Закрыть

Устройство и принцип работы генератора: устройство и принцип работы, напряжение и мощность

устройство и принцип работы, напряжение и мощность

В стандартном исполнении в автомобиле существуют два источника питания – генератор и аккумулятор. Разница между ними заключается в том, что АКБ накапливает электроэнергию, а автомобильный генератор ее вырабатывает. То есть это устройство преобразует механическую энергию от двигателя в электрическую с целью дальнейшего питания всех потребителей и заряда аккумулятора.

Содержание

Функции генератора

При запуске двигателя пусковой ток на стартер подается от аккумулятора. Но сам аккумулятор не вырабатывает энергию, а только ее накапливает и потом отдает. Если использовать для питания всех потребителей только АКБ, то она быстро разрядится. Автомобильный генератор производит электроэнергию, заряжает АКБ и питает бортовую сеть автомобиля во время работы двигателя (при достижении им определенных оборотов вращения коленчатого вала).

фото 1фото 1Автомобильный генератор

Генератор начинает вырабатывать электрический ток начиная с частоты вращения холостого хода, однако, на оптимальный режим работы он выходит при достижении двигателем 1600-1800 об/мин и более.

Виды генераторов

Выделяют два вида автомобильных генераторов:

  • постоянного тока;
  • переменного тока.

Первый вид генераторов в настоящее время уже не используется. Такие устройства устанавливались на старых моделях автомобилей (ГАЗ-51, Победа и др.). Они имеют много недостатков, такие как:

  • малая мощность и эффективность;
  • необходимость в постоянном контроле и обслуживании;
  • небольшой срок службы.

Сейчас применяются генераторы переменного тока. Главное их отличие в том, что вне зависимости от режима работы двигателя автомобильную сеть питает постоянный ток. Это достигается благодаря полупроводниковому выпрямителю.

Устройство генератора переменного тока

Работу любого генератора можно сравнить с электродвигателем, который работает в обратном режиме, то есть не потребляет, а вырабатывает ток. По типу конструкции современные генераторы делятся на два вида: компактный и традиционный. Они имеют общее устройство, но различаются в компоновке корпуса, вентилятора, выпрямительного узла и приводного шкива. Также у современных устройств имеется три фазы.

фото 2фото 2Устройство генератора

Генератор состоит из следующих основных элементов:

  • привод со шкивом, подшипниками и валом;
  • ротор с обмоткой возбуждения и контактными кольцами;
  • статор с сердечником и обмоткой;
  • корпус, состоящий из двух крышек;
  • регулятор напряжения;
  • выпрямительный блок или диодный мост;
  • щеточный узел.

Разберем каждый элемент устройства отдельно и подробно.

Корпус

В корпусе находятся все основные элементы генератора. Он состоит из двух крышек (передняя и задняя). Крышки соединяются между собой болтами. Для изготовления крышек используют легкие сплавы алюминия, которые не намагничиваются и хорошо отводят тепло. В крышках есть вентиляционные отверстия и крепежные фланцы.

В задней крышке установлен диодный мост и щеткодержатель со щетками. Также в задней крышке расположен выводной контакт, по которому ток поступает от генератора.

Привод

Вращение от коленчатого вала передается на шкив генератора и вращает ротор. Частота вращения шкива больше частоты вращения коленвала в 2-3 раза. Крутящий момент от двигателя передается посредством ременной передачи. Могут использоваться поликлиновый и клиновый ремень в зависимости от конструкции. Поликлиновый ремень считается более универсальным и современным.

Ротор

На валу ротора находится обмотка возбуждения, которая создает магнитное поле и, по сути, представляет собой обычный электромагнит. Обмотка находится между двух полюсных половин (сердечников), необходимых для регулирования и направления магнитного поля. Каждая из половин имеет по шесть треугольных выступов, называемых клювами. Также на валу ротора расположены два медных контактных кольца. Иногда они изготавливаются из стали или латуни. Через контактные кольца на обмотку возбуждения поступает питание от аккумулятора. Контакты обмотки припаяны к кольцам.

фото 3фото 3
Ротор генератора

На переднем конце вала ротора находится приводной шкив, а на другом крепится крыльчатка вентилятора. Их может быть две. Они нужны для охлаждения внутренних деталей генератора. Также на обоих концах ротора установлены необслуживаемые шариковые подшипники.

Статор

фото 4фото 4Статор

Конструктивно статор имеет форму кольца. Это основная деталь, служащая для создания переменного тока от магнитного поля ротора. Состоит из обмотки и сердечника. В свою очередь, сердечник состоит из соединённых стальных пластин, в которых образуются 36 пазов. В пазы навивается три обмотки, которые образуют трехфазное соединение. Может быть две схемы соединения обмоток: «звезда» и «треугольник». По схеме «звезда» концы каждой из трех обмоток соединены в одной точке. По схеме «треугольник» концы обмоток выводятся отдельно.

Выпрямительный блок или диодный мост

Выпрямительный блок выполняет задачу по преобразованию переменного тока генератора в постоянный, который необходим для питания бортовой сети автомобиля. Другими словами, он выдает напряжение стабильной и одинаковой величины.

фото 5фото 5Диодный мост

Блок также называют диодным мостом, который состоит из двух радиаторных пластин (положительной и отрицательной) и диодов. На каждую фазу приходится по два диода. Сами диоды герметично вмонтированы в пластины. Диодный мост имеет форму подковы.

С обмотки статора ток поступает на диодный мост, затем «выпрямляется», и подается на выводной контакт на задней крышке.

Через диоды ток проходит только в одном направлении, при этом отсекаются токи обратной полярности. Диодный мост может находиться в корпусе генератора, а может быть вынесен за корпус. Но чаще всего он крепится на внутренней стороне задней крышки.

Регулятор напряжения

Регулятор поддерживает напряжение генератора в определенных пределах. В современных моделях применяются полупроводниковые электронные регуляторы напряжения. Они устанавливаются сверху блока щеткодержателей.

фото 6фото 6Регулятор напряжения и щеточный узел

Когда двигатель работает на больших оборотах, то напряжение на обмотке статора может доходить до 16В. Такое напряжение не должно поступать в бортовую сеть. Чтобы это исключить, регулятор напряжения, получая ток от АКБ, будет снижать его значение. Малый ток на обмотке ротора будет создавать такое же малое магнитное поле. Это значит, что на обмотке статора будет понижаться напряжение.

Щеточный узел

Щеточный узел в современных генераторах объединен с регулятором напряжения в один неразборный механизм. Он передает ток возбуждения на медные контактные кольца ротора. Это простая конструкция, которая состоит из щеткодержателя, двух графитовых щеток и прижимающих пружин.

Принцип работы

Теперь разберем подробнее работу генератора переменного тока в автомобиле. При включении зажигания, на щеточный узел подается ток от аккумуляторной батареи. Через щеточный узел он попадает на медные контактные кольца, а затем на обмотку возбуждения ротора. Напомним, что ротор, по сути, является электромагнитом, который создает магнитное поле. Коленчатый вал через шкив и ременную передачу начинает вращать ротор. Вокруг ротора расположен статор, который от вращения начинает вырабатывать переменный ток. Когда вращение ротора достигает определенной частоты, обмотка возбуждения питается от самого генератора.

Через диодный мост переменный ток “выпрямляется” и преобразуется в постоянный, необходимый для питания бортовой сети. Так автомобильный генератор обеспечивает питание потребителей и подзаряжает аккумулятор. Регулятор напряжения изменяет работу обмотки возбуждения при возрастании частоты вращения ротора. Таким образом поддерживается стабильная нагрузка.

В салоне автомобиля на приборной панели есть контрольная лампа генератора, которая показывает состояние устройства. Например, лампа может загореться при обрыве ремня. Тогда питание сети будет идти только через аккумулятор. Продолжительность работы в этом случае будет зависеть от уровня заряда АКБ.

Параметры генератора

Работу генератора оценивают по нескольким параметрам:

  • номинальный ток и номинальное напряжение;
  • номинальная частота возбуждения;
  • частота самовозбуждения;
  • коэффициент полезного действия (КПД).

Номинальное напряжение для бортовой сети автомобиля от генератора 12В или 24В. Токоскоростная характеристика показывает зависимость силу тока от частоты вращения генератора.

фото 7фото 7Характеристика генератора

Напряжение генератора можно измерить мультиметром. При всех выключенных потребителях без нагрузки на холостом ходу мультиметр должен показывать напряжение в пределах 14,3В – 15,5В. Если напряжение после запуска двигателя свыше 14В, то это может говорить о разряде АКБ и зарядке его генератором. При поочередном включении потребителей (фары, подогрев, кондиционер и т.д.) напряжение уменьшается примерно на 0,2 после каждого включения. Но в итоге напряжение не должно снижаться ниже 12,8В. Если значение меньше, то аккумулятор начнет разряжаться. Если напряжение, наоборот, сильно высокое (14В и выше), то это может привести к выходу АКБ из строя. При этом на выходе самого аккумулятора напряжение должно быть в пределах 12,6В – 12,7В.

Напряжение генератора под нагрузкой может отличаться от номинальных значений 12В. После включения всех потребителей тока значение должно быть в пределах 13,5В – 14В. Если ниже, то это может указывать на неисправность устройства. Допустимым пределом считается 13В.

На картинке ниже показана подробная схема подключения генератора в автомобиле.

фото 8фото 8Схема подключения генератора

Мощность автогенератора

Если включить все энергоемкие приборы в автомобиле, то генератор может не справляться с нагрузкой и часть энергии будет отдавать аккумулятор.

Чтобы рассчитать мощность генератора достаточно воспользоваться простой формулой из школьного курса P = I * U, где Р – мощность, I – сила тока, U – напряжение.

Мы узнали, что напряжение на выходе генератора должно быть в районе 13,5В – 14,2В. Сила тока у разных моделей может отличаться. В среднем это от 80А до 140А. Возьмем среднее значение в 100А.

По формуле получаем 13,5В*100А = 1 350 Вт или 1,35 КВт. Это и есть мощность генератора, которая измеряется в Ваттах. Нужно также учитывать, что это максимальное значение, которое достигается при определенных оборотах двигателя, как правило, от 3000 об/мин и выше. На холостом ходе выдаваемая мощность равняется 75% от максимально возможной. Считается, что для автомобиля хватает 80А. Если применить более мощный автогенератор, то бортовая сеть может не справиться с нагрузкой. Нужно это учитывать. Большая мощность не всегда идет на пользу.

Основные неисправности

Устройство довольно надежное и должно работать продолжительное время, но некоторые компоненты могут выходить из строя по разным причинам. Неисправности могут иметь механический или электрический характер.

Механические неисправности

Главной возможной поломкой может быть обрыв приводного ремня. В этом случае вращение от коленвала на ротор не будет передаваться. Всю нагрузку на себя берет аккумулятор, который начнет разряжаться. Это покажет контрольная лампа в салоне автомобиля. Чтобы избежать обрыва ремня, нужно периодически проверять его состояние и натяжение.

Также может случиться простой износ графитовых щеток. В этом случае надо менять весь щеточный узел.

Электрические неисправности

Неполадки с электрикой в генераторе случаются нередко, и заметить их трудно. Может возникнуть замыкание в обмотках возбуждения ротора или статора, обрыв обмотки. Может выйти из строя регулятор напряжения, что чревато большими проблемами для всей электроники и АКБ. Также случается так называемый пробой диодного моста по различным причинам. Нельзя отключать генератор или АКБ во время работы двигателя. Также нужно следить за надежностью соединений, чистить клеммы и т.д.

Каждому водителю нужно знать устройство и принцип работы автомобильного генератора. Это поможет избежать многих проблем, которые могут возникнуть с устройством. Нужно регулярно следить за компонентами генератора. Проверять натяжение и состояние приводного ремня, крепление устройства, напряжение и другое. При правильной эксплуатации устройство прослужит исправно долгие годы.

Подпишитесь на рассылку!

Раз в неделю мы отправляем дайджест с самыми интересными новостями и полезными статьями про автомобили.

принцип работы, устройство, назначение генератора

Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.

Как устроен генератор переменного тока - назначение и принцип действияКак устроен генератор переменного тока - назначение и принцип действия

Превращение механической энергии в электрическую

Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.
Как устроен генератор переменного тока - назначение и принцип действияКак устроен генератор переменного тока - назначение и принцип действия

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Как устроен генератор переменного тока - назначение и принцип действияКак устроен генератор переменного тока - назначение и принцип действия

Схема генератора переменного тока

Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

Классификация и виды агрегатов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

Синхронный
Как устроен генератор переменного тока - назначение и принцип действияКак устроен генератор переменного тока - назначение и принцип действия

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Газовый генератор
Как устроен генератор переменного тока - назначение и принцип действияКак устроен генератор переменного тока - назначение и принцип действия

В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

  • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
  • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
  • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
  • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.
Дизельный генератор
Как устроен генератор переменного тока - назначение и принцип действияКак устроен генератор переменного тока - назначение и принцип действия

Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:

  • Относительная дешевизна топлива;
  • Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
  • Высокий уровень противопожарной безопасности;
  • В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
  • Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.
Бензогенератор
Как устроен генератор переменного тока - назначение и принцип действияКак устроен генератор переменного тока - назначение и принцип действия

Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:

  • Малые габариты при высокой мощности;
  • Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
  • В случае перегрузки генератора автоматически срабатывает защита;
  • Просты в обслуживании и ремонте;
  • Во время работы не издают много шума;
  • Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.

Основные сферы применения

В зависимости от того, где используется электрогенератор, определяются его технические характеристики. Главным образом, отношения генератора к определенной категории по области применения, определяет его мощность. Разделяют следующие разновидности оборудования по сферам эксплуатации:

  • Бытовые. Обладают мощностью от 0,7 до 25 кВт. Обычно к этой категории относятся бензиновые и дизельные генераторы. Применяются для электроснабжения бытовых электроприборов и оборудования малой мощности, очень часто на строительных площадках. Сгодятся в качестве портативного источника электроэнергии при выезде на природу;
  • Профессиональные. Могут применяться в качестве постоянного источника электроэнергии в муниципальных учреждениях и мелких производственных предприятиях. Его мощность не превышает 100 кВт;
  • Промышленные. Могут эксплуатироваться на крупных фабриках и заводах, где требуется высокомощное оборудование. Такие аппараты обладают мощностью более 100 кВт, имеют немалые габариты и сложны в техническом обслуживании для неподготовленного человека.

Принцип работы автомобильного генератора, схема

Генератор — один из главных элементов электрооборудования автомобиля, обеспечивающий одновременное питание потребителей и подзаряд аккумуляторной батареи.

Принцип действия устройства построен на превращении механической энергии, которая поступает от мотора, в напряжение.

В комплексе с регулятором напряжения узел называется генераторной установкой.

В современных автомобилях предусмотрен агрегат переменного тока, в полной мере удовлетворяющий всем заявленным требованиям.

Устройство генератора

Элементы источника переменного тока спрятаны в одном корпусе, который также является основой для статорной обмотки.

В процессе изготовления кожуха применяются легкие сплавы (чаще всего алюминия и дюрали), а для охлаждения предусмотрены отверстия, обеспечивающие своевременный отвод тепла от обмотки.

В передней и задней части кожуха предусмотрены подшипники, к которым и крепится ротор — главный элемент источника питания.

В кожухе помещаются почти все элементы устройства. При этом сам корпус состоит из двух крышек, расположенных с левой и с правой стороны — около приводного вала и контрольных колец соответственно.

Две крышки объединяются между собой с помощью специальных болтов, изготовленных из алюминиевого сплава. Этот металл отличается незначительной массой и способностью рассеивать тепло.

Не менее важную роль играет щеточный узел, передающий напряжение на контактные кольца и обеспечивающий работу узла.

Изделие состоит из пары графитных щеток, двух пружин и щеткодержателя.

Также уделим внимание элементам, расположенным внутри кожуха:

  • Ротор — элемент, имеющий одну обмотку и, по сути, представляющий собой электромагнит. Ротор находится на валу, а сверху обмотки установлен сердечник диаметром на 1,5-2,0 мм больше диаметра стартера. Ток подается с помощью медных колец, которые расположены на валу и объединены с обмоткой через специальные щетки.
  • Обмотка — устройство, изготовленное из медной проволоки и закрепленное в пазы сердечника. Сам сердечник выполнен в форме окружности и изготавливается с применением специального материала, обладающего улучшенными магнитными качествами. В электротехнике металл носит название «трансформаторное железо». У статора есть три обмотки, связанные между собой и объединенные в звезду или треугольник. В точке объединения установлен диодный мост, обеспечивающий выпрямление напряжения. Обмотка изготовлена из специальной проволоки, имеющей двойную термоустойчивую изоляцию, покрытую специальным лаком.
  • Реле-регулятор — ключевой элемент установки, обеспечивающий стабильное напряжение на выходе устройства. Монтаж регулятора может производиться в кожухе генератора или снаружи. В первом случае он находится возле графитных щеток, а во втором — там, где щетки крепятся к щеткодержателю (но в разных моделях авто монтаж может осуществляться по-разному). Ниже представлены реле-регуляторы с щеточным узлом.
  • Выпрямительный мост — элемент, предназначенный для преобразования переменного тока на выходе статора в постоянное напряжение. Выпрямитель состоит из трех пар диодов, которые установлены на токопроводящем основании и попарно объединяются друг с дружкой. В среде автовладельцев и мастеров СТО диодный мост часто называется «подковой» из-за схожести с этим предметом.

Какие требования предъявляются к автомобильному генератору?

К генераторной установке автомобиля выдвигается ряд требований:

  • Напряжение на выходе устройства и, соответственно, в бортовой сети должно поддерживаться в определенном диапазоне, вне зависимости от нагрузки или частоты вращения коленвала.
  • Выходные параметры должны иметь такие показатели, чтобы в любом из режимов работы машины АКБ получала достаточное напряжение заряда.

При этом каждый автовладелец должен особое внимание уделять уровню и стабильности напряжения на выходе. Это требование вызвано тем, что аккумулятор чувствителен к подобным изменениям.

Например, в случае снижения напряжения ниже нормы АКБ не заряжается до необходимого уровня. В итоге возможны проблемы в процессе пуска мотора.

В обратной ситуации, когда установка выдает повышенное напряжение, аккумулятор перезаряжается и быстрее ломается.

Полезно почитать: Взорвался аккумулятор, причины и что делать.

Принцип работы автомобильного генератора, особенности схемы

Принцип действия генераторного узла построен на эффекте электромагнитной индукции.

В случае прохождения магнитного потока через катушку и его изменения, на выводах появляется и меняется напряжение (в зависимости от скорости изменения потока). Аналогичным образом работает и обратный процесс.

Так, для получения магнитного потока требуется подать на катушку напряжение.

Выходит, что для создания переменного напряжения требуются две составляющие:

  • Катушка (именно с нее снимается напряжение).
  • Источник магнитного поля.

Не менее важным элементом, как отмечалось выше, является ротор, выступающий в роли источника магнитного поля.

У полюсной системы узла присутствует остаточный магнитный поток (даже при отсутствии тока в обмотке).

Этот параметр небольшой, поэтому способен вызвать самовозбуждение только на повышенных оборотах. По этой причине по обмотке ротора пропускают сначала небольшой ток, обеспечивающий намагничивание устройства.

Упомянутая выше цепочка подразумевает прохождение тока от АКБ через лампочку контроля.

Главный параметр здесь — сила тока, которая быть в пределах нормы. Если ток будет завышенным, аккумулятор быстро разрядится, а если заниженным — возрастет риск возбуждения генератора на ХХ мотора (холостых оборотах).

С учетом этих параметров подбирается и мощность лампочки, которая должна составлять 2-3 Вт.

Как только напряжение достигает требуемого параметра, лампочка гаснет, а обмотки возбуждения питаются от самого автомобильного генератора. При этом источник питания переходит в режим самовозбуждения.

Снятие напряжения производится со статорной обмотки, которая выполнена в трехфазном исполнении.

Узел состоит 3-х индивидуальных (фазных) обмоток, намотанных по определенному принципу на магнитопроводе.

Токи и напряжения в обмотках смещены между собой на 120 градусов. При этом сами обмотки могут собираться в двух вариантах — «звездой» или «треугольником».

Если выбрана схема «треугольник», фазные токи в 3-х отмотках будут в 1,73 раза меньше, чем общий ток, отдаваемый генераторной установкой.

Вот почему в автомобильных генераторах большой мощности чаще всего применяется схема «треугольника».

Это как раз объясняется меньшими токами, благодаря которым удается намотать обмотку проводом меньшего сечения.

Такой же провод можно использовать и в соединениях типа «звезда».

Чтобы созданный магнитный поток шел по назначению, и направлялся к статорной обмотке, катушки находятся в специальных пазах магнитопровода.

Из-за появления магнитного поля в обмотках и в статорном магнитопроводе, появляются вихревые токи.

Действие последних приводит к нагреву статора и снижению мощности генератора. Для уменьшения этого эффекта при изготовлении магнитопровода применяются стальные пластины.

Выработанное напряжение поступает в бортовую сеть через группу диодов (выпрямительный мост), о котором упоминалось выше.

После открытия диоды не создают сопротивления, и дают току беспрепятственно проходить в бортовую сеть.

Но при обратном напряжении I не пропускается. Фактически, остается только положительная полуволна.

Некоторые производители автомобилей для защиты электроники меняют диоды на стабилитроны.

Главной особенностью деталей является способность не пропускать ток до определенного параметра напряжения (25-30 Вольт).

После прохождения этого предела стабилитрон «пробивается» и пропускает обратный ток. При этом напряжение на «плюсовом» проводе генератора остается неизменным, что не несет риски для устройства.

К слову, способность стабилитрона поддерживать на выводах постоянное U даже после «пробоя» применяется в регуляторах.

В результате после прохождения диодного моста (стабилитронов) напряжение выпрямляется, становится постоянным.

У многих типов генераторных установок обмотка возбуждения имеет свой выпрямитель, собранный из 3-х диодов.

Благодаря такому подключению, протекание тока разряда от АКБ исключено.

Диоды, относящиеся к обмотке возбуждения, работают по аналогичному принципу и питают обмотку постоянным напряжением.

Здесь выпрямительное устройство состоит из шести диодов, три их которых являются отрицательными.

В процессе работы генератора ток возбуждения ниже параметра, который отдает автомобильный генератор.

Следовательно, для выпрямления тока на обмотке возбуждения достаточно диодов с номинальным током до двух Ампер.

Для сравнения силовые выпрямители имеют номинальный ток до 20-25 Ампер. Если требуется увеличить мощность генератора, ставится еще одно плечо с диодами.

Режимы работы

Чтобы разобраться в особенностях функционирования автомобильного генератора, важно понять особенности каждого из режимов:

  • В процессе пуска двигателя главным потребителем электрической энергии выступает стартер. Особенностью режима является создание повышенной нагрузки, что приводит к уменьшению напряжения на выходе АКБ. Как следствие, потребители берут ток только с аккумулятора. Вот почему при таком режиме батарея разряжается с наибольшей активностью.
  • После завода двигателя автомобильный генератор переходит в режим источника питания. С этого момента устройство дает ток, который необходим для питания нагрузки в автомобиле и подзаряда АКБ. Как только аккумулятор набирает требуемую емкость, уровень зарядного тока снижается. При этом генератор продолжает играть роль главного источника питания.
  • После подключения мощной нагрузки, например, кондиционера, обогрева салона и прочих, скорость вращения ротора замедляется. В этом случае автомобильный генератор уже не способен покрыть потребности автомобиля в токе. Часть нагрузки перекладывается на АКБ, который работает в параллель с источником питания и начинает постепенно разряжаться.

Регулятор напряжения — функции, типы, контрольная лампа

Ключевым элементом генераторной установки является регулятор напряжения — устройство, поддерживающее безопасный уровень U на выходе статора.

Такие изделия бывают двух типов:

  • Гибридные — регуляторы, электрическая схема которых включает в себя как электронные приборы, так и радиодетали.
  • Интегральные — устройства, в основе которых лежит тонкопленочная микроэлектронная технология. В современных автомобилях наибольшее распространение получил именно этот вариант.

Не менее важный элемент — контрольная лампа, смонтированная на приборной панели, по которой можно делать вывод о наличии проблем с регулятором.

Зажигание лампочки в момент пуска мотора должно быть кратковременным. Если же она горит постоянно (когда генераторная установка в работе), это свидетельствует о поломке регулятора или самого узла, а также необходимости ремонта.

Тонкости крепления

Фиксация генераторной установки производится при помощи специального кронштейна и болтового соединения.

Сам узел крепится в передней части двигателя, благодаря специальным лапам и проушинам.

Если на автомобильном генераторе предусмотрены специальные лапы, последние находятся на крышках мотора.

В случае применения только одной фиксирующей лапы, последняя ставится только на передней крышке.

В лапе, установленной в задней части, как правило, предусмотрено отверстие с установленной в нем дистанционной втулкой.

Задача последней заключается в устранении зазора, созданного между упором и креплением.

Крепление генератора Audi A8.

А так агрегат крепиться на ВАЗ 21124.

Неисправности генератора и способы их устранения

Электрооборудование автомобиля имеет свойство ломаться. При этом наибольшие проблемы возникают с АКБ и генератором.

В случае выхода из строя любого из этих элементов эксплуатация ТС в нормальном режиме работы становится невозможной или же авто оказывается вовсе обездвиженным.

Все поломки генератора условно делятся на две категории:

  • Механические. В этом случае проблемы возникают целостностью корпуса, пружин, ременным приводом и прочими элементами, которые не связаны с электрической составляющей.
  • Электрические. Сюда относятся неисправности диодного моста, износ щеток, замыкание в обмотках, поломки реле регулятора и прочие.

Теперь рассмотрим список неисправностей и симптомы более подробно.

1. На выходе недостаточный уровень зарядного тока:

  • Пробуксовка приводного ремня. Решение — натянуть ремень и проверить подшипники на факт исправности, симптомы – свист ремня генератора.
  • Зависание щеток. Для начала стоит вычистить щеткодержатель и щетки от загрязнений и убедиться в достаточности усилия.
  • Обрыв цепочки возбуждения, подгорание контактных колес. Первая проблема решается путем поиска и устранения обрыва, а вторая — посредством зачистки и проточки контактных колец (если это требуется).
  • Выход из строя регулятора напряжения.
  • Задевание ротором статорного полюса.
  • Обрыв цепочки, объединяющий генератор и АКБ.

2. Вторая ситуация.

Когда автомобильный генератор выдает необходимый уровень тока, но АКБ все равно не заряжается.

Причины могут быть разными:

  • Низкое качество протяжки контакта «массы» между регулятором и основным узлом. В этом случае проверьте качество контактного соединения.
  • Выход из строя реле напряжения — проверьте и поменяйте его.
  • Износились или зависли щетки — замените или очистите от грязи.
  • Сработало защитное реле регулятора из-за наличия замыкания на «массу». Решение — отыскать место повреждения и убрать проблему.
  • Прочие причины — замасливание контактов, поломка регулятора напряжения, витковое замыкание в обмотках статора, плохое натяжение ремня.

3. Генератор работает, но издает повышенный шум.

Вероятные неисправности:

  • Замыкание между витками статора.
  • Износ места для посадки подшипника.
  • Послабление шкивной гайки.
  • Разрушение подшипника.

Ремонт генератора автомобиля всегда должен начинаться с точной диагностики проблемы, после чего причина устраняется путем профилактических мер или замены вышедшего из строя узла.

Рекомендации по замене

Практика эксплуатации показывает, что поменять автомобильный генератор несложно, но для решения задачи требуется соблюдать ряд правил:

  • Новое устройство должно иметь аналогичные токоскоростные параметры, как и у заводского узла.
  • Энергетические показатели должны быть идентичными.
  • Передаточные числа у старого и нового источника питания должны совпадать.
  • Устанавливаемый узел должен подходить по размерам и с легкостью крепится к мотору.
  • Схемы нового и старого автомобильного генератора должны быть одинаковыми.

Учтите, что устройства, смонтированные на автомобилях зарубежного производства, фиксируются не так, как отечественного, к примеру, как на генератор TOYOTA COROLLA и Лада Гранта .Следовательно, если менять иностранный агрегат изделием отечественного производства, придется установить новое крепление.

Полезные советы в помощь

В завершение рассказа об автомобильных генераторах стоит выделить ряд советов, что необходимо, а чего нельзя делать автовладельцам в процессе эксплуатации.

Главный момент — установка, в процессе которой важно с предельным вниманием подойти к подключению полярности.

Если ошибиться в этом вопросе, выпрямительное устройство поломается и возрастает риск возгорания.

Аналогичную опасность несет и пуск двигателя при некорректно подключенных проводах.

Чтобы избежать проблем в процессе эксплуатации, стоит придерживаться ряда правил:

  • Следите за чистотой контактов и контролируйте исправность электрической проводки автомобиля. Отдельное внимание уделите надежности соединения. В случае применения плохих контактных проводов уровень бортового напряжения выйдет за допустимый предел.
  • Следите за натяжкой генератора. В случае слабого натяжения источник питания не сможет выполнять поставленные задачи. Если же перетянуть ремень, это чревато быстрым износом подшипников.
  • Отбрасывайте провода от генератора и АКБ при выполнении электросварочных работ.
  • Если контрольная лампочка загорается и продолжает гореть после пуска мотора, выясните и устраните причину.

Отдельное внимание стоит уделить реле-регулятору, а также проверке напряжения на выходе источника питания. В режиме заряда этот параметр должен быть на уровне 13,9-14,5 Вольт.

Кроме того, время от времени проверяйте износ и достаточность усилия щеток генератора, состояние подшипников и контактных колец.

Высота щеток должна измеряться при демонтированном держателе. Если последний износился до 8-10 мм, требуется замена.

Что касается усилия пружин, удерживающих щетки, оно должно быть на уровне 4,2 Н (для ВАЗ). При этом осматривайте контактные кольца — на них не должно быть следов масла.

Также автовладелец должен запомнить и ряд запретов, а именно:

  • Не оставляйте машину с подключенной АКБ, если имеются подозрения поломки диодного моста. В противном случае аккумулятор быстро разрядится, и возрастает риск воспламенения проводки.
  • Не проверяйте правильность работы генератора путем перемыкания его выводов или отключения АКБ при работающем двигателе. В этом случае возможна поломка электронных элементов, бортового компьютера или регулятора напряжения.
  • Не допускайте попадания технических жидкостей на генератор.
  • Не оставляйте включенным узел в случае, если клеммы АКБ были сняты. В противном случае это может привести к поломке регулятора напряжения и электрооборудования авто.
  • Своевременно проводите замену ремня генератора.

Зная особенности работы генератора, нюансы его конструкции, основные неисправности и тонкости ремонта, можно избежать многих проблем с проводкой и АКБ.

Помните, что генератор — сложный узел, требующий особого подхода к эксплуатации.

Важно постоянно следить за ним, своевременно проводить профилактические мероприятия и замену деталей (при наличии такой необходимости).

При таком подходе источник питания и сам автомобиль прослужат очень долго.

Генератор переменного тока. Устройство и принцип действия

Видео: Принцип работы генератора переменного тока. Как работает генератор простыми словами? Что такое переменный ток?

Генератор переменного тока — это электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока путем вращения проволочной катушки в магнитном поле. Большинство генераторов переменного тока используют вращающееся магнитное поле.

В последнее время широкое распространение получили генераторы переменного тока, выгодно отличающиеся от генераторов постоянного тока своими габаритными размерами и способностью вырабатывать ток заряда при меньшей частоте вращения коленчатого вала двигателя. Они имеют повышенную надежность.ustrojstvo-generatora-toka

Генераторы переменного тока используют на гусеничных и колесных машинах (например, на КамАЗ-4310 и КЗКТ-7428). По своей конструкции генераторы переменного тока отличаются от коллекторных генераторов постоянного тока. У них почти вдвое меньше масса и втрое — расход меди. Благодаря более раннему началу отдачи зарядного тока (с момента приведения во вращение вала двигателя на режиме холостого хода) такие генераторы имеют существенно лучшие зарядные свойства по сравнению с генераторами постоянного тока.

Генератор переменного тока представляет собой трехфазную синхронную электромашину с электромагнитным возбуждением и выпрямителем. Генератор работает совместно с регулятором напряжения, обеспечивающим поддержание в электросети машины (с определенным допуском) требуемого постоянного напряжения.

Генератор переменного тока

Рис. Схема генератора переменного тока:
1 — ротор; 2 — статор; 3, 9 — шарикоподшипники; 4 — шкив привода; 5 — вентилятор; 6, 10 — крышки; 7 — выпрямитель; 8 — контактные кольца; 11 — щеткодержатель; 12 — обмотка возбуждения; 13 — винты крепления фазовых обмоток статора к выпрямителю; 14 — винт «массы»

Принцип действия генератора переменного тока

Конструкции электрических генераторов переменного тока различны, но принцип их действия одинаков. Рассмотрим один из таких генераторов.

Статор 2 генератора с трехфазной обмоткой выполнен в виде отдельных катушек, в витках которых при вращении ротора 1 индуцируется переменное напряжение. В каждой фазе имеется по шесть катушек, соединенных последовательно. Обмотка возбуждения 12 выполнена в виде катушки и помещена на стальной втулке клювообразных полюсов ротора, обмотки которого питаются постоянным током от аккумуляторной батареи или выпрямителя 7, устанавливаемого на выходе генератора. В крышке 10 имеются вентиляционные окна, через которые циркулирует охлаждающий поток воздуха. Моноблок-радиатор способствует охлаждению выпрямителя, собранного из кремниевых вентилей (диодов) с допустимой температурой нагрева 150 °С.

Интересным компоновочным решением конструкции генератора переменного тока является генераторная установка магистральных автопоездов МАЗ. Она состоит из генератора и интегрального регулятора напряжения (ИРН). Номинальное вырабатываемое напряжение установки 28 В, номинальная мощность 800 Вт. Регулятор вмонтирован в основание щеткодержателя генератора. В крышку генератора также вмонтирован выпрямительный блок БПВ 4-45. Регулятор состоит из резисторов, конденсаторов, стабилитронов, транзисторов и других элементов. Он снабжен переключателем сезонной регулировки («летняя» и «зимняя»). Элементы ИРН смонтированы на малогабаритной керамической плате, закрытой специальной крышкой и залитой герметиком, что делает конструкцию неразборной и неремонтируемой.

Принцип работы и схема подключение генератора

Самая основная функция генераторазарядка батареи аккумулятора и питание электрического оборудования двигателя.

Схема генератора автомобиляПоэтому рассмотрим более подробнее схему генератора, как правильно его подключить, а также дадим несколько советов как проверить его своими руками.

Содержание:

Генератор – механизм, который превращает механическую энергию в электрическую. Генератор имеет вал, на который насажен шкив, через который и получает вращения от коленчатого вала двигателя.

Принципиальная электрическая схема генератора авто

  1. Аккумуляторная батарея
  2. Выход генератора "+"
  3. Включатель зажигания
  4. Лампа-индикатор исправности генератора
  5. Помехоподавляющий конденсатор
  6. Положительные диоды силового выпрямителя
  7. Отрицательные диоды силового выпрямителя
  8. «Масса» генератора
  9. Диоды обмотки возбуждения
  10. Обмотки трех фаз статора
  11. Питание обмотки возбуждения, опорное напряжение для регулятора напряжения
  12. Обмотка возбуждения (ротор)
  13. Регулятор напряжения

Автомобильный генератор используют для питания электропотребителей, таких как: система зажигания, бортовой компьютер, автомобильная светотехника, система диагностики, а также есть возможность заряжать автомобильный аккумулятор. Мощность генератора легкового автомобиля составляет приблизительно 1 кВт. Автомобильные генераторы достаточно надежные в работе, потому что обеспечивают бесперебойную работу множеству приборов в автомобиле, а поэтому и требования к ним соответствующие.

Устройство генератора

Устройство автомобильного генератора подразумевает наличие собственного выпрямителя и регулирующей схемы. Генерирующая часть генератора с помощью неподвижной обмотки (статора) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.

устройство генератора

Устройство генератора: 1.Гайка. 2.Шайба. 3.Шкив. 4.Передняя крышка. 5.Дистанционное кольцо. 6.Ротор. 7.Статор. 8.Задняя крышка. 9.Кожух. 10.Прокладка. 11.Защитная втулка. 12.Выпрямительный блок с конденсатором. 13.Щеткодержатель с регулятором напряжения.

Располагается генератор в передней части двигателя автомобиля и запускается с помощью коленчатого вала. Схема подключения и принцип работы генератора автомобиля одинаковый для любых автомобилей. Есть конечно некоторые отличия, но они, как правило, связаны с качеством изготовленного товара, мощностью и компоновкой узлов в моторе. Во всех современных автомобилях устанавливают генераторные установки переменного тока, которые включают не только сам генератор, но и регулятор напряжения. Регулятор равносильно распределяет силу тока в обмотке возбуждения, именно за счет этого и происходит колебание мощности самой генераторной установки в тот момент, когда напряжение на силовых клеммах выхода остается неизменным.

Новые автомобили чаще всего оборудованы электронным блоком на регуляторе напряжения, поэтому бортовой компьютер может контролировать величину нагрузки на генераторную установку. В свою очередь на гибридных автомобилях генератор выполняет работу стартер-генератора, аналогичная схема используется и в других конструкциях системы стоп-старт.

Принцип работы генератора авто

принцип работы генератора

Схема подключения генератора ВАЗ 2110-2115

Схема подключения генератора переменного тока включает такие составляющие:

  1. Аккумулятор.
  2. Генератор.
  3. Блок предохранителя.
  4. Ключ зажигания.
  5. Приборная панель.
  6. Выпрямительный блок и добавочные диоды.

Принцип работы достаточно простой, при включении зажигания плюс через замок зажигания идет через блок предохранителей, лампочку, диодный мост и выходит через резистор на минус. Когда лампочка на приборной панели загорелась, далее плюс идет на генератор (на обмотку возбуждения), далее в процессе запуска двигателя шкив начинает вращаться, также вращается якорь, за счет электромагнитной индукции вырабатывается электродвижущая сила и появляется переменный ток.

Наиболее опасным для генератора является замыкание пластин теплоотводов, соединенных с «массой» и выводом "+" генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением.

Далее в выпрямительный блок через синусоиду в левое плечо диод пропускает плюс, а в правое минус. Добавочные диоды на лампочку отсекают минусы и получаются только плюсы, далее он идет на узел приборной панели, а диод, который там стоит он пропускает только минус, в итоге лампочка гаснет и плюс тогда идет через резистор и выходит на минус.

схема генератора

Принцип работы автомобильного генератора постоянного, можно объяснить так: через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.

Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Далее рассмотрим схему подключения автомобильного генератора на примере автомобиля ВАЗ-2107.

Схема подключения генератора на ВАЗ 2107

Схема зарядки ВАЗ 2107 зависит от того, какой применяется тип генератора. Чтобы подзарядить аккумуляторную батарею на таких авто, как: ВАЗ-2107, ВАЗ-2104, ВАЗ-2105, которые стоят на карбюраторном двигателе, будет необходим генератор типа Г-222 или его аналог с максимальным током отдачи в 55А. В свою очередь автомобили ВАЗ-2107 у которых инжекторный двигатель используют генератор 5142.3771 или его прототип, который называется генератором повышенной энергии, с максимальным током отдачи 80-90А. Также можно устанавливать более мощные генераторы с током отдачи до 100А. Абсолютно во все виды генераторов переменного тока встраиваются выпрямительные блоки и регуляторы напряжения, они, как правило, изготовлены в одном корпусе со щетками либо съемные и крепятся на самом корпусе.

Схема зарядки ВАЗ 2107 имеет незначительные отличия в зависимости от года изготовления автомобиля. Самым главным отличием есть наличие или отсутствие контрольной лампы заряда, которая расположена на панели приборов, также способ ее подключения и наличие либо отсутствие вольтметра. Такие схемы в основном используются на карбюраторных автомобилях, тогда как на авто с инжекторными двигателями схема не меняется, она идентична с теми автомобилями, которые изготовлялись ранее.

Обозначения генераторных установок:

  1. “Плюс” силового выпрямителя: “+”, В, 30, В+, ВАТ.
  2. “Масса”: “-”, D-, 31, B-, M, E, GRD.
  3. Вывод обмотки возбуждения: Ш, 67, DF, F, EXC, E, FLD.
  4. Вывод для соединения с лампой контроля исправности: D, D+, 61, L, WL, IND.
  5. Вывод фазы: ~, W, R, STА.
  6. Вывод нулевой точки обмотки статора: 0, МР.
  7. Вывод регулятора напряжения для подсоединения его в бортовую сеть, обычно к “+” аккумуляторной батареи: Б, 15, S.
  8. Вывод регулятора напряжения для питания его от выключателя зажигания: IG.
  9. Вывод регулятора напряжения для соединения его с бортовым компьютером: FR, F.
схема зарядки аккумуляторной батареи ВАЗ-2107 с генератором типа 37.3701

Схема генератора ВАЗ-2107 тип 37.3701

  1. Аккумуляторная батарея.
  2. Генератор.
  3. Регулятор напряжения.
  4. Монтажный блок.
  5. Выключатель зажигания.
  6. Вольтметр.
  7. Контрольная лампа заряда аккумуляторной батареи.

При включении зажигания плюс от замка идет к предохранителю № 10, а затем уже поступает на реле контрольной лампы заряда аккумуляторной батареи, потом идет к контакту и на вывод катушки. Второй вывод катушки взаимодействует с центральным выводом стартера, где соединяются все три обмотки. Если контакты реле замыкаются, то и контрольная лампа горит. При запуске двигателя генератор вырабатывает ток и на обмотках появляется переменное напряжение 7В. Через катушку реле проходит ток и якорь начинает притягиваться, при этом контакты размыкаются. Генератор № 15 через предохранитель № 9 пропускает ток. Аналогично через генератор напряжения щетки получает питание обмотка возбуждения.

Схема зарядки ВАЗ с инжекторными двигателями

Такая схема идентичная схемам на других моделях ВАЗов. Она отличается от предыдущих, способом возбуждения и контроля на исправность генератора. Он может быть осуществлен при помощи специальной контрольной лампы и вольтметра на панели приборов. Также через лампу заряда происходит первоначальное возбуждение генератора в момент начала работы. Во время работы генератор работает “анонимно”, то есть возбуждение идет напрямую с 30-го вывода.Когда включается зажигание, то питание через предохранитель №10 идет на лампу зарядки в панели приборов. Далее через монтажный блок поступает на 61-й вывод. Три дополнительные диода обеспечивают питание регулятору напряжения, а он в свою очередь передает его на обмотку возбуждения генератора. В этом случае контрольная лампа будет гореть. Именно в тот момент, когда генератор будет работать на обкладках выпрямительного моста напряжение будет гораздо выше, чем у аккумуляторной батареи. В этом случае контрольная лампа не будет гореть, потому что напряжение с ее стороны на дополнительных диодах будет ниже, чем со стороны статорной обмотки и диоды закроются. Если во время работы генератора контрольная лампа горит в пол накала, то это может означать, что пробиты дополнительные диоды.

Проверка работы генератора

Проверить работоспособность генератора можно несколькими способами применяя определенные методы, например: можно проверить ток отдачи генератора, падение напряжения на проводе, который соединяет токовый вывод генератора с аккумуляторной батареей или проверить регулируемое напряжение.

Для проверки будет необходим мультиметр, автомобильный аккумулятор и лампа с припаянными проводами, провода для подключения между генератором и аккумулятором, а еще можно взять дрель с подходящей головкой, так как возможно придется крутить ротор за гайку на шкиве.

Элементарная проверка лампочкой и мультиметорм

Схема подключения: выходная клемма (В+) и ротор (D+). Лампу нужно подключить между основным выходом генератора В+ и контактом D+. После этого берем силовые провода и подключаем “минус” к минусовой клемме аккумулятора и к массе генератора, “плюс” соответственно к плюсу генератора и к выходу В+ генератора. Закрепляем на тиски и подключаем.

“Массу” нужно подключать в последнюю очень, чтобы не закоротить аккумулятор.

Включаем тестер в режим (DC) постоянного тока, цепляем один щуп на аккумулятор к “плюсу”, второй также, но к “минусу”. Далее, если все в рабочем состоянии, то должна загореться лампочка, напряжение в этом случае будет 12,4В. Затем берем дрель и начинаем крутить генератор, соответственно лампочка в этом момент перестанет гореть, а напряжение уже будет 14,9В. После чего добавляем нагрузку, берем галогенную лампу h5 и вешаем ее на клемму аккумулятора, она должна загореться. После чего в аналогичном порядке подключаем дрель и напряжение на вольтметре будет показывать уже 13,9В. В пассивном режиме аккумулятор под лампочкой дает 12,2В, а когда крутим дрелью, то 13,9В.

схема проверки генератора

Схема проверки генератора

Строго не рекомендуется:

  1. Проводить проверку на работоспособность генератора путем короткого замыкания, то есть “на искру”.
  2. Допускать, чтобы генератор работал без включенных потребителей, также нежелательна работа при отключенном аккумуляторе.
  3. Соединение клеммы “30” (в некоторых случаях B+) с “массой” или клемму “67” (в некоторых случаях D+).
  4. Проводить сварочные работы кузова автомобиля при подключенных проводах генератора и аккумулятора.

Спрашивайте в комментариях. Ответим обязательно!

Устройство генератора тока | У электрика.ру

Приветствую всех на нашем сайте. Сегодня мы поговорим об устройстве генератора тока. Попробуем максимально охватить данную тему  и рассмотреть устройство  генераторов постоянного и переменного токов.

На самом деле, не совсем верно называть это устройство генератором именно переменного или постоянного тока, поскольку, ток возникает только в замкнутом контуре. В общем, в обмотках генератора возникает ЭДС, а не ток. Ток начинает протекать только тогда, когда к обмоткам подключается какой-либо потребитель. Однако, в этой статье мы будем пользоваться устоявшимися понятиями.

Какие бы ни были электрические генераторы основной их принцип – выработка электрической энергии за счёт вращения обмотки в магнитном поле. Это значит, что можно выделить два схематических вида генераторов: либо мы вращаем магнитное поле в неподвижном проводнике, либо вращаем проводник в неподвижном магнитном поле.

Содержание:

Устройство генератора переменного тока

Итак, относительно устройства генератора переменного тока и принципа его действия.

генератор переменного тока устройство

Наибольшее распространение получили генераторы переменного тока с неподвижным проводником. Обусловлено это тем, что ток возбуждения по отношению к току, который получают с генератора, небольшой. Если посмотрите на картинку, то увидите два кольца, по которым протекает ток обмотки возбуждения и это слабое звено любого генератора с обмоткой возбуждения. То есть, либо по кольцам через щётки мы подаем небольшой ток возбуждения, либо через кольца снимаем большой рабочий ток. В электричестве неподвижная часть генераторов или двигателей, на которой находится обмотка, называется статором. Подвижная часть может называться ротором или якорем.

Основные виды генераторов переменного тока

Видов генераторов довольно много. Попробуем классифицировать их по основным направлениям.

  • По виду используемой энергии:
    • Энергия ветра
    • Энергия газа
    • Энергия жидкого топлива
    • Энергия тепла
    • Энергия воды
  • По типу генератора:
    • Однофазный
    • Трёхфазный
    • Синхронный
    • Асинхронный
    • По количеству полюсов статорной обмотки

Есть и другие типы, но они менее распространены.

  • По типу возбуждения:
    • Независимое возбуждение. В этом случае на одном валу с генератором переменного тока находится еще и генератор постоянного тока, который питает только обмотку возбуждения. Возбуждение в таком случае может выполняться и любым другим источником тока, например, аккумулятором.
    • Самовозбуждение. В этом случае, напряжение для обмотки возбуждения получают непосредственно с используемого генератора.
    • Возбуждение с помощью магнитов, которые располагаются на статоре или на якоре, что значительно упрощает устройство генератора, но с помощью такого способа получить мощные генераторы не получится.
Синхронный генератор : схема, устройство, принцип работы

Что значит синхронный по отношению к двигателю или генератору? Если совсем просто, то частота переменного тока жёстко зависит от скорости вращения ротора электрической машины и наоборот. Таким образом, можно относительно легко контролировать частоту переменного тока. Сам по себе синхронный генератор имеет ряд преимуществ, благодаря которым стал наиболее распространенным. Скажу вам по большому секрету, именно синхронные генераторы используются на всех станциях, где производят электричество.

синхронный генератор

Приводным двигателем (на схеме обозначен как ПД) может выступать любое вращающее устройство: двигатель, турбина, крыльчатка ветряной мельницы или водяного колеса. На одном валу с ПД находится ротор генератора с обмоткой возбуждения. На обмотку подается постоянное напряжение и вокруг обмотки образуется магнитное поле. Когда ротор вращается, в обмотках статора возникает ЭДС, то есть появляется напряжение, только уже переменное, частота которого зависит от скорости вращения ротора n1 и количества пар полюсов p. Частоту ЭДС можно высчитать по формуле.

формула

Асинхронный генератор: схема, устройство, принцип работы
асинхронный генератор устройство

Устройство асинхронного генератора

Асинхронный генератор, это, по сути, асинхронный двигатель. То есть, любой асинхронный двигатель можно перевести в режим генерации энергии и наоборот. Конструктивно, устройство, которое называют генератором, выполнено таким образом, чтобы иметь хорошее охлаждение. Глубоко останавливаться на принципе действия асинхронных машин не будем, но вкратце расскажу, почему их называют асинхронными на примере двигателя.

асинхронный двигатель

Когда на обмотки статора подается напряжение, образуется магнитное поле, у трёхфазных двигателей оно круговое, у однофазных эллипсообразное, стремящееся к круговому. Магнитное поле начинает пересекать витки обмотки статора. В короткозамкнутой обмотке ротора возникает ЭДС, то есть напряжение, а поскольку обмотка короткозамкнутая, по ней начинает протекать ток, который тоже создает магнитное поле. Взаимодействие этих магнитных полей приводит ротор в движение. Что будет, если скорость ротора станет равна скорости магнитного поля, создаваемого статором? Правильно, магнитное поле статора перестанет пересекать обмотку ротора. Это можно сравнить с тем, что две машины двигаются на одинаковой скорости. Вроде бы машины двигаются, но при этом по отношению друг к другу они словно стоят на месте, просто земля с большой скоростью проносится под машинами. Так вот, как только скорость ротора и скорость магнитного поля статора станут одинаковыми, в обмотке ротора перестанет вырабатываться ЭДС, прекратится взаимодействие магнитных полей статора и ротора и ротор начнёт останавливаться. Поэтому скорость вращения ротора асинхронного двигателя всегда несколько меньше скорости вращения магнитного поля статора и эта величина называется скольжение.

Так вот, чтобы асинхронный двигатель стал генератором, надо определить скольжение и увеличить скорость вращения ротора на эту величину. Допустим, мы имеем однополюсный трехфазный асинхронный двигатель со скоростью вращения вала 2800 оборотов. Если бы такой двигатель был синхронным, скорость вращения составила бы 3000 оборотов. То есть скольжение составляет 200 оборотов в минуту. Это значит, что если мы начнём вращать ротор со скоростью 3200 оборотов в минуту, то двигатель перейдёт в генераторный режим и будет уже не потреблять, а вырабатывать ЭДС.

Сложность применения таких генераторов в том, что они подвержены провалам. Например, если включить активную нагрузку (лампочку накаливания или нагреватель), пусковой ток будет небольшим. Значительной перегрузки не произойдет, и генератор будет работать стабильно. Если же включить реактивную нагрузку, например, двигатель, то будет большой пусковой ток, превышающий номинальный в 5-20 раз, который «провалит» генератор, то есть вызовет резкое падение напряжения на обмотках генератора. После такого провала асинхронный генератор снова нужно возбуждать. Так что, простота асинхронного генератора перевешивается серьезным недостатком.

Ну и еще нужна конденсаторная установка для возбуждения короткозамкнутой обмотки ротора. Если подобрать неверно ёмкость конденсаторов, то в случае «недобора» от генератора мы получим меньше тока, а в случае «перебора», наш генератор будет сильно перегреваться.

Схемы подключения

Собственно, даже не схемы включения, а варианты. Их, как правило, три:

      • Автоматическое включение. В этом случае устанавливается специальный блок аварийного включения. Как только отключают напряжение в сети, блок подаёт команду на запуск генератора и переключает сеть с внешнего источника питания, на генераторную установку.
      • Ручное включение. В этом случае, пользователь сам проводит операцию переключения с внешнего источника питания на генераторную установку и вручную запускает генератор.
      • Синхронная работа. Такой режим, в основном используется на крупных станциях, генераторы которых объединены в одну сеть. Все генераторы этой сети работают синхронно, с одной частотой, с одной очерёдностью фаз и с одинаковым напряжением на обмотках статора.
Однофазный генератор

Здесь я подробно останавливаться не буду. Такие устройства сейчас можно встретить в любом магазине инструментов. Если однофазный генератор используется как запасной источник электроэнергии, то подключается к домовой сети, как правило, посредством рубильника. То есть, одновременно внешний источник питания и генератор на одну сеть не могут – либо то, либо другое. Во-первых, незачем, во-вторых, это сильно усложнило бы и увеличило стоимость бытовых генераторов. Единственное, на чём могу здесь остановиться, это включение однофазного генератора в трёхфазную сеть.

Включение однофазного генератора

Включение однофазного генератора в трёхфазную сеть

Однако у такого метода есть свой недостаток. Трёхфазные двигатели в такой сети работать не будут, если же их включить, то очень быстро нагреются и выйдут из строя.

Трехфазный генератор

Трёхфазные генераторы могут быть бытовыми и промышленными. Устройство генератора трёхфазного тока в бытовом варианте практически ничем не отличается от однофазного, как и схема включения. Единственное условие при включении бытового генератора в сеть, если в такой сети имеются трёхфазные двигатели – соблюдать очередность фаз. В случае же, если нагрузка в доме однофазная, то такой предосторожностью можно пренебречь.

Устройство генератора трёхфазного тока в промышленном варианте – это устройство, оснащенное автоматическим пуском и иногда может быть оснащено устройством синхронизации. Подключение таких генераторов лучше доверить специалистам.

Ну а бытовой генератор точно так же, как и однофазный включается в сеть через рубильник. Следовательно, в зависимости от положения рубильника работает либо внешний источник питания, либо генератор.

Устройство генератора постоянного тока

Чтобы узнать, что такое генератор постоянного тока, устройство и принцип действия вернёмся немного назад. Мы уже выяснили, как работает генератор переменного тока. Давайте подробнее рассмотрим процесс возникновения ЭДС. Поскольку ротор вращается, у нас есть цикл равный одному обороту ротора или 360°. Давайте узнаем, что происходит в этом цикле:

      • 0° — ЭДС =0
      • 90° — ЭДС достигает максимального значения со знаком «+»
      • 180° — ЭДС снова равна 0
      • 270° — ЭДС достигает пикового значения со знаком «-»

Как же сделать так, чтобы не менялась полярность напряжения? Великие умы придумали следующее – применить коллектор, то есть, снимать напряжение только нужной полярности. Помните, мы говорили, что в генераторе переменного тока, рабочей является обмотка статора, а на роторе находится обмотка возбуждения. Так вот, в генераторе постоянного тока напряжение снимается только с ротора, который называется якорем.

генератор постоянного тока

Схема генератора постоянного тока

Если такой генератор будет иметь только одну пару полюсов, как на картинке, то мы получим пульсирующее постоянное напряжение, где частота будет в два раза больше скорости вращения. То есть, если скорость вращения будет 50 оборотов в секунду, то частота пульсации будет 100 Гц. Чтобы снизить пульсацию напряжения увеличивают количество пар полюсов.

принцип действия постоянного тока

С момента изобретения генератора постоянного тока схематично и по принципу действия он практически не изменился, изменилась лишь технология изготовления и сейчас он выглядит так:

генератор постоянного тока устройство

Основные виды генераторов постоянного тока

В настоящее время набирают популярность двигатели постоянного тока без коллектора. Возможен ли вариант бесколлекторного генератора? К сожалению, пока решить эту задачу не удалось. Так что, если вы где-то увидите название «Бесколлекторный генератор постоянного тока», знайте, что это генератор переменного тока с выпрямительным блоком.

По этой причине, генераторы постоянного тока характеризуют только по типу возбуждения:

  1. Генераторы, возбуждаемые магнитами. Большую мощность такие генераторы развить не могут, поэтому нашли применение только там, где требуются небольшие мощности. Ну и, конечно же, применение магнитов ощутимо удешевляет стоимость таких генераторов.
  2. Независимое возбуждение. Точно так же, как и у генераторов переменного тока, для возбуждения применяется внешний источник питания, не связанный с генератором.
  3. Зависимое возбуждение, которое делится на три типа:
    • Параллельное возбуждение. Как можно понять из названия, обмотка возбуждения в таком генераторе подключена параллельно обмотке якоря. Иногда такой вид возбуждения называют шунтовый.
    • Последовательное возбуждение. Здесь обмотка возбуждения подключается как гирлянда, последовательно обмотке якоря. Такой вид иногда называют сериесным.
    • Смешанное возбуждение или компаундное. Обмотка возбуждения таких генераторов состоит из двух частей, первая подключается шунтовым методом, вторая сериесным.
Генераторы с независимым возбуждением: схема, устройство, принцип работы
схема генератор независимое возбуждение

Схема генератора независимого возбуждения

Принцип работы этого генератора довольно прост. Однако простота генератора является его же недостатком – он требует внешнего независимого источника питания. Якорь генератора разгоняют до необходимой скорости, затем с помощью реостата начинают возбуждать генератор. На обмотках якоря возникает ЭДС и при подключении нагрузки начинает протекать ток.

Нагрузочная способность такого генератора очень хорошая. Как правило, разница между напряжением холостого хода, когда нагрузка не подключена и напряжением при номинальной нагрузке генератора, когда потребитель загружает полностью – составляет всего 5-10%.

Преимущество генератора с независимым возбуждением ещё и в том, что его можно запускать под нагрузкой, то есть, с присоединенными электроприборами.

Генераторы с параллельным возбуждением: схема, устройство, принцип работы
схема генератор с параллельным возбуждением

Схема генератора параллельного возбуждения

У генератора с параллельным включением обмотки возбуждения, в принципе, тоже неплохие нагрузочные характеристики, хотя и несколько хуже, чем у схем с независимым возбуждением – 10-30%. У схем с зависимым возбуждением есть одна особенность, для того, чтобы произошло возбуждение, металл генератора должен иметь остаточную намагниченность. Достаточно 2-3% остаточной намагниченности чтобы запустился процесс самовозбуждения. Конечно же, при этом направление обмотки возбуждения должно совпадать с направлением поля остаточной намагниченности.

Якорь генератора раскручивают до номинальных оборотов, за счет остаточного намагничивания происходит самовозбуждение, то есть, в контуре генератор-обмотка возбуждения появляется ЭДС, появляется небольшой ток. Он увеличивает ЭДС, следовательно, ток снова увеличивается и так происходит до тех пор, пока не будет достигнут баланс между падением напряжения в обмотке генератора и падением напряжения в обмотке возбуждения.

В работе генератора есть одна особенность. Если плавно увеличивать нагрузку вплоть до короткого замыкания, то в какой-то момент мощность генератора достигнет пиковых значений, затем пойдет на спад. По сути, если в момент номинальной загрузки генератора устроить короткое замыкание, то ничего страшного не произойдет. Но если это сделать при небольшой нагрузке, то ток короткого замыкания достигает критических значений 8-10 Iн, а значит, такие генераторы крайне настоятельно рекомендуется защищать от короткого замыкания любым доступным способом.

Такие генераторы получили наибольшее распространение, поскольку не требуют внешних источников питания, имеют неплохую нагрузочную способность и позволяют контролировать ток возбуждения.

Генераторы с последовательным возбуждением: схема, устройство, принцип работы
генератор с последовательным возбуждением

Схема генератора последовательного возбуждения

Поскольку ток обмотки возбуждения в данном случае равен току в цепи, а значит, достигает больших значений, обмотка возбуждения выполняется толстым проводом и имеет меньшее количество витков, чем в предыдущих двух схемах. Принцип работы такой же, как и у предыдущей схемы. Обмотка и поле остаточной намагниченности должны совпадать по направлению. При раскручивании якоря до номинальной частоты возникает ЭДС, поднимается ток и дальше по нарастающей, пока не будет достигнут баланс.

Но здесь есть один небольшой нюанс. Ток обмотки возбуждения изменяется от тока нагрузки, и регулировать ток возбуждения возможности нет. А это приводит к тому, что очень сильно изменяется и напряжение. Здесь мы получаем самый настоящий генератор тока, а не напряжения. Именно поэтому область применения генератора с последовательным возбуждением сильно ограничена.

Генераторы со смешанным возбуждением: схема, устройство, принцип работы
схема генератора со смешанным возбуждением

Схема генератора со смешанным возбуждением

На этом типе соединения нужно остановиться подробнее. У нас есть две обмотки, а значит, их можно включать как согласованно, так и встречно. Здесь я приведу график внешних характеристик  такого генератора, и мы по ним пройдемся.

график внешних характеристик генератора постоянного тока со смешанным

График внешних характеристик генератора постоянного тока со смешанным возбуждением

Итак, раскручиваем якорь до номинальных оборотов. Остаточная намагниченность возбуждает параллельную обмотку, генератор выходит на рабочий режим. Теперь, если мы подключим нагрузку, при этом последовательная обмотка включена согласованно, то возникает дополнительный ток возбуждения. Последовательная обмотка становится, как бы, поддерживающей или опорной. Этот вид включения, если последовательная обмотка была рассчитана, как компенсирующая, позволяет довольно жестко поддерживать напряжение в заданных пределах. На графике это очень хорошо видно по кривой №1.

Если требуется получить некий запас напряжения, например, генератор находится на значительном удалении от потребителя и требуется учесть потери на кабельных линиях, то в последовательной катушке возбуждения увеличивают количество витков. Тем самым, мы получаем более крутую внешнюю характеристику, но поддержание напряжения на номинальных нагрузках остается по-прежнему жестким. Это видно по кривой №2.

Для сравнения, кривая №3 показывает внешнюю характеристику генератора только с параллельным возбуждением.

Так зачем же требуется встречное включение катушек возбуждения? Если вы посмотрите на кривую №4, то можете догадаться, что в случае короткого замыкания, ток возрастает до определенного момента, затем начинает падать. Из графика видно, что ток не достигает даже номинального значения, то есть, примерно 0,7 Iн. В таком варианте включения обмоток генератор без риска повреждения можно использовать для частых коротких замыканий, например сварочные работы.

К сожалению, у всех схем, где используется зависимое возбуждение, есть один существенный недостаток. Поскольку это трудно назвать возбуждением, скорее это самовозбуждение, то запускать такие генераторы вместе с нагрузкой не представляется возможным. Как я уже говорил выше, возбуждение происходит за счёт остаточного намагничивания, которое составляет буквально 2-3%. А значит, если к выводам генератора будет подключена нагрузка, ток будет стремиться по пути наименьшего сопротивления, то есть самой нагрузки. Другими словами, вместе с нагрузкой тока будет недостаточно для формирования магнитного поля.

Думаю, на этом можно закончить ознакомительную статью по генераторам переменного и постоянного тока.

Поделиться ссылкой:

Похожее

Характеристики, типы и принцип работы автомобильных генераторов

Поскольку для работы двигателя необходимо электричество, а запаса аккумулятора хватает лишь на его запуск, его постоянной выработкой занимается генератор автомобиля на холостом ходу и больших оборотах. Кроме подачи напряжения всем потребителям бортовой сети, электроэнергия расходуется на подзарядку АКБ и самовозбуждение якоря генератора.

Рис. 1 Генератор авто

Рис. 1 Генератор авто

Назначение автомобильного генератора

Кроме питания бортовой сети генератор автомобиля обеспечивает восполнение запаса электроэнергии, которую потратил аккумулятор при запуске ДВС. Первоначальное возбуждение обмотки так же производится за счет постоянного тока аккумулятора. Затем генератор начинает вырабатывать электричество самостоятельно при передаче вращения ремнем на шкив с коленвала двигателя.

Другими словами – без генератора машина заведется стартером от аккумулятора, но проедет недалеко, и не заведется в следующий раз, так как АКБ не получит подзарядки. На эксплуатационный ресурс генератора влияют факторы:

  • емкость и апмераж аккумулятора;
  • стиль и режим вождения;
  • количество потребителей бортовой сети;
  • сезонность эксплуатации транспортного средства;
  • качество изготовления и сборки узлов генератора.

Простая конструкция позволяет диагностировать и устранить самостоятельно большинство поломок.

Особенности конструкции

Основан принцип работы генератора автомобиля на эффекте индукции электромагнитной, позволяющем получать электроток при наведении, а затем изменении магнитного поля вокруг проводника. Для этого в генераторе имеются необходимые детали:

  • ротор – катушка внутри двух пар разнонаправленных магнитов, получающая вращение через шкив, и постоянный ток на обмотки возбуждения через щетки и коллекторные кольца
  • статор – обмотки внутри магнитопровода, в которых наводится переменный электрический ток
  • диодный мост – выпрямляет переменный ток в постоянный
  • реле напряжения – регулирует эту характеристику в пределах 13,8 – 14,8 В
Рис. 2 Конструкция генератора

Рис. 2 Конструкция генератора

При неработающем двигателе в момент его запуска ток возбуждения подается на якорь с аккумулятора. Затем генератор начинает выработку электричества самостоятельно, переходит на самовозбуждение, полностью восстанавливает заряд аккумулятора при движении машины.

На холостых оборотах подзарядки не происходит, но бортовая сеть и все ее потребители (фары, музыка, кондиционер) обеспечиваются в полном объеме.

Статор

В генераторе самым сложным является устройство статора:

  • из трансформаторного железа 0,8 – 1 мм толщины вырубаются штампом пластины;
  • из них набирают пакеты (сварка или крепление заклепками), 36 пазов по периметру изолируются эпоксидной смолой или полимерной пленкой;
  • затем в пакеты укладываются 3 обмотки, фиксируемые в пазах специальными клиньями.
Рис. 3 Статор генератора

Рис. 3 Статор генератора

Именно в статоре вырабатывается переменное напряжение, которое позже автомобильный генератор выпрямляет в постоянный ток для бортовой сети и АКБ.

Ротор

При использовании подшипников качения цапфа закаливается, а сам вал создается из легированной стали. На вал намотана катушка, залитая специальным диэлектрическим лаком. Сверху на нее надеты и закреплены на валу магнитные полюсные половинки:

  • имеют вид короны;
  • содержат по 6 лепестков;
  • изготавливаются штамповкой или литьем.
Рис. 4 Ротор генератора

Рис. 4 Ротор генератора

Шкив фиксируется на валу шпонкой либо гайкой с головой под шестигранный ключ. Зависит мощность генератора от толщины провода катушки возбуждения и качества изоляции лаком обмоток.

При подаче напряжения на обмотки возбуждения вокруг них возникает магнитное поле, взаимодействующее с аналогичным полем постоянных полюсных половинок магнитов. Именно вращение ротора обеспечивает выработку электротока в обмотках статора.

Токосъемный узел

В щеточном генераторе устройство токосъемного узла следующее:

  • щетки скользят по коллекторным кольцам;
  • по ним передается постоянный ток на обмотку возбуждения.

Электрографитные щетки изнашиваются меньше меднографитных модификаций, но на коллекторных полукольцах наблюдается падение напряжения. Для снижения электрохимического окисления колец их могут изготавливать из нержавейки и латуни.

Рис. 5 Токосъемный узел генератора

Рис. 5 Токосъемный узел генератора

Поскольку работа токосъемного узла сопровождается интенсивным трением, щетки и кольца коллекторные изнашиваются чаще прочих деталей, считаются расходниками. Поэтому к ним обеспечивается быстрый доступ для периодической замены.

Выпрямитель

Поскольку в статоре электроприбора вырабатывается переменное напряжение, а для бортовой сети нужен постоянный ток, в конструкцию добавлен выпрямитель, к которому и подключаются обмотки статора. В зависимости от характеристики генератора выпрямительный узел имеет различную конструкцию:

  • диодный мостик распаян или впрессован в подковообразные пластины-теплоотводы;
  • выпрямитель собран на плате, теплоотводы с мощным оребрением припаиваются к диодам.
Рис. 6 Выпрямитель генератора

Рис. 6 Выпрямитель генератора

Рис. 7 Вариант диодного мостика с независимыми радиаторами

Рис. 7 Вариант диодного мостика с независимыми радиаторами

Основной выпрямитель может дублироваться дополнительным диодным мостиком:

  • герметичный компактный блок;
  • диды-горошины или цилиндрической формы;
  • включение в общую схему небольшими шинами.

Выпрямитель является «слабым звеном» генератора, так как любое инородное тело, проводящее ток, попавшее случайно между теплоотводами диодов, автоматически приводит к короткому замыканию.

Регулятор напряжения

После того, как переменная амплитуда преобразована выпрямителем в постоянный ток, электроэнергия генератора подается на реле регулятора напряжения по следующим причинам:

  • коленвал ДВС вращается с разной скоростью в зависимости от типа вождения, дальностью поездки и циклом движения авто;
  • поэтому автомобильный генератор по умолчанию не способен вырабатывать одинаковое напряжение в разные промежутки времени физически;
  • устройство реле регулятора и отвечает за термокомпенсацию – отслеживает значение температуры воздуха, при его снижении повышает напряжение подзарядки и наоборот.

Стандартной величиной термокомпенсации принято значение 0,01 В/1градус. В некоторых генераторах имеются переключатели ручные лето/зима, выносимые в салон или пространство под капотом авто.

Рис. 8 Регулятор напряжения

Рис. 8 Регулятор напряжения

Существуют реле регуляторов напряжения, в которых бортовая сеть подключается к обмотке возбуждения генератора «–» проводом или «+» кабелем. Эти конструкции являются не взаимозаменяемыми, путать их нельзя, чаще всего в легковых машинах установлены «минусовые» регуляторы напряжения.

Подшипники

Передним считается подшипник со стороны шкива, его корпус впрессовывается в крышку, а на валу используется скользящая посадка. Задний подшипник расположен возле коллекторных колец, его, наоборот, сажают на вал с натягом, в корпусе использована скользящая посадка.

В последнем случае могут применяться подшипники роликовые, передний подшипник всегда радиальный шариковый с одноразовой смазкой, закладываемой на заводе, которой хватает на весь эксплуатационный ресурс.

Рис. 9 Комплект подшипников генератора

Рис. 9 Комплект подшипников генератора

Чем выше мощность генератора, тем большие нагрузки испытывает обойма подшипника, чаще требуется замена обоих расходных деталей.

Крыльчатка

Детали трения внутри генератора охлаждаются принудительным воздушным способом. Для этого на вал надевается одна или две крыльчатки, засасывающих воздух через специальные щели/отверстия в корпусе изделия.

Рис. 10 Крыльчатка генератора

Рис. 10 Крыльчатка генератора

Существует три типа воздушного охлаждения автомобильных генераторов:

  • при наличии узла щетки/коллекторные кольца и вынесения выпрямителя, регулятора напряжения из корпуса наружу эти узлы защищаются кожухом, поэтому воздухозаборные отверстия создаются в нем (позиция а) нижней схемы;
  • если компоновка механизмов под капотом плотная, а окружающий их воздух слишком нагрет, чтобы нормально охладить внутреннее пространство генератора, используется защитный кожух специальной конструкции (позиция б) нижнего рисунка;
  • в генераторах малогабаритных щели для забора воздуха создаются в обеих крышках корпуса (позиция в) на нижнем рисунке).
Рис. 11 Варианты схем воздушного охлаждения генератора

Рис. 11 Варианты схем воздушного охлаждения генератора

Перегрев обмоток и подшипников резко снижает характеристики генератора, и может привести к заклиниванию, короткому замыканию и, даже пожару.

Корпус

Традиционно для большинства электроприборов корпус генератора имеет защитную функцию для всех расположенных внутри него узлов. В отличие от стартера машины, генератор не имеет натяжного устройства, провисание ремня передачи регулируется за счет смещения корпуса самого генератора. Для этого кроме монтажных лапок на корпусе имеется регулировочная проушина.

Корпус изготавливается из алюминиевого сплава, состоит из двух крышек:

  • внутри передней крышки спрятан статор и якорь;
  • внутри задней крышки размещен выпрямитель и реле регулятора напряжения.
Рис. 12 Корпус генератора состоит из двух крышек

Рис. 12 Корпус генератора состоит из двух крышек

От этой детали зависит корректная работа генератора, так как внутрь одной крышки впрессован подшипник ротора, а ремень натягивается в проушине корпуса.

Режимы работы

При эксплуатации генератора машины существует 2 режима:

  • запуск ДВС – в этот момент стартер авто и катушка ротора генератора являются единственными потребителями, расходуется энергия аккумулятора, пусковые токи значительно выше рабочих, поэтому от качества подзарядки аккумулятора зависит, заведется машина, или нет;
  • рабочий режим – стартер в этот момент отключен, обмотка ротора генератора переходит в режим самовозбуждения, зато появляются прочие потребители (кондиционер, обогреватели стекол, зеркал, фары, автозвук), необходимо восстановить зарядку АКБ.

Внимание: При резком повышении суммарной нагрузки (аудиосистема с усилителем, сабвуфер) ток генератора становится недостаточным для удовлетворения потребностей бортовой системы, начинается расходоваться заряд АКБ.

Поэтому для снижения просадок напряжения владельцы автозвука часто ставят второй аккумулятор, увеличивают мощность генератора или дублируют его еще одним устройством.

Рис. 13 Два генератора на одном авто

Рис. 13 Два генератора на одном авто

Привод генератора

Обороты для выработки электричества генератор переменного тока получает клиноременной передачей от коленчатого вала двигателя. Поэтому натяжение ремня должно контролироваться регулярно, желательно перед каждой поездкой. Основными нюансами привода генератора являются:

  • проверка натяжения производится усилием 3 – 4 кг, прогиб в этом случае не может превышать 12 мм;
  • диагностика осуществляется линейкой, усилие к одному краю которой обеспечивается бытовым безменом;
  • проскальзывать ремень может при попадании на него масла из-за негерметичности прокладок и сальников в соседних узлах под капотом;
  • чересчур жесткий ремень вызывает повышенный износ подшипников;
  • отсутствии соосности шкивов коленвала и генератора приводит к возникновению свиста и неравномерной выработке ремня в поперечном разрезе.
Рис. 14 Привод генератора

Рис. 14 Привод генератора

Средний ресурс шкивов 150 – 200 тысяч километров пробега авто. У ремня эта характеристика слишком отличается у разных производителей, модели авто и стиля вождения владельца.

Электрическая схема

Производители учитывают конкретное количество потребителей в модели авто, поэтому в каждом случае применяется индивидуальная электрическая схема генератора. Наиболее востребованы 8 схем «мобильных электроустановок» под капотом машины с одинаковым обозначением элементов:

  1. генераторный блок;
  2. обмотка ротора;
  3. магнитопровод статора;
  4. мост диодный;
  5. переключатель;
  6. реле лампы;
  7. реле регулятора;
  8. лампа;
  9. конденсатор;
  10. блок трансформатора и выпрямителя;
  11. АКБ;
  12. стабилитрон;
  13. сопротивление.
Рис. 15 Схема 1

Рис. 15 Схема 1

В схемах 1 и 2 возбуждающая обмотка получает напряжение через замок зажигания, чтобы АКБ не разряжалась на стоянке. Недостатком является коммутация 5 А тока, снижающего эксплуатационный срок.

Рис. 16 Схема 2

Рис. 16 Схема 2

Поэтому на схеме 3 контакты разгружены промежуточным реле, а потребление тока снижено до десятых долей ампера. Минусом в этом варианте является сложный монтаж генератора, понижение надежности конструкции, возрастает частота переключения транзистора. Фары могут моргать, а стрелки приборов подрагивать.

Рис. 17 Схема 3

Рис. 17 Схема 3

В схеме 5 из трех диодов изготовлен дополнительный выпрямитель на пути к обмотке возбуждения. Однако при длительной парковке рекомендуется снимать «+» с клеммы аккумулятора, так как возможен разряд батареи. Зато при первичном возбуждении обмотки в момент запуска ДВС расход тока АКБ минимальный. Опасное для электроники машины повышение напряжения гаси стабилитрон.

Рис. 18 Схема 5

Рис. 18 Схема 5

Для дизельных моторов применяются генераторы, использующие 6 схему. Они рассчитаны на напряжение 28 В, возбуждающая обмотка получает вдвое меньший заряд за счет подключения в «нулевую» точку статора.

Рис 19 Схема 6

Рис 19 Схема 6

На схеме 7 ликвидирован разряд АКБ при длительной парковке за счет снижения разницы потенциалов на «Д» и «+» клеммах. Из стабилитронов создано дополнительное крыло диодного мостика выпрямителя для ликвидации всплесков напряжения.

Рис. 20 Схема 7

Рис. 20 Схема 7

Схема 8 обычно применяется в генераторах производителя Бош. Здесь усложнен регулятор напряжения, зато упрощена схема самого генератора.

Рис. 21 Схема 8

Рис. 21 Схема 8

Маркировка клемм на корпусе

При самостоятельной диагностике мультиметром для владельца актуальна информация, как маркируются клеммы, выведенные на корпус генератора. Единого обозначения не существует, но общие принципы соблюдаются всеми производителями:

  • с выпрямителя выходит «плюс», маркирующийся «+», 30, В, В+ и ВАТ, «минус», обозначенный «–», 31, D-, B-, E, M или GRD;
  • от возбуждающей обмотки отходит клемма 67, Ш, F, DF, E, EXC, FLD;
  • «плюсовой» провод от дополнительного выпрямителя на контрольную лампу обозначен D+, D, WL, L, 61, IND;
  • фазу можно узнать по волнистой линии, буквам R, W или STA;
  • нулевая точка статорной обмотки обозначена «0» или МР;
  • клемма реле регулятора для подключения к «плюсу» бортовой сети (обычно АКБ) обозначена 15, Б либо S;
  • кабель от замка зажигания должен подключаться к клемме регулятора напряжения, маркированной IG;
  • бортовой компьютер подсоединяется к выводу реле регулятора с обозначением F или FR.
Рис. 22 Расположение клемм на корпусе генератора

Рис. 22 Расположение клемм на корпусе генератора

Других обозначений не существует, а вышеуказанные присутствуют на корпусе генератора не в полном объеме, поскольку встречаются на всех существующих модификациях электроприборов.

Основные неисправности

Поломки «бортовой электростанции» вызваны неправильной эксплуатацией транспортного средства, выработкой ресурса деталей трения либо выходом из строя электрики. Вначале производится визуальная диагностика и выявление посторонних звуков, затем проверяется электрическая часть мультиметром (тестером). Основные неисправности сведены в таблицу:

ПоломкаПричинаРемонт
свист, потеря мощности на высоких оборотахнедостаточная натяжка ремня, поломка подшипника/втулкирегулировка натяжения, замена втулки/подшипника
недозаряднеисправно реле регуляторазамена реле
перезарядканеисправно реле регуляторазамена реле
люфт валаотказ подшипника или выработка втулкизамена расходника
утечка тока, снижение напряженияпробой диодазамена диодов выпрямителя
отказ генератораподгорание или износ коллектора, обрыв обмотки возбуждения, зависание щеток, заклинивание ротора в статоре, обрыв ведущего от АКБ проводаустранить указанные поломки

При диагностике тестером измеряется напряжение генератора на разных оборотах двигателя – в режиме холостого хода, под нагрузкой. Проверяется целостность обмоток и соединительных проводов, диодного мостика и регулятора напряжения.

Выбор генератора для легкового авто

За счет разного диаметра шкивов клиноременной передачи генератору придается большая угловая скорость в сравнении с оборотами коленвала. Частота вращения ротора достигает 12 – 14 тысяч оборотов ежеминутно. Поэтому ресурс генератора минимум вдвое меньше, чем у ДВС авто.

Генератором машина комплектуется на заводе, поэтому при замене подбирается модификация с аналогичными характеристиками и крепежными отверстиями. Однако при тюнинге авто мощность генератора может не устроить владельца. Например, после увеличения количества потребителей (подогрев сидений, зеркал, стекол), установки сабвуфера, аудиосистемы с усилителем требуется именно выбор нового, более мощного генератора или монтаж второго электроприбора в комплекте с дополнительным аккумулятором.

В первом случае следует выбрать мощность, достаточную для подзарядки аккумулятора с 15% запасом. При установке второго генератора начальный и эксплуатационный бюджет резко увеличиваются:

  • для дополнительного генератора придется установить дополнительный шкив на коленвал;
  • найти место для крепления корпуса электроприбора таким образом, чтобы его шкив размещался в одной плоскости со шкивом коленвала;
  • обслуживать и менять расходники сразу двух «мобильных электростанций».

С возникновением бесщеточных моделей генератора некоторые владельцы производят замену штатного прибора этим девайсом.

Бесщеточные модификации

Основным достоинством бесщеточного генератора является сверхдолгий эксплуатационный ресурс. Несмотря на сложную конструкцию и цену, ломаться здесь в принципе нечему, а окупаемость, все равно, выше за счет отсутствия расходников щетки/коллекторные кольца.

Компактные размеры и отсутствие коротких замыканий при попадании воды на залитые лаком или композитным составом обмотки позволяет монтировать его практически на любые транспортные средства.

На малых оборотах работа генератора обеспечивает электричеством только бортовую сеть, зарядка АКБ начинается при увеличении оборотов от 3000 ежеминутно.

Генераторы постоянного тока исчезли с легкового транспорта в 70-е годы прошлого столетья, так как имели сложную схему и более крупные размеры.

Таким образом, работа автомобильного генератора обеспечивает электроэнергией всех потребителей, подзаряжает АКБ и создает искру в камерах сгорания. Своевременное обслуживание и диагностика позволяет сократить эксплуатационные расходы и повысить ресурс электрического устройства.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Устройство

, принцип действия, назначение

Электрический ток является основным видом энергетики, выполняющим полезную работу во всех сферах жизни человека. Он приводит в движение разные механизмы, дает свет, нагревает дома и оживляет целый ряд устройств, которые обеспечивают наше комфортное существование на планете. Действительно, этот вид энергии универсален. Из него вы можете получить все, что захотите, и даже большие разрушения при плохом управлении.

Но было время, когда электрические эффекты были все они присутствовали в природе, но они никак не помогали человеку.Что изменилось с тех пор? Люди начали изучать физические явления и изобрели интересные машины - преобразователи, которые, в общем, совершили революционный скачок нашей цивилизации, позволив человеку получать одну энергию от другой.

Итак, люди научились производить электричество из необычного металла, магнитов и механических механизмов - вот и все. Были построены генераторы, способные генерировать колоссальные потоки мощности, рассчитанные в мегаваттах. Но интересно, что принцип работы этих машин не так сложен и понятен даже подростку.Что такое генератор электрического тока? Попробуем разобраться в этом вопросе.

Эффект электромагнитной индукции

Основой появления в проводнике электрического тока является электродвижущая сила - ЭДС. Он способен заставить заряженные частицы двигаться, которых много в любом металле. Эта сила появляется, только если проводник претерпевает изменение напряженности магнитного поля. Сам эффект был назван электромагнитной индукцией. ЭДС тем больше, чем больше скорость изменения потока магнитных волн.То есть вы можете перемещать проводник рядом с постоянным магнитом или воздействовать на поле электромагнита с помощью неподвижного провода, изменяя его силу, эффект будет тот же - в проводнике появится электрический ток.

Над этой проблемой в первой половине XIX века работали ученые Эрстед и Фарадей. Они также обнаружили это физическое явление. Позже на основе электромагнитной индукции были созданы генераторы тока и электродвигатели. Интересно, что эти машины могут быть легко преобразованы друг в друга.

Как работают генераторы постоянного и переменного тока?

Понятно, что генератор электрического тока это электромеханическая машина, вырабатывающая ток. Но на самом деле это преобразователь энергии: ветра, воды, тепла, чего угодно в ЭДС, который уже вызывает ток в проводнике. Устройство любого генератора в принципе ничем не отличается от замкнутой проводящей цепи, которая вращается между полюсами магнита, как в первых экспериментах ученых. Лишь намного больше величина магнитного потока, создаваемого мощными постоянными или чаще электрическими магнитами.Замкнутый контур имеет форму многооборотной обмотки, которая в современном генераторе не одна, а как минимум три. Все это делается для того, чтобы получить как можно больше ЭДС.

Стандартный генератор электрического (или постоянного) генератора состоит из:

  • Корпуса . Выполняет функцию рамы, внутри которой закреплены статор с полюсами электромагнита. В нем установлены подшипники качения вала ротора. Он сделан из металла, он также защищает всю внутреннюю начинку машины.
  • Статор с магнитными полюсами. На нем закреплена обмотка возбуждения магнитного потока. Изготовлен из ферромагнитной стали.
  • Ротор или арматура. Это движущаяся часть генератора, вал которой генерирует постороннюю силу при вращательном движении. На сердечнике якоря расположена обмотка самовозбуждения, в которой образуется электрический ток
.Принцип работы
и описание генераторов переменного и постоянного тока Генератор

- это устройство, которое преобразует механическую энергию в электрическую. Он работает по принципу закона электромагнитной индукции Фарадея. Закон Фарадея гласит, что всякий раз, когда проводник помещается в переменное магнитное поле, ЭДС индуцируется, и эта индуцированная ЭДС равна скорости изменения магнитных связей. Эта ЭДС может генерироваться, когда между проводником и магнитным полем существует относительное пространственное или относительное изменение во времени.Итак, важными элементами генератора являются:

  • Магнитное поле
  • Движение проводника в магнитном поле

Работа генераторов:

Генераторы - это в основном катушки электрических проводников, обычно медных проводов, которые плотно намотаны на металл ядро и установлены, чтобы развернуться внутри экспоната из больших магнитов. Электрический проводник движется через магнитное поле, магнетизм будет взаимодействовать с электронами в проводнике, вызывая поток электрического тока внутри него.


Working of Generators Working of Generators Источник изображения - лучшие альтернативные источники

Катушка проводника и ее сердечник называются якорем, соединяющим якорь с валом механического источника питания, например двигателя, медный проводник может вращаться с исключительно повышенной скоростью по сравнению с магнитное поле.

Generators Generators Источник изображения - tpub

Точка, когда якорь генератора сначала начинает вращаться, а затем в слабом магнитном поле в башмаках железного полюса. Когда якорь поворачивается, он начинает повышать напряжение.Часть этого напряжения поступает на обмотки возбуждения через регулятор генератора. Это впечатленное напряжение создает более сильный ток в обмотке, повышает напряженность магнитного поля. Расширенное поле создает больше напряжения в якоре. Это, в свою очередь, увеличивает ток в обмотках возбуждения, в результате чего возникает более высокое напряжение якоря. В это время признаки ботинок зависели от направления протекания тока в обмотке поля. Противоположные знаки будут давать ток течь в неправильном направлении.

Типы генераторов:

Генераторы подразделяются на типы.

  • Генераторы переменного тока
  • Генераторы постоянного тока
Генераторы переменного тока:

Они также называются генераторами. Это наиболее важный способ производства электроэнергии во многих местах, поскольку в настоящее время все потребители используют переменный ток. Работает по принципу электромагнитной индукции. Они бывают двух типов: один - индукционный, другой - синхронный.Индукционный генератор не требует отдельного возбуждения постоянным током, регуляторов, регуляторов частоты или регуляторов. Эта концепция имеет место, когда катушки проводника поворачиваются в магнитном поле, приводя в действие ток и напряжение. Генераторы должны работать с постоянной скоростью, чтобы передавать стабильное напряжение переменного тока, даже если нагрузка недоступна.

PCBWay PCBWay

Синхронные генераторы - это генераторы большого размера, которые в основном используются на электростанциях. Это может быть тип вращающегося поля или тип вращающейся арматуры. Во вращающемся типе якоря якорь находится на роторе, а поле на статоре.Ток якоря ротора проходит через контактные кольца и щетки. Они ограничены из-за больших потерь ветра. Они используются для приложений с низкой выходной мощностью. Генератор переменного тока с вращающимся полем широко используется из-за высокой мощности генерации и отсутствия контактных колец и щеток.

Это могут быть как трехфазные, так и двухфазные генераторы. Двухфазный генератор создает два совершенно разных напряжения. Каждое напряжение может рассматриваться как однофазное напряжение. Каждый генерируется напряжение, полностью независимое от другого.Трехфазный генератор имеет три однофазные обмотки, расположенные так, что напряжение, наведенное в любой одной фазе, смещается на 120º от двух других. К ним могут быть подключены либо треугольные, либо треугольные соединения. В Delta Connection каждый конец катушки соединен вместе, образуя замкнутый контур. Дельта-соединение выглядит как греческая буква Дельта (Δ). В соединении Wye один конец каждой катушки соединен вместе, а другой конец каждой катушки оставлен открытым для внешних подключений. Wye Connection появляется как буква Y.

Эти генераторы комплектуются двигателем или турбиной для использования в качестве мотор-генераторной установки и используются в таких областях, как военно-морское дело, добыча нефти и газа, горное оборудование, ветряные электростанции и т. Д.

Преимущества генератора переменного тока:
  • Эти Генераторы, как правило, не требуют технического обслуживания из-за отсутствия щеток.
  • Легко поднимайтесь и опускайтесь через трансформаторы.
  • Размер линии передачи может быть меньше из-за функции увеличения
  • Размер генератора относительно меньше, чем у машины постоянного тока.
  • Потери относительно меньше, чем у машины постоянного тока. Генератор постоянного тока

    обычно используется вне сети.Эти генераторы обеспечивают бесперебойное электропитание непосредственно в электрические накопители и электрические сети постоянного тока без нового оборудования. Накопленная мощность передается нагрузке через преобразователи постоянного тока в переменный. Генераторы постоянного тока могут быть возвращены на постоянную скорость, так как батареи имеют тенденцию стимулировать к извлечению значительно большего количества топлива.

    Классификация генераторов постоянного тока

    D.C Генераторы классифицируются в соответствии с тем, как создается их магнитное поле в статоре машины.

      Генераторы постоянного тока с постоянными магнитами
    • Генераторы постоянного тока с отдельным возбуждением и
    • Генераторы постоянного тока с собственным возбуждением
    • .

    Генераторы постоянного тока с постоянными магнитами не требуют возбуждения внешним полем, поскольку имеют постоянные магниты для создания потока. Они используются для приложений с низким энергопотреблением, таких как динамо. Отдельно возбуждаемые генераторы постоянного тока требуют возбуждения внешним полем для создания магнитного потока. Мы также можем варьировать возбуждение, чтобы получить переменную выходную мощность. Они используются в электроосаждении и электрорафинировании. Из-за остаточного магнетизма, присутствующего в полюсах статора, самовозбуждающиеся генераторы постоянного тока могут генерировать свое собственное магнитное поле, которое запускается.Они просты по конструкции и не требуют внешней цепи для изменения возбуждения поля. Опять же, эти генераторы постоянного тока с автоматическим возбуждением подразделяются на шунтирующие, последовательные и составные генераторы.

    Они используются в таких приложениях, как зарядка аккумулятора, сварка, обычные осветительные приборы и т. Д.

    Преимущества генератора постоянного тока:
    • Преимущественно машины постоянного тока имеют широкий спектр рабочих характеристик, которые можно получить путем выбора метода возбуждения обмотки поля.
    • Выходное напряжение можно сгладить путем регулярного размещения катушек вокруг якоря. Это приводит к меньшим колебаниям, что желательно для некоторых применений в стационарном состоянии.
    • Нет необходимости в экранировании излучения, поэтому стоимость кабеля будет меньше по сравнению с переменным током.

    Теперь у вас есть четкое представление о работе и типах генераторов, если какие-либо дополнительные вопросы по этой теме или по электрическим и электронным проектам оставьте комментарии ниже.

    Принцип действия

    • Учебный ресурс
    • Проводить исследования
      • Искусство и Гуманитарные науки
      • Бизнес
      • Инженерная технология
      • Иностранный язык
      • история
      • математический
      • Наука
      • Социальная наука
      Топ подкатегорий
      • Advanced Math
      • алгебра
      • Basic Math
      • Исчисление
      • Геометрия
      • Линейная Алгебра
      • Предварительная алгебра
      • Предварительное исчисление
      • Статистика и вероятность
      • Тригонометрия
      • другое →
      Топ подкатегорий
      • Астрономия
      • Астрофизика
      • Биология
      • Химия
      • Науки о Земле
      • Наука об окружающей среде
      • Наука о здоровье
      • Физика
      • другое →
      Топ подкатегорий
      • Антропология
      • Закон
      • Политология
      • Психология
      • Социология
      • другое →
      Топ подкатегорий
      • Бухгалтерский учет
      • Экономика
      • Финансы
      • Управление
      • другое →
      Топ подкатегорий
      • Аэрокосмическая Техника
      • Биоинженерия
      • Химическая инженерия
      • Гражданское строительство
      • Компьютерные науки
      • Электротехника
      • Промышленный инжиниринг
      • Машиностроение
      • Веб-дизайн
      • другое →
      Топ подкатегорий
      • Архитектура
      • Связь
      • английский
      • Гендерные исследования
      • Музыка
      • исполнительских искусств
      • Философия
      • Религиоведение
      • Написание
      • другое →
      Топ подкатегорий
      • Древняя история
      • Европейская история
      • История США
      • Всемирная история
      • другое →
      Топ подкатегорий
      • хорватский
      • чешский
      • финский
      • греческий
      • хинди
      • японский
    .Конструкция

    , принцип работы, типы и применение

    Первоначальный электромагнитный генератор (диск Фарадея) был изобретен британским ученым, а именно Майклом Фарадеем, в 1831 году. Генератор постоянного тока - это электрическое устройство, используемое для генерации электрической энергии. Основная функция этого устройства - преобразование механической энергии в электрическую. Существует несколько типов механических источников энергии, таких как ручные рукоятки, двигатели внутреннего сгорания, водяные турбины , газовые и паровые турбины.Генератор обеспечивает питание всех электрических сетей . Обратную функцию генератора можно выполнить с помощью электродвигателя. Основной функцией двигателя является преобразование электрической энергии в механическую. Моторы, как и генераторы, имеют схожие характеристики. В этой статье обсуждается обзор генераторов постоянного тока.

    Что такое генератор постоянного тока?

    Генератор постоянного тока или генератор постоянного тока является одним из видов электрических машин, и основная функция этой машины заключается в преобразовании механической энергии в электричество постоянного тока (постоянного тока). Процесс изменения энергии использует принцип энергетически индуцированной электродвижущей силы. Диаграмма генератора постоянного тока показана ниже.


    DC Generator DC Generator Генератор постоянного тока

    Когда проводник перерезает магнитный поток , в нем будет генерироваться электрически индуцированная электродвижущая сила на основе принципа электромагнитной индукции законов Фарадея . Эта электродвижущая сила может вызвать течение тока, когда цепь проводника не разомкнута.

    Конструкция генератора постоянного тока

    Генератор постоянного тока также используется в качестве двигателя постоянного тока без изменения его конструкции. Следовательно, двигатель постоянного тока, в противном случае генератор постоянного тока, обычно может называться машиной постоянного тока . Конструкция 4-полюсного генератора постоянного тока показана ниже. Этот генератор состоит из нескольких частей , таких как вилка, опоры и башмаки, обмотка возбуждения, сердечник якоря, обмотка якоря, коммутатор и щетки. Но две основные части этого устройства - это статор и ротор .

    Статор

    Статор является неотъемлемой частью генератора постоянного тока, и его основной функцией является создание магнитных полей, в которых вращаются катушки. Это включает в себя стабильные магниты, где два из них с обращенными полюсами обращены. Эти магниты расположены так, чтобы поместиться в области ротора.

    Сердечник ротора или якоря
    Сердечник якоря или ротора является второй важной частью генератора постоянного тока и включает в себя железные щели с прорезями с пазами, которые уложены друг в друга для формирования цилиндрического сердечника якоря .Как правило, эти расслоения предлагаются для уменьшения потерь из-за вихревого тока .

    PCBWay PCBWay
    Обмотки якоря

    Прорези сердечника якоря в основном используются для удержания обмоток якоря. Они находятся в форме обмотки с замкнутым контуром, и они соединены последовательно и параллельно для увеличения суммы производимого тока.

    Хомут

    Внешняя структура генератора постоянного тока - Хомут, и он сделан из чугуна или стали.Это дает необходимую механическую мощность для переноса магнитного потока , подаваемого через полюса.

    Полюса

    Они в основном используются для удержания обмоток возбуждения. Обычно эти обмотки намотаны на полюсах и соединены последовательно, в противном случае параллельно обмотки якоря . Кроме того, полюса будут соединяться с хомутом способом сварки, в противном случае используются винты.

    Полюсная колодка

    Полюсная колодка в основном используется для распространения магнитного потока, а также для предотвращения падения катушки возбуждения.

    Коммутатор

    Работа коммутатора аналогична выпрямителю для изменения напряжения переменного тока на напряжение постоянного тока в обмотке якоря и поперек щеток. Он разработан с медным сегментом, и каждый медный сегмент защищен друг от друга с помощью листов слюды . Он расположен на валу машины.

    Щетки

    Электрические соединения могут быть обеспечены между коммутатором , а также внешней нагрузочной цепью с помощью щеток.

    Принцип работы генератора постоянного тока

    Принцип работы генератора постоянного тока основан на законах Фарадея об электромагнитной индукции . Когда проводник находится в неустойчивом магнитном поле, внутри проводника индуцируется электродвижущая сила. Индуцированная величина e.m.f может быть измерена из уравнения электродвижущей силы генератора .

    Если проводник присутствует с закрытой полосой, то индуцированный ток будет течь в полосе.В этом генераторе полевые катушки будут генерировать электромагнитное поле, а проводники якоря превращаются в поле. Следовательно, в проводниках якоря будет генерироваться электромагнитно-индуцированная электродвижущая сила (например, м.д.). Путь наведенного тока будет обеспечен правилом правой руки Флеминга.

    Уравнение ЭДС генератора постоянного тока

    Уравнение эдс генератора постоянного тока в соответствии с законами Фарадея об электромагнитной индукции равно Eg = PØZN / 60 A

    Где Φ - поток или полюс в пределах Уэббера
    Z - это всего нет.проводника якоря
    P - число полюсов в генераторе
    A - число параллельных дорожек внутри якоря
    N - вращение якоря в об / мин (оборотов в минуту) якорь
    Например, сгенерированная эдс в любой из параллельных линий
    N / 60 это число оборотов в секунду
    Время на один оборот будет dt = 60 / N сек. Генераторы могут быть сделаны в двух наиболее важных категориях, а именно отдельно возбужденных, а также самовозбуждения.

    Types of DC Generators Types of DC Generators Типы генераторов постоянного тока
    с отдельным возбуждением

    В раздельно возбужденных типах полевые катушки усилены от автономного внешнего источника постоянного тока.

    Self Excited

    В типе самовозбуждения катушки возбуждения усиливаются от генерируемого тока с помощью генератора. Генерация первой электродвижущей силы будет происходить из-за ее выдающегося магнетизма в полюсах поля.

    Произведенная электродвижущая сила вызовет долю тока, подаваемого в полевые катушки, что увеличит поток поля, а также генерирует электродвижущую силу.Кроме того, эти типы генераторов постоянного тока могут быть классифицированы на три типа, а именно: последовательная рана, шунтирующая рана и сложная рана.

    • При последовательном намотке обмотка возбуждения и обмотка якоря соединены последовательно друг с другом.
    • В шунтирующей намотке обмотка возбуждения и обмотка якоря соединены параллельно друг с другом.
    • Составная обмотка представляет собой смесь последовательной намотки и шунтирующей обмотки.

    Применение генераторов постоянного тока

    Применение генераторов постоянного тока различных типов включает следующее.

    • Генератор постоянного тока с отдельным возбуждением используется для повышения, а также гальванических . Он используется в целях питания и освещения с использованием полевого регулятора .
    • . Генератор постоянного тока с автоматическим возбуждением или шунтирующий генератор постоянного тока используется для питания, а также для обычного освещения с использованием регулятора. Может использоваться для освещения батареи.
    • Генератор постоянного тока серии используется в дуговых лампах для освещения, генератора стабильного тока и усилителя.
    • Составной генератор постоянного тока используется для обеспечения источника питания для сварочных аппаратов постоянного тока.
    • Уровень составного генератора постоянного тока используется для обеспечения электроснабжения общежитий, домиков, офисов и т. Д.
    • В дополнение к составу, генератор постоянного тока используется для компенсации падения напряжения в питателях.

    Таким образом, это все о генератора постоянного тока . Из приведенной выше информации, наконец, мы можем заключить, что основные преимущества генератора постоянного тока включают простую конструкцию и дизайн, простоту параллельной работы и проблемы со стабильностью системы не так сильно, как у генераторов переменного тока.Вот вам вопрос, каковы недостатки генератора постоянного тока?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *