Определение установленной мощности и тока нагрузки.
Важным этапом проектирования является определение суммарной потребляемой мощности установленного оборудования в каждой группе.
Величина установленной мощности позволяет рассчитать номинальный ток нагрузки на данную цепь. Номинальный ток — это тот максимальный ток, который будет протекать по фазному проводу. Во внутренней сети квартиры или дома с напряжением 220 В он легко определяется по максимальной потребляемой мощности.
При однофазной нагрузке номинальный ток « 4,5Рт, где Рт — максимальная потребляемая мощность в киловаттах. Например, при Рт = = 5 кВт /„ = 4,5 * 5 = 22,5 А.
При трехфазной симметричной нагрузке номинальный ток на фазу — 1п я 1,5Рт.
Значение номинального тока нагрузки позволяет определить и характеристики защитных устройств, и сечение жил провода.
Самым простым является расчет группы с одним прибором, например электрической духовкой. Ее потребляемая мощность 2 кВт (определяется по паспорту). Номинальный ток нагрузки 1п = = 4,5 *2 = 9 А. Таким образом, в цепь питания духовки должен устанавливаться автоматический выключатель с номинальным током не менее 9 А. Ближайшим по номиналу является автомат 10 А.
Конечно, величина коэффициента спроса зависит от множества объективных и субъективных факторов: типа квартиры, назначения электрических устройств и т. д. Например, коэффициент спроса для телевизора обычно принимается за 1, а коэффициент спроса для пылесоса — 0,1. Существуют даже целые системы расчета коэффициента спроса как для отдельных квартир, так и для многоэтажных домов.
Понятно, что одновременное включение и работа всех электроприборов в квартире или частном доме маловероятны. Поэтому в нашем случае коэффициент спроса для каждой группы можно определить по таблице усредненных значений (табл. 2).
Для расчета розеточной группы кухни примем, что там будут включаться следующие приборы:
— электрический чайник — 700 Вт;
— овощерезка — 400 Вт;
— микроволновая печь 1200 Вт;
— холодильник — 300 Вт;
— морозильник — 160 Вт;
— прочее — 240 Вт.
Суммарная номинальная мощность этих приборов в группе составляет 3000 Вт.
С учетом коэффициента спроса (равного 0,7) номинальная мощность будет равна 3000*0,7 = = 2100 Вт.
Номинальный ток нагрузки в цепи этой розеточной группы будет равен 4,5 х 2,1 = 9,45 А После аналогичных расчетов дополним табл. 3 полученными значениями потребляемой мощности и номинального тока для остальных групп.
В процессе воплощения в жизнь проекта загородного дома может потребоваться изучения множества вопросов, ответы на которые вы можете найти на сайте
Вам также могут быть интересны следующие ремонтные статьи:
Чтобы обезопасить себя при работе с бытовыми электроприборами, необходимо в первую очередь правильно вычислить сечение кабеля и проводки. Потому-что если будет неправильно выбран кабель, это может привести к короткому замыканию, из за чего может произойти возгорание в здание, последствия могут быть катастрофическими.
Это правило относиться и к выбору кабеля для электродвигателей.
Расчёт мощности по току и напряжению
Данный расчет происходит по факту мощности, проделывать его необходимо еще до начала проектирование своего жилища (дома, квартиры).
- Из этого значение зависят кабеля питающие приборы которые подключены к электросети.
- По формуле можно вычислить силу тока, для этого понадобиться взять точное напряжение сети и нагрузку питающихся приборов. Ее величина дает нам понять площадь сечение жил.
Если вам известны все электроприборы, которые в будущем должны питаться от сети, тогда можно легко сделать расчеты для схемы электроснабжение. Эти же расчеты можно выполнять и для производственных целей.
Однофазная сеть напряжением 220 вольт
Формула силы тока I (A — амперы):
I=P/U
Где P — это электрическая полная нагрузка (ее обозначение обязательно указывается в техническом паспорте данного устройства), Вт — ватт;
U — напряжение электросети, В (вольт).
В таблице представлены стандартные нагрузки электроприборов и потребляемый ими ток (220 В).
На рисунке вы можете видет схему устройства электроснабжение дома при однофазном подключении к сети 220 вольт.
Схема приборов при однофазном напряженииКак и показано на рисунке, все потребители должны быть подключены к соответствующим автоматам и счетчику, далее к общему автомату который будет выдерживать общею нагрузку дома. Кабель который будет доводит ток, должен выдерживать нагрузку всех подключенных бытовых приборов.
В таблице ниже показана скрытая проводка при однофазной схеме подключение жилища для подбора кабеля при напряжении 220 вольт.
Как и показано в таблице, сечение жил зависит и от материала из которого изготовлен.
Трёхфазная сеть напряжением 380 В
В трехфазном электроснабжении сила тока рассчитывается по следующей формуле:
I = P /1,73 U
P — потребляемая мощность в ватах;
U — напряжение сети в вольтах.
В техфазной схеме элетропитания 380 В, формула имеет следующий вид:
I = P /657, 4
Если к дому будет проводиться трехфазная сеть 380 В, то схема подключения будет иметь следующий вид.
В таблице ниже представлена схема сечения жил в питающем кабеле при различной нагрузке при трехфазном напряжении 380 В для скрытой проводки.
Для дальнейшего расчета питания в цепях нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:
- электродвигатели;
- индукционные печи;
- дроссели приборов освещения;
- сварочные трансформаторы.
Это явление в обязательном порядке необходимо учитывать при дальнейших расчетах. В более мощных электроприборах нагрузка идет гораздо больше, поэтому в расчетах коэффициент мощности принимают 0,8.
При подсчете нагрузки на бытовые приборы запас мощности нужно брать 5%. Для электросети этот процент становит 20%.
07 Сентября 2017
3655
Подведем итоги по разделу. Обратим внимание на некоторые важные вещи и еще разберем пройденный материал.
1.В какую сторону течет ток?
Если вы обратили внимание, во всех предыдущих статьях, направление тока обозначено от (-) к (+), то есть с отрицательного полюса к положительному. Но в статье про закон Ома, мы указали с положительного полюса к отрицательному. В статье Электрическая проводимость мы выяснили, что носителем заряда являются отрицательно заряженные частицы, под воздействие поля происходит упорядоченное движение отрицательно заряженных частиц.
Таким образом направление движения тока с отрицательного полюса к положительному. Но в схематике (при разборе схем) и в быту используется направление от положительного к отрицательному. Как я понимаю это пришло с древности, пока точно не понимали, как движутся частицы.
наведите или кликните мышкой, для анимации
наведите или кликните мышкой, для анимации
Мы же, при разборе радиоэлементов, чтобы понять, как они работают будем использовать с отрицательного к положительному. А при разборе схем, с положительного полюса к отрицательному.
2. Более простой разбор электрической цепи. Сколько потребляет нагрузка?
Мы теперь знаем, что такое замкнутая электрическая цепь. И как течет по нему ток. Также выяснили, что в цепи существует определенная сила тока, напряжение тока, сопротивление нагрузки или нагрузок, а также возникает выработка мощности. Теперь на практике выясним более подробнее.
Нужно запомнить, что чаще всего в электрической цепи, мы можем изменять напряжение тока и сопротивление нагрузки или нагрузок. К примеру, если у нас регулируемый источник питания, мы можем установить регулятор напряжения к отметке 5 В или 12 В. Если используются батарейки, можем взять 2 “пальчиковых” батарейки, это 3 В. Либо можем использовать 3 батарейки, таким образом уже будет 4,5 В. Что касается нагрузки, мы можем подключить 1 лампу накаливания или 2 и т.д., что приведет к изменению общего сопротивления нагрузки. А сила тока будет подстраиваться согласно закону Ома.
Силу тока нужно представлять себе так: показатель силы тока в цепи — это “потребление” нагрузки. Чем больше сила тока в цепи, чем больше потребляется ток нагрузкой. Давайте рассмотрим на примере, если взять две одинаковые аккумуляторные батареи и присоединить к ним разные нагрузки. Быстрее сядет та батарея, в цепи которой было больше силы тока.
Теперь возникает вопрос, если, меняя нагрузку, мы можем менять “потребление” тока, то значит меняя напряжение, мы также можем повлиять на “потребление” тока, то есть на силу тока. Так и есть, если мы увеличим напряжение, увеличится и ток в нагрузке. Но тут необходимо быть осторожным, так как если слишком большой ток пройдет через нагрузку, он может его испортить, так же наоборот, если недостаток тока, то устройство может не работать или работать плохо.
3. Чем отличается сила тока от мощности тока?
Еще раз вспоминаем, что такое сила тока и мощность тока.
Сила тока — это прохождение частиц за единицу времени, выше мы с вами представили силу тока, как «потребление» нагрузки. К примеру, чтобы зажечь лампочку нужно создать в цепи 0,2 Ампера силы тока. Еще проще говоря, какая нужна сила, чтобы совершить, какое-то действие. (Зажечь лапочку, крутить двигатель, греть электроплиту и т.д.)
Мощность тока – это работа, которая выполняется за единицу времени нагрузкой. То есть, когда вращается двигатель — он совершает работу, когда электроплита греет — он совершает работу, когда лампочка горит – он так же совершает работу. Получается сила тока нам дает возможность выполнить работу, как бы отдавая свою энергию в нагрузку, далее нагрузка совершает ту или иную работу. При этом чем мощнее нагрузка, тем больше нужны заряды, соответственно больше силы тока в цепи. Более мощные нагрузки, выполняют больше работы. К примеру мощные электродвигатели сильнее крутятся, мощные лампочки ярче горят.
Таким образом, сила тока это, потребление тока нагрузкой или необходимое количества тока, для получения выработки мощности нагрузки. Мощность тока, это работа нагрузки за единицу времени. Сила тока и мощность тока взаимосвязаны. Что бы не путаться в голове нужно держать две вещи:
- 1. В источниках питания пишут, показатель силы тока, то есть, сколько он сможет отдать.
- 2. В нагрузках, в электроприборах пишут потребление в мощностях, то есть сколько ему нужно.
наведите или кликните мышкой, для анимации
Электрическая нагрузка — это нагрузка создаваемая в электрической сети включенными для работы в сети электроприемниками, она выражается в единицах тока или мощности. Электроприемники присоединяются к электрическим сетям в одиночку или группами. В состав группы могут входить электроприемники как одинакового, так и различного назначения и режима работы. Режим работы системы электроснабжения одинаковых приемников или их групп зависит от режима работы или сочетаний режимов работы одиночных приемников или их групп.
В процессе работы электроприемников характер нагрузки в сети может оставаться неизменным, изменяться в отдельных или всех фазах, сопровождаться появлением высших гармоник тока или напряжения. В связи с этим нагрузку в сети можно разделить на спокойную симметричную (преобладающее большинство трехфазных электроприемников), резкопеременную, несимметричную и нелинейную.
К специфическим нагрузкам относятся резкопеременная, нелинейная и несимметричная нагрузка.
Резкопеременная нагрузка характеризуется резкими набросами и провалами мощности или тока. Несимметричная нагрузка характеризуется неравномерной загрузкой фаз. Она вызывается однофазными и реже трехфазными приемниками с неравномерной загрузкой фаз. При несимметричной нагрузке в сети возникают токи прямой, обратной и нулевой последовательности. Нелинейная нагрузка создается электроприемниками с нелинейной вольт-амперной характеристикой. При нелинейной нагрузке в сети появляются высшие гармоники тока или напряжения, искажается синусоидальная форма тока или напряжения.
Специфические нагрузки обычно создаются электродуговыми печами, сварочными установками, полупроводниковыми преобразовательными установками. Эти установки, в основном, принадлежат промышленным предприятиям. Учитывая связь электрических сетей промышленных предприятий и сетей сельскохозяйственного назначения через трансформаторные подстанции, можно считать, что специфические нагрузки промышленных предприятий оказывают влияние и на электрические сети сельскохозяйственного назначения.
Электроприемники сельскохозяйственного назначения по мощности подразделяются на три группы:
1. Большой мощности (больше 50 кВт)
2. Средней мощности (от 1 до 50 кВт)
3. Малой мощности (до 1 кВт).
Некоторые приемники используют для работы постоянный ток и токи повышенной (до 400 Гц) или высокой частоты (до 10 кГц).
Во время работы одни группы приемников могут допускать перерывы в электроснабжении, в то же время перерыв в электроснабжении других недопустим. По надежности и бесперебойности электроснабжения электроприемники делятся на три категории.
К первой категории относятся электроприемники и комплексы электроприемников, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, значительный ущерб (повреждение основного оборудования), расстройство технологического процесса. Эти приемники должны иметь возможность обеспечения электроэнергией не менее чем от двух независимых источников питания. Нарушение их электроснабжения допускается только на время автоматического восстановления электроснабжения от второго источника.
Ко второй категории относятся электроприемники и комплексы электроприемников, перерыв электроснабжения которых приводит к массовому недовыпуску продукции, простоям рабочих и механизмов.
Электроснабжение приемников второй категории должно обеспечиваться от двух независимых источников питания. Перерыв в электроснабжении допускается на время, необходимое для автоматического и оперативного переключения на второй источник.
К третьей категории относятся электроприемники и комплексы электроприемников, не попадающие под определения первой и второй категорий. Электроснабжение их может осуществляться от одного источника питания. Перерыв электроснабжения допускается на время проведения восстановительных работ, но не более одних суток.
Потреблением из сети не только активной, но также и реактивной мощности сопровождается работы подавляющего большинства электроприемников. Преобразуется активная мощность в механическую мощность на валу рабочей машины или теплоту, а на создание магнитных полей в электроприемниках расходуется реактивная мощность. Основными ее потребителями являются трансформаторы, асинхронные двигатели, индукционные печи, в которых отстает ток по фазе напряжения. Характеризуется потребление реактивной мощности коэффициентом мощности сosφ, представляющим отношение активной мощности Р к полной мощности S. Является удобным показателем коэффициент реактивной мощности tgφ, который выражает отношение реактивной мощности Q к активной Р (показывает, происходящее потребление реактивной мощности на единицу активной мощности).
Установки с опережающим током являются источниками реактивной мощности. Их применяют для компенсации реактивной нагрузки с индуктивным характером цепи.
Таким образом, нагрузка в электрической сети представляется активными и реактивными нагрузками.
При возникновении электрической нагрузки в распределительной сети, может возникать нагрев токоведущих частей – проводов, кабелей, коммутационных аппаратов, обмоток электродвигателей и трансформаторов. Чрезмерный их нагрев может привести к преждевременному старению изоляции и ее износу. В связи с этим температура токоведущих частей не должна превышать допустимых значений. Сечение проводов и кабелей, коммутационных аппаратов должно выбираться по допустимому току нагрузки. Для определения допустимого (расчетного) тока нагрузки должна быть определена расчетная мощность нагрузки.
За расчетную нагрузку при проектировании и эксплуатации солнечной электростанции принимается такая неизменная во времени нагрузка Iрсч, которая вызывает максимальный нагрев токоведущих и соседних с ними частей, характеризующийся установившейся температурой. Нагрев не должен превышать допустимого значения. Обычно установившееся тепловое состояние для большинства проводов и кабелей наступает за 30 минут (около трех постоянных времени нагрева – 3Т, т. е. постоянная времени нагрева Т = 10 мин). В установках с номинальным током нагрузки более 1000 А установившаяся температура достигается за время не менее 60 мин.
Виды электрической мощности в электроэнергетике
Активная мощность – это среднее значение мощности за полный период. Активная мощностью называют полезную мощность, которая расходуется на совершение работы – преобразование электрической энергии в другие виды энергии (механическую, световую, тепловую). Измеряется в Ваттах (Вт).
Максимальная мощность – это величина мощности, обусловленная составом энергопринимающего оборудования и технологическим процессом потребителя, исчисляемая в
Мгновенная мощность – мощность в данный момент времени. В общем случае это скорость потребления энергии. Различают среднюю мощность за определенный промежуток времени и мгновенную мощность в данный момент времени. В электроэнергетике под понятием мощность понимается средняя мощность.
Полная мощность – это геометрическая сумма активной и реактивной мощности (см. Треугольник мощностей). Измеряется в Вольт-Амперах (ВА).
Присоединенная мощность – это совокупная величина номинальной мощности присоединенных к электрической сети (в том числе и опосредованно) трансформаторов и энергопринимающих устройств потребителя электрической энергии, исчисляемая в МВт.
Расчетная мощность – величина ожидаемой мощности на данном уровне электроснабжения. Данная мощность является важнейшим показателем, поскольку исходя из неё выбирается электрооборудование. Расчетная мощность показывает фактическую величину потребления энергопринимающими устройствами и зависит от конкретного потребителя (многоквартирные дома, различные отрасли производства). Получение величины расчетной мощности представляет собой сложную задачу, в которой должны учитываться различные факторы, такие как сезонность нагрузки, особенности технологии. На основании статистических данных разработаны таблицы коэффициентов использования, по которым величина расчетной мощности находится как произведение установленной мощности на коэффициент использования.
Реактивная мощность – это мощность, которая обусловлена наличием в электрической сети устройств, которые создают магнитное поле (емкости и индуктивности). Интерес представляет не само магнитное поле, а характер прохождения по таким элементам переменного тока, а именно появление фазового сдвига между приложенным напряжением и током в элементах сети, таких как (электродвигатели, трансформаторы, конденсаторы).
Реактивная мощность в сети может быть, как избыточная, так и дефицитная это обусловлено характером установленного оборудования. Избыточная реактивная мощность (преобладает емкостной характер сети) приводит к повышению напряжения сети, в то время как дефицитная (преобладание индуктивного характера сети) к снижению напряжения. Поскольку в распределительных сетях в большинстве случаев индуктивность преобладает над емкостью, т.е. имеется дефицит реактивной мощности, то в сеть искусственно вносятся емкостные элементы, призванные скомпенсировать индуктивный характер сети, как следствие уменьшить фазовый сдвиг между напряжением сети и током, а это значит передать потребителю в большей степени только активную мощность, а реактивную «сгенерировать» на месте. Этот принцип широко используют сетевые компании, обязывающие потребителей устанавливать компенсационные устройства, однако же установка данных устройств нужна в большей степени сетевой компании, а не каждому потребителю в отдельности. Измеряется в Вольт-Амперах реактивных (ВАр).
Трансформаторная мощность – это суммарная мощность трансформаторов энергопринимающих устройств потребителя электрической энергии исчисляемая в МВт.
Установленная мощность – алгебраическая сумма номинальных мощностей электроустановок потребителя. Наибольшая активная электрическая мощность, с которой электроустановка может длительно работать без перегрузки в соответствии с техническими условиями или паспортом на оборудование.
Заявленная мощность – это предельная величина потребляемой в текущий период регулирования мощности, определенная соглашением между сетевой организацией и потребителем услуг по передаче электрической энергии, исчисляемая в мегаваттах.
- Номинальный ток нагрузки
Номинальный ток нагрузки — указанное изготовителем значение тока, которое УЗО-Д может пропускать в продолжительном режиме работы.
Смотри также родственные термины:
3.14 номинальный ток нагрузки IL (rated load current IL): Максимальный длительный номинальный переменный ток (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП.
Определения термина из разных документов: номинальный ток нагрузки IL
Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.
- номинальный ток многопанельного ВРУ
- номинальный ток нагрузки IL
Смотреть что такое «Номинальный ток нагрузки» в других словарях:
номинальный ток нагрузки IL — 3.14 номинальный ток нагрузки IL (rated load current IL): Максимальный длительный номинальный переменный ток (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП. Источник … Словарь-справочник терминов нормативно-технической документации
номинальный ток нагрузки (в УЗИП) — IL Максимальный длительный номинальный переменный ток (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП. [ГОСТ Р 51992 2011 (МЭК 61643 1:2005)] Тематики УЗИП (устройства защиты от импульсных… … Справочник технического переводчика
номинальный ток — 3.18 номинальный ток (rated current): Ток, установленный для выключателя изготовителем. Источник: ГОСТ Р 51324.1 2005: Выключатели для бы … Словарь-справочник терминов нормативно-технической документации
номинальный ток выключателя — Iном Наибольший допустимый по условиям нагрева частей выключателя ток нагрузки в продолжительном режиме, на который рассчитан выключатель [ГОСТ Р 52565 2006] Тематики выключатель, переключатель … Справочник технического переводчика
номинальный ток управления магнитного усилителя — Ток управления магнитного усилителя, необходимый для создания номинального перепада выходной величины, установленного для данного вида магнитных усилителей, при номинальных значениях напряжения и частоты напряжения питания, напряжения нагрузки… … Справочник технического переводчика
номинальный ток многопанельного ВРУ — 3.6.4 номинальный ток многопанельного ВРУ: Номинальный ток вводной панели. Примечание Если на вводе многопанельного ВРУ предусматривается два вводных аппарата на один и тот же номинальный ток для обеспечения возможности перевода всей… … Словарь-справочник терминов нормативно-технической документации
Номинальный ток управления магнитного усилителя — 40. Номинальный ток управления магнитного усилителя Rated control current of transductor Ток управления магнитного усилителя, необходимый для создания номинального перепада выходной величины, установленного для данного вида магнитных усилителей,… … Словарь-справочник терминов нормативно-технической документации
номинальный — 3.7 номинальный: Слово, используемое проектировщиком или производителем в таких словосочетаниях, как номинальная мощность, номинальное давление, номинальная температура и номинальная скорость. Примечание Следует избегать использования этого слова … Словарь-справочник терминов нормативно-технической документации
ток — ((continuous) current carrying capacity ampacity (US)): Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их… … Словарь-справочник терминов нормативно-технической документации
коэффициент циклической токовой нагрузки (кабелей) — Коэффициент, на который может быть умножен номинальный ток установившегося режима, соответствующий коэффициенту нагрузки 100 %, для получения допустимого пикового значения тока в течение суточного цикла, при котором температура токопроводящей… … Справочник технического переводчика
ток нагрузки — это… Что такое ток нагрузки?
ток нагрузки — EN load current current flowing through the line conductor/s [IEC 61557 13, ed. 1.0 (2011 07)] load current the r.m.s. value of the current in any winding under service conditions [IEC 60076 1, ed. 3.0 (2011 04)] load current current to which the … Справочник технического переводчика
ток нагрузки — apkrovos srovė statusas T sritis automatika atitikmenys: angl. load current vok. Belastungsstrom, m; Laststrom, m rus. нагрузочный ток, m; ток нагрузки, m pranc. courant de charge, m … Automatikos terminų žodynas
ток нагрузки — apkrovos srovė statusas T sritis fizika atitikmenys: angl. load current vok. Belastungsstrom, m; Laststrom, m rus. нагрузочный ток, m; ток нагрузки, m pranc. courant de charge, m … Fizikos terminų žodynas
Номинальный ток нагрузки — указанное изготовителем значение тока, которое УЗО Д может пропускать в продолжительном режиме работы. Источник: НПБ 243 97*: Устройства защитного отключения. Требования пожарной безопасности. Методы испытаний Смотри также родственные термины … Словарь-справочник терминов нормативно-технической документации
критический ток нагрузки — 2.5.16 критический ток нагрузки : Значение тока отключения в пределах диапазона условий эксплуатации, при котором время дуги заметно увеличивается. Источник: ГОСТ Р 50030.1 2000: Аппаратура распределения и управления низковольтная. Часть 1. Общие … Словарь-справочник терминов нормативно-технической документации
номинальный ток нагрузки (в УЗИП) — IL Максимальный длительный номинальный переменный ток (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП. [ГОСТ Р 51992 2011 (МЭК 61643 1:2005)] Тематики УЗИП (устройства защиты от импульсных… … Справочник технического переводчика
номинальный ток нагрузки IL — 3.14 номинальный ток нагрузки IL (rated load current IL): Максимальный длительный номинальный переменный ток (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП. Источник … Словарь-справочник терминов нормативно-технической документации
выходной ток нагрузки — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN load output current … Справочник технического переводчика
критический ток нагрузки — Значение тока отключения в пределах диапазона условий эксплуатации, при котором время дуги заметно увеличивается. [ГОСТ Р 50030.1 2000 (МЭК 60947 1 99)] EN critical load current value of breaking current, within the range of service conditions,… … Справочник технического переводчика
полный ток нагрузки — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN entire load current … Справочник технического переводчика
ток — ((continuous) current carrying capacity ampacity (US)): Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их… … Словарь-справочник терминов нормативно-технической документации
ток нагрузки — со всех языков на русский
ток нагрузки — EN load current current flowing through the line conductor/s [IEC 61557 13, ed. 1.0 (2011 07)] load current the r.m.s. value of the current in any winding under service conditions [IEC 60076 1, ed. 3.0 (2011 04)] load current current to which the … Справочник технического переводчика
ток нагрузки — apkrovos srovė statusas T sritis automatika atitikmenys: angl. load current vok. Belastungsstrom, m; Laststrom, m rus. нагрузочный ток, m; ток нагрузки, m pranc. courant de charge, m … Automatikos terminų žodynas
ток нагрузки — apkrovos srovė statusas T sritis fizika atitikmenys: angl. load current vok. Belastungsstrom, m; Laststrom, m rus. нагрузочный ток, m; ток нагрузки, m pranc. courant de charge, m … Fizikos terminų žodynas
Номинальный ток нагрузки — указанное изготовителем значение тока, которое УЗО Д может пропускать в продолжительном режиме работы. Источник: НПБ 243 97*: Устройства защитного отключения. Требования пожарной безопасности. Методы испытаний Смотри также родственные термины … Словарь-справочник терминов нормативно-технической документации
критический ток нагрузки — 2.5.16 критический ток нагрузки : Значение тока отключения в пределах диапазона условий эксплуатации, при котором время дуги заметно увеличивается. Источник: ГОСТ Р 50030.1 2000: Аппаратура распределения и управления низковольтная. Часть 1. Общие … Словарь-справочник терминов нормативно-технической документации
номинальный ток нагрузки (в УЗИП) — IL Максимальный длительный номинальный переменный ток (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП. [ГОСТ Р 51992 2011 (МЭК 61643 1:2005)] Тематики УЗИП (устройства защиты от импульсных… … Справочник технического переводчика
номинальный ток нагрузки IL — 3.14 номинальный ток нагрузки IL (rated load current IL): Максимальный длительный номинальный переменный ток (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП. Источник … Словарь-справочник терминов нормативно-технической документации
выходной ток нагрузки — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN load output current … Справочник технического переводчика
критический ток нагрузки — Значение тока отключения в пределах диапазона условий эксплуатации, при котором время дуги заметно увеличивается. [ГОСТ Р 50030.1 2000 (МЭК 60947 1 99)] EN critical load current value of breaking current, within the range of service conditions,… … Справочник технического переводчика
полный ток нагрузки — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN entire load current … Справочник технического переводчика
ток — ((continuous) current carrying capacity ampacity (US)): Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их… … Словарь-справочник терминов нормативно-технической документации