Закрыть

Виды авр: Автоматический ввод резерва (АВР). Работа и классификация

Содержание

Автоматика ввода резерва(АВР): схемы, назначение и требования

В процессе эксплуатации энергосистем нельзя исключить вероятность создания аварийных ситуаций, вызванных техногенными или природными катастрофами. Поэтому для подключения токоприёмников различных категорий надёжности используют два и более не зависимых источника. Рассмотрим особенности применения АВР, их назначение, классификацию, регламентированные требования и прочие сопутствующие вопросы.

Содержание

  1. Назначение АВР
  2. Устройство и принцип работы
  3. Классификация
  4. Требования к АВР
  5. Возможные способы реализации АВР с анализом работы
  6. Простые
  7. АВР в промышленной сфере
  8. АВР для высоковольтных линий
  9. Микропроцессорные бесконтактные системы

Назначение АВР

Системами АВР называют электрощитовые распределительные устройства для ввода и коммутации напряжения. Они предназначены для оперативного переключения оборудования, если по основному вводу произойдёт аварийный отказ. Автоматическая коммутация производится, благодаря тому, что устройством отслеживаются параметры подключения.

Аббревиатура АВР означает – автоматический ввод резерва, что исчерпывающе означает предназначение и принципиальное устройство указанного узла.

Устройство и принцип работы

Применяются АВР двух основных вариантов схем, с учётом приоритетности подключения:

  • одностороннего типа, в котором один вход является рабочим. Он используется до момента возникновения чрезвычайной ситуации. При возникновении проблем производится переключение на второй ввод, выполняющий роль резервного;
  • двухстороннего – когда рабочая и резервная секции не разделяются, обладая одинаковым приоритетом.

Чаще всего односторонние системы предусматривают возможность автоматического перехода на основную схему при восстановлении штатных характеристик. Для двухсторонних данная необходимость отсутствует, поскольку нет разницы, с какого входа запитана энергосистема.

Характеристики сети отслеживаются посредством реле, контролирующего параметры напряжения, и микропроцессорных управляющих модулей. Но для всех устройств принцип работы аналогичен.

Его можно понять, рассмотрев следующую схему:

Рисунок выполнен с использованием следующих обозначений:

  • N – нулевая фаза;
  • А – основное подключение;
  • В – запасной ввод;
  • L – лампа, сигнализирующая о наличии питания;
  • К1 – реле в виде катушки;
  • К1.1 – клеммы.

При штатной ситуации схема подключается через лампу L и обмотку К1. При таком режиме клеммы, находящиеся в замкнутом и разомкнутом состоянии изменяют занятые позиции, а схема подключена через главный ввод А.

При перебоях питания на вводе А, на обмотку прекращается подача тока, о чём свидетельствует погасшая лампа индикатора. Как результат, система переключается на питание от запасного источника В.

Если характеристики восстановились, включившееся К1 переводит работу схемы в исходное положение.

Данный анализ характеризует, в сильно сокращённом примере, функционирование одностороннего АВР.

Классификация

Системы АВР выпускаются в разных исполнениях, классифицируемых по таким признакам:

  1. Числу линий резерва – обычно их используется два, но, в целях повышения надёжности, число резервных входов может быть увеличено.
  2. Типа сети – могут использоваться трёхфазные или однофазные устройства. Последние характерны для бытовых схем, предполагающих применение резервных генераторов.
  3. Величине напряжения – в пределах 1 кВ или высоковольтных.
  4. Времени срабатывания.

Учитывая разновидность и особенности конструкции, указанные устройства могут применяться в быту или промышленном производстве.

Требования к АВР

Предполагается соответствие АВР таким условиям:

  • обеспечивать переход на запасной режим подключения, если возникнет нештатная ситуация;
  • максимально оперативно восстанавливать энергоснабжение;
  • сохранять обязательность разового переключения – не допускать несколько переключений из-за КЗ или по другому поводу;
  • главный ввод должен выключаться автоматически, до подключения резервного входа.

Данное устройство должно контролировать характеристики сети, срабатывая при их отклонении от номинального значения.

Возможные способы реализации АВР с анализом работы

Функционирование АВР проще проанализировать на анализе нескольких типовых решений, указанных далее.

Простые

На рисунке указана типовая система, переключающая бытовую сеть на работу от резервного генератора:

Данная схема предусматривает дополнительно защиту сети от КЗ, наличие электрического и механического блокирования, исключающего одновременное подключение обоих источников.

На рисунке представлены следующие элементы:

  • АВ1 и АВ2 – коммутаторы двухполюсного типа на главном и запасном входе, срабатывающие автоматически;
  • К1 и К2 – контакторные катушки;
  • К3 – реле напряжения;
  • К1.1, К2.1, К3.2, К3.1 – контакторные клеммы нормально-замкнутого типа;
  • К1.2, К2.2, К3.2, К2.3 – клеммы нормально-разомкнутого типа.

При нормальной работе К3 подключена, со срабатыванием посредством реле К3.2 и отключением К3.1. Подключена обмотка К2, замыкая К2.2 и К2.3, размыкая К2.1, являющегося электрическим блокированием, исключающим включение К1.

При создании аварийной ситуации, ток перестаёт поступать на обмотку К3, с занятием клемм реле начального положения. К1 отключается, изменяется статус клемм К1.1 и К1.2. К1.1 обеспечивает защищает сеть, исключая включение К2. К1.2 убирает блокировку нагрузки.

Срабатывание механической блокировки обеспечивается реверсивным устройством, представленным на рисунке в виде треугольного значка, вершиной книзу.

Схема подключения АВР на контакторах:

АВР в промышленной сфере

Промышленные системы работают в аналогичном порядке. На рисунке представлен типовой вариант шкафа АВР:

Изображены элементы:

  • АВ1, АВ2 – защитные устройства трехполюсного типа;
  • S1, S2 – механические коммутационные устройства;
  • КМ1, КМ2 – контакторные устройства;
  • РКФ – фазные контролирующие реле;
  • L1, L2 – индикаторные модули;
  • км1.1, км2.1, км2.2, ркф1 – клеммы в разомкнутом состоянии при нормальном режиме;
  • км1.3, км2.3, ркф2 – замкнутые клеммы.

Система функционирует по аналогичному принципу, но применяется реле, выполняющее контроль по каждой фазе. В случае перекоса или пропажи питания, схема переключается на запасной ввод, возвращаясь в штатный режим при восстановлении нормальных характеристик.

АВР для высоковольтных линий

Для систем высокого напряжения порядок работы сохраняется прежний, но конструкция устройства усложняется:

Представленная система исключает применение резервных трансформаторов. Шины Ш1 и Ш2 задействованы соответственно через трансформаторы Т1 и Т2, равнозначными по значению. При нормальной работе характерно разомкнутое положение секционного коммутирующего элемента СВ10, с контролем работы ТП от ТН1 Ш и ТН2 Ш.

При прекращении подачи питания на Ш1, отключается выключатель В10Т1, и включается СВ10. При этом напряжение на обе секции подаётся от одного трансформатора. При нормализации ситуации, схема возвращается в исходное положение.

Виды АВР для высоковольтной сети:

Микропроцессорные бесконтактные системы

Для микропроцессорных управляющих блоков используются АВР на полупроводниковых элементах, отличающихся большей надёжностью.

Блок АВР

Такие системы обладают следующими достоинствами:

  • исключением механических соединений, что позволяет избавиться от связанных с этим неудобств в виде дефектов указанных контактов;
  • пропадает надобность использования механического блокирования;
  • расширенным спектром регулировки характеристик переключения.

К минусам стоит отнести сложность в ремонте и непростую конструкцию, разобраться в которой по силам только квалифицированным специалистам.

Применение АВР позволяет обеспечить штатный режим эксплуатации энергосистем, как в условиях бытового потребителя, так и на промышленных предприятиях.

Автоматический ввод резерва. Типы и характеристики

Автоматический ввод резерва — способ обеспечения резервным электроснабжением нагрузок, подключенных к системе электроснабжения, имеющей не менее двух питающих вводов и направленный на повышение надежности системы электроснабжения. Заключается в автоматическом подключении к нагрузкам резервных источников питания в случае потери основного.

В наше время перебои с электроснабжением не редкость. И хотя в нашей стране достаточно электроэнергии, но проблема бесперебойного электроснабжения остается. Решить ее поможет установка дополнительных источников электроэнергии, таких как генератор, аккумулятор, а так же иные альтернативные источники электропитания.

Согласно ПУЭ все потребители электрической энергии делятся на три категории:

I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, опасность для безопасности государства, нарушение сложных технологических процессов и пр.

II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта.

III категория — все остальные потребители электроэнергии.

Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьезным последствиям.Бесперебойное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:

  • Токи короткого замыкания при такой схеме гораздо выше, чем при раздельном питании потребителей
  • В питающих трансформаторах выше потери электроэнергии
  • Релейная защита сложнее, чем при раздельном питании
  • Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определенного режима работы системы
  • В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования

В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет Автоматический ввод резерва.

Автоматический ввод резерва может подключить отдельный источник электроэнергии (генератор, аккумуляторная батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.

При проектировании систем гарантированного электроснабжения, предназначенных для обеспечения работы электроприемников I категории и особой группы первой категории надежности, возникает задача выбора типа устройства автоматического ввода резерва (АВР).

   Автоматический ввод резерва

Автоматический ввод резерва (АВР) — метод защиты, предназначенный для бесперебойной работы сети электроснабжения. Реализован с помощью автоматического подключения к сети других источников электропитания в случае аварии основного источника электроснабжения.

Основные требования, предъявляемые к устройствам при построении системы гарантированного электроснабжения

  1. Как известно (см. ПУЭ), электроприемники первой категории надежности должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, а для электроснабжения особой группы электроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого источника.
  2. В обоих случаях в качестве одного из резервирующих источников питания может использоваться автоматизированная дизель-электрическая электростанция, что требуется учитывать при выборе конкретной схемы АВР.
  3. При использовании АВР должны быть приняты меры, исключающие возможность замыкания между собой двух независимых источников питания друг на друга, причем в дополнение к требованиям ПУЭ службы энергонадзора, как правило, требуют наличия не только электрической, но и механической блокировки коммутирующих элементов.
  4. Максимальное время переключения резерва зависит от характеристик потребителей электроэнергии, но при наличии в системе источников бесперебойного питания (ИБП) не имеет определяющего значения. Для исключения ложных срабатываний при переключениях АВР на стороне высокого напряжения должна быть предусмотрена возможность регулировки задержки переключения при неисправностях одной из сетей.
  5. Важное значение имеет наличие регулировки порогов срабатывания АВР в диапазоне контролируемого напряжения для каждого ввода. Так, например, в случае подключения к выходу АВР ИБП согласование между собой диапазонов входных напряжений обоих устройств позволяет обеспечить своевременное переключение на резервную сеть при отклонении напряжений основной питающей сети за заданные значения и тем самым исключить длительную работу ИБП на батареях при исправной резервной сети.
  6. Желательно наличие индикации состояния и возможности ручного управления АВР.

Преимущества и недостатки различных типов АВР с позиций перечисленных требований

Тиристорные (электронные) АВР

Статический переключатель нагрузки — (англ.: LTM — Load Transfer module (модуль переключения нагрузки)). В этом типе АВР в качестве силового коммутирующего элемента используются мощные тиристоры, обеспечивающие практически нулевое время переключения между двумя независимыми вводами.

Преимущества:

Основное и очень значимое преимущество: практически нулевое время переключения между вводами (возможно применения для переключения между ИБП (источник бесперебойного питания) разной мощности, разных производителей). Переключение между вводами никак не сказывается на электроснабжении ответственных потребителей электроэнергии (серверы, компьютерное оборудование, устройства автоматики, телекоммуникационное оборудование и т.д.). При использовании LTM в схемах электроснабжения критически важных объектов или ответственных потребителей можно существенно сэкономить на применении ИБП, ДГА и других устройств независимого электроснабжения.

Недостатки:

Основной недостаток это очень высокая стоимость по сравнению с механическими АВР (на контакторах и рубильниках).

Электромеханические АВР на контакторах


АВР на контакторах получили наиболее широкое применение, в основном, благодаря низкой стоимости комплектующих. В основе щита АВР на контакторах обычно применяются два контактора с взаимной электрической или электромеханической блокировкой и реле контроля фаз.

В самых дешевых вариантах АВР на контакторах используется обычное реле, контролирующее наличие напряжения только на одной фазе, без контроля качества электроэнергии (частота, напряжение). При пропадании напряжения на одной фазе, АВР на контакторах переключает нагрузку на другой (резервный) ввод электроэнергии.

При использовании качественных полнофункциональных реле контроля фаз (контроль 3-х фаз: напряжение, частота, временные задержки на перевод нагрузки, возможность программирования диапазонов и задержек) и применении механической блокировки (предотвращает одновременную подачу электропитания с двух вводов) АВР на контакторах становится довольно качественным и законченным изделием.

Преимущества:

Дешевая стоимость, выполняет защитные функции (высокий ток, короткое замыкание).

Недостатки:

Отсутствие возможности ручного переключения при неисправности АВР, низкая ремонтопригодность (при отказе одного из элементов АВР, требуется демонтаж и ремонт всего изделия), длительное время переключения (от 16 до 120 мс). Небольшое количество циклов срабатывания. Вероятность залипания контактов контактора.

Электромеханические АВР на автоматических выключателях с электроприводом

Такие АВР несколько уступают предыдущим по быстродействию и также позволяют осуществить механическую и электрическую блокировки при двухвходовой схеме.

Недостатки:

Более сложная схема и более высокую стоимость этих устройств.

Электромеханические АВР на управляемых переключателях с электроприводом

В основе лежит рубильник (переключатель с нулевым средним положением, приводимый в действие моторным приводом. Привод управляется контроллером, который является частью автоматического рубильника или может устанавливаться отдельно).

Преимущества:

Высокая ремонтопригодность: автоматический рубильник состоит из трех основных элементов: рубильник (переключатель), моторный привод, контроллер. Выход из строя рубильника практически невозможен. При выходе из строя моторного привода или контроллера (реле контроля фаз), возможна их замена без демонтажа щита АВР и без демонтажа самого рубильника. При снятом моторном приводе и контроллере возможно переключение нагрузки в ручном режиме. Легкая сборка щита АВР. Для сборки щита требуется установить рубильник на монтажную плату, никакие дополнительные силовые или контрольные соединения не используются. Высокая надежность: за счет применения малого количества элементов и за счет использования в качестве силового коммутирующего устройства рубильника.

Недостатки:

Относительно высокая стоимость (на токи до 125 А). Отсутствие защитных функций

Автоматический ввод резерва и дополнительные функции

У всех рассмотренных типов АВР при необходимости могут быть реализованы функции контроля верхнего и нижнего уровня напряжений, введены элементы регулировки задержек и схемы управления работой ДЭС.

На основании выше сказанного, можно сделать следующие выводы:

Для системы гарантированного электроснабжения, имеющей два независимых ввода электроснабжения:
  • Целесообразно использовать автоматический ввод резерва электромеханического типа, которые могут быть выполнены на контакторах, управляемых автоматических выключателях или управляемых переключателях с электроприводом
  • Схема АВР должна предусматривать регулировки задержек переключения, порогов срабатывания во всем диапазоне входных напряжений
  • Желательно наличие механической блокировки, исключающей возможность замыкания двух входов друг на друга
  • При использовании в качестве резервного источника дизель-электрической станции схема АВР должна содержать необходимые элементы для управления ее работой (автоматический пуск и останов ДЭС, возможность регулировки различных временных параметров, в том числе задержки обратного переключения на сеть, времени работы ДЭС на холостом ходу для охлаждения и т. п.)
Для системы гарантированного электроснабжения, имеющей три независимых ввода электроснабжения:
  • Трехвходовая схема может быть реализована путем последовательного соединения двух двухвходовых АВР, при этом каждый из этих аппаратов должен быть выполнен с учетом требований, указанных выше
  • Автоматический ввод резерва на контакторах и управляемых автоматических выключателях может быть реализован как трехвходовый (что уменьшит суммарную стоимость оборудования на 20-30% за счет меньшего числа коммутирующих элементов), однако при этом невозможно обеспечить полноценную механическую блокировку между тремя входами

Практические рекомендации, которые подтверждены в различных проектах

Система гарантированного электроснабжения мощностью до 100 кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов.

В этом случае могут быть предложены автоматические коммутаторы серии АК фирмы «ППФ БИП-сервис», представляющие собой АВР контакторного типа. Эти аппараты имеют:

  • механическую и электронную блокировку контакторов
  • автоматические выключатели на каждом входе, обеспечивающие защиту сетей от перегрузок и коротких замыканий нагрузки
  • регулировку диапазона контролируемых напряжений
  • контроль правильности чередования фаз; возможность установки приоритета любого из входов
  • индикацию режима работы и состояния входов
  • регулировку задержки времени переключения

Такой перечень функциональных возможностей позволяет успешно применять коммутаторы серии АК в системах, содержащих ИБП.

Система гарантированного электроснабжения мощностью более 100 кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов.

Для таких систем более целесообразно использовать автоматические коммутаторы серии АКП, которые представляют собой АВР на управляемых переключателях с электроприводом.

Эти аппараты имеют все перечисленные выше особенности, но кроме того, позволяют управлять переключением входов вручную при любом напряжении или его отсутствии. Переключатели оснащены механическими замками, позволяющими заблокировать их в любом из возможных состояний, что может быть в некоторых случаях важно для потребителя.

Система гарантированного электроснабжения, работающая от одного сетевого ввода и имеющая в качестве резервного питания ДЭС.

Для такой конфигурации может быть применена панель переключения нагрузки типа TI. Также представляющая собой АВР контакторного типа, но имеющая в своем составе все необходимые элементы для управления автоматизированной ДЭС. Изделия этого типа, как правило, рекомендуются фирмами — изготовителями дизель-генераторов, в частности, фирмой F.G.Wilson.

Система гарантированного электроснабжения, имеющая в своем составе ИБП и работающая от двух сетевых входов и резервной ДЭС.

Здесь могут быть предложены следующие варианты построения АВР:

  1. каскадное соединение АВР серии АК или АКП и панели переключения TI
  2. трехвходовой коммутатор серии АК с функцией управления ДЭС
  3. трехвходовой коммутатор серии АКП с функцией управления ДЭС

   Система гарантированного электроснабжения

Схемы трехвходовых АВР могут быть экономически более привлекательны.  В то же время следует повторно отметить то обстоятельство, что для трехвходовой контакторной схемы невозможна полноценная механическая блокировка всех входов между собой, что определяется конструктивными особенностями контакторов.

В связи с этим в трехвходовых контакторных АВР целесообразно установить электрическую и механическую блокировку между ДГ и каждым из сетевых вводов. А между сетевыми вводами предусмотреть только электрическую блокировку. Именно по такому принципу выполнены трехвходовые коммутаторы серии АК.

Схема трехвходового коммутатора серии АКП, как отмечалось ранее, исключает возможность замыкания входов между собой за счет конструкции переключателей и одновременно дешевле, чем два отдельных каскадно соединенных АВР.

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Что такое Архив AVR — Материалы для изучения морской инженерии

5 ноября 2015 г. 23:04 | 1 комментарий | Jaz

MEO Orals on Marine Electro Technology Функция 5- Часть 4

Почему переменный ток популярен на борту корабля?

  1. Меньший, легкий и компактный размер машины, для данной кВт
  2. Генератор переменного тока высокой мощности и высокого напряжения легко изготовить
  3. Напряжение можно повышать или понижать с помощью трансформатора
  4. AC можно легко преобразовать в DC

Меры предосторожности при работе с электрическими машинами ?

  1. Выключить главный выключатель
  2. Выход механического замка на
  3. Вынуть предохранитель
  4. Поставить вывеску «Человек работает на линии»

Что такое AVR?

  • A. V.R   или автоматические регуляторы напряжения используются вместе с генератором для управления напряжением на клеммах, чтобы обеспечить стабильное напряжение при переменной нагрузке.
  • Он измеряет и регулирует выходное напряжение генератора переменного тока в пределах (+ или -) от 1 до 2%.

Какие бывают виды А.В. Р ?

  • Регулятор угольной сваи
  • Регулятор вибрационных контактов
  • Статический А.В. Р.
  • Вращающийся сектор
  • Многоконтактный
  • Магнитный усилитель
  • Электронный усилитель

Регулятор угольной сваи (AVR)

  1. Сопротивление угольной сваи (пакета), которое изменяется при изменении давления, управляет протеканием тока через шунтирующее поле возбудителя
  2. Давление создается пружинами и снимается силой магнитного поля электромагнитной катушки
  3. Ток для электромагнитной катушки подается с выхода генератора на распределительный щит
  4. АРН разработан таким образом, что колебания напряжения генератора переменного тока из-за изменения нагрузки влияют на прочность электромагнитной катушки и, следовательно, изменяют сопротивление угольной сваи
  5. Когда напряжение генератора низкое, пружина оказывает большее давление, а сопротивление угольного ворса становится низким, поэтому больше токов протекает через шунтирующее поле возбудителя, а затем увеличивается выходное напряжение
  6. Когда напряжение генератора высокое, электромагнитная катушка снижает давление на углеродистую кучу, и сопротивление становится высоким. Меньший ток проходит через шунтирующее поле возбудителя и снижает напряжение (сила электромагнитной катушки ослабляет давление пружины на угольную сваю)

Что такое выпрямитель?

  • Это электрическое устройство или цепь, позволяющая преобразовывать переменный ток в постоянный.

Что такое возбуждение?

  • Для подачи и контроля правильного постоянного тока для обмотки полюса ротора для получения требуемых выходных напряжений переменного тока генератора.
  • Создание электромагнитного поля генератора путем подачи возбуждающего тока для намагничивания магнита возбуждения
  • Для возбуждения используется постоянный ток, поскольку постоянный ток обеспечивает постоянную скорость магнитного потока
  • Постоянно регулируются для поддержания выходного напряжения генератора при колебаниях нагрузки.

Возбудители  

  • Источник, генерирующий ток возбуждения для возбуждения магнитов возбуждения.

Выравнивающая планка

  • Уравнитель представляет собой цепь низкого сопротивления, подключаемую поперек концов якоря последовательных катушек параллельных составных генераторов, через специальную шину в распределительном щите
  • Эквалайзер предназначен для стабилизации параллельной работы составных генераторов постоянного тока.

Вращающийся преобразователь

  1. Вращающийся диод для преобразования переменного тока в постоянный для возбуждения генератора переменного тока
  2. Комбинированный блок синхронного двигателя и генератора
  3. Катушки подачи и якоря аналогичны генератору постоянного тока, за исключением того, что токосъемные кольца расположены на конце вала, противоположном коллектору
  4. Переменный ток вращает преобразователь (как синхронный двигатель), а постоянный ток берется с коллекторной щетки

Процедура капитального ремонта генератора ?

  1. Выключите первичный двигатель генератора и заблокируйте систему запуска.
  2. Заблокируйте автоматический выключатель и отключите электронагреватель генератора. Пометьте этикетку на распределительном щите.
  3. Проверьте герметичность клеммного соединения и изоляции.
  4. Проверьте уровень и состояние масла в подшипниках.
  5. Очистите впускной фильтр охлаждающего воздуха и выпускное отверстие.
  6. Очистите обмотки ротора и статора с помощью пылесоса с резиновым шлангом и насадкой.
  7. Если масло отложилось на поверхности обмотки, откройте сливную пробку, а затем удалите ее специальными обезжиривающими жидкостями. (электроочиститель)
  8. Измерьте воздушный зазор между ротором и статором. (Осторожно в нижней части)
  9. Прогрев генератора с лампой. Поддерживать температуру не выше 43°C
  10. Отсоедините нейтральную точку от клеммной коробки.
  11. Измерение сопротивления изоляции между ротором и землей, фазой и землей, статором и землей, фазой и фазой
  12. Должно быть не менее одного мегаома, если показания мегаома имеют разумное значение, обмотки должны быть покрыты высококачественным изоляционным лаком воздушной сушки.

  После работ по техническому обслуживанию

  • Соберите все необходимые детали.  
  • Проверьте работу без нагрузки, синхронизацию и загрузку.
  • Под нагрузкой практически проверьте на наличие чрезмерного повышения температуры и стабильность распределения нагрузки при параллельной работе.

Ссылка:

Устное руководство от – MIN ZAR TAR

Устные сообщения MEO по морской электротехнологии, часть 4

Tagged: AC популярен на борту корабля, Регулятор угольной сваи (AVR), Выравнивающий стержень, Возбудители, Меры предосторожности при работе с электрическими машинами, Процедура капитального ремонта генератора переменного тока, Вращающийся преобразователь, типы А.В. R, Что такое AVR, Что такое возбуждение, Что такое выпрямитель

Автоматический регулятор напряжения (АРН): типы и принципы работы

Автоматический регулятор напряжения (АРН): типы и принцип работы

  • Автор сообщения: