Закон Ома. Формула Закона Ома
Закон Ома, основанный на опытах, представляет собой в электротехнике основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением.
Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.
Георг Симон ОмЗакон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.
Строгая формулировка закона Ома может быть записана так: сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.
Нужна помощь в продвижении в интернете? Пишите!!! [Нажмите на этот текст или кликните на картинку ниже]
Формула закона Ома записывается в следующем виде:
где
I – сила тока в проводнике, единица измерения силы тока — ампер [А];
U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];
R – электрическое сопротивление проводника, единица измерения электрического сопротивления — ом [Ом].
Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза
И напротив, уменьшение тока в два раза при фиксированном напряжении будет означать, что сопротивление увеличилось в два раза.
Рассмотрим простейший случай применения закона Ома. Пусть дан некоторый проводник сопротивлением 3 Ом под напряжением 12 В. Тогда, по определению закона Ома, по данному проводнику течет ток равный:
Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома.
Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.
Где и когда можно применять закон Ома?
Нужна помощь в написании работы?
Узнать стоимость
Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).
Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.
Значение Закона Ома
Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении.
Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.
Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.
Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:
Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.
Закон Ома для участка цепи
Эмпирический физический закон Ома для участка цепи установил Georg Simon Ohm почти два столетия назад, и получил название в честь этого знаменитого физика из Германии.
Именно этим законом определяется связь, которая возникает между электродвижущей силой источника, силой электротока и показателями сопротивления внутри проводника.
Классическая формулировка
Рассмотрим определение закона Ома.
Весь объём прикладной электротехника базируется на физическом законе Ома и представлен двумя основными формами:
- учacтoк электрoцепи;
- пoлнaя электрoцепь.
В классическом виде формулировка такого закона очень хорошо известна всем ещё со школьной скамьи: сила тока в электрической цепи является прямо пропорциональной показателям напряжения, а также обладает обратной пропорциональностью показателям сопротивления.
Интегральная форма такого закона следующая: I = U / R, где
- I – показатель силы тока, который проходит через участок электроцепи при показателях сопротивления, обозначаемых R;
- U – показатель напряжения.
Сопротивление или «R» принято считать наиболее важной характеристикой, что обусловлено зависимостью от таких параметров проводника.
Необходимо помнить, что такая форма закона, помимо растворов и металлов, справедлива исключительно для электрических цепей, в которых отсутствует реальный источник тока или он идеален.
Закон Ома для неоднородного участка цепи
Участок любой электрической цепи является неоднородным, если в него подключен источник электродвижущей силы. Таким образом, в этой электроцепи отражается воздействие посторонних сил.
I=ϕ2-ϕ1+ℰ/R+r, где
- I — обозначение силы тока;
- ϕ1 — обозначение пoтeнциaлa точки «A»;
- ϕ2 — обозначение пoтeнциaлa точки «B»;
- ℰ — показатели электродвижущей силы источника электрического тока в вольтах;
- R — обозначение сопротивления участка;
- r — внутреннее сопротивление источника тока.
Закон Ома для участка цепи
Для стандартных неоднородных участков характерным является наличие некоторой разницы потенциалов на концевой части электроцепи, а также внутренних скачков потенциалов.
В последние годы индукционный счетчик электроэнергии выходит из обращения и заменяется более новыми моделями. Однако, такие приборы учета все же используются. В статье рассмотрим, как правильно установить индукционный счетчик.
Сколько можно эксплуатировать электросчетчик по закону и кто должен его менять, читайте далее.
В некоторых случаях выгодно использовать счетчик день-ночь. В каких случаях выгодны двойные тарифы и как снимать показания, расскажем в этой теме.
Закон Ома для участка цепи
Согласно закону, сила тока на участке электрической цепи имеет прямую пропорциональность уровню напряжения и обратную пропорциональность электрическому сопротивлению на данном участке.
Например, если проводник обладает сопротивлением в 1 Ом и током в 1 Ампер, то его концах напряжение составит 1 Вольт, что означает падение напряжения или U = IR.
Если концы проводника обладают напряжением в 1 Вольт и током в 1 Ампер, то показатели сопротивления проводника составят 1 Ом или R = U/I
Участок цепи может быть представлен простой цепью с одним потребителем, параллельным подключением с парой потребителей, а также последовательным подключением и смешанным топом соединением, отличающимся совокупностью последовательного и параллельного подсоединения.
Закон Ома для участка цепи с ЭДС
ЭДС или электродвижущая сила является физической величиной, определяющей отношение посторонних сил в процессе перемещения заряда в сторону положительного полюса источника тока к величине данного заряда:
- ε = Acт / q
- ε – электродвижущая сила;
- Acт – работа сторонних сил;
- q – заряд;
Единица измерения электродвижущей силы – В (вольт)
Закон Ома для участка цепи с ЭДС
Аналитическое выражение закона для участка цепи с источником электродвижущей силы следующее:
- I = (φa – φc + E) / R = (Uac + E) / R;
- I = (φa – φc – E) / R = (Uac – E) / R;
- I = E /(R+ r), где
- Е – показатели электродвижущей силы.
Электрический ток в этом случае представляет собой алгебраическую сумму, полученную при сложении показателей напряжения на зажимах с показателями электродвижущей силы, разделенной на показатели сопротивления.
Правило, касающееся наличия одного ЭДС гласит: наличие постоянного тока предполагает поддерживание неизменной разности потенциалов на концах электрической цепи посредством стандартного источника тока.
Внутри источника электрического тока положительный заряд переносится в сторону большего потенциала с разделением зарядов на положительные и отрицательно заряженные частицы.
Закон Ома для участка цепи без ЭДС
Нужно учитывать, что для участка цепи, не содержащего источника электродвижущей силы, устанавливается связь, возникающая между электрическим током и показателями напряжения на данном участке.
I = Е / R
Согласно данной формуле, сила тока имеет прямую пропорциональность напряжению на концах участка электрической цепи и обратную пропорциональность показателям сопротивления на этом участке.
Источник электродвижущей силы
Благодаря внешним характеристикам ЭДС определяется степень зависимости показателей напряжения на зажимах источника и величины нагрузки.
Например, U= E-R0 х I, в соответствии с двумя точками: I=0 E=U и U=0 E=R0I.
Идеальный источник электродвижущей силы: R0=0, U=E. В этом случае величина нагрузки не оказывает воздействия на показатели напряжения.
Эмпирический физический закон Ома для полной цепи определяет два следствия:
- В условиях r < < R, показатели силы тока в электрической цепи являются обратно пропорциональными показателям сопротивления. В некоторых случаях источник может являться источником напряжения.
- В условиях r > > R, свойства внешней электрической цепи или величина нагрузки не оказывают влияния на показатели сила тока, а источник может назваться источником тока.
Электродвижущая сила, находящаяся в условиях замкнутой цепи с электрическим током, чаще всего равна: Е = Ir + IR = U(r) + U(R)
Таким образом, ЭДС можно определить, как скалярную физическую величину, отражающую воздействие сторонних сил неэлектрического происхождения.
Принятые единицы измерения
К основным, общепринятым единицам измерения, которые используются при выполнении любых расчётов, касающихся закона Ома, относятся:
- отражение показателей напряжения в вольтах;
- отражение показателей тока в амперах;
- отражение показателей сопротивления в омах.
Любые другие величины перед тем, как приступить к расчётам, необходимо в обязательном порядке перевести в общепринятые.
Важно помнить, что физический закон Ома не соблюдается в следующих случаях:
- высокие частоты, сопровождающиеся значительной скоростью изменений электрического поля;
- при сверхпроводимости в условиях низкотемпературных режимов;
- в лампах накаливания, что обусловлено ощутимым нагревом проводника и отсутствием линейности напряжения;
- при наличии пробоя, вызванного воздействием на проводник или диэлектрик напряжения с высокими показателями;
- внутри вакуумных источников света и электронных ламп, заполненных газовыми смесями, включая люминесцентные осветительные приборы.
Такое же правило распространяется на гетерогенные полупроводники и полупроводниковые приборы, характеризующиеся наличием p/n-переходов, включая диодные и транзисторные элементы.
Чем точнее счетчик измеряет затраченную электроэнергию, тем лучше. Класс точности электросчетчика отражает возможную погрешность прибора учета. О такой величине как коэффициент трансформации счетчика электроэнергии, поговорим в этом материале.
Видео на тему
Измерение в электронике: Закон Ома — манекены
Термин Закон Ома относится к одному из фундаментальных соотношений, встречающихся в электронных схемах: при заданном сопротивлении ток прямо пропорционален напряжению. Другими словами, если вы увеличиваете напряжение в цепи с фиксированным сопротивлением, ток увеличивается. Если уменьшить напряжение, ток упадет.
Закон Ома выражает это соотношение простой математической формулой:
В этой формуле В обозначает напряжение (в вольтах), I обозначает ток (в амперах) и R обозначает сопротивление (в омах).
Вот пример расчета напряжения в цепи с лампой, питаемой от двух элементов АА. Предположим, вы уже знаете, что сопротивление лампы равно 12 Ом, а ток, протекающий через лампу, равен 250 мА, что равно 0,25 А. Тогда вы можете рассчитать напряжение следующим образом:
Закон Ома невероятно полезен, потому что он позволяет вычислить неизвестное напряжение, ток или сопротивление. Короче говоря, если вы знаете две из этих трех величин, вы можете вычислить третью.
Вернитесь (если осмелитесь) на урок алгебры в старшей школе и помните, что вы можете переставить члены в простой формуле, такой как закон Ома, чтобы создать другие эквивалентные формулы. В частности:
Если вы не знаете напряжение, вы можете рассчитать его, умножив ток на сопротивление.
Если ток неизвестен, его можно рассчитать, разделив напряжение на сопротивление.
Если вы не знаете сопротивление, вы можете рассчитать его, разделив напряжение на силу тока.
Чтобы убедиться в том, что эти формулы работают, еще раз посмотрите на схему с лампой, имеющей сопротивление 12 Ом, подключенной к двум батарейкам АА на общее напряжение 3 В. Тогда можно рассчитать ток, протекающий через лампу, следующим образом:
Если известны напряжение батареи (3 В) и ток (250 мА, что составляет 0,25 А), можно рассчитать сопротивление лампы следующим образом:
Было весело вернуться к школьной алгебре? Следующее, что ты знаешь, ты начнешь искать девушку для выпускного бала.
Самое важное, что нужно помнить о законе Ома, это то, что вы всегда должны производить расчеты в вольтах, амперах и омах. Например, если вы измеряете ток в миллиамперах (что обычно делается в электронных схемах), вы должны преобразовать миллиампер в ампер, разделив на 1000. Например, 250 мА — это 0,25 А.
Вот еще несколько вещей, которые вы должны помнить о законе Ома:
Помните, что определение одного ома — это сопротивление, которое позволяет протекать току в один ампер при приложении к нему напряжения в один вольт? Это определение основано на законе Ома. Если V равно 1 и I равно 1, тогда R тоже должно быть 1.
Если вам интересно, почему символы напряжения и сопротивления В и R , что имеет смысл, а символ тока I , что не имеет смысла, это связано с историей.
Единица измерения тока — ампер — названа в честь Андре-Мари Ампера, французского физика, который был одним из пионеров ранней науки об электричестве.
Французское слово, которое он использовал для описания силы электрического тока, было intensité — в английском языке интенсивность . Таким образом, сила тока является мерой силы тока. Отсюда буква I .
В интересах международного сотрудничества термин вольт назван в честь итальянского ученого Алессандро Вольта, который в 1800 году изобрел первую электрическую батарею. (На самом деле его полное имя было граф Алессандро Джузеппе Антонио Анастасио Вольта.)
Эту статью можно найти в категории:
- Общая электроника,
Закон Ома и электрические схемы
Введение
В этом эксперименте вы измерите вольт-амперные характеристики резистора и проверите, чтобы проверьте, удовлетворяет ли резистор закону Ома. В процессе вы научитесь пользоваться мультиметром для измерять напряжение, силу тока и сопротивление. Затем вы проверите некоторые законы теории цепей. Если разность потенциалов В , прикладывается к проводнику, электрический ток I , потечет от конца с высоким потенциалом к концу с низким потенциалом. В общем, ток будет увеличиваться с приложенное напряжение (разность потенциалов). График зависимости тока от напряжения называется вольт-амперная ( I — V ) характеристика. Если характеристика I — V представляет собой прямую линию, как на рис. 1, то говорят что кусок проводника удовлетворяет закону Ома: V = IR , где R — константа, определенная как сопротивление и измеряется в вольтах/амперах или Ω (Ом).
Рисунок 1 : ВАХ для омического материала
В электрической цепи провода, которые используются для соединения элементов цепи, имеют сопротивление. Однако сопротивления проводов обычно пренебрежимо малы по сравнению с сопротивлениями проводов. элементы цепи. Существуют специальные элементы, называемые резисторами, которые контролируют распределение токов. в цепи введением в цепь известных сопротивлений. Токи и напряжения при разных части схемы можно рассчитать, используя теорию цепей, которая будет обсуждаться позже. Существует много видов резисторов, но наиболее распространенными являются резисторы из углеродного композита. показано ниже. Эти резисторы представляют собой маленькие коричневые цилиндры с цветными полосами. Цветные полосы следуют цветовой код, указывающий сопротивление в пределах указанного производственного допуска.
Рисунок 2
В этой лабораторной работе вы будете изучать только простые схемы DC , состоящие из источника питания и одного или больше резисторов, соединенных с проводами, сопротивления которых пренебрежимо малы по сравнению с сопротивлениями резисторы. Основная теория анализа цепи резюмируется двумя законами, известными как закон Кирхгофа. Правила:
1
Правило петли Кирхгофа- Общее изменение напряжения вокруг любого замкнутого контура равно нулю. Это очевидно, когда вы считать, что напряжение есть разность потенциалов. Это правило просто говорит о том, что разность потенциалов из одной точки в эту же точку равно нулю, как бы вы ни шли по кругу.
2
Правило соединения Кирхгофа- Величина тока, протекающего в любой точке провода (или в месте соединения проводов), всегда равно количеству тока, вытекающего из него.
В цепи обычно встречаются два типа соединения резисторов: последовательное и параллельное. соединение показано на рис. 3.
Рисунок 3
Используя правила Кирхгофа, можно показать, что три последовательных резистора эквивалентны одному резистор с эквивалентным сопротивлением, Ом , определяемый по формуле:
( 1 )
Р = Р 1 + Р 2 + R 3 (резисторы последовательно)
Точно так же три резистора, соединенные параллельно, эквивалентны одному резистору с эквивалентное сопротивление, Р , определяемое по формуле:
( 2 )
= + + (параллельные резисторы)
Аппаратура
Аппаратура для этого эксперимента состоит из регулируемого источника питания и двух мультиметров. Эти части оборудования описаны ниже.
Регулируемый блок питания
Рисунок 4
Выше показан регулируемый источник питания и его условное обозначение на схеме. Этот блок питания преобразует выход из обычной розетки 110 В, 60 Гц AC в постоянный источник питания DC с переменное напряжение от 0 до 20 В. Выдает максимальный ток 0,5 А. Поворот ручки управления на устройстве может варьироваться выходное напряжение. Рекомендуется всегда начинать с нулевого напряжения и постепенно увеличивайте его до нужного значения. Выход получается через красный и черный разъемы. По по соглашению, красный разъем — это положительный терминал, а черный разъем — отрицательный.
Измерение токов, напряжений и сопротивлений
Когда мультиметр настроен на измерение тока, он служит амперметром, когда он настроен на измерение напряжения он служит вольтметром, а когда настроен на измерение сопротивлений, служит омметром. Ниже приведены символы амперметра, вольтметра и омметра.
Рисунок 5
Чтобы измерить ток, протекающий через такой объект, как резистор, амперметр подключают к серии с объектом, как показано на рис. 6а. Амперметры имеют очень низкое сопротивление так что когда они помещенные в цепь, они не оказывают существенного влияния на общее сопротивление цепи и, следовательно, на ток, измеряться. Для измерения напряжения на объекте, таком как резистор, вольтметр подключается параллельно с объектом, как показано на рис. 6б. Вольтметры имеют очень большое сопротивление , так что только небольшая часть часть тока цепи будет отведена через вольтметр. Для измерения сопротивления объекта, например резистора, омметр подключается к объекту. как показано на рис. 6в. Если резистор подключен к цепи, то один конец резистора должен быть отключен от цепи во время измерения. Батарейка в мультиметре поставляет ток, необходимый для измерения сопротивления, чтобы внешний источник питания не требуется.
Рисунок 6
Выполнение одновременных измерений тока и напряжения
Рисунок 7
Существует два способа одновременного измерения A и V , как показано на рис. 7а и Рис. 7б. На рис. 7а амперметр измеряет ток в резисторе R , а вольтметр не измерить напряжение на резисторе, В Р . Вместо этого он измеряет напряжение на резисторе плюс напряжение на амперметре, В А . Since V R + V A = I R + IR A , where R A is the resistance of the ammeter , показания вольтметра будут примерно равны В R , если R намного больше сопротивления амперметр. Амперметры обычно имеют сопротивление 0,001 Ом или меньше. Использование метода (а) для измерения напряжение на резисторе с малым сопротивлением, скажем, 0,1 Ом, даст ошибку в напряжении IR A / IR = 0,001/0,1 или ошибку 1%. С другой стороны, при большом сопротивлении, скажем, R = 1000 Ом, ошибка уменьшается до
IR A / IR = 0,001/1000 или 0,0001%.
Поэтому метод, показанный на рис. 7а, следует использовать для измерения больших сопротивлений. На рис. 7б вольтметр измеряет напряжение на резисторе R , а амперметр не измерьте ток через резистор, I . Вместо этого он измеряет ток через резистор плюс ток через вольтметр, I В . Сумма этих токов определяется выражением:
( 3 )
Я + Я В = +
где R V — сопротивление вольтметра. Следовательно, измерение амперметра будет приблизительно равно I , если R намного меньше, чем R V . Вольтметры обычно имеют сопротивления 100 000 Ом или более. Используя метод (б) для измерения тока на резисторе с большим сопротивлением, скажем 1000 Ом, погрешность измерения тока составит I V / I = R / R V = 1000/100000 или ошибка 1%. Для небольшого сопротивления, скажем, Ом = 0,1 Ом, ошибка уменьшается до
Ом/Ом В = 0,1/100000 или 0,0001%.
Поэтому метод, показанный на рис. 7b, следует использовать для измерения малых сопротивлений.
Процедура
Измерение сопротивления
1
Используя мультиметр в качестве омметра, измерьте и запишите сопротивления каждого из трех предусмотрены резисторы. Не забудьте включить оценки неопределенности, основанные на точности метр.2
Соедините три резистора последовательно. Запишите эквивалентное сопротивление, определенное с помощью омметр.3
Соедините три резистора параллельно. Запишите эквивалентное сопротивление, определенное с помощью омметр.
Вольт-амперные характеристики резистора
Эта часть эксперимента требует, чтобы вы одновременно измеряли ток и напряжение на резистор. Резисторы, используемые в этом эксперименте, имеют сопротивление около 1000 Ом. Следовательно метод, показанный на рис. 7а, следует использовать для одновременного измерения I и V .
1
Выберите резистор с сопротивлением около 600 Ом. Подключите блок питания (не включайте его еще), вольтметр, амперметр и резистор в соответствии с принципиальной схемой, показанной на рис. Рис. 7а. Вы можете использовать Fluke 77 в качестве амперметра и Micronta в качестве вольтметра. Поскольку напряжение блока питания около 10 В, ток будет порядка миллиампер. Таким образом, клеммы «300 мА» и «COM» на Fluke 77 следует использовать для амперметра. связь.2
Попросите инструктора лаборатории проверить вашу схему, прежде чем включать источник питания.3
С ручкой управления в минимальном положении (полностью против часовой стрелки) включите питание. питание включено. Поверните ручку управления вверх, пока вольтметр не покажет около одного вольта. Запишите тока и напряжения.4
Увеличивайте напряжение с шагом 2 В. Измерьте и запишите ток и напряжение. Останавливаться когда напряжение достигает примерно 15 Вольт.5
Полностью поверните ручку управления на блоке питания против часовой стрелки и поверните выключатель питания. выключенный.6
Проверьте свои данные, построив грубый график V против I на листе технических данных или на листе миллиметровой бумаги. Проверьте, согласуется ли ваш график с законом Ома. Проверьте, дает ли наклон вашего участка правильный сопротивление.7
Повторите вышеуказанные шаги, чтобы измерить V vs. I характеристики лампочки (#53, 120 мА при 14 В). Используйте ту же схему, но замените резистор лампочкой. Возьмите показания данных в шаг тока от 10 мА до максимум 100 мА.
Правила Кирхгофа
В этом эксперименте вы проверите правила Кирхгофа на простой схеме, показанной ниже.
Рисунок 8
1
Подключите три резистора и блок питания в соответствии с приведенной выше схемой. Быть Обязательно определите и запишите значения трех резисторов.2
Попросите инструктора лаборатории проверить вашу схему, прежде чем включать источник питания.3
Включите источник питания и регулируйте ручку управления до тех пор, пока напряжение источника питания не станет равным 10 В. Запишите выходное напряжение В и сохраните его до конца эксперимента.4
Измерьте и запишите напряжения В 1 , В 2 и В 3 на каждом из резисторов. Запомни включите оценки неопределенности для каждого из ваших измерений на основе рейтинга точности метр.5
Измерьте и запишите токи I 1 , I 2 и I 3 через каждый из резисторов вместе с соответствующие значения неопределенности. Поскольку для этого измерения источник питания всегда включен, легко перегореть предохранитель на мультиметре, если он не подключен должным образом. Выключить мультиметр при подключении. Убедитесь, что мультиметр подключен последовательно с резистором, который вы измеряете, прежде чем включать его. Если вы не уверены, уточните у своего инструктор.6
Выключите мультиметр и источник питания, когда закончите эксперимент.
Когда вы закончите эксперимент, очистите свое рабочее место и верните все провода и зажимы в свои бункеры для хранения. Убедитесь, что вы и ваш инструктор поставили свои подписи на листах данных и передали копию свои данные, прежде чем покинуть лабораторию.
Анализ данных
Измерение сопротивления
Для этой части мы будем обозначать расчетное эквивалентное сопротивление через R T , а измеренное эквивалентное сопротивление через R .
1
Рассчитайте сумму R T сопротивлений трех резисторов R 1 , R 2 и R 3 подключены серии.2
Каковы погрешностиu R 1 , u R 2 , u R 3
в ваших измерениях сопротивлений? Что это источник неопределенности?3
Используя ваши значения погрешностей трех резисторов, рассчитайте погрешность сумма u R T с помощью формулы распространения неопределенности для суммы.4
Суммируйте ваши значения R и R T , включая неопределенности.5
Рассчитайте общее сопротивлениеR T
для параллельного соединения.6
Используя формулу распространения неопределенности для отношения, покажите, что дробная неопределенность из f совпадает с дробной неопределенностью 1/ f , т.е. показывает=
u 1/f .1/f 7
Используя уравнение шага 6, вычислите неопределенности 1/ R 1 , 1/ R 2 и 1/ R 3 . Затем с помощью распространения неопределенности для суммы, рассчитать неопределенность 1/ R T от неопределенностей из 1/ Р 1 , 1/ Р 2 и 1/ Р 3 . Наконец, снова используя уравнение шага 6, рассчитайте неопределенность R T от неопределенности 1/ R T .8
Суммируйте ваши значения R и R T , включая неопределенности.Вольт-амперные характеристики резистора и лампочки
1
Подготовьте две таблицы (одну для резистора и одну для лампочки) токов и напряжений. из полученных данных.2
Сделайте график рассеяния В против I для данных резистора.3
Создайте линейную подгонку вашего графика по закону Ома по методу наименьших квадратов: В = ИК . Чему соответствуют параметры наклона и пересечения в подгонке?4
Суммируйте значение R (измеренное мультиметром) и подогнанное значение R , включая неопределенности.5
Постройте диаграмму рассеяния В против I для данных об лампочке.
Петля Кирхгофа и правила соединений
1
Каковы погрешности ваших измерений токов I 1 , I 2 и I 3 ? На основе этих неопределенностей проверьте, удовлетворяют ли измеренные токи правилу перехода, т. е.I 1 = I 2 + I 3 .
2
В схеме, используемой в этой части, три петель. Запишите уравнение, данное правило цикла для каждого цикла. На основании погрешностей в ваших измерениях В 1 , В 2 и В 3 , убедитесь, что измеренные вами напряжения удовлетворяют уравнениям, полученным из правила контура.
Обсуждение
Обобщите результаты для раздела, посвященного измерению сопротивления. Какое из соединений, последовательное или параллельное, дало наименьшую суммарную сопротивление? Почему? Соответствует ли ваше измеренное значение общего сопротивления последовательного соединения и параллельное соединение соответствует расчетному эквивалентному сопротивлению? Дайте характеристику вольт-амперной характеристики резистора, изучаемого в разделе «Вольт-амперная характеристика резистора».