что это такое, принцип работы, разновидности, обмотка
Начиная с 19 века, трансформаторы начали приобретать все большее значение в электрике и электронике. Они остаются до сих пор обязательными элементами многих схем и есть практически в любом устройстве, которое потребляет электрический ток.
Принцип его работы основан на свойствах индукции. Трансформатор – это прибор, позволяющий регулировать ток, понижая его или наоборот, понижая. Был придуман он Фарадеем, почти 170 лет назад. Основные элементы, из которых состоит трансформатор – обмотки, которые и влияют на силу тока, тем самым изменяя его до требуемых значений.
В данной стать разобраны основные вопросы работы и устройства трансформатора. Также статье есть видеоролик и скачиваемый файл по выбранной тематике.
Трансформатор.
Что такое трансформатор
Трансформатор – это электромагнитный аппарат, предназначенный для преобразования переменного тока одного напряжения в переменный ток другого напряжения при той же частоте. Действие трансформатора основано на использовании явления электромагнитной индукции.
Переменный электрический ток (ток, который изменяется по величине и по направлению) наводит в первичной катушке переменное магнитное поле. Это переменное магнитное поле, наводит переменное напряжение во вторичной обмотке. Величина напряжения ЭДС зависит от числа витков в катушке и от скорости изменения магнитного поля.
Отношение числа витков первичной и вторичной обмоток определяет коэффициент трансформации:
k = w1 / w2; где:
- w1 — число витков в первичной обмотке;
- w2 — число витков во вторичной обмотке.
Если число витков в первичной обмотке больше чем во вторичной — это понижающий трансформатор.
Если число витков в первичной обмотке меньше, чем во вторичной — это повышающий трансформатор.
Один и тот же трансформатор может быть как понижающим, так и повышающим, в зависимости от того на какую обмотку подается переменное напряжение.
Трансформаторы без сердечника или с сердечником из высокочастотного феррита или альсифера — это высокочастотные трансформаторы ( частота выше 100 килогерц). Трансформаторы с ферромагнитным сердечником (сталь, пермаллой, феррит) – это низкочастотные трансформаторы (частота ниже 100 килогерц)
Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.
Высокочастотные трансформаторы используются в устройствах техники электросвязи, радиосвязи и др. Низкочастотные трансформаторы используются в усилительной технике звуковых частот, в телефонной связи. Особое место трансформаторы со стальным (набор из стальных листов) сердечником занимают в электротехнике. Развитие электроэнергетики напрямую зависит от мощных, силовых трансформаторов. Мощности силовых трансформаторов имеют величины от нескольких ватт до сотен тысяч киловатт и выше. Классификация типов трансформаторов представлена в таблице ниже.
Таблица характеристик трансформаторов по их основным типам.
Что такое силовой трансформатор
На замкнутый сердечник (магнитопровод), набранный из стальных листов, надевают две или больше, обмоток, одна из которых соединяется с источником переменного тока. Другая (или другие) обмотка соединяется с потребителем электрического тока – нагрузкой. Переменный ток, проходящий по первичной обмотке, создает в стальном сердечнике магнитный поток, который наводит в каждом витке обмотки – катушки переменное напряжение. Напряжения всех витков складываются в выходное напряжение трансформатора. Форма сердечника – магнитопровода, может быть Ш – образной, О – образной и тороидальной, в виде тора. Таким образом в силовом трансформаторе электрическая мощность из первичной обмотки передается во вторичную обмотку через магнитный поток в магнитопроводе.
Потребителей электрической энергии очень много: электрическое освещение, электронагреватели, радио и теле аппаратура, электродвигатели и многое другое. И все эти приборы требуют различные напряжения (переменные и постоянные) и разные мощности. Проблема эта легко решается с помощью трансформатора. Из бытовой сети с переменным напряжением 220 вольт можно получить переменное напряжение любой величины и , если необходимо, преобразовать его в постоянное напряжение.
Коэффициент полезного действия трансформатора довольно велик, от 0,9 до 0,98 и зависит от потерь в магнитопроводе и от магнитных полей рассеяния.
От величины электрической мощности Р зависит площадь поперечного сечения магнитопровода S.
По значению площади S определяется, при расчетах трансформатора, количество витков w на 1 вольт:
w = 50 / S.
Мощность трансформатора Рс выбирается из требуемой величины нагрузки Рн плюс величина потерь в сердечнике.
При расчете трансформатора с определенной степенью точности можно считать, что мощность нагрузки во вторичной обмотке Pн = Uн * Iн и мощность потребляемая из сети в первичной обмотке Pc = Uc * Ic приблизительно равны. Если потерями в сердечнике пренебречь, то получается равенство: k = Uс / Uн = Iн / Iс.
Трансформаторы и их применение/
Трансформаторы и их применение
Трансформатор – это устройство, служащее для повышения или понижения переменного напряжения без изменения его частоты и практически без потерь мощности. Трансформатор состоит из двух или более катушек, надетых на общий сердечник. Катушка, которая подключается к источнику переменного напряжения, называется первичной, а катушка, к которой присоединяется нагрузка (потребители электрической энергии), – вторичной. Сердечники трансформаторов изготавливаются из электротехнической стали и набираются из отдельных изолированных друг от друга пластин (для уменьшения потерь энергии вследствие возникновения в сердечнике вихревых токов).
Катушки трансформатора, как правило, содержат разное количество витков, причем большее напряжение оказывается приложено к катушке с большим числом витков. Если трансформатор используется для повышения напряжения, то обмотка с меньшим числом витков подключается к источнику напряжения, а к обмотке с большим числом витков присоединяется нагрузка. Для понижения напряжения все делается наоборот. При этом не следует забывать, что подавать на первичную обмотку можно напряжение не больше номинального (того, на которое она рассчитана).
Коэффициентом трансформации называют отношение числа витков в первичной обмотке к числу витков во вторичной обмотке. Он равен также отношению ЭДС в обмотках. При отсутствии потерь в обмотках коэффициент трансформации равен отношению напряжений на зажимах обмоток: k=U1/U2. Для понижающего трансформатора коэффициент трансформации больше 1, а для повышающего – меньше 1. Принцип работы трансформатора основан на явлении электромагнитной индукции. При протекании переменного тока через первичную катушку вокруг нее возникает перемененное магнитное поле и магнитный поток, который пронизывает также и вторую катушку. В результате во вторичной катушке появляется вихревое электрическое поле и на ее зажимах возникает ЭДС индукции.
Трансформатор характеризуется коэффициентом полезного действия, равным отношению мощности, выделяющейся во вторичной катушке, к мощности, потребляемой первичной катушкой от сети. У хороших трансформаторов КПД составляет 99 – 99,5%. Важным свойством трансформатора является его способность преобразовывать сопротивление нагрузки. Рассмотрим трансформатор с КПД приблизительно равным 100%. В этом случае мощность, выделяющаяся во вторичной цепи трансформатора, будет равна мощности, потребляемой первичной обмоткой от источника напряжения. Для такого трансформатора мощность, потребляемая от источника напряжения, будет чисто активной. Мощность в первичной цепи трансформатора P1=(U12)/R1, а во вторичной цепи P2=(U22)/R2.
Так как P1=P2 и U1=kU2 , то R1=k2R2.
Таким образом, нагрузка сопротивлением R2, подключаемая к источнику переменного напряжения через трансформатор, по мощности будет эквивалентна нагрузке сопротивлением R1, подключаемой без трансформатора. Для регулировки переменного напряжения широко применяются лабораторные автотрансформаторы. Автотрансформаторы рассчитаны на подключение к сети переменного напряжения 220 В или 127 В. Как правило, выходное напряжение автотрансформатора регулируется плавно до 250 В.
Обмотка трансформатора выполнена изолированным проводом в один слой. На участках обмотки, которых касается подвижный контакт с угольной вставкой, изоляция очищена. При перемещении контакта угольная вставка закорачивает виток провода. Однако вследствие небольшого напряжения на одном витке и заметного сопротивления угольной вставки через замкнутый виток протекает допустимый ток.
Первичная обмотка автотрансформатора является частью его вторичной обмотки и поэтому между первичной и вторичной обмоткой трансформатора имеется гальваническая связь. К вторичной обмотке автотрансформатора нельзя непосредственно подключать потребители, один из проводов которых может оказаться соединенным с землей. Такое подключение приведет к аварии или несчастному случаю. При работе с автотрансформатором запрещается заземлять вторичную цепь. Рассмотрим кратко простейший расчет маломощных трансформаторов бытовой радиоаппаратуры.
Мощность трансформатора (в Вт) численно равна квадрату площади (в см2) поперечного сечения среднего стержня магнитопровода. Зная номинальную мощность трансформатора, можно найти ток в первичной обмотке при номинальной нагрузке во вторичных обмотках. Диаметр провода обмотки выбирается из расчета (2,5-3)А/мм2 поперечного сечения провода. Для стандартных магнитопроводов, применяемых для изготовления трансформаторов, число витков на 1 вольт примерно равно частному от деления 50 на площадь поперечного сечения центрального стержня магнитопровода, выраженную в см2. Однако в зависимости от качества магнитопровода коэффициент может изменяться от 35 до 65.
Трансформатор.
Полное сопротивление катушки индуктивности с ферромагнитным сердечником зависит от силы протекающего через нее тока. Сопротивление катушки в зависимости от силы протекающего тока сначала увеличивается, достигает максимального значения, а затем уменьшается. Нелинейное возрастание тока холостого хода в зависимости от приложенного к первичной обмотке напряжения начинается примерно с 0,8Uном. Номинальное напряжение первичной обмотки трансформатора выбирают так, чтобы ток холостого хода составлял 5-10% от номинального тока. При напряжении 1,1Uном ток холостого хода не должен превышать 20-25% номинального тока нагруженного трансформатора.
Материал в тему: как устроен тороидальный трансформатор и в чем его преимущества.
Режимы работы трансформатора
Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены. Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.
В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора. Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.
Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны, поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения.
Режимы работы трансформатора.
Для трансформатора в режиме активной нагрузки справедливо равенство:
U_2/U_1 =N_2/N_1 , где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке. Если U2 > U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.
Виды трансформаторов
В зависимости от своего применения и характеристик трансформаторы бывают нескольких видов. К примеру, в электрических сетях населенных пунктов, промышленных предприятий применяют трансформаторы силовые, основной задачей которых является понижение напряжения в сети до общепринятого – 220 В. Если трансформатор предназначен для регулировки тока, он называется трансформатор тока, а если устройство регулирует напряжение – то это трансформатор напряжения. В обычных сетях применяются однофазные трансформаторы, в сетях на три провода (фаза, ноль, заземление) нужен трехфазный трансформатор. Бытовой трансформатор, 220В предназначается для защиты бытовой техники от перепадов напряжения.
Виды трансформаторов
Сварочный трансформатор предназначен для разделения сварочной и силовой сети, для понижения напряжения в сети до нужной для сварки величины. Масляный трансформатор предназначается для использования в сетях с напряжением выше 6 000 Вольт. Конструкция трансформатора включает в себя: магнитопровод, обмотки, бак, а также крышки с вводами. Магнитопровод состоит из 2 листов электротехнической стали, которые изолированы друг от друга, обмотки, как правило, делают из алюминиевого или медного провода. Регулировка напряжения производится с помощью ответвления, которое соединяется с переключателем. Существует два вида переключения ответвлений: переключение под нагрузкой — РПН (регулирование под нагрузкой), а также без нагрузки, после того, как трансформатор отключен от внешней сети (ПБВ, или переключение без возбуждения). Большее распространение получил второй способ регулировки напряжения.
Говоря о видах трансформаторов, нельзя не рассказать об электронном трансформаторе. Электронный трансформатор представляет собой специализированный источник питания, который служит для преобразования напряжения 220В в 12 (24)В, при большой мощности. Электронный трансформатор намного меньше обычного, при тех же самых параметрах нагрузки.
Заключение
В данной статье были рассмотрены основные особенности трансформаторов. Больше информации можно найти в скачиваемой версии учебника по электромеханике Что такое трансформатор. В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:
www.domasniyelektromaster.ru
www.td-automatika.ru
www.ivatv.narod.ru
www.etcenter.ru
www.www.joyta.ru
ПредыдущаяТрансформаторыТрансформаторы для светодиодных лент, мнение специалистов
СледующаяТрансформаторыЧто такое трансформаторная подстанция
Измерительный трансформатор тока. Что это и зачем он нужен?
Введение
Одновременно с входом в нашу жизнь электричества остро встали некоторые вопросы, тесно связанные с его эксплуатацией. Одним из них стал вопрос организации токовой защиты цепи. Появилась необходимость в разделении силовых цепей и цепей защиты, а также в создании и организации сложных защит, которые невозможно собрать, используя аппараты только в силовых цепях.
Дело в том, что защита электропроводки в обычных квартирах сводится к применению автоматических выключателей или предохранителей, а защита от поражения электрическим током — к применению УЗО или АВДТ. Вышеперечисленные аппараты встраиваются непосредственно в защищаемую цепь и, как правило, не имеют дистанционных органов управления.
В сетях с более высокими мощностями и токами, где уже требуется релейная защита, работающая по определенным алгоритмам, (например, АПВ — автоматическое повторное включение) требуется организовать питание целого ряда устройств и реле цепей защиты. Для этого применяется
Технические характеристики и режим работы
Основным параметром трансформатора тока является его коэффициент трансформации, то есть кратность первичного тока ко вторичному. Ряд первичных токов включает следующие значения: 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000; 4000; 5000 (А).
С целью унификации и стандартизации всего выпускаемого измерительного и защитного оборудования существует стандартная величина вторичного тока — это 5 А. Соответственно, коэффициент трансформации определяется так: Kт= 400/5= 80.
Трансформатор тока работает в режиме близкому к короткому замыканию, т.к. сумма сопротивлений последовательно подключенных приборов защиты не превышает несколько десятых долей Ом.
Не менее важной задачей, которую как раз и решает трансформатор тока (ТТ) является отделение вторичных цепей измерения и защиты от силовых цепей высокого напряжения и, следовательно, обеспечение безопасности работы с устройствами измерения и защиты.
Применение
Кроме основных задач, описанных выше, трансформаторы тока применяются при косвенном подключении счетчиков электрической энергии. Это обусловлено тем, что счетчики при прямом включении в сеть с большими рабочими токами выйдут из строя. Поэтому возникает необходимость в снижении измеряемых рабочих токов до приемлемых величин, например, до стандартных 5 Ампер.
Современный рынок предлагает решения совместимые как с проводами, так и с шинами.
Важное замечание
Размыкание вторичной обмотки трансформатора тока не допускается при протекании рабочих токов в первичной обмотке. При разомкнутой вторичной цепи ТТ ЭДС может достигать 1000 В и более, что крайне опасно для обслуживающего персонала. Поэтому при замене аппарата, включенного в цепь трансформатора тока, необходимо сначала замкнуть накоротко (шунтировать) измерительную обмотку ТТ, а затем производить отключение вышедшего из строя прибора. Поэтому измерительную (вторичную) обмотку трансформатора тока необходимо заземлить для исключения появления высокого напряжения на выводах И1 И2.
Трансформаторы тока выполняют не только важные задачи отделения защитных цепей от силовых и унификации оборудования, но и применяются при подключении счетчиков электроэнергии в сетях с большими рабочими токами, где прямое включение невозможно.
Трансформатор тока принцип работы — Всё о электрике
Трансформаторы тока назначение и принцип действия
В электротехнике довольно часто возникает необходимость измерения величин с большими значениями. Для решения этой задачи применяются трансформаторы тока, назначение и принцип действия которых делает возможным проведение любых измерений. С этой целью выполняется последовательное включение первичной обмотки устройства в цепь с переменным током, значение которого необходимо измерить. Вторичная обмотка подключается к измерительным приборам. Между токами в первичной и вторичной обмотке существует определенная пропорция. Все трансформаторы этого типа отличаются высокой точностью. В их конструкцию входит две и более вторичных обмоток, к которым подключаются защитные устройства, измерительные средства и приборы учета.Что такое трансформатор тока?
К трансформаторам тока относятся устройства, в которых вторичный ток, применяемый для измерений, находится в пропорциональном соотношении с первичным током, поступающим из электрической сети.
Включение в цепь первичной обмотки осуществляется последовательно с токопроводом. Подключение вторичной обмотки выполняется на какую-либо нагрузку в виде измерительных приборов и различных реле. Между токами обеих обмоток возникает пропорциональная зависимость, соответствующая количеству витков. В трансформаторных устройствах высокого напряжения выполняется изоляция между обмотками из расчета на полное рабочее напряжение. Как правило производится заземление одного из концов вторичной обмотки, поэтому потенциалы обмотки и земли будут примерно одинаковыми.
Все трансформаторы тока предназначены для выполнения двух основных функций: измерения и защиты. В некоторых устройствах обе функции могут совмещаться.
- Измерительные трансформаторы передают полученную информацию к подключенным измерительным приборам. Они устанавливаются в цепях с высоким напряжением, в которые невозможно включить напрямую приборы для измерений. Поэтому только во вторичную обмотку трансформатора выполняется подключение амперметров, счетчиков, токовых обмоток ваттметров и прочих приборов учета. В результате, трансформатор преобразует переменный ток даже очень высокого значения, в переменный ток с показателями, наиболее приемлемыми для использования обычных измерительных приборов. Одновременно обеспечивается изоляция измерительных приборов от цепей с высоким напряжением, повышается электробезопасность обслуживающего персонала.
- Защитные трансформаторные устройства в первую очередь передают полученную измерительную информацию на устройства управления и защиты. С помощью защитных трансформаторов, переменный ток любого значения преобразуется в переменный ток с наиболее подходящим значением, обеспечивающим питание устройств релейной защиты. Одновременно выполняется изоляция реле, к которых имеется доступ персонала, от цепей высокого напряжения.
Назначение трансформаторов
Трансформаторы тока относятся к категории специальных вспомогательных приборов, используемых совместно с различными измерительными устройствами и реле в цепях переменного тока. Главной функцией таких трансформаторов является преобразование любого значения тока до величин, наиболее удобных для проведения измерений, обеспечения питания отключающих устройств и обмоток реле. За счет изоляции приборов, обслуживающий персонал оказывается надежно защищен от поражения током высокого напряжения.
Измерительные трансформаторы тока предназначены для электрических цепей с высоким напряжением, когда отсутствует возможность прямого подключения измерительных приборов. Их основное назначение заключается в передаче полученных данных об электрическом токе на измерительные устройства, подключаемые к вторичной обмотке.
Немаловажной функцией трансформаторов является контроль над состоянием электрического тока в цепи, к которой они подключены. Во время подключения к силовому реле, выполняются постоянные проверки сетей, наличие и состояние заземления. Когда ток достигает аварийного значения, включается защита, отключающая все используемое оборудование.
Принцип работы
Принцип работы трансформаторов тока основан на законе электромагнитной индукции. Напряжение из внешней сети поступает на силовую первичную обмотку с определенным количеством витков и преодолевает ее полное сопротивление. Это приводит к появлению вокруг катушки магнитного потока, улавливаемого магнитопроводом. Данный магнитный поток располагается перпендикулярно по отношению к направлению тока. За счет этого потери электрического тока в процессе преобразования будут минимальными.
При пересечении витков вторичной обмотки, расположенных перпендикулярно, происходит активация магнитным потоком электродвижущей силы. Под влиянием ЭДС появляется ток, который вынужден преодолевать полное сопротивление катушки и выходной нагрузки. Одновременно на выходе вторичной обмотки наблюдается падение напряжения.
Классификация трансформаторов тока
Все трансформаторы тока можно классифицировать, в зависимости от их особенностей и технических характеристик:
- По назначению. Устройства могут быть измерительными, защитными или промежуточными. Последний вариант используется при включении измерительных приборов в токовые цепи релейной защиты и других аналогичных схемах. Кроме того, существуют лабораторные трансформаторы тока, отличающиеся высокой точностью и множеством коэффициентов трансформации.
- По типу установки. Существуют трансформаторные устройства для наружной и внутренней установки, накладные и переносные. Некоторые виды приборов могут встраиваться в машины, электрические аппараты и другое оборудование.
- В соответствии с конструкцией первичной обмотки. Устройства разделяются на одновитковые или стержневые, многовитковые или катушечные, а также шинные, например, ТШ-0,66.
- Внутренняя и наружная установка трансформаторов предполагает проходные и опорные способы монтажа этих устройств.
- Изоляция трансформаторов бывает сухая, с применением бакелита, фарфора, и других материалов. Кроме того, применяется обычная и конденсаторная бумажно-масляная изоляция. В некоторых конструкциях используется заливка компаундом.
- По количеству ступеней трансформации, устройства могут быть одно- или двухступенчатыми, то есть, каскадными.
- Номинальное рабочее напряжение трансформаторов может быть до 1000 В или более 1000 В.
Все характерные классификационные признаки присутствуют в условных обозначениях трансформаторов тока, состоят из определенных буквенных и цифровых символов.
Параметры и характеристики
Каждый трансформатор тока обладает индивидуальными параметрами и техническими характеристиками, определяющими область применения этих устройств.
Номинальный ток. Позволяет устройству работать в течение длительного времени без перегрева. В таких трансформаторах имеется значительный запас по нагреву, а нормальная работа возможна при перегрузках до 20%.
Номинальное напряжение. Его значение должно обеспечивать нормальную работу трансформатора. Именно этот показатель влияет на качество изоляции между обмотками, одна из которых находится под высоким напряжением, а другая заземлена.
Коэффициент трансформации. Представляет собой отношение между токами в первичной и вторичной обмотке и определяется по специальной формуле. Его действительное значение будет отличаться от номинального в связи с определенными потерями в процессе трансформации.
Токовая погрешность. Возникает в трансформаторе под влиянием тока намагничивания. Абсолютное значение первичного и вторичного тока различается между собой как раз на эту величину. Ток намагничивания приводит к созданию в сердечнике магнитного потока. При его возрастании, токовая погрешность трансформатора также увеличивается.
Номинальная нагрузка. Определяет нормальную работу устройства в своем классе точности. Она измеряется в Омах и в некоторых случаях может заменяться таким понятием, как номинальная мощность. Значение тока является строго нормированным, поэтому значение мощности трансформатора полностью зависит лишь от нагрузки.
Номинальная предельная кратность. Представляет собой кратность первичного тока к его номинальному значению. Погрешность такой кратности может достигать до 10%. Во время расчетов сама нагрузка и ее коэффициенты мощности должны быть номинальными.
Максимальная кратность вторичного тока. Представлена в виде отношения максимального вторичного тока и его номинального значения, когда действующая вторичная нагрузка является номинальной. Максимальная кратность связана со степенью насыщения магнитопровода, при котором первичный ток продолжает увеличиваться, а значение вторичного тока не меняется.
Возможные неисправности трансформаторов тока
У трансформатора тока, включенного под нагрузку, иногда возникают неисправности и даже аварийные ситуации. Как правило, это связано с нарушениями электрического сопротивления изоляции обмоток, снижением их проводимости под влиянием повышенных температур. Негативное влияние оказывают случайные механические воздействия или некачественно выполненный монтаж.
В процессе работы оборудования наиболее часто происходит повреждение изоляции, вызывающее межвитковые замыкания обмоток, что существенно снижает передаваемую мощность. Токи утечки могут появиться в результате случайно созданных цепей, вплоть до возникновения короткого замыкания.
С целью предупреждения аварийных ситуаций, специалистами с помощью тепловизоров периодически проверяется вся действующая схема. Это позволяет своевременно устранить дефекты нарушения контактов, снижается перегрев оборудования. Наиболее сложные испытания и проверки проводятся в специальных лабораториях.
Принцип действия ТТ и их назначение
В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.
Назначение трансформаторов тока: преобразование тока и разделение цепей
Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.
- Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
- Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.
Из чего состоит ТТ, принцип его работы
Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.
Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.
Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.
В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.
Коэффициент трансформации идеального ТТ
В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной – F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.
Коэффициент трансформации реального ТТ
В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:
- создание магнитного потока в магнитопроводе
- нагрев и перемагничивание магнитопровода
- нагрев проводов вторичной обмотки и цепи
К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам
В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.
Режимы работы трансформаторов тока
У ТТ существуют два основных режима работы – установившийся и переходный.
В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.
Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.
ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.
Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора
Существуют существенные отличия в работе ТТ и ТН.
Во-первых, первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.
Во-вторых, ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.
В-третьих, не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.
Сохраните в закладки или поделитесь с друзьями
Устройство и принцип работы трансформатора тока
Трансформатор тока представляет собой измерительное устройство, первичная обмотка (высокая сторона) которого подключается к источнику переменного электрического тока, а его вторичная обмотка (низкая сторона) подключается к приборам измерения или к приборам защиты с малым сопротивлением.
Если точнее, то первичная обмотка любого трансформатора тока включается только последовательно в силовую электрическую цепь, по которой протекает электрическая нагрузка. К вторичной обмотке или нескольким вторичным обмоткам подключаются защитные приборы, измерительные приборы и приборы учёта электроэнергии.
Принцип действия трансформатора тока
Работа обычного трансформатора тока базируется на физическом явлении электромагнитной индукции. Это значит, что при подаче напряжения на первичную обмотку, в её витках будет проходить переменный ток, образующий впоследствии появление переменного магнитного потока. Появившийся магнитный поток проходит по сердечнику и пронизывает витки всех обмоток трансформатора, таким образом, индуцируя в них электродвижущие силы (э.д.с.). В случае закорачивания вторичной обмотки или же при включении нагрузки в её цепь, под воздействием э.д.с. в витках обмотки начнёт протекать вторичный ток.
Назначение трансформаторов
Общее назначение трансформаторов тока – преобразование (снижение) большой величины переменного тока до таких значений, которые будут удобны и безопасны для измерения.
Трансформаторы тока позволяют безопасно измерять большие электрические нагрузки в сетях переменного тока. Это становится возможным благодаря изолированию первичной обмотки и вторичной обмотки друг от друга.
При изготовлении к трансформаторам тока предъявляются строгие требования по качеству изоляции и по точности измерений электрических нагрузок.
Конструкция трансформатора тока
Трансформатор тока – это устройство, основой которого является сердечник, шихтованный из особой трансформаторной стали. На сердечник (магнитопровод) наматываются витки одной, двух или даже нескольких вторичных обмоток, электрически изолированных друг от друга, а также и от сердечника.
Что касается первичной обмотки, то она может представлять собой катушку, также намотанную на сердечник измерительного трансформатора. Однако чаще всего первичная обмотка представляет собой алюминиевую или медную шину (пластину). Не менее часто в трансформаторе тока вообще отсутствует первичная обмотка как таковая. В этом случае функцию первичной обмотки выполняет силовой проводник, проходящий через кольцо трансформатора тока. Это может быть отдельная жила электрического кабеля.
Вся конструкция трансформатора тока помещается в корпус для защиты от механических повреждений.
Коэффициент трансформации
Основной технической характеристикой каждого трансформатора тока является номинальный коэффициент трансформации. Его значение указывается на специальной табличке (шильдике) в виде отношения номинального значения первичного тока к номинальному значению вторичного тока.
Например, указанное значение 400/5 означает, что при первичной нагрузке в 400А, во вторичной цепи должен протекать ток в 5А и, следовательно, коэффициент трансформации будет равен 80. Если на шильдике указано значение 50/1, то коэффициент трансформации будет равен 50.
Практически у каждого трансформатора тока есть определённая погрешность. В зависимости от её величины каждому трансформатору тока присваивается свой класс точности.
Классификация трансформаторов
Существует несколько признаков, по которым трансформаторы тока делятся.
По своему назначению они бывают измерительными, защитными, а также промежуточными и лабораторными.
- Измерительные выполняют функцию измерения. К ним подключаются приборы, такие как амперметр или приборы учёта (счётчики электрической энергии).
- Защитные трансформаторы тока выполняют функцию электрической защиты совместно с устройствами защиты, поэтому к ним подключаются устройства, такие как реле тока или современные цифровые устройства высоковольтной защиты.
- Промежуточные трансформаторы тока применяют в токовых цепях релейной защиты.
- Лабораторные устройства обладают очень высокой степенью точности измерений. Также у них может быть несколько разных коэффициентов трансформации.
По виду установки трансформаторы тока бывают наружными и внутренними, а также встроенными внутрь электрооборудования (внутри высоковольтных выключателей, внутри питающих силовых трансформаторов и т.д.). Кроме того трансформаторы тока бывают накладными и переносными. Переносные трансформаторы используют для измерений токовой нагрузки в лабораторных условиях.
По исполнению первичной обмотки бывают одновитковые, многовитковые и шинные трансформаторы тока. По количеству ступеней трансформации – одно- и двухступенчатые.
По напряжению трансформаторы тока делятся на две группы – устройства с напряжением до 1000В и устройства с напряжением выше 1000В.
Кроме обычных измерительных трансформаторов тока, существуют и специальные, такие как трансформаторы тока нулевой последовательности.
{SOURCE}
ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ ТОКА И НАПРЯЖЕНИЯ — Студопедия
ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ ТОКА. ОСНОВНЫЕ ПОНЯТИЯ
Трансформаторы тока служат для преобразования тока любого значения и напряжения в ток, удобный для измерения стандартными приборами (5 А), питания токовых обмоток реле, отключающих устройств, а также для изолирования приборов и обслуживающего персонала от высокого напряжения.
Трансформатор тока имеет замкнутый магнитопровод 2 и две обмотки − первичную 1 и вторичную 3 (рис. 5.1). Первичная обмотка включается последовательно в цепь измеряемого тока I1, ко вторичной обмотке присоединяются измерительные приборы, обтекаемые током I2.
Рис. 5.1. Схема включения трансформатора тока:
1 – первичная обмотка; 2 – магнитопровод; 3 – вторичная обмотка
Трансформатор тока характеризуется номинальным коэффициентом трансформации
К1 = I1ном / I2ном.,
где I1ном и I2ном.− номинальные значения первичного и вторичного тока соответственно.
Значения номинального вторичного тока приняты равными 5 и 1 А. Коэффициент трансформации трансформаторов тока не является строго постоянной величиной и может отличаться от номинального значения вследствие погрешности, обусловленной наличием тока намагничивания.
Токовая погрешность определяется по выражению:
.
Погрешность трансформатора тока зависит от его конструктивных особенностей: сечения магнитопровода, магнитной проницаемости материала магнитопровода, средней длины магнитного пути, значения I1w1. В зависимости от предъявляемых требований выпускаются трансформаторы тока с классами точности 0,2; 0,5; 1; 3; 10 (Д, Р, З).
Указанные цифры представляют собой токовую погрешность в процентах номинального тока при нагрузке первичной обмотки током 100 − 120% для первых трех классов и 50 − 120% для двух последних. Для трансформаторов тока классов точности 0,2; 0,5 и 1 нормируется также угловая погрешность.
Погрешность трансформатора тока зависит от вторичной нагрузки (сопротивления приборов, проводов, контактов) и от кратности первичного тока по отношению к номинальному. Увеличение нагрузки и кратности тока приводит к увеличению погрешности.
При первичных токах, значительно меньших номинального, погрешность трансформатора тока также возрастает.
На рис. 5.2 представлены схемы соединений вторичных обмоток трансформаторов тока.
а) | б) | в) |
Рис. 5.2. Схемы соединений вторичных обмоток трансформаторов тока:
а – звездой; б – треугольником; в – на сумму трех фаз
Трансформаторы тока класса 0,2 применяются для присоединения точных лабораторных приборов, класса 0,5 − для присоединения счетчиков денежного расчета, класса 1 − для всех технических измерительных приборов, классов 3 и 10 − для релейной защиты. Кроме рассмотренных классов выпускаются также трансформаторы тока со вторичными обмотками типов Д (для дифференциальной защиты), 3 (для земляной защиты), Р (для прочих релейных защит).
Токовые цепи измерительных приборов и реле имеют малое сопротивление, поэтому трансформатор тока нормально работает в режиме, близком к режиму короткого замыкания. Если разомкнуть вторичную обмотку, магнитный поток в магнитопроводе резко возрастет, так как он будет определяться только МДС первичной обмотки. В этом режиме магнитопровод может нагреться до недопустимой температуры, а на вторичной разомкнутой обмотке появится высокое напряжение, достигающее в некоторых случаях десятков киловольт.
Из-за указанных явлений не разрешается размыкать вторичную обмотку трансформатора тока при протекании тока в первичной обмотке. При необходимости замены измерительного прибора или реле предварительно замыкается накоротко вторичная обмотка трансформатора тока (или шунтируется обмотка реле, прибора).
При монтаже распределительных устройств напряжением 6 – 10 кВ применяют трансформаторы тока с литой и фарфоровой изоляцией, а при напряжении до 1000 В – с литой, хлопчатобумажной и фарфоровой изоляцией.
Измерительные трансформаторы тока изготовляют с номинальным вторичным током 1 и 5 А и первичным от 5 до 5000 А. Они допускают длительную токовую перегрузку, равную 110 % номинальной при условии, что превышение допустимой температуры подводящих шин не более 45 °С.
КОНСТРУКЦИИ ТРАНСФОРМАТОРОВ ТОКА
Трансформаторы тока для внутренней установки до 35 кВ имеют литую эпоксидную изоляцию. По типу первичной обмотки различают катушечные (на напряжение до 3 кВ включительно), одновитковые и многовитковые трансформаторы.
Трансформаторы тока для электроустановок напряжением до 1000 В показаны на рис. 5.3, а, б, в (катушечный, шинный ТШ-0,5 и шинный с литой изоляцией ТШЛ-0,5). В шинных трансформаторах тока в качестве первичной обмотки используют шину, пропускаемую через окно 5 сердечника трансформатора тока, на который намотана вторичная обмотка.
Рис. 5.3. Трансформаторы тока на напряжение до 1000 В:
а – катушечный; б, в – шинные ТШ-0,5 и ТШЛ-0,5 1 – каркас; 2, 4 – зажимы вторичной и первичной обмоток; 3 – защитный кожух; 5 – окно
Проходные трансформаторы тока для внутренней установки на напряжение 10 кВ выполняют многовитковыми, одновитковыми и шинными с фарфоровой и пластмассовой (литой) изоляцией (рис.5.4,а-в).
Рис. 5.4. Трансформаторы тока на напряжение 10 кВ с литой изоляцией:
а – многовитковый ТПЛ-10; б – одновитковый ТПОЛ – 10; в – шинный ТПШЛ-10 1,2 – зажимы первичной и вторичной обмоток; 3 – литая изоляция; 4 – установочный угольник; 5 – сердечник
На рис. 5.5, а схематично показано выполнение магнитопроводов и обмоток, а на рис.5.5, б − внешний вид трансформатора тока ТПОЛ-20 (проходной, одновитковый, с литой изоляцией на 20 кВ). В этих трансформаторах токоведущий стержень, проходящий через «окна» двух магнитопроводов, является одним витком первичной обмотки. Одновитковые трансформаторы тока изготовляются на первичные токи 600 А и более; при меньших токах МДС первичной обмотки I1w1окажется недостаточной для работы с необходимым классом точности. Трансформатор ТПОЛ-20 имеет два магнитопровода, на каждый из которых намотана своя вторичная обмотка. Классы точности этих трансформаторов тока 0,5; 3 и 10 Р. Магнитопроводы вместе с обмотками заливаются компаундом на основе эпоксидной смолы, который после затвердения образует монолитную массу. Такие трансформаторы тока имеют значительно меньшие размеры, чем трансформаторы с фарфоровой изоляцией, выпускавшиеся ранее, и обладают высокой электродинамической стойкостью.
а) принципиальное расположение магнитопроводов с обмотками |
б)конструкция |
Рис. 5.5. Трансформатор тока ТПОЛ-20:
1 – вывод первичной обмотки; 2 − эпоксидная изоляция; 3 − выводы вторичной обмотки
Рассматриваемый трансформатор тока в распределительном устройстве выполняет одновременно роль проходного изолятора. При токах, меньших 600 А, применяются многовитковые трансформаторы тока ТПЛ, у которых первичная обмотка 3 состоит из нескольких витков, количество которых определяется необходимой МДС (рис. 5.6).
Трансформатор тока ТПФ-10 (рис. 5.7) − это проходной трансформатор с фарфоровой изоляцией на номинальное напряжение 10 кВ, который состоит из одного или двух сердечников 1, охватывающих фарфоровые изоляторы 2. Вторичная обмотка 3 (одно- или двухкатушечная) надета на стержень сердечника. Первичная обмотка 4 состоит из нескольких витков круглого изолированного провода или ленточной меди, продетой через отверстия изоляторов. Начало Л1 и конец Л2 первичных обмоток приварены к медным контактным пластинам 5, выведенным наружу через прямоугольные отверстия в торцовых крышках 6 трансформатора. На фланце 8 укреплены изолированные колодки 9, на которые через изоляционные втулки выведены начало И1 и конец И2 вторичных обмоток и болт заземления 11. По углам фланца расположены отверстия 10 для крепления трансформатора. Для защиты обмоток трансформатора от механических повреждений служит прямоугольный кожух 7.
Рис. 5.6. Трансформатор тока ТПЛ-10 с двумя магнитопроводами:
1 − магнитопровод; 2 − вторичная обмотка; 3 − первичная обмотка; 4 − вывод первичной обмотки; 5 − литой эпоксидный корпус
Рис. 5.7. Трансформатор тока ТПФ-10
Трансформаторы тока ТЗЛ нулевой последовательности с литой изоляцией и ТЗ с хлопчатобумажной служат для питания схем защиты от замыканий на землю в кабельных линиях. В нормальных условиях суммарный магнитный поток этих трансформаторов, вызванный токами, проходящими по каждой фазе кабеля, равен нулю, поэтому во вторичной обмотке трансформатора ток отсутствует. Если произойдет замыкание на землю одной из фаз защищаемой установки или участка сети или нарушится равномерность загрузки по фазам, суммарный магнитный поток не будет равен нулю и вызовет ток во вторичной обмотке.
Трансформатор ТЗЛ состоит из сердечника с катушками двухсекционной обмотки, надетыми на него и залитыми эпоксидным компаундом, который является изолирующим материалом, защищающим обмотки от механических повреждений. Первичной обмоткой этих трансформаторов служит кабель. Для удобства монтажа трансформаторы нулевой последовательности изготовляют разъемными − ТЗРЛ (рис. 5.8) и ТЗР.
Рис. 5.8. Трансформатор нулевой последовательности ТЗРЛ
Трансформаторы тока ТКБ служат для питания отключающих обмоток приводов и состоят из шихтованного сердечника, на боковых стержнях которого надеты первичная и вторичная обмотки. Начало и конец обмоток выведены на щиток, укрепленный на верхней части магнитопровода. Особенностью трансформаторов тока ТКБ являются быстрое насыщение железа и стабильность вторичного тока. В трансформаторах ТКБ тропического исполнения сердечник с обмотками залит эпоксидным компаундом.
Трансформаторы ТКЛ и ТШЛ с литой изоляцией, заменяющие трансформаторы ТК (катушечные) и ТШ (шинные) с хлопчатобумажной изоляцией, применяются для измерения тока и питания схем защиты в сетях напряжением до 660 В, частотой 50 Гц при температуре от +35 до — 40 °С и выпускаются на токи до 1500 А с классом точности 0,5 и 1. Длительно допустимый ток этих трансформаторов − 110 % номинального, температура обмоток не должна превышать 100 °С, номинальная нагрузка трансформаторов в зависимости от их типа колеблется от 0,1 до 1,2 Ом.
В комплектных распределительных устройствах применяются опорно-проходные трансформаторы тока ТЛМ-10, ТПЛК-10, конструктивно совмещенные с одним из штепсельных разъемов первичной цепи ячейки КРУ. На большие номинальные первичные токи применяются трансформаторы тока, у которых роль первичной обмотки выполняет шина, проходящая внутри трансформатора. На рис. 5.9 показан трансформатор тока ТШЛ-20 (шинный, с литой изоляцией, на 20 кВ и токи 6000-18000 А).
Рис. 5.9. Трансформатор тока ТШЛ-20:
1 − магнитопровод класса 0,5; 2 − магнитопровод класса Р; 3 − литой эпоксидный блок; 4 − корпус; 5 − коробка выводов вторичных обмоток; 6 − токоведушая шина
Эти трансформаторы представляют собой кольцеобразный эпоксидный блок с залитым в нем магнитопроводом и вторичными обмотками. Первичной обмоткой является шина токопровода. В изоляционный блок залито экранирующее силуминовое кольцо, электрически соединенное с шиной с помощью пружины. Электродинамическая стойкость таких трансформаторов тока определяется устойчивостью шинной конструкции.
В комплектных токопроводах применяются трансформаторы тока ТШВ-15, ТШВ-24.
Для наружной установки выпускаются трансформаторы тока опорного типа в фарфоровом корпусе с бумажно-масляной изоляцией типа ТФЗМ (рис. 5.10). В полом фарфоровом изоляторе, заполненном маслом, расположены обмотки и магнитопровод трансформатора.
Рис. 5.10. Трансформатор тока ТФЗМ:
1 − маслорасширитель; 2 − переключатель первичной обмотки; 3 − ввод Л1; 4 − крышка; 5 − влагопоглотитель; 6 − ввод Л2; 7 − маслоуказатель; 8 − первичная обмотка; 9 − фарфоровая покрышка; 10 − магнитопровод с вторичной обмоткой; 11 − масло; 12 − коробка выводов вторичных обмоток; 13 − цоколь
Конструктивно первичная и вторичная обмотки напоминают два звена цепи (буква З в обозначении типа). Первичная обмотка состоит из двух секций, которые с помощью переключателя 2 могут быть соединены последовательно (положение I) или параллельно (положение II), чем достигается изменение номинального коэффициента трансформации в отношении 1:2. На фарфоровой покрышке установлен металлический маслорасширитель 1, воспринимающий колебания уровня масла. Силикагелевый влагопоглотитель 5 предназначен для поглощения влаги наружного воздуха, с которым сообщается внутренняя полость маслорасширителя. Обмотки и фарфоровая покрышка крепятся на стальном цоколе 13. Коробка вторичных выводов 12 герметизирована. Снизу к ней крепится кабельная муфта, в которой разделан кабель вторичных цепей.
Трансформаторы тока ТФНД на 220 кВ имеют фарфоровый корпус 3, установленный на тележке 4, снабженный металлическим колпаком-расширителем 1 с масломерной трубкой 2. Сбоку на тележке 4 размещена коробка 5 выводов вторичной обмотки. Трансформаторы ТФЗМ имеют один магнитопровод с обмоткой класса 0,5 и два-три магнитопровода с обмотками для релейной защиты. Чем выше напряжение, тем труднее осуществить изоляцию первичной обмотки, поэтому на напряжение 330 кВ и более изготовляются трансформаторы тока каскадного типа. Наличие двух каскадов трансформации (двух магнитопроводов с обмотками) позволяет выполнить изоляцию обмоток каждой ступени не на полное напряжение, а на половину его.
Рис.5.11. Опорный трансформатор тока ТФНД-220 наружной установки:
1 – колпак-расширитель; 2 – масломерная трубка; 3 – фарфоровый корпус; 4 – тележка; 5 – коробка выводов вторичной обмотки
В установках 330 кВ и более применяются каскадные трансформаторы тока ТФРМ с рымовидной обмоткой, расположенной внутри фарфорового изолятора, заполненного трансформаторным маслом. В таких трансформаторах четыре-пять вторичных обмоток на классы точности 0,2; 0,5 и Р. Встроенные трансформаторы тока применяются в установках 35 кВ и более. В вводы высокого напряжения масляных выключателей и силовых трансформаторов встраиваются магнитопроводы со вторичными обмотками. Первичной обмоткой является токоведущий стержень ввода. При небольших первичных токах класс точности этих трансформаторов тока 3 или 10.
При первичных токах 1000 — 2000 А возможна работа в классе точности 0,5. Вторичные обмотки встроенных трансформаторов тока имеют отпайки, позволяющие регулировать коэффициент трансформации в соответствии с первичным током. Для встраивания в масляные выключатели применяются трансформаторы тока серий ТВ, ТВС, ТВУ. Каждому типу масляного бакового выключателя соответствует определенный тип трансформатора тока, паспортные данные которых приводятся в каталогах выключателей и в справочниках. Для встраивания в силовые трансформаторы или автотрансформаторы применяются трансформаторы тока серии ТВТ.
Кроме рассмотренных типов трансформаторов тока выпускаются специальные конструкции для релейных защит: трансформаторы тока нулевой последовательности ТНП, ТНПШ, ТЗ, ТЗЛ; быстронасыщающиеся трансформаторы ТКБ; трансформаторы для поперечной дифференциальной защиты генераторов ТШЛО.
Чем выше напряжение, тем труднее изолировать первичную обмотку ВН от вторичной, измерительной обмотки трансформаторов. Каскадные измерительные трансформаторы на 500, 750 и 1150 кВ сложны в изготовлении и дороги, поэтому взамен их разработаны принципиально новые оптико-электронные трансформаторы (ОЭТ). В них измеряемый сигнал (ток, напряжение) преобразуется в световой поток, который изменяется по определенному закону и передается в приемное устройство, расположенное на заземленном элементе. Затем световой поток преобразуется в электрический сигнал, воспринимаемый измерительными приборами (рис. 5.12).
Таким образом, передающее устройство, находящееся под высоким напряжением, и приемное устройство, соединенное с землей, связаны между собой только пучком света. Световой поток передается внутри полого изолятора по трубе с зеркальными стенками или по диэлектрическим стержневым и волоконным световодам, которые изготовляются из специального оптического стекла с изолирующей оболочкой. Передающее устройство ОЭТ может быть основано на различных принципах. В некоторых трансформаторах тока (ОЭТТФ) используется эффект Фарадея (рис. 5.13).
Рис. 5.12. Структурная схема оптико-электронного трансформатора тока:
1 − первичный преобразователь; 2 − светодиод; 3 − оптическая система; 4 − световод; 5 − фоточувствительный прибор; 6 − усилитель; 7 − измерительный прибор
Рис. 5.13. Функциональная схема оптико-электронного трансформатора тока ОЭТТФ:
1 – головка ВН; 2 – токопровод; 3 – поляризатор; 4 – оптически активное вещества; 5 – анализаторы; 6 – изолирующая колонка; 7 – световод; 8 – источник света; 9 – фотоприемник; 10 – основание; 11 – усилитель
В основании 10 на потенциале земли находятся источник света 8, два фотоприемника 9, включенных по дифференциальной схеме в цепь усилителя 11, к которому присоединяются измерительные приборы. В головке ВН 1 размещены две ячейки Фарадея и токопровод измеряемого тока 2. Ячейки Фарадея состоят из поляризаторов 3, оптически активного вещества (кварц, тяжелое стекло) 4 и анализаторов 5. Пучок поляризованного света, проходя в оптически активном веществе 4, меняет плоскость поляризации на угол, который зависит от напряженности магнитного поля, т. е. от измеряемого тока.
Поворот плоскости поляризации за анализаторами 5 проявляется в виде изменения интенсивности светового потока, падающего на фотоприемник. Световые потоки передаются внутри изолирующей колонки 6 по световодам 7. Фотоприемники преобразуют световой сигнал в электрический, который усиливается в усилителе 11иподается к измерительным приборам. Такие трансформаторы тока универсальны, они предназначены для измерения постоянного, переменного и импульсного тока в установках высокого и сверхвысокого напряжения. Измерительный импульс практически мгновенно передается к фотоприемникам.
Имеются конструкции трансформаторов тока, в которых передающее устройство состоит из модулятора и светодиода. Световой поток полупроводникового светодиода зависит от измеряемого тока и его фазы.
Оптико-электронный трансформатор тока с частотной модуляцией (ОЭТТЧ) на 750 кВ и 2000 А имеет четыре оптических канала − один для измерения и три для защиты. Каждый канал связан со своим первичным преобразователем. Канал измерения рассчитан на нормальную работу при токах до 1,2 Iном, при этом погрешность не превышает ±1%. Каналы защиты рассчитаны так, что передают без искажения импульсы при токах до 20 Iном.
Оптико-электронные измерительные трансформаторы позволяют контролировать не только ток, но и мощность (полную, активную, реактивную) установки, сопротивление на ее зажимах, а также моменты перехода мгновенных значений тока и напряжения через нулевое значение. ОЭТ целесообразно применять в установках 750 кВ и выше, а также для измерения больших токов (20 − 50 кА) при напряжении 10 − 24 кВ, импульсных токов и параметров переходных режимов.
ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ НАПРЯЖЕНИЯ. ОСНОВНЫЕ ПОНЯТИЯ
Трансформаторы напряжения служат для преобразования напряжения установки или участка сети в напряжение, удобное для измерения стандартными приборами, питания защиты, автоматики, телемеханики и сигнализации, а также для изоляции приборов и эксплуатирующего их персонала от высокого напряжения. Схема включения однофазного трансформатора напряжения показана на рис. 5.14, первичная обмотка включена на напряжение сети U1, а ко вторичной обмотке (напряжение U2) присоединены параллельно катушки измерительных приборов и реле. Для безопасности обслуживания один выход вторичной обмотки заземлен. Трансформатор напряжения в отличие от трансформатора тока работает в режиме, близком к холостому ходу, так как сопротивление параллельных катушек приборов и реле большое, а ток, потребляемый ими, невелик.
Номинальный коэффициент трансформации определяется следующим выражением:
КU = U1НОМ/U2НОМ,
где U1НОМ , U2НОМ − номинальные первичное и вторичное напряжения, соответственно.
Рассеяние магнитного потока и потери в сердечнике приводят к погрешности измерения.
Так же как и в трансформаторах тока, вектор вторичного напряжения сдвинут относительно вектора первичного напряжения не точно на угол 180°. Это определяет угловую погрешность. В зависимости от номинальной погрешности различают классы точности 0,2; 0,5; 1; 3.
Рис. 5.14. Схема включения трансформатора напряжения:
1 − первичная обмотка; 2 − магнитопровод; 3 − вторичная обмотка
Погрешность зависит от конструкции магнитопровода, магнитной проницаемости стали и от cos j вторичной нагрузки. В конструкции трансформаторов напряжения предусматривается компенсация погрешности по напряжению путем некоторого уменьшения числа витков первичной обмотки, а также компенсация угловой погрешности за счет специальных компенсирующих обмоток.
Суммарное потребление обмоток измерительных приборов и реле, подключенных к вторичной обмотке трансформатора напряжения, не должно превышать номинальную мощность трансформатора напряжения, так как в противном случае это приведет к увеличению погрешностей.
Трансформаторы напряжения подсоединяют к точкам электрической цепи, между которыми необходимо измерить напряжение. Включение трансформаторов напряжения 6−10 кВ производят разъединителями, а защиту электроустановок от их повреждения − предохранителями.
Трансформаторы напряжения выполняют однофазными и трехфазными, двухобмоточными и трехобмоточными, масляными и сухими. К числу сухих относят и трансформаторы с изоляцией из эпоксидных смол.
Масляные трансформаторы напряжения имеют ряд недостатков: необходимость постоянного надзора и периодической замены масла, непригодность к установке в помещениях с повышенной пожарной опасностью и для передвижных установок в условиях бездорожья и тряски; большие габаритные размеры и массу. Трансформаторы напряжения с литой изоляцией из эпоксидных смол лишены указанных недостатков.
Масляные трансформаторы напряжения изготовляют с первичными обмотками на все стандартные напряжения электрических сетей и вторичными на напряжения 100; 100/ и 100/3 В. В схемах электроустановок напряжением 6 − 10 кВ используют однофазные (НОЛ-11-06, ЗНОЛ-09), масляные (НОМ-6 и НОМ-10), трехфазные (НТМК-6 и НТМК-10) и трехфазные пятистержневые (НТМИ-6, НТМИ-10) трансформаторы, имеющие специальную обмотку для контроля изоляции. В пятистержневом трансформаторе два дополнительных стержня магнитопровода позволяют замыкаться магнитному потоку нулевой последовательности при однофазных замыканиях на землю в сети. В устройствах до 1000 В применяют трансформаторы НОС-0,5 и НТС-0,5.
Вторичные обмотки (за исключением дополнительной обмотки НТМИ) трансформаторов напряжения заземляют. Схемы включения трансформаторов показаны на рис. 5.15, а −г.
На рис. 5.15, а показана схема включения однофазного трансформатора для измерения напряжения. Схема включения двух однофазных трансформаторов напряжения для питания обмоток счетчиков, ваттметров представлена на рис. 5.15, б. На рис. 5.15, в представлена схема включения трехфазного двухобмоточного трансформатора для питания обмоток вольтметров, счетчиков, ваттметров. Схема включения трехфазного трехобмоточного трансформатора напряжения показана на рис. 5.15, г. Такая схема включения позволяет осуществлять питание различных приборов измерения и учета от основной обмотки, а от дополнительных обмоток – приборов контроля изоляции и реле защиты от замыканий на землю.
Рис. 5.15. Схемы включения трансформаторов напряжения:
1 – разъединитель; 2 – предохранитель ПКТ; 3, 4, 5 – трансформаторы
КОНСТРУКЦИИ ТРАНСФОРМАТОРОВ НАПРЯЖЕНИЯ
По конструкции различают трехфазные и однофазные трансформаторы. Трехфазные трансформаторы напряжения применяются при напряжении до 18 кВ, однофазные — на любые напряжения. По типу изоляции трансформаторы могут быть сухими, масляными и с литой изоляцией. Обмотки сухих трансформаторов выполняются проводом ПЭЛ, а изоляцией между обмотками служит электрокартон. Такие трансформаторы применяются в установках до 1000 В (НОС-0,5 − трансформатор напряжения однофазный, сухой, на 0,5 кВ).
Трансформаторы напряжения с масляной изоляцией применяются на напряжение 6-1150 кВ в закрытых и открытых распределительных устройствах. В этих трансформаторах обмотки и магнитопровод залиты маслом, которое служит для изоляции и охлаждения.
Следует отличать однофазные двухобмоточные трансформаторы НОМ-6, НОМ-10, НОМ-15, НОМ-35 от однофазных трехобмоточных ЗНОМ-15, ЗНОМ-20, ЗНОМ-35.
Схема обмоток первых показана на рис. 5.16, а. Такие трансформаторы имеют два ввода высокого напряжения (ВН) и два ввода низкого напряжения (НН), их можно соединить по схемам открытого треугольника, звезды, треугольника.
У трансформаторов второго типа (рис. 5.16,б) один конец обмотки ВН заземлен, единственный ввод ВН расположен на крышке, а вводы НН − на боковой стенке бака. Обмотка ВН рассчитана на фазное напряжение, основная обмотка НН − на 100/ В, дополнительная обмотка − на 100/3 В. Такие трансформаторы называются заземляемыми.
а) НОМ-35 | б) ЗНОМ-35 |
Рис. 5.16 Трансформаторы напряжения однофазные масляные:
1 − ввод ВН; 2 − коробка вводов НН; 3 − бак
Трансформаторы типов ЗНОМ-15, ЗНОМ-20, ЗНОМ-24 устанавливаются в комплектных шинопроводах мощных генераторов. Для уменьшения потерь от намагничивания их баки выполняются из немагнитной стали. На рис.4.17 показана установка такого трансформатора в комплектном токопроводе.
Трансформатор с помощью ножевого контакта 3, расположенного на вводе ВН, присоединяется к пружинящим контактам, закрепленным на токопроводе 1, закрытом экраном 2. К патрубку 5 со смотровыми люками 4 болтами 6 прикреплена крышка трансформатора. Таким образом, ввод ВН трансформатора находится в закрытом отростке экрана токопровода. Зажимы обмоток НН выведены на боковую стенку бака и закрываются отдельным кожухом.
Рис. 5.17. Установка трансформатора напряжения ЗНОМ-20
в комплектном токопроводе:
1 – токопровод; 2 – экран; 3 – ножевой контакт; 4 – смотровой люк; 5 – патрубок; 6 – болты
Трехфазные масляные трансформаторы типа НТМИ имеют пятистержневой магнитопровод и три обмотки, они предназначены для присоединения приборов контроля изоляции.
Все шире применяются трансформаторы напряжения с литой изоляцией. Заземляемые трансформаторы напряжения серии ЗНОЛ.06 имеют пять исполнений по номинальному напряжению: 6, 10, 15, 20 и 24 кВ. Магнитопровод в них ленточный, разрезной, С-образный, что позволило увеличить класс точности до 0,2. Такие трансформаторы имеют небольшую массу, могут устанавливаться в любом положении, пожаробезопасны.Трансформаторы ЗНОЛ.06 предназначены для установки в КРУ и комплектных токопроводах вместо масляных трансформаторов НТМИ и ЗНОМ, а трансформаторы серии НОЛ.08 − для замены НОМ-6 и НОМ-10.
На рис. 5.18 показан однофазный двухобмоточный трансформатор с незаземленными выводами типа НОЛ-08-6 на 6 кВ. Трансформатор представляет собой литой блок, в который залиты обмотки и магнитопровод. Выводы первичной обмотки А, X, выводы вторичной обмотки а, х расположены на переднем торце трансформатора и закрыты крышкой.
В установках 110 кВ и выше применяются трансформаторы напряжения каскадного типа НКФ. В этих трансформаторах обмотка ВН равномерно распределяется по нескольким магнитопроводам, благодаря чему облегчается ее изоляция. Трансформатор НКФ-110 (рис. 5.19) имеет двухстержневой магнитопровод, на каждом стержне расположена обмотка ВН, рассчитанная на Uф/2. Так как общая точка обмотки ВН соединена с магнитопроводом, то он по отношению к земле находится под потенциалом Uф/2. Обмотки ВН изолируются от магнитопровода также на Uф/2. Обмотки НН (основная и дополнительная) намотаны на нижнем стержне магнитопровода. Для равномерного распределения нагрузки по обмоткам ВН служит обмотка связи П. Такой блок, состоящий из магнитопровода и обмоток, помещается в фарфоровую рубашку и заливается маслом.
Рис. 5.18. Трансформатор напряжения НОЛ-08-6
Рис. 5.19. Трансформатор напряжения НКФ-110: а − схема; б − конструкция;
1 − ввод высокого напряжения; 2 − маслорасширитель; 3− фарфоровая рубашка; 4 − основание; 5 − коробка вводов НН
Трансформаторы напряжения НДЕ на 220 кВ состоят из двух блоков, установленных один над другим, т. е. имеют два магнитопровода и четыре ступени каскадной обмотки ВН с изоляцией на Uф/4. На рис. 5.20 представлены схема и установка трансформатора НДЕ-500-72.
а) схема |
б) установка НДЕ-500-72 |
Рис. 5.20. Трансформатор НДЕ:
1 – делитель напряжения; 2 – разъединитель; 3 – трансформатор напряжения и дроссель; 4 – заградитель высокочастотный; 5 – разрядник; 6 – привод
Трансформаторы напряжения НКФ-330 и НКФ-500 соответственно имеют три и четыре блока, то есть шесть и восемь ступеней обмотки ВН. Чем больше каскадов обмотки, тем больше их активное и реактивное сопротивление, возрастают погрешности, и поэтому трансформаторы НКФ-330, НКФ-500 выпускаются только в классах точности 1 и 3. Кроме того, чем выше напряжение, тем сложнее конструкция трансформаторов напряжения, поэтому в установках 500 кВ и выше применяются трансформаторные устройства с емкостным отбором мощности, присоединенные к конденсаторам высокочастотной связи С1 с помощью конденсатора отбора мощности С2 (рис. 5.20, а). Напряжение, снимаемое с С2 (10−15 кВ), подается на трансформатор НДЕ, имеющий две вторичные обмотки, которые соединяются по такой же схеме, как и у трансформаторов НКФ или ЗНОМ.
Для увеличения точности работы в цепь его первичной обмотки включен дроссель L, с помощью которого контур отбора напряжения настраивается в резонанс с конденсатором С2. Дроссель L и трансформатор TV встраиваются в общий бак и заливаются маслом. Заградитель 3В не пропускает токи высокой частоты в трансформатор напряжения. Фильтр присоединения Z предназначен для подключения высокочастотных постов защиты. Такое устройство получило название емкостного трансформатора напряжения НДЕ. На рис. 5.20, б показана установка НДЕ-500-72.
При надлежащем выборе всех элементов и настройке схемы устройство НДЕ может быть выполнено на класс точности 0,5 и выше. Для установок 750 и 1150 кВ применяются трансформаторы НДЕ-750 и НДЕ-1150.
| Руководства по эксплуатации Сертификаты Особенности применения трансформаторов тока с классом точности S Требования к оформлению заказов трансформаторов предназначенных на экспорт Скачать опросные листы на трансформаторы тока Скачать каталог на трансформаторы (pdf; 32 Мб) Скачать каталог на трансформаторы ТВ (pdf; 4 Мб) Скачать каталог «Трансформаторы для железных дорог» (pdf; 4,8 Мб) Межповерочный интервал — 16 лет. Образец заполнения заявки на продукцию завода
|
Схема подключения трансформатора тока — варианты подключения
Токовые трансформаторы являются важными защитным устройством релейного типа.
Схема подключения трансформатора тока предполагает использование первичной и вторичной обмотки с учетом коэффициента относительной погрешности.
В статье подробно о монтаже счетчика через трансформатор тока.
Схема подключения счетчика через трансформаторы тока
Установка электрического счетчика осуществляется в соответствии с основными правилами и требованиями, предъявляемыми к схеме подключения прибора. Счетчик устанавливается при температурном режиме не ниже 5оС.
Приборы энергоучета, наряду с любой другой электроникой, крайне тяжело переносят низкотемпературное воздействие. Установка электрического счетчика на улице потребует сооружения специального герметичного утепленного шкафа. Прибор учета фиксируется на высоте не более 100-170 см, что облегчает эксплуатацию и его обслуживание.
Схема подключения счетчиков МЕРКУРИЙ
Для самостоятельной установки необходимо приобрести электросчетчик и щиток, изоляционные автоматические материалы, кабеля и крепежные элементы, DIN-рейки, а также подготовить набор монтажного инструмента.
Подключение однофазного прибора
При монтаже однофазного прибора учета, особое внимание необходимо уделить порядку подключения кабелей на клеммные элементы:
- на первую клемму производится подсоединение фазного провода. Вводимый кабель чаще всего обладает белым, коричневым или черным окрашиванием;
- на вторую клемму осуществляется подключение фазного провода, испытывающего силовую нагрузку. Такой кабель обычно бывает белого, коричневого или черного цвета;
- на третью клемму выполняется подсоединение электропровода «ноль». Этот вводной кабель имеет голубую или синевато-голубую маркировку;
- на четвертую клемму производится подключение нулевого провода, имеющего голубое или синевато-голубое окрашивание.
Подключение однофазного прибора
Обеспечивать защиту на заземление для устанавливаемого и подключаемого электрического прибора учета не потребуется.
Следует отметить, что дополнительные участки подсоединения на однофазном электросчетчике являются вспомогательными, и обеспечивают эффективность эксплуатации или автоматизацию учета используемой электроэнергии.
Схема подключения трехфазного счетчика через трансформаторы тока
Трёхфазные устройства учета электроэнергии комплектуются, как правило, DIN-рейкой, двумя видами панелей, которые прикрывают подключаемые клеммы, а также руководство и пломбы. Технология самостоятельной установки:
- монтаж на DIN-рейке электрического щита вводного автомата и трехфазного счетчика электроэнергии;
- спуск фиксаторов на оборотной стороне трёхфазного прибора энергоучета, с последующей установкой и поднятием фиксаторов;
- подсоединение вводного автомата с необходимыми вводными клеммами на электросчетчике, в соответствии со схемой подключения.
Схема монтажа трехфазного счетчика
Удобным является использование токопроводящих жил из медных проводов, сечение которых не меньше, чем стандартные размеры вводного кабеля.
При прямом подсоединении трехфазного электрического счётчика, без применения вводной автоматизации, на соответствующие клеммы прибора подключаются одновременно провода «фаза» и «ноль».
Соединение обмоток реле и трансформаторов тока
Принцип воздействия токового трансформатора не имеет существенных отличий от подобных характеристик стандартного силового прибора. Особенностью первичной трансформаторной обмотки является последовательное включение в измеряемую электрическую цепь. Кроме всего прочего, обязательно присутствует замыкание на вторичную обмотку на разные, подключенные друг за другом приборы.
В полную звезду
В условиях стандартного симметричного уровня токового протекания, трансформатор устанавливается на всех фазах. В этом случае вторичная трансформаторная и релейная обмотка объединяются в звезду, а связка их нулевых точек выполняется посредством одной жилы «ноль», а зажимы на обмотках подсоединяются.
Соединение трансформаторов тока и обмоток реле в полную звезду
Таким образом, трехфазное короткое замыкание характеризуется протеканием токов в обратном кабеле в условиях двух реле. Для двухфазного короткого замыкания, протекание тока отмечается в единственном или сразу в паре реле, согласно фазовому повреждению.
Любые замыкания, кроме «земля», сопровождаются протеканием в нулевом проводе токовой геометрической суммы в реле, приблизительно «О».
В неполную звезду
Особенностью двухфазной двухрелейной схемы подсоединения с образованием неполной звезды. К достоинствам такой схемы можно отнести реагирование на любой вид короткого замыкания, кроме земли фазы, а также вероятность применения данной схемы на междуфазных защитах.
Соединение трансформаторов тока и обмоток реле в неполную звезду
Таким образом, в условиях различных типов короткого замыкания, токовые величины в реле, а также уровень его чувствительности, будут разнообразными.
Недостаток подсоединения в неполную звезду представлен слишком низким коэффициентом чувствительности, по сравнению со схемой полной звезды.
Проверка трансформатора на работоспособность требуется, если имеются подозрения на его неисправность. Как проверить трансформатор мультиметром – инструкцию вы найдете в статье.
Как правильно установить заземление на даче, расскажем тут.
Как правильно выбрать провод заземления и какие марки наиболее популярны, читайте далее.
Подсоединение трансформаторов тока в фильтр токов нулевой последовательности
Токовые величины в реле проявляются исключительно при наличии однофазового и двухфазного короткого замыкания «земля».Такой вариант находит широкое применение в защите от замыкания «земля».
В условиях нагрузки трехфазного и двухфазного короткого замыкания показатели IN=0.
Тем не менее, при наличии погрешности токовых трансформаторов, в реле наблюдается проявление небаланса или Iнб.
Подсоединение трансформаторов тока
В процессе выполнения последовательного подключения вторичной обмотки в условиях параллельного подсоединения, позволяет уменьшать трансформирующий коэффициент и увеличивать уровень тока на вторичной цепи. Первичные обмотки подсоединяются исключительно в последовательности, а вторичные — в любом положении.
Последовательное подсоединение
При варианте последовательного подключения токовых трансформаторов, обеспечивается повышение нагрузочных показателей. В этом случае применяются трансформаторы, имеющие идентичные показатели kТ.
Соединение обмоток трансформатора последовательно
При протекающем через прибор одинаковом токе, величина поделится на коэффициент два, а уровень нагрузки снизится в пару раз. Применение такой схемы актуально при подсоединении Y/D с целью обеспечения защиты дифференциального типа.
Если устройству требуется напряжение в 12 Вольт, необходимо подключать его через трансформатор. Трансформатор 220 на 12 Вольт – назначение и принцип действия рассмотрим подробно.
Об особенностях использования и монтажа шины заземления вы узнаете из этой информации.
Параллельное подсоединение
Такой вариант позволяет уменьшить показатели kТ.При использовании токовых трансформаторов, обладающих одинаковым уровнем kТ, отмечается появление результативного трансформирующего коэффициента, сниженного в пару раз.
Таким образом, при последовательном подсоединении вторичных обмоток обеспечивается повышение уровня выходного напряжения и показателей мощности в условиях сохранения номинальных значений выходного тока.
Если обмотка вторичного типа на каждом трансформаторе предполагает напряжение на выход 6,0 В при номинальных токовых показателях 1,0 А, то последовательное подсоединение позволяет сохранить номинал, а уровень мощности повышается в два раза.
Параллельное подключение вторичной обмотки в таком варианте помогает обеспечивать показатели напряжения на выходе 6,0 В, а также уровень тока — в два раза выше.
Видео на тему
Типы трансформаторов токаи их применение: Talema Group
В нашей предыдущей статье мы рассмотрели основные принципы конструкции и работы трансформаторов тока (ТТ). Теперь мы обсудим несколько распространенных типов ТТ и их применения.
Стандартный измерительный CT
Стандартные измерительные трансформаторы тока используются в сочетании с амперметрами для измерения больших токов, которые понижаются до стандартного выходного коэффициента 5 А или 1 А. Номинальная мощность трансформатора тока в ВА соответствует номинальной мощности измерительного прибора или амперметра в ВА.
A 200/5 A Трансформатор тока серии FSD используется вместе с подвижным железным амперметром со шкалой от нуля до 200 A. Амперметр откалиброван таким образом, что полное отклонение (FSD) происходит, когда на выходе трансформатора тока 5 А.
Нагрузка R амперметра должна быть по возможности низкой, чтобы обеспечить возможность замыкания, близкого к короткому, чтобы гарантировать отсутствие препятствий для вторичного тока. Нагрузка R, используемая вместе с вольтметром, также должна быть как можно ниже, чтобы поддерживать низкое вторичное напряжение ТТ для повышения точности.
ТТ с нагрузкой на амперметр ТТ, подключенный к нагрузке R измеряется вольтметромТипичные номинальные значения стандартных измерительных трансформаторов тока в ВА составляют 2,5, 5 и 10 ВА. Для измерительных трансформаторов тока важно обеспечить насыщение на уровне, обеспечивающем безопасность измерительного прибора при токе выше номинального или в условиях неисправности.
Если отсоединить амперметр от цепи, вторичная обмотка фактически размыкается, а трансформатор действует как повышающий трансформатор.Частично это связано с очень большим увеличением намагничивающего потока в сердечнике трансформатора тока, поскольку во вторичной обмотке отсутствует противодействующий ток, предотвращающий это.
Это может привести к тому, что во вторичной обмотке будет индуцировано очень высокое напряжение, равное отношению V p × (N s / N p ), возникающего во вторичной обмотке.
По этой причине трансформатор тока нельзя оставлять разомкнутым. Если необходимо снять амперметр (или нагрузку), сначала необходимо замкнуть клеммы вторичной обмотки, чтобы исключить риск поражения электрическим током.
Передаточное число
Коэффициент трансформации трансформатора тока можно изменить, используя несколько витков. В приведенном ниже примере показано, как ТТ 300/5 А можно использовать в качестве ТТ 100/5 А, используя три первичных контура для уменьшения отношения витков с 60: 1 до 20: 1. Это позволяет использовать трансформатор тока с более высоким номиналом для измерения более низких токов.
Пределы погрешности отношения для измерительных трансформаторов тока классов 3 и 5 показаны ниже.
Ошибка соотношения составляет 3% и 5% соответственно, без требования ± фазовый сдвиг.
Применения для измерительных трансформаторов тока классов 3 и 5 включают:
- Защита от перегрузки
- Мониторинг тока Трехфазные генераторы
- Устройства управления
- Панели управления
- Управление и контроль распределительного устройства
- Распределение
Хотя желательно иметь нулевой сдвиг фаз между первичным и вторичным током для измерения 5 А ТТ это не так важно, поскольку амперметры показывают только величину тока.
Измерительный CT
Измерительный трансформатор тока предназначен для непрерывного измерения тока и точной работы в пределах номинального диапазона тока. Пределы погрешности по току и сдвига фаз определяются классом точности. Классы точности: 0,1, 0,2, 0,5 и 1.
В ваттметрах, счетчиках энергии и измерителях коэффициента мощности сдвиг фазы вызывает ошибки. Однако внедрение электронных счетчиков мощности и энергии позволило откалибровать ошибку фазы тока.
Когда ток превышает номинальное значение, измерительный трансформатор тока насыщается, тем самым ограничивая уровень тока в приборе. Материалы сердечника для этого типа CT обычно имеют низкий уровень насыщения, например нанокристаллический.
Nuvotem серии AP и AQ — это прецизионные трансформаторы тока с типичной точностью 0,1–0,2%, что делает их пригодными для применений, требующих высокой точности и минимального сдвига фаз.
Защита CT
Трансформатор тока защиты разработан для работы в диапазоне сверхтоков.Это позволяет защитным реле точно измерять токи короткого замыкания даже в условиях очень высокого тока. Вторичный ток используется для срабатывания защитного реле, которое может изолировать часть силовой цепи, в которой возникла неисправность.
Материал сердечника для этого типа ТТ имеет высокий уровень насыщения и обычно изготавливается из кремнистой стали.
Напряжение в точке колена
За пределами точки K нам нужно увеличить ток в большей степени, чтобы иметь некоторое увеличение напряжения.Это связано с тем, что кривая за точкой K становится нелинейной. Напряжение в точке K (V k ) называется напряжением точки перегиба .
Напряжение точки перегиба трансформатора тока определяется как напряжение, при котором 10% -ное увеличение напряжения вторичной обмотки ТТ приводит к увеличению вторичного тока на 50%. Это также означает, что увеличение тока на 50% приведет к увеличению напряжения всего на 10%.
Напряжение точки перегиба важно для трансформаторов тока класса защиты, т.е.е. где ТТ используется в целях защиты.
Нагрузка на защитные ТТ довольно высока по сравнению с ТТ измерительного класса, что означает, что падение напряжения на нагрузке будет высоким. Следовательно, напряжение точки перегиба ТТ с классом защиты должно быть больше падения напряжения на нагрузке, чтобы сердечник ТТ оставался в его линейной зоне.
Защитные трансформаторы тока обычно определяются в терминах совокупной погрешности при предельном коэффициенте точности, то есть насколько точным будет оставаться трансформатор тока, когда протекающий первичный ток во много раз превышает нормальный при аварийной ситуации.
Стандартные классы защиты трансформаторов тока — 5P 10 и 10P 10, где P — обозначение защиты. Число перед P указывает на общий процент ошибок. Число после буквы указывает коэффициент первичного тока, до которого будет достигнута совокупная погрешность, т. Е. В 10 раз больше номинального первичного тока в 5P 10 и 10P 10.
Устройства защиты обычно определяют классификацию ТТ защиты, предназначенного для работы с данным устройством защиты.
Talema производит широкий ассортимент стандартных и специально разработанных тороидальных трансформаторов тока 50/60 Гц. Каждая серия разработана с особыми характеристиками в компактных корпусах, подходящих для большинства приложений. Доступны варианты монтажа на печатной плате и с подвесным выводом, а также возможность установки IDC или двусторонних разъемов.
- Хью Бойл
Хью Бойл — старший инженер-конструктор Nuvotem Talema, работает в компании с 1986 года.До прихода в Nuvotem Хью работал инженером в компаниях British Telecom и Telecom Eireann, а также изучал телекоммуникационную инженерию City and Guilds в инженерном колледже Стоу в Глазго, Шотландия.
(CT) — Типы, установка, характеристики и применение
Последние новости- Up tp 93% Off — Открытие официального магазина электротехники — Купить сейчас!
- Скидка 25% на рубашки для электротехники.Limited Edition … Забронируйте сейчас
- Получите бесплатное приложение для Android | Загрузите приложение «Электрические технологии» сейчас!
- ОФИЦИАЛЬНЫЙ МАГАЗИН
- НАПИСАТЬ ДЛЯ ET
- РЕКЛАМА
- ПОЛИТИКА КОНФИДЕНЦИАЛЬНОСТИ
- СВЯЗАТЬСЯ С НАМИ
- Главная
- РУКОВОДСТВО
- ЭЛЕКТРИЧЕСКАЯ ПРОВОДКА
- Домашняя электрическая проводка Новый
- Электропроводка и установка панели солнечных батарей
- Схемы подключения батарей
- 1 фаза и 3 фазы проводка
- Электропроводка и управление Trending
- EE ESSENTIALS
- EE How To Exclusive
- EE Calculators Trending Trending Trending Trending Trending Trending
- EE Projects
- EE Q & A Hot
- EE MCQs Новый
- EE Примечания и статьи
- Анализ электрических цепей
- EE Symbols New
- BASIC
- Основные понятия
- Основные принципы электрооборудования Основы
- Базовая электроника
- Электрические формулы и уравнения
- Монтаж электропроводки
- Основы переменного тока
- Переменный ток
- MCQs с пояснительными ответами
- EE Вопросы / ответы
- МАШИНЫ
- Все
- Генератор
- Аккумуляторы
- Двигатели
- Трансформатор
- POWER
- Энергетическая система
- Коэффициент мощности
- Воздушные линии
- Защита
- Возобновляемая и зеленая энергия
- Система солнечных панелей
- CONTROL
- Устранение неисправностей
- Как сделать
- Защита
- Ремонт
- Электропитание и управление двигателем
- EE-Tools, инструменты, устройства, компоненты и измерения
- ЭЛЕКТРОНИКА
- Все
- Базовая электроника
- Семейства булевой алгебры и логики
- Combinational Di gital Circuits
- Цифровая электроника
- Logic Gates
- Последовательные логические схемы
- Сигналы
- Еще
- АНАЛИЗ ЦЕПЕЙ
- Цепи постоянного тока
- Однофазные цепи переменного тока
- Трехфазные электронные схемы и схемы переменного тока
- Электрические / Трехфазные электронные схемы Программное обеспечение
- Электрические / электронные символы
- EE Калькуляторы
- Резисторы
- Конденсаторы
- Индуктивность и магнетизм
- Электрические / электронные символы
- Электрическое проектирование
- Светоизлучающий диод
- Развлечения со светодиодами
- Возобновляемые и Зеленая энергия
- Электроэнергия
- Освещение
- АНАЛИЗ ЦЕПЕЙ
- Искать
- Переключить скин
- Меню
ЭЛЕКТРИЧЕСКИЕ ТЕХНОЛОГИИ
- Искать
- Кожа переключателя
2 5 минут на чтение
Ток Трансформаторы (CT) — конструкция, типы,
Использование и применение трансформатора
Использование и применение трансформатора
Наиболее важные применения и применения трансформатора:
- Он может повышать или понижать уровень напряжения или ток (когда напряжение увеличивается, ток уменьшается и наоборот, потому что P = V x I , а мощность такая же) в цепи переменного тока.
- Может увеличивать или уменьшать значение конденсатора, катушки индуктивности или сопротивления в цепи переменного тока. Таким образом, он может действовать как устройство передачи импеданса.
- Его можно использовать для предотвращения прохождения постоянного тока от одной цепи к другой.
- он может электрически изолировать две цепи.
Трансформатор является основной причиной для передачи и распределения мощности переменного тока вместо постоянного, потому что трансформатор не работает на постоянном токе, поэтому слишком сложно передавать мощность на постоянном токе.при переходе и распределении постоянного тока уровень напряжения повышается с помощью понижающего и повышающего преобразователя, но это слишком дорого и нецелесообразно с экономической точки зрения.
Основное применение трансформатора — повышение (увеличение) или понижение (уменьшение) уровня напряжения.
другими словами, увеличивает или снижает уровень тока, в то время как мощность должна быть такой же.