высоким содержанием пыли, которая в свою очередь подразделяется на пыль токопроводящую и не токопроводящую. Особо опасными считаются помещения, содержащие химически активную и в том числе органическую среду с содержанием агрессивных видов пара, газа, жидкости, разъедающей оборудования плесенью.

 

Взрывозащищенные электроустановки

 

К взрывозащищенному оборудованию относится особый вид электроустановок, работающих в опасной среде.

Взрывозащита достигается использованием конструктивного электрооборудования, предназначенного для защиты от взрыва или применением схемного расположения решения взрывозащиты.

Конструктивные взрывозащищенные элементы должны выдерживать как нормальный рабочий режим, так и режим, который происходит в случае аварийного отключения: КЗ, или замыкания на «землю».

Для достижения улучшенных условий противодействия взрыву применяется: взрывозащищенный трудногорючий материал, а также такие элементы, как уплотнительные кольца, трубный ввод, Ех-компоненты (кнопочный или концевой выключатель, амперметр и т. д.), устанавливаются полностью или частично внутри оболочек электрооборудования. Материалы, предназначенные для изготовления кабельных оболочек не должны иметь в своей конструкции более 7,5% магния.

Для защиты кабеля используют специальные кабеля с масляным (о), а также кварцевым (g) наполнением внешней оболочки силового кабеля , взрывозащищенная оболочка кабеля (d), заполнение, а в некоторых случаях продувка кабельной оболочки происходит с использованием избыточного давления, герметизация выполняется при помощи полимерной смолы (компаунда), защиты типа (е) и (n), особый тип взрывоозащиты (s).

Взрывозащищенное оборудование электроустановок характеризуется повышенными показателями надежности, способными оказать противодействие взрыву.

Пишите комментарии, дополнения к статье, может я что-то пропустил.
Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Всего доброго.
  • Twitter
  • Google
  • Печать
  • Reddit
  • Facebook
  • LinkedIn
  • по электронной почте

elektrik-orenburg.ru

Как подразделяются электроустановки по напряжению. Общие сведения об электроустановках

Электроснабжение потребителей включает в свою систему использование технологических процессов через различные типы электроустановок и токоприемников.

В соответствии с правилами устройства электроустановок (ПУЭ), электроустановка включает в свой состав машины, коммутирующие устройства и аппараты, воздушные (ВЛ) и кабельные (КЛ) линии электропередачи. В состав электроустановки входит различное оборудование, использованное для осуществления помощи, необходимой для преобразования, накопления, различных способов передачи и упорядоченного распределения электрической энергии, и для преобразования электроэнергии в любой другой тип энергии, например, в тепловую или кинетическую.

Различия типов электроустановок

По правилам устройства, электроустановки существуют нескольких типов и делятся на установки, в зависимости от уровня напряжения, до или выше 1 кВ, зависит от величины тока замыкания (500 А — малый ток замыкания, более 500 А — большие токи замыкания).

В зависимости от напряжения, например, для крупного металлургического предприятия, целесообразно иметь электроустановки с рациональным числом трансформаций. Это могут быть электроустановки, величина напряжения которых составляет: высокое напряжение: 500; 220; 110; 35; 10; 6; 3, низкое напряжение: 0,5; 0,38, 0,22 кВ. Использование рациональных напряжений позволяет достичь значительной величины экономии потерь электроэнергии.

Различия типов электроустановок в зависимости от нейтрали

Электроустановки, рассчитанные на напряжение менее 1 кВ, используют в своей конструкции глухо-заземленную или изолированную нейтраль. Оборудование в электроустановке, которое осуществляет работу на постоянном токе, используют нулевую точку, относящуюся к глухо-заземленному или изолированному типу.

Изолированная нейтраль позволяет использовать электроустановки в условиях, обязывающих к применению повышенных требований по электробезопасности, с обязательным контролем за целостностью изоляции и предохранительных элементов. С требованием быстро обеспечить поиск замыкания на «землю», со своевременным предотвращением аварии и автоматическим выводом в отключенное состояние поврежденного элемента или участка электроустановки.

  1. Изолированная нейтраль используется в электроустановках напряжением до 35 кВ.
  2. Для электроустановок высокого напряжения до 35 кВ и иногда 110 кВ, используется нейтраль, подключенная посредством реактивного сопротивление, это действие призвано компенсировать токи утечки и емкостные токи.
  3. Электроустановки со значением высокого напряжения от 110 кВ и более, используется в сети с глухозаземленной нейтралью.

Типы электроустановок в зависимости от частоты

В зависимости от частоты тока электроустановки (электроприемники), различаются следующих типов:

  1. Электроприемники и электроустановки промышленной частоты со стандартным значением 50 Гц.
  2. С высокой частотой от 10 кГц и частотой повышенной величины до 10 к Гц, применяются в основном для металлургических предприятий.
  3. Пониженной частоты до 50 кГц.

Основные виды электроустановок

Существует 5 основных видов самых распространенных электроустановок:

  1. Силовые установки, оборудование, предназначенное для промышленного назначения. Электроустановки предназначены для компрессорных, вентиляционных, насосных агрегатов и других целей, отличаются постоянством токов нагрузки в самых широких пределах величины мощности. Эти установки отличаются симметричной нагрузкой и равномерно распределенной по всем фазам. Категория надежности этого типа электроустановок – 1.
  2. Установки для преобразования тока переменного в постоянный ток , от частоты, числа фаз, величин напряжения, и для инвертирования. Категория надежности, в основном из недоотпуска энергии относит электроустановки к II категории.
  3. Установки для электротермических операций: дугового действия, индукционного, диэлектрического нагрева, электронно-лучевого и других видов нагрева. Электротермические установки всех видов, за исключением дуговых печей относятся к категории – 2. Дуговые печи относят к категории надежности электропитания — 1.
  4. Установки, применяемые для электросварочных работ. Нагрузка этого вида установок носит неравномерный график, по надежности питания принадлежит к 3 категории надежности.
  5. Электроосветительные установки имеют однофазную нагрузку. Симметричность распределения нагрузки (несимметрия от 5 до 10%) достигается при использовании незначительной мощности электроосветительных приборов, путем равномерного распределения по фазам.

Типы электроустановок в зависимости от конструктивных особенностей помещений использования

Электроустановки по конструктивному типу подразделяются на открытые, находящиеся вне помещения, защищенные от атмосферных выпадений осадков навесом и на закрытые, располагаемые внутри помещения.

По виду используемого помещения электроустановки делятся на сухие и влажные, и установки, расположенные в сырых, а также в особо сырых помещениях. Помещения с повышенной температурой (жаркие) и с высоким содержанием пыли, которая в свою очередь подразделяется на пыль токопроводящую и не токопроводящую. Особо опасными считаются помещения, содержащие химически активную и, в том числе, органическую среду с содержанием агрессивных видов пара, газа, жидкости, разъедающей оборудования плесенью.

Взрывозащищенные электроустановки

К взрывозащищенному оборудованию относится особый вид электроустановок, работающих в опасной среде. Взрывозащита достигается использованием конструктивного электрооборудования, предназначенного для защиты от взрыва или применением схемного расположения решения взрывозащиты.

Конструктивные взрывозащищенные элементы должны выдерживать как нормальный рабочий режим, так и режим, который происходит в случае аварийного отключения: КЗ, или замыкания на «землю».

Для достижения улучшенных условий противодействия взрыву применяется: взрывозащищенный трудногорючий материал, а также такие элементы, как уплотни

skupaem-auto.ru

Виды нейтралей электроустановок - ElectrikTop.ru

Виды нейтралей электроустановок

Нейтраль – та часть электроустановки, которая имеет нулевой потенциал относительно физической земли или ее токопроводящих элементов. Трехфазные цепи могут иметь как технологическую, имеющую физическое соединение с токопроводящими частями, так и конструктивную, отдельную от них нейтраль. Это зависит от способа соединения выходных обмоток силовых трансформаторов.

В первом случае – звездой, во втором – треугольником. Поскольку в этом проводнике течет ток, что происходит в результате или аварии, или технологического перекоса фаз, выражение «режим работы нейтрали» имеет полное право на существование. О том, каким он может быть, и о способах подключения нейтральных проводников пойдет речь в этой статье.

Режимы заземления нейтрали

В экзаменационных билетах по электробезопасности для монтеров, работающих с установками напряжением до 1000 вольт, есть вопрос: «С какой нейтралью должны работать электрические сети напряжением 10 кВ?» Правильный ответ: «С изолированной». Однако существуют и другие режимы работы нейтралей в электроустановках:

  1. Эффективное заземление.
  2. Глухое заземление.

От их выбора зависит множество факторов:

  • Бесперебойность электроснабжения.
  • Безопасность обслуживающего персонала и электроустановок в случае замыкания одной из фаз на землю.
  • Величины токов в местах повреждений.
  • Схема построения релейной защиты.

Различные типы электрических сетей по-разному подключаются к нейтрали и реагируют на аварийные ситуации.

Высоковольтные магистральные электросети

К ним относятся все электросети, линейное (между фазными проводниками) напряжение в которых превышает 35 кВ. Выходные (статорные) обмотки промышленных электрогенераторов соединяют треугольником. Это связано с меньшим уровнем электрических потерь и отсутствием технологического перекоса фаз, что напрямую влияет на качество подаваемой потребителям электрической энергии.

При однофазном пробое на физическую землю – в случае обрыва провода или изменения диэлектрических свойств изоляторов на опорах, происходит падение линейного напряжения до нуля в аварийной фазе и рост в 1,7 раза в работоспособных.

Чтобы избежать электрического пробоя изоляторов рабочих фаз и не увеличивать их без того немалые размеры, в этом случае применяется способ подключения, называемый «эффективной нейтралью». Он заключается в том, что на промежуточных силовых подстанциях выходные обмотки трансформаторов, использующиеся для обеспечения их внутренних нужд (например, обогрева, сигнализации), включаются по схеме «звезда», общий провод которой наглухо соединяется с физической землей.

Эффективно заземленная нейтральВ результате напряжение в неповрежденных фазах растет не более, чем в 1,4 раза, а ток короткого замыкания ограничивается на уровне, который недостаточен для срабатывания реле защиты. Это позволяет не прерывать электроснабжение на время большее, чем то, что определено нормативами правил эксплуатации электроустановок для различных типов потребителей.

Магистральные электросети среднего напряжения

Электрическая сеть, линейное напряжение в которой от 6 до 35 кВ. Обмотки силовых трансформаторов соединяются звездой. Нейтраль изолированная, она не имеет физического контакта с землей. Это делается по трем причинам:

  1. Меньшие токи, что позволяет уменьшить размеры изоляторов – меньше вес, меньше нагрузка на опоры, возможна экономия при их производстве и монтаже.
  2. В сетях с изолированной нейтралью токи между фазами имеют емкостной характер, поэтому при пробое одной из них не возникает короткого замыкания. Ток как бы стекает с поврежденного проводника на землю и рассеивается ею.
  3. Нет необходимости тянуть четвертую линию, не имеющую функционального назначения.

Изолированная нейтральВ результате при аварии линейное напряжение растет в 1,7 раза, что для промежуточных силовых трансформаторов на линии не является критическим режимом. Электроснабжение продолжается по двум оставшимся линиям. Опасность представляет только оборванный провод в радиусе 10–30 метров – создается зона, где возможно возникновение так называемого шагового напряжения.

Однако при малом сопротивлении физической земли (в результате дождей, при прокладке электролинии по болотам) ток в поврежденном проводнике может достигнуть значения, достаточного для возникновения электрической дуги. В этом случае применяется так называемая компенсированная нейтраль.

Сущность компенсированной нейтрали заключается в том, что общий для всех обмоток провод все же имеет контакт с землей, но через сопротивление. Оно может иметь индуктивный или активный характер. В первом случае устройство называют дугогасящим реактором.

Ток, через него текущий, находится в противофазе с тем, который идет на физическую землю через поврежденный проводник. Они компенсируют друг друга, поэтому электрическая дуга не зажигается. Заземление нейтрали через резистор в нашей стране практически не применяется. А если и используется, то в качестве элемента, помогающего определить место повреждения – при его включении параллельно дугогасящему реактору происходит срабатывание релейной защиты на аварийном участке.

Компенсированная нейтральВ нашей стране количество линий с компенсированной нейтралью равно 20% от числа всех электрических магистралей. А ее полную изоляцию используют еще только в Финляндии. Большинство европейских стран применяет подключение нейтрали через активное сопротивление большой величины.

Изолированная нейтраль также применяется в трехфазных сетях напряжением 0,4 кВ, которые прокладываются в шахтах, рудниках и на торфяных выработках. Везде, где пропуск электрического тока по физической земле может привести к поражению людей. А также в передвижных электроустановках при невозможности создания надежного контакта с заземлителем.

Низковольтные электрические сети

Все трехфазные электрические линии напряжением 0,4 кВ, от которых питаются конечные потребители, исполняются четырехпроводными. Это так называемые сети с глухозаземленной нейтралью. Выходные обмотки силовых линейных трансформаторов соединяются звездой, а их общий проводник – с физической землей. Делается это исходя из двух соображений:

  1. При однофазном замыкании на землю происходит мгновенное отключение всей линии, что необходимо для предотвращения поражения людей и животных электрическим током. Для этого в ней между фазными проводниками устанавливаются автоматы, реагирующие на сверхтоки (короткое замыкание) или дифференциальный ток.
  2. Кроме линейного напряжения в 380 (400) вольт, используется и фазное (между проводником и нейтралью), равное 220 вольт. При отсутствии надежного контакта с физической землей возможно возникновение технологического перекоса фаз, в результате которого у одного из потребителей на вводах будет 100–110 вольт, а у других – 290–300 вольт, что приводит к выходу из строя электрических приборов.

Нейтраль с сетях 0,4кВ

Если вы увидели на линии высокого напряжения оборванный провод, не подходите к нему близко, наверняка он находится под напряжением, поскольку в режиме изолированной нейтрали мгновенного отключения не происходит. И не относитесь к нейтральному проводнику четырехпроводной бытовой линии 0,4 кВ как к абсолютно безопасной железке. В случае неисправности или аварии по нему течет смертельно опасный ток.

electriktop.ru

Электроустановка - это... Что такое Электроустановка?

25. Электроустановка

Энергоустановка, предназначенная для производства или преобразования, передачи, распределения или потребления электрической энергии

11.4. Электроустановка

Совокупность машин, аппаратов, линий и вспомогательного оборудования, предназначенных для производства, преобразования, трансформации, распределения электроэнергии и преобразования ее в другой вид энергии

10 Электроустановка

[ Термины и определения">ГОСТ 19431-84, пункт 25]

Энергоустановка, предназначенная для производства или преобразования, передачи, распределения или потребления электрической энергии

электроустановка: Совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другие виды энергии.

[1, пункт 1.1.3]

1.1.1 Электроустановка - совокупность взаимоподключенного друг к другу электрооборудования, выполняющая определенную функцию, например, производство, преобразование, передачу, распределение, накопление или потребление электроэнергии.

3.47 электроустановка: Совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другой вид энергии.

3.3.2 электроустановка : Совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другой вид энергии.

[ title="Правила технической эксплуатации электроустановок потребителей"] [3]

Электроустановка

Совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другой вид энергии

Электроустановка

Любое сочетание взаимосвязанного электрооборудования в пределах данного пространства или помещения

ГОСТ 30331.1-95

ГОСТ Р 50571.1-93

электроустановка: Энергоустановка, предназначенная для производства или преобразования, передачи, распределения или потребления электрической энергии.

[ГОСТ Р 19431-84, статья 25]

Электроустановка

Комплекс взаимосвязанного оборудования и сооружений, предназначенный для производства или преобразования, передачи, распределения или потребления электрической энергии

Электроустановка

Комплекс взаимосвязанного оборудования и сооружений, предназначенный для производства или преобразования, передачи, распределения или потребления электрической энергии

3.2 Электроустановка - любое сочетание взаимосвязанного электрооборудования в пределах данного пространства илипомещения.

Электроустановка

Совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другой вид энергии

3.2 Электроустановка - любое сочетание взаимосвязанного электрооборудования в пределах данного пространства или помещения.

3.1.130 электроустановка: Совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другой вид энергии

3.1.39 электроустановка : Совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другие виды энергии.

3.2 Обозначения и сокращения

АИИС КУЭ - автоматизированная информационно измерительная система коммерческого учета электроэнергии;

АПВ - автоматическое повторное включение;

АСДУ - автоматизированная система диспетчерского управления;

АСУ - автоматизированная система управления;

АСУТП - автоматизированная система управления технологическими процессами подстанции;

ВЛ - воздушная линия;

ДПФ - добровольные пожарные формирования;

ИИС - информационно-измерительная система;

ИСУ - избирательная система управления;

ИТР - инженерно-технические работники;

КИП - контрольно-измерительные приборы;

КРУ - комплектное распределительное устройство;

МВИ - методика выполнения измерения;

МП - магнитное поле;

ОАПВ - однофазное автоматическое повторное включение;

ОПН - ограничитель перенапряжения нелинейный;

ОРУ - открытое распределительное устройство;

ПС - подстанция;

РУ - распределительное устройство;

СИ - средства измерения;

ССБТ - система стандартов безопасности труда;

ТОиР - Техническое обслуживание и ремонт;

ЭС - электростанция;

ЭМО - электромагнитная обстановка;

ЭП - электрическое поле.

Смотри также родственные термины:

3.4 электроустановка выше 1 кВ: Электроустановка, номинальное значение напряжения в которой равно или выше 1 кВ.

3.4 электроустановка выше 1 кВ: Электроустановка, номинальное значение напряжения в которой равно или выше 1 кВ.

3.3.55 электроустановка действующая : Электроустановка или ее часть, которая находится под напряжением, либо на которую напряжение может быть подано включением коммутационных аппаратов.

[ title="Правила технической эксплуатации электроустановок потребителей"] [3]

3.3 электроустановка до 1 кВ: Электроустановка, номинальное значение напряжения в которой не превышает 1 кВ.

3.3 электроустановка до 1 кВ: Электроустановка, номинальное значение напряжения в которой не превышает 1 кВ.

3.6 электроустановка до 1 кВ: Электроустановка, номинальное значение напряжения в которой не превышает 1 кВ.

3.3 электроустановка до 1 кВ: Электроустановка, номинальное значение напряжения в которой не превышает 1 кВ.

3.3 электроустановка до 1 кВ: Электроустановка, номинальное значение напряжения в которой не превышает 1 кВ.

3.20 электроустановка с простой наглядной схемой: Распределительное устройство напряжением до 1000 В с одиночной секционированной или несекционированной системой шин, не имеющей обходной системы шин, все ВЛ и КЛ, все электроустановки напряжением до 1000 В.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

normative_reference_dictionary.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *