Закрыть

Виды резисторов фото – — » :

Содержание

характеристики и обозначения на схемах

Основное целевое назначение этих изделий понятно из специфического названия. В переводе с латыни «resisto» означает «сопротивляюсь». Резисторы создают препятствие, которое используют для деления, прямого/ обратного преобразования тока и напряжения. Они способны выполнять функции рассеивателей избыточной энергии, ограничителей. Их правильное применение поможет создать работоспособные электрические схемы, предотвратит ошибки и лишние затраты при выполнении ремонтных операций.

В широком ассортименте на рынке представлены элементы для решения разных практических задач

В широком ассортименте на рынке представлены элементы для решения разных практических задач

Основные определения

Сопротивление резистора – главный, но не единственный важный параметр. При прохождении тока через проводник с определенным сопротивлением повышается температура. Соответственно, существенное значение имеет максимальная рассеиваемая энергия без разрушения изделия. В действующих ГОСТах предусмотрен диапазон по номинальной мощности – 0,01-500 Вт.

Важно! Зная номиналы, несложно вычислить допустимое напряжение по стандартной формуле: U = √P*R, где P – мощность, R – сопротивление.

Нагрев/ охлаждение резистора постоянного оказывают влияние на проводимость. Этот фактор учитывают с применением специального температурного коэффициента. Он индексирует относительное изменение базового сопротивления при повышении/ снижении температуры на 1 C.

Помехи оценивают по уровню тепловых и токовых шумов. Как правило, измерения выполняют в полосе частот 50-5000Гц с делением на две категории по уровню измеренного сигнала в мкВ на один Вольт:

Стандартные допуски (±) на резисторы установлены в процентах. Применяют следующие значения: 0,001; 0,002; 0,005; 0,01; 0,02; 0,05; 0,1; 0,25; 0,5; 1; 2; 5; 10; 20; 30. Следует подчеркнуть, что такое распределение не подтверждает уровень качества. Для решения отдельных задач не нужен высокий класс точности. Выбор подходящих изделий позволит рациональным образом использовать имеющиеся денежные средства.

Виды резисторов: расчеты и применение

В простейшем исполнении элементы этой категории обладают определенным электрическим сопротивлением. С применением разных схем можно изменять рабочие параметры нужным образом.

Параллельное соединение

Параллельное соединение

Расчеты для последовательного соединения

Расчеты для последовательного соединения

Если необходимо динамическое изменение электрических параметров при начальной регулировке или в процессе эксплуатации, резистор с типовым постоянным сопротивлением не подходит. В таких случаях применяют специализированные изделия.

Переменные и подстроечные резисторы, схема деления напряжения

Переменные и подстроечные резисторы, схема деления напряжения

Для защиты оборудования при подключении к источникам питания в соответствующие цепи устанавливают варисторы. Эти изделия отличаются нелинейными вольтамперными характеристиками. На их основе создают специализированные автоматические устройства отключения.

Так выглядят дисковые варисторы

Так выглядят дисковые варисторы

Также выпускают специализированные элементы, сопротивление которых существенно зависит от изменения температуры, магнитного поля, интенсивности излечения в световом диапазоне волн, степени деформации. Специализированные изделия применяют в измерительной аппаратуре, для создания систем аварийной и охранной сигнализации.

Особые типы резисторов

Группа изделийОбласть примененияПримечания
ВысокоомныеДозиметрическая аппаратура, измерительные приборы улучшенной точностиДиапазон напряжения (рабочего) – от 250 до 350 V. В конструкциях применяют материалы с электрическим сопротивлением до 1012-1013 Ом
ВысоковольтныеГашение искр в электрических установках с высоким напряжением, делители, разрядники конденсаторовРабочее напряжение – до 60 kV. В конструкциях применяют материалы с электрическим сопротивлением до 1012 Ом
ВысокочастотныеРадиорелейная, передающая и приемная аппаратура, антенные узлы, аттенюаторы, локаторыПредназначены для работы с частотами более 5 МГц
ПрецизионныеТакие резисторы устанавливают в измерительной техникеПогрешность изделий – лучше 0,5%. Как правило, они рассчитаны на небольшую мощность

Обозначения на электрических схемах и маркировка

На чертежах резистор отмечают латинской буквой «R», порядковым номером, данными об электрическом сопротивлении. Если рядом добавляют звездочку «*», значит, номинал указан приблизительно. Точное значение подбирают в ходе настройки. Иногда соответствующий алгоритм рабочих операций приводят в сопроводительной документации.

Так обозначают на принципиальных схемах номинальную мощность резистора в Ваттах

Так обозначают на принципиальных схемах номинальную мощность резистора в Ваттах

 Обозначения переменных резисторов разных модификаций

Обозначения переменных резисторов разных модификаций

Специальные изделия: термисторы, варисторы и фоторезисторы

Специальные изделия: термисторы, варисторы и фоторезисторы

Поверхности миниатюрных резисторов с малой мощностью рассеивания недостаточно для размещения хорошо читаемой буквенно-цифровой информации. Для улучшения видимости вместо разделительных запятых (точек) указывают соответствующее сокращение. Надпись «5К2» обозначает электрическое сопротивление 5,2 кОм.

С учетом этого современные изделия предпочитают маркировать цветом. Чем больше количество полосок, тем выше класс точности.

Цветовая маркировка резисторов

Цветовая маркировка резисторов

Четвертой полоской обозначают температурный коэффициент. Пятой – надежность. Ее определяют лабораторными испытаниями. Проверяется количество отказов за 1 тыс. часов работы в номинальных условиях.

К сведению. Для поверхностной технологии монтажа применяют резисторы SMD-типа. В этом варианте для маркировки используют трех,- или четырехзначное обозначение на верхней видимой грани.

Особенности отдельных конструкций

Простейшие резисторы собирают из проволоки, которая обладает высоким удельным сопротивлением на единицу длины. Ее создают из нихрома, иных подходящих сплавов. Используют каркас для обеспечения прочности конструкции. В некоторых моделях устанавливают защитный слой, предотвращающий негативные внешние воздействия.

Проволочный резистор

Проволочный резистор

На рисунке стрелкой отмечен центральный элемент. Перемещая его, можно изменить сопротивление. Винтом фиксируют нужное положение. Подобные конструкции рассчитаны на высокую мощность. Для отвода избыточного тепла добавляют торцевые отводы, которые присоединяют к специальным радиаторам.

Объективную оценку можно дать только с учетом недостатков. Проволочные резисторы отличаются высокой стоимостью. Проводник, установленный таким образом, образует паразитную емкость/ индуктивность. Также следует отметить значительные габариты.

Устраняют недостатки с применением пленочных технологий. Изделия этой категории создают на стеклянной или другой диэлектрической основе. Сверху наносят резистивный слой из однородных или композитных материалов. Финишное покрытие предотвращает проникновение влаги, механические воздействия.

Характеристика резистивных слоев

Тип резистивного слояОсобенностиПреимуществаНедостатки
УглеродистыйСлой создают при высокой температуре в условиях вакуумаСтабильность рабочих параметров, минимальные шумы, слабая зависимость от уровня напряжения и частотыСопротивление готовых изделий – не выше 10 МОм
Пленочные, окисныеПрименяют металлы (сплавы), которые наносят тонким слоем на основуУлучшенная стойкость к высокой температуре, широкий диапазон электрических сопротивлений, компактностьСравнительно небольшая стойкость к нагрузкам импульсного типа
КомпозиционныеИспользуют графит в смеси с органическими и другими связующими компонентамиСоздание изделий в любой форме без лишних трудностей. Демократичная стоимостьСопротивление изменяется в зависимости от напряжения. Существенный уровень шумов. Некоторые модели реагируют на изменение уровня влажности и температуры

С помощью представленных сведений несложно выбрать и применить подходящие резисторы для создания нового или ремонта старого устройства. Следует обратить внимание на изделия новых серий, которые при разумной стоимости обладают улучшенными техническими характеристиками.

Видео

Оцените статью:

jelectro.ru

Обозначение резисторов и их виды

В данной статье мы наглядно посмотрим основные виды резисторов и их обозначения на схеме.  Резисторы бывают постоянными, переменными, подстроечными, термисторы, варисторы, фоторезисторы.

Постоянные резисторы. Самый распространенный вид, используемый в электронике.

Обозначаются на схеме следующим образом:

Обозначение постоянных резисторовОбозначение постоянных резисторовВыглядят постоянные резисторы так:

Постоянные резисторыПостоянные резисторы

Данные элементы могут отличаться мощностью, которая на схеме тоже может быть указана следующим образом:

Обозначение мощности резисторовОбозначение мощности резисторовВот наглядные примеры резисторов различной мощности:

Пример резисторов разной мощностиПример резисторов разной мощности

На 0.125 Вт резисторы у нас не продают в городе, так как они в корпусе 0.25 Вт и с виду их не различить. Привожу пример зарубежных резисторов, так как, элементы времен СССР уже в большинстве случаев не применяются. Резисторы могут быть и более 2 Ватт, и 10, и 25 Ватт, вот например на 7 Ватт:

Сопротивления большой мощностиСопротивления большой мощности
Данные сопротивления я использовал для измерения мощности импульсного блока питания.

Пример постоянных сопротивлений на плате:

Пример сопротивленийПример сопротивлений

Высокоточные сопротивления, с погрешностью 0.25%:

Пример высокоточных сопротивленийПример высокоточных сопротивлений

Также есть чип резисторы, еще их называют SMD резисторами, они применяются в поверхностном монтаже. Они различаются по размерам и рассеиваемой мощностью.

Так выглядит SMD сопротивлениеТак выглядит SMD сопротивление

Пример SMD сопротивленийПример SMD сопротивлений

Переменные резисторы.  Резисторы, изменяющие свое сопротивление, при вращении рукоятки называются переменными.  На схеме они отображаются следующим образом:

обозначение переменных резисторовобозначение переменных резисторовТак же переменники могут выполнять две роли, роль реостата и потенциометра, все зависит от соединения:

реостат и потенциометрреостат и потенциометрВ роли потенциометра, резистор работает как делитель напряжения, а в роли реостата как делитель тока.

Выглядят переменные резисторы вот так:

Примеры переменных резисторовПримеры переменных резисторов

Подстроечные резисторы.  Они похожи на переменные,  могут быть потенциометрами,  либо  реостатами.  Отличаются размерами и тем , что у подстроечных резисторов вместо рукояти пазы под отвертку, шестигранник и так далее. Хотя есть и с рукоятью, но с пазом под отвертку.

На схеме обозначаются следующим образом:

обозначение подстроечных сопротивленийобозначение подстроечных сопротивленийВыглядят так:

Так выглядит подстроечное сопротивлениеТак выглядит подстроечное сопротивление

пример подстроечного сопротивленияпример подстроечного сопротивления

Варистор. Является полупроводниковым резистором, который изменяет свое сопротивление от приложенного к нему напряжения. Изменение сопротивления происходит нелинейно.  Например, варистор, рассчитанный на напряжение 275 Вольт, при скачке напряжение более 275 Вольт, сопротивление варистора будет резко (нелинейно) уменьшаться, от сотни МОм до нескольких Ом.

Обозначаются на схеме варисторы следующим образом:

Обозначение варистораОбозначение варистораВыглядят так:

Так выглядит варисторТак выглядит варистор

Применяются варисторы в основном для защиты цепей от перенапряжения. Варистор ставят параллельно в  цепь, а до варистора в цепи ставят последовательно предохранитель. При скачке напряжения, сопротивление варистора падает до десятков Ом, тем самым варистор замыкает цепь, вследствие короткого замыкания (К.З.), сгорает предохранитель.

так выглядит варистортак выглядит варистор

Термистор.  Также является резистором на основе полупроводниковых материалов, сопротивление которого зависит от температуры полупроводника.  Одним из важных параметров термисторов является- тепловой коэффициент сопротивления (ТКС).  ТКС может быть положительным и отрицательным. У термисторов с  отрицательным ТКС, при увеличении температуры,  сопротивление падает, называют такие термисторы – термисторами.  У термисторов с положительным ТКС, при увеличении температуры, сопротивление увеличивается и такие термисторы называют – позисторами.

Термисторы NTC (Negative Temperature Coefficient) и позисторы PTC (Positive Temperature Coefficient) на схеме обозначаются следующим образом:

Обозначение термисторовОбозначение термисторов

Выглядит термистор так:

Так выглядит термисторТак выглядит термистор

так выглядит термистортак выглядит термистор

Фоторезистор. Является полупроводниковым элементом, который изменяет свое сопротивление при попадании на него лучей света, в том числе искусственных. Фоторезисторы можно увидеть в видеокамерах с инфракрасной подсветкой, среди инфракрасных светодиодов стоит один фоторезистор, который является датчиком света, управляющий реле. Реле в свою очередь включает подсветку, когда видеокамера в темноте.

Так же фоторезистор может  использоваться в автоматах ночного освещения, регуляторах мощности фар автомобиля, фотоэлектронном контроле оборотов, датчиках дыма  и других электронных устройствах.

На схеме отображаются следующим образом:

Изображение фоторезистора на схемеИзображение фоторезистора на схемеВнешне выглядят так:

Как выглядит фоторезисторКак выглядит фоторезистор

Фоторезистор как датчик света подсветки камерыФоторезистор как датчик света подсветки камеры

Резисторная сборка.  Это сборка из нескольких постоянных резисторов. Вот пример резисторной сборки на 15 кОм с общим выводом:Как выглядит резисторная сборкаКак выглядит резисторная сборка

Теперь вы имеете представление о том, как выглядят различные сопротивления.


Похожие статьи

audio-cxem.ru

Виды резисторов | joyta.ru

Виды резисторов. Резисторы являются наиболее часто используемыми компонентами электронных схем и устройств. Основное назначение резистора является поддержание заданных значений напряжения и тока в электронной цепи, на основе такого физического свойства как сопротивление. Единицей измерения сопротивления является Ом, от имени немецкого физика Георга Ома.

Работа резистора основана на законе Ома, который гласит, что напряжение на выводах резистора прямо пропорционально величине тока, протекающего через него.

Виды резисторов

В настоящее время существует несколько видов  резисторов. Вот некоторые из них:

  • Проволочные резисторы
  • Металлопленочные резисторы
  • Толстопленочные и тонкопленочные резисторы
  • Резисторы для поверхностного монтажа (SMD)
  • Резисторная сборка
  • Переменные резисторы
  • Специальные резисторы

Проволочные резисторы

Этот вид резисторов различаются по внешности и размера. Проволочные резисторы, как правило, изготавливают из длинного провода на основе сплавов, обычно хрома, никеля или сплава медно-никель-марганца. Этот вид резистора, пожалуй, один из самых старых видов. Проволочные резисторы имеют превосходные свойства, такие как высокие показатели мощности и низкие значения сопротивления. В процессе эксплуатации эти резисторы могут сильно нагреваться, и по этой причине их зачастую  помещают в металлический ребристый корпус для лучшего охлаждения.

Металлопленочные резисторы

Металлопленочные резисторы изготавливаются из оксида металла или в виде небольших керамических стержней с нанесением на них тонкого слоя металла.

Они похожи на углеродно-пленочные резисторы и их сопротивление регулируется за счет толщины слоя покрытия. Характерными свойствами металлопленочных резисторов можно считать их надежность, точность и стабильность. Эти резисторы могут быть изготовлены в широком диапазоне сопротивлений (от нескольких Ом до МОм). Номинал сопротивлений резисторов наносится на корпус в буквенно-цифровом виде или в виде цветовой маркировке.

Толстопленочные и тонкопленочные резисторы

Тонкопленочные резисторы изготавливаются путем напыления определенного резистивного материала на изоляционной подложке (методом вакуумного напыления) и поэтому их стоимость значительно выше, чем стоимость толстопленочных резисторов. Толщина резистивного элемента этих резисторов составляет приблизительно 1000 Ангстрем. Тонкопленочные резисторы имеют лучший температурный коэффициент сопротивления, низкую емкость, малую паразитную индуктивность и низкий уровень шума.

Эти резисторы являются предпочтительными для устройств на основе СВЧ, где требуется высокая точность и стабильность.

Обычно толстопленочные резисторы изготавливаются путем смешивания порошкового стекла с органическим связующим. Отклонение сопротивления от номинала у подобных резисторов составляет от 1% до 2%. Толстопленочные резисторы широко используются в качестве недорогих резисторов.

Резисторы для поверхностного монтажа (SMD)

Резисторы для поверхностного монтажа бывают различных размеров и форм. Они сделаны путем нанесения пленки резистивного материала и не имеют достаточно места для нанесения цветовой маркировки резисторов вследствие малого размера. Поэтому маркировка smd резисторов состоит только из 3 или 4 цифр.

Резисторная сборка

Резисторная сборка представляют собой комбинацию сопротивлений, которые дают одинаковые значения для всех выводов. Эти резисторы изготавливаются в виде одиночного и сдвоенного пакета. Резисторная сборка широко используются в таких схемах, как АЦП (аналого-цифровые преобразователи) и ЦАП (Цифро-аналоговый преобразователь) в качестве подтягивающих резисторов.

Переменные резисторы

Наиболее часто используемые типы переменных резисторов являются потенциометры и подстрочные резисторы. Эти резисторы имеют три вывода, сопротивление между двумя крайними выводами имеет постоянное значение, а третий вывод связан с подвижным контактом и играет роль своеобразного делителя напряжения. Данный тип резистора в основном используется для настройки чувствительности датчиков и в качестве делителя напряжения.

 Если же соединить центральный вывод с одним из крайних выводов, то получится переменный резистор.

Фоторезистор (LDR)

Фоторезистор является очень полезным радиоэлементом в различных электронных схемах, например, в схемах управления уличным освещением, в электронных часах, будильниках. Когда резистор не освещен, его сопротивление очень высокое (около 1 МОм) и если же фоторезистор осветить, то его сопротивление падает до нескольких кОм.

Эти резисторы бывают разных форм и цветов. В зависимости от внешнего освещения, эти резисторы используются, для того чтобы включать или выключать устройства.

К специальным резисторам также можно отнести терморезисторы (термисторы и позисторы) и варисторы.

www.joyta.ru

РЕЗИСТОРЫ

   Продолжаем наш цикл справочных материалов для начинающих радиолюбителей, и в этой статье мы поговорим о резисторах, они присутствуют в любой электронной схеме, даже самой простой. Делятся они на два вида: переменные и постоянные. Распространенные постоянные резисторы, используемые в электронных схемах, имеют мощность от 0.125 до 2 Ватт. Если быть более точным, то это ряд 0.125 Вт, 0.25 Вт, 0.5 Вт, 1 Вт, 2 Вт. Конечно, есть и более мощные резисторы, например проволочные, но они редко используются в электронных схемах. На рисунке ниже изображены внешний вид и габариты резисторов, а также их обозначения на принципиальных схемах. 

Схематическое обозначение постоянных резисторов

Схематическое обозначение постоянных резисторов

   Из них чаще всего в электронике используются резисторы мощностью от 0.125 до 0.5 Ватт. Резисторы бывают как обычные, с допуском 5-10%, так и прецизионные с допуском 0.1-1%. Существуют и более точные резисторы, но в большинстве радиолюбительских конструкций такая точность не требуется. Если резистор может менять сопротивление — его называют переменным (или подстроечным). Фото переменных резисторов:

Резисторы переменные

Резисторы переменные

   Переменные резисторы также бывают проволочные и непроволочные, проволочные обычно бывают рассчитаны на большую мощность. Устройство непроволочного переменного резистора можно видеть на рисунке:

Конструкция переменного резистора

Конструкция переменного резистора

   Устроен резистор следующим образом, на основании из гетинакса в виде дуги нанесен слой из сажи смешанной с лаком. У этого резистора между первым и вторым контактом (на рисунке), другими словами между крайними выводами сопротивление неизменно, а между средним и крайними выводами изменяется при вращении ручки резистора. К этому слою обладающему сопротивлением прилегает подвижный контакт, соединенный с центральным выводом. Очень часто при интенсивном использовании регулятором, этот слой сажи истирается, и сопротивление резистора при вращении ручки резистора изменяется скачкообразно, становясь иногда даже больше максимального положенного по номиналу. Из-за этого износа и происходит шуршание и треск из динамиков, а иногда при сильном износе звучание пропадает совсем. Переменные резисторы бывают как одинарные, так и сдвоенные, сдвоенные обычно используются в устройствах со стерео звучанием. Также к переменным резисторам относятся подстроечные резисторы:

Подстроечный резистор

Подстроечный резистор

   Они отличаются от стандартных переменных отсутствием ручки и регулируются вращением вала отвёрткой. Также переменные резисторы бывают однооборотные и многооборотные. Схематическое изображение переменного и подстроечного резистора на рисунке ниже:

Схематическое изображение переменного резистора

Схематическое изображение переменного резистора

   На советских резисторах МЛТ был написан номинал резистора, на импортных резисторах маркировка осуществляется нанесением разноцветных колец, в первых двух кольцах закодирован номинал, третье кольцо множитель, четвёртое кольцо это допуск резистора (для обычных не прецизионных резисторов). 

Цветовая маркировка резисторов

Цветовая маркировка резисторов

   Встречается маркировка большим, чем четыре, количеством колец, расшифровать маркировку поможет следующий рисунок:

Прецизионные резисторы цветовая маркировка

Прецизионные резисторы цветовая маркировка

   Иногда возникает надобность узнать номинал резистора, а по цветовой маркировке это сделать, по каким-либо причинам затруднительно. В таком случае нужно обратиться к принципиальной схеме устройства. На таких схемах номинал резистора обозначается следующим образом, например: 150 означает 150 Ом (единицы измерения не указываются), 100 К означает 100 КилоОм, 2 М означает 2 МегаОма. Иногда при сборке какой-либо схемы нужного номинала нет под рукой, но есть много резисторов других номиналов, в таком случае может помочь последовательное или параллельное соединение резисторов. Формулы подсчета всем известны из учебников физики, но если кто подзабыл, приведу здесь их:

При последовательном соединении


При параллельном соединении

   В последнее время многие переходят на SMD детали, из них наиболее распространены резисторы размеров 0805 и 1206. Определить номинал SMD резистора очень просто, первые две цифры показывают сопротивление резистора, третья цифра количество нулей. Пример: нанесена маркировка 332, это значит 33 плюс два нуля, получается 3300, то есть 3.3 КилоОма. Менее распространены в электронике, но тем не менее находят применение терморезисторы и фоторезисторы. На рисунке ниже изображено схематическое изображение терморезисторов:

Терморезисторы схематическое изображение

Терморезисторы схематическое изображение

   У терморезисторов сопротивление зависит от температуры. Если с повышением температуры сопротивление терморезистора увеличивается, то температурный коэффициент сопротивления ТКС положительный, если же с повышением температуры сопротивление уменьшается, то ТКС отрицательный. Терморезистор изображен на фотографии ниже:

Терморезистор фото

Терморезистор фото

   На следующем рисунке изображён фоторезистор, как его рисуют на схемах:

Фоторезистор схематическое изображение

Фоторезистор схематическое изображение

   Он представляет собой полупроводниковый прибор, сопротивление которого меняется под действием света.

Фоторезистор - внешний вид

Фоторезистор — внешний вид

   Фоторезисторы особенно широко используются в устройствах автоматики. Привожу типовую схему включения полупроводникового фотодетектора:

Типовая схема полупроводникового фотодетектора

Типовая схема полупроводникового фотодетектора

   В общем резистор можно смело считать кирпичиком любой радиосхемы, так как это самый распространённый элемент в радиоэлектронике. С вами был AKV.

   Форум по деталям

   Обсудить статью РЕЗИСТОРЫ


radioskot.ru

Какие бывают переменные резисторы?

Конструкция, обозначение и разновидности переменных и подстроечных резисторов

Если посмотреть на всё изобилие радиокомпонентов, которые используются в промышленности и радиолюбителями, то нетрудно заметить, что некоторые радиодетали могут изменять величину своего основного параметра.

К таким элементам относятся переменные и подстроечные резисторы, сопротивление которых можно менять.

Переменных резисторов выпускается очень большой ассортимент, как для обычных электронных схем, так и для схем использующих микромонтаж.

Все переменные и подстроечные резисторы подразделяются на проволочные и тонкоплёночные.

В первом случае на керамический стержень наматывается константановая или манганиновая проволока. Вдоль проволочной обмотки перемещается ползунковый контакт. За счёт этого меняется сопротивление между подвижным контактом и одним из крайних выводов проволочной обмотки.

Во втором случае на подковообразную пластину из диэлектрика наносится резистивная плёнка с определённым сопротивлением, а ползунок перемещается вращением оси. Резистивная плёнка – это тонкий слой углерода (проще говоря, сажи) и лака. Поэтому в описании к конкретной модели резистора в пункте тип проводника обычно пишут «углеродистое» или «углерод». Естественно, в качестве материала резистивного слоя могут применяться и другие материалы и вещества.

А чем подстроечные резисторы отличаются от переменных?

Подстроечные резисторы в отличие от переменных рассчитаны на гораздо меньшее число циклов перемещения подвижной системы (ползунка). Максимальное число для некоторых экземпляров, например, для высоковольтного резистора НР1-9А вообще ограничено 100.

Для переменных резисторов количество циклов может достигать 50 000 – 100 000. Этот параметр называют износоустойчивостью. При превышении этого количества надёжная работа не гарантируется. Поэтому применять подстроечные резисторы взамен переменных строго не рекомендуется – это сказывается на надёжности устройства.

Давайте взглянем на устройство тонкоплёночного переменного резистора марки СП1. На рисунке вы видите реальный переменный резистор, сопротивление которого 1 МОм (1 000 000 Ом).

Переменный резистор СП-1

А вот его внутреннее устройство (снята защитная крышка). Тут же на рисунке указаны основные конструктивные части.

Устройство переменного тонкоплёночного резистора СП-1

Четвёртый вывод, который виден на первом изображении — это вывод металлической крышки, который служит электрическим экраном и обычно присоединяется к общему проводу (GND).

Подстроечный резистор имеет схожее конструктивное исполнение. Вот взгляните. На фото подстроечный резистор СП3-27б (150 кОм).

Подстроечный резистор СП3-27б

Подстройка сопротивления осуществляется регулировочной отвёрткой. Для этого в конструкции резистора предусмотрен паз.

Теперь, когда мы разобрались с устройством переменных и подстроечных резисторов, давайте узнаем, как они обозначаются на принципиальной схеме.

Обозначение переменных и подстроечных резисторов на принципиальных схемах.

  • Обычное изображение переменного резистора на принципиальной схеме.

    Условное обозначение переменного резистора

    Как видим, оно состоит из обозначения обычного постоянного резистора и «отвода» — стрелочки. Стрелка с отводом символизирует средний контакт, который мы и перемещаем по поверхности из намотанного на каркас высокоомного провода или тонкоплёночному покрытию.

    Рядом с графическим изображением ставится буква R с порядковым номером в схеме. Также рядом указывается номинальное сопротивление (например, 100k — 100 кОм).

    Если переменный резистор включен в схему реостатом (подвижный средний вывод соединён с одним из крайних), то на схеме он может указываться с двумя выводами (на изображении это R2). На зарубежных схемах переменный резистор обозначается не прямоугольником, а зигзагообразной линией. На картинке это R3.

  • Переменный резистор, объединённый с выключателем питания.

    Обозначение резистора с выключателем

    Используется в недорогой переносной аппаратуре. Сам переменный резистор, как правило, используется в цепи регулирования громкости звука, а поскольку он физически (но не электрически!) совмещён с выключателем, то при повороте ручки можно включить прибор и тут же отрегулировать громкость звука. До широкого внедрения цифровой регулировки громкости, такие комбинированные резисторы активно применялись в переносных радиоприёмниках.

    На фото — регулировочный резистор с выключателем СП3-3бМ.

    Переменный резистор с выключателем СП3-3бМ

    На фотографии чётко видна конструкция выключателя, который замыкает свои контакты при повороте дискового регулятора. Часто использовался в аудиоаппаратуре советского производства (например, в переговорных устройствах, радиоприёмниках и пр.).

  • Также в электронике применяются сдвоенные или объединённые переменные резисторы. У них подвижный контакт конструктивно объединён, и его перемещением можно менять сопротивление у двух или нескольких переменных резисторов одновременно.

    Такие резисторы частенько применялись в аналоговой аудиоаппаратуре как регулятор стерео баланса или один из резисторов многополосного эквалайзера. Число сдвоенных резисторов в эквалайзере высокого класса может достигать 20.

    В первом квадрате показано обозначение сдвоенного переменного резистора (R1.1; R1.2), который частенько используется в стереофонической аппаратуре. Во втором показано условное изображение на схеме счетверённого переменного резистора. Обратите внимание на буквенную маркировку (R1.1; R1.2; R1.3; R1.4).

    Условное обозначение сдвоенного и счетверенного переменного резистора

    На принципиальных схемах объединённые резисторы обозначаются с использованием соединяющей пунктирной линии. Этим указывается то, что их подвижные контакты механически объединены на валу одной ручки-регулятора.

  • Обозначение подстроечного резистора.

    Условное обозначение подстроечного резистора

    Подстроечный резистор на схеме обозначается аналогично переменному за одним исключением – у него нет стрелочки. Это говорит нам о том, что регулировка сопротивления производится либо единоразово при настройке электронной схемы, либо очень редко при профилактических работах.

Типы переменных и подстроечных резисторов.

Для того чтобы иметь представление обо всём многообразии переменных и подстроечных резисторов ознакомимся с фотографиями.

Неразборный переменный резистор.

Обычный переменный резистор широкого применения. Хорошо заметен тип: СП4 – 1, мощность 0,25 Ватт, сопротивление 100 кОм.

Неразборный подстроечный резистор СП4-1

Резистор снизу залит эпоксидным  компаундом, то есть он неразборный и ремонту не подлежит. Этот тип очень надёжный, так как он выпускался для оборонной аппаратуры.

А это подстроечные резисторы СП3-16б. Резисторы СП3-16б предназначены для перпендикулярной установки на печатную плату, а мощность их составляет 0,125 Вт. Имеют линейную (А) функциональную характеристику. Как видим, их конструкция весьма добротна и надёжна.

Однооборотные регулировочные резисторы СП3-16б

Однооборотные непроволочные подстроечные резисторы.

Малогабаритный подстроечный резистор, который впаивается непосредственно в печатную плату бытовой аппаратуры. Он имеет очень маленькие размеры и на некоторых платах распаивается до десятка ему подобных.

На фото ниже показаны подстроечные резисторы СП3-19а (справа) мощностью 0,5 Вт. Материал резистивного слоя — металлокерамика.

Подстроечный однооборотный резистор СП3-19а

Лакоплёночные резисторы СП3-38. Устройство их весьма примитивно.

Резистор СП3-38

Так как его корпус является открытым, то на поверхность оседает пыль, конденсируется влага, что и сказывается на надёжности такого изделия. Материал проводника — металлокерамика, а мощность невысока — около 0,125 Вт.

Подстройка таких резисторов осуществляется отверткой из диэлектрика во избежание короткого замыкания. В бытовой электронной аппаратуре найти их довольно легко.

Резисторы РП1-302 (на фото справа) и РП1-63 (слева).

Резисторы РП1-302 и РП1-63

Для подстройки сопротивления резисторов РП1-63 может потребоваться специальная отвёртка. Если приглядется, то паз под отвёртку имеет шестигранную форму. В отличие от СП3-38 такие резисторы имеют защищённый корпус. Это положительно сказывается на их надёжности.

Мощные проволочные подстроечные резисторы.

Здесь показан мощный 3-ёх ваттный проволочный резистор СП5-50МА.

Мощный проволочный подстроечный резистор СП5-50МА (3 Вт)

Его корпус сделан просторным, чтобы к проводящему проволочному слою был приток воздуха для охлаждения. Если перевернуть резистор, то можно детально разглядеть его устройство в том числе и изоляционную планку на которой намотан высокоомный проводник.

Внутреннее устройство проволочного переменного резистора СП5-50МА на 3 Вт

Высоковольтные регулировочные резисторы.

Достаточно редкий экземпляр подстроечного резистора (НР1-9А). Ещё не так давно они стояли во всех кинескопных телевизорах и были завязаны в цепи регулировки высокого напряжения. Его сопротивление 68 МОм.  (Из телевизора я его, собственно, и вытащил, чтобы сфоткать и показать вам).

Высоковольтный регулировочный резистор НР1-9А

Сам по себе НР1-9А является набором керметных резисторов. Его рабочее напряжение 8500 В (это 8,5 киловольт!!!), а предельное рабочее напряжение составляет аж 15 кВ! Номинальная мощность – 4 Вт. Почему регулировочный резистор НР1-9А называют набором резисторов? Да потому, что он состоит из нескольких. Его внутренняя структура соответствует схеме из 3-ёх отдельных резисторов.

В современных кинескопных телевизорах они встраиваются прямо в ТДКС (Трансформатор диодно-каскадный строчный).

Ползунковые переменные резисторы.

В аудиоаппаратуре с аналоговым управлением часто применяются движковые регулировочные резисторы. Их ещё называют ползунковыми. Они широко использовались в электронных приборах для регулировки яркости, контрастности, громкости, тембра и др. Вот взгляните на их конструкцию.

Ползунковые переменные резисторы

Далее на фото показан ползунковый переменный резистор СП3-23а. Из маркировки следует, что мощность его составляет 0,5 Вт, а функциональная характеристика соответствует линейной зависимости (буква А). Сопротивление — 1кОм.

Ползунковый резистор СП3-23а

Также как и переменные резисторы с круговой движковой системой, ползунковые могут быть сдвоенные, например резистор СП3-23б (самый нижний на первом фото). В его составе два переменных резистора с общим подвижным контактом.

Подстроечные многооборотные резисторы.

Очень часто, особенно в специальной аппаратуре, применялись очень удобные и одно время совершенно дефицитные проволочные многооборотные подстроечные резисторы.

Выводы так же были жёсткие для впайки в уже готовые гнёзда, или выполненные из гибкого провода МГТФ, чтобы их можно было распаять в любые точки платы. От нуля до максимального сопротивления регулировочный винт под отвёртку нужно было повернуть ровно 40 раз. Этим достигалась очень высокая точность установки параметров схемы.

Многооборотный подстроечный резистор СП5-2А

На фото показан многооборотный подстроечный резистор СП5-2А. Изменение сопротивления производится круговым перемещением подвижной контактной системы через червячную пару. За 40 полных оборотов можно изменить его сопротивление от минимального до максимального значения. Применяются резисторы СП5-2А в цепях постоянного и переменного тока, и рассчитаны на мощность 0,5 – 1 Вт (зависит от модификации). Износоустойчивость – от 100 до 200 циклов. Функциональная характеристика – линейная (А).

Более полную информацию по резисторам отечественного производства можно получить из справочника «Резисторы» под редакцией И.И. Четверткова и В.М. Терехова. В нём приведены данные практически по всем резисторам. Справочник вы найдёте здесь.

Ремонт переменного резистора.

Так как переменные резисторы – это электромеханическое изделие, то со временем они начинают портиться. Из-за износа проводящего слоя и ослабления прижима скользящего контакта они начинают плохо работать, появляется так называемый «шорох».

В большинстве случаев восстанавливать неисправный переменный резистор нет смысла, но бывают и исключения. Например, нужного для замены может просто не оказаться под рукой или же он может быть очень редкий. Так в некоторых микшерских пультах используются достаточно редкие и уникальные образцы. Найти замену им сложно.

В таком случае восстановить правильную работу переменного резистора можно с помощью обычного карандаша. Грифель карандаша состоит из графита – твёрдого углерода. Поэтому можно аккуратно разобрать переменный резистор, подогнуть ослабший скользящий контакт, а по проводящему слою несколько раз провести грифелем карандаша. Этим мы восстановим проводящий слой. Также не помешает смазать покрытие силиконовой смазкой. Затем резистор собираем обратно. Естественно, такой метод подходит лишь для резисторов с тонкоплёночным покрытием.

Честно говоря, простейший переменный резистор можно смастерить из простого карандаша, ведь грифель его сделан из углерода! А напоследок, давайте прикинем в уме, как это можно сделать.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Что необходимо знать о резисторах? / Habr

Резистор: кусочек материала, сопротивляющийся прохождению электрического тока. К обоим концам присоединены клеммы. И всё. Что может быть проще?

Оказывается, что это совсем не просто. Температура, ёмкость, индуктивность и другие параметры играют роль в превращении резистора в довольно сложный компонент. И использовать его в схемах можно по-разному, но мы сконцентрируемся на разных видах резисторов фиксированного номинала, на том, как их делают и как они могут пригодиться в разных случаях.

Начнём с самого простого и старого.




Углеродный композит в проигрывателе

Их часто называют «старыми» резисторами. Они широко применялись в 1960-х, но с появлением других типов резисторов и благодаря достаточно большой себестоимости, их использование сейчас ограничено. Они состоят из смеси керамического порошка с углеродом, связанных при помощи смолы. Углерод хорошо проводит ток, и чем больше его в смеси, тем меньше сопротивление. Провода присоединяются с концов. Они покрываются краской или пластиком, служащими изоляцией, а сопротивление и допуск обозначаются цветными полосками.

Сопротивление таких резисторов можно перманентно изменить, подвергнув их высокой влажности, высокому напряжению или перегреву. Допуск составляет 5% или более. Это просто твёрдый цилиндр с хорошими высокочастотными характеристиками. Также они хорошо переносят перегрев, несмотря на свой малый размер, и всё ещё используются в блоках питания и сварочных контроллерах.

Однако их возраст не остановил меня от использования мешка таких резисторов, купленных мною в комиссионке с целью изготовления различных сопротивлений, которые были нужны мне для моего проекта муз. проигрывателя 555. На фото как раз моя поделка.


Производятся нанесением слоя чистого углерода на керамический цилиндр и последующего удаления углерода с целью формирования спирали. Итог покрывается кремнием. Толщина слоя и ширина оставшегося углерода управляют сопротивлением, а допуск таких резисторов бывает от 2%, лучше, чем у предыдущих. Благодаря чистому углероду сопротивление меньше меняется с температурой.

Температурный коэффициент сопротивления углеродно-плёночных резисторов составляет от 200 до 500 ppm/C – миллионных долей на градус Цельсия. 200 ppm/C значит, что с каждым градусом сопротивление не изменится больше, чем на 200 Ом на каждый МОм общего сопротивления. В процентах это можно выразить как 0,02%/C. Если температура изменится на 80 С, при показателе 200 ppm/C сопротивление резистора поменяется на 1,6%, или на 16 кОм.

Такие резисторы выпускаются номиналом от 1 Ом до 10 кОм, мощностью от 1/16 Вт до 5 Вт и выдерживают напряжения в несколько киловольт. Обычно используются в высоковольтных блоках питания, рентгеновских аппаратах, лазерах и радарах.


Металлическая плёнка делается схожим с углеродной образом, путём размещения металлического слоя (часто это никель хром) на керамике, с последующим вырезанием спирали. Согласно документации от производителя Vishay, после присоединения клемм спираль раньше обрабатывали шлифовкой, но сейчас для этого используют лазеры. Результат покрывается лаком и помечается цветовой кодировкой или текстом.

Сопротивление резисторов из металлической плёнки меняется меньше, чем у углеродно-плёночных. ТКС находится в районе 50-100 ppm/C. 50 ppm/C аналогичны 0,005%/C. Использовав аналогичный приведённому выше пример с резистором в 1 МОм, изменение температуры на 80 С приведёт в случае резистора 50 ppm/C к изменению сопротивления на 0,4%, или на 4 кОм.

Допуск у них меньше, порядка 0,1%. Также обладают хорошими шумовыми характеристиками, низкой нелинейностью и хорошей стабильностью по времени, и используются для множества целей.


Случай схож с металлической плёнкой, только обычно используется оксид олова с примесью оксида сурьмы. Ведут себя такие резисторы лучше, чем углеродные или металлические плёнки, если говорить о напряжении, перегрузках, скачках и высоких температурах. Резисторы на углеродной плёнке работают до 200 С, на металлической – до 250-300 С, а резисторы на плёнке из оксида – до 450 С. При этом их стабильность весьма хромает.


Производятся намоткой провода на пластиковый, керамический или стекловолоконный цилиндр. Поскольку провод можно отрезать довольно точно, номинал их сопротивления можно выбрать с большой точностью с допуском не хуже 0,1%. Чтобы получить резистор с высоким сопротивлением, нужно использовать очень тонкий и длинный провод. Провод можно сделать тоньше для меньшей мощности или толще для большей мощности. Его можно изготавливать из большого числа металлов и сплавов, включая никель хром, медь, серебро, хромистой стали и вольфрама.

Разрабатываются с прицелом на возможность работы при высоких температурах: вольфрамовые выдерживают температуры до 1700 С, серебряные – от 0 до 150 С. ТКС у высокоточных проволочных резисторов составляет порядка 5 ppm/C. У резисторов, предназначенных для высоких мощностей, ТКС выше.

Работают на мощностях от 0,5 Вт до 1000 Вт. Резисторы на несколько сотен Вт могут быть покрыты высокотемпературным кремнием или стекловидной эмалью. Для увеличения теплоотвода могут быть оборудованы алюминиевым кожухом с пластинами, работающими как радиатор.


Виды намотки

Поскольку это практически катушки, у них присутствует индуктивность и ёмкость, из-за чего на высоких частотах они ведут себя плохо. Для уменьшения этих эффектов применяются различные хитрые схемы намотки, например, бифилярная, намотка на плоском носителе, и намотка Аэртона-Перри.

У бифилярной намотки отсутствует индукция, но высокая ёмкость. Намотка на плоском и тонком носителе сближает провода и уменьшает индукцию. Намотка Аэртона-Перри, благодаря тому, что провода идут в разных направлениях и находятся близко друг от друга, уменьшает самоиндукцию и ёмкость, поскольку в местах пересечения напряжение одинаково.

Потенциометры делают на основе проволочных резисторов благодаря их надёжности. Также они используются в прерывателях и предохранителях. Их индукцию можно увеличить и использовать их как датчики тока, измеряя индуктивное сопротивление.


Используют фольгу толщиной в несколько микрон, обычно из никель хрома с добавлениями, расположенную на керамической подложке. Они наиболее стабильные и точные из всех, даром что существуют с 1960-х. Необходимое сопротивление достигается фототравлением фольги. Не имеют индуктивности, обладают низкой ёмкостью, хорошей стабильностью и быстрой тепловой стабилизацией. Допуск может быть в пределах 0,001%.

ТКС составляет 1 ppm/C. При изменении температуры на 80 С мегаомный резистор поменяет сопротивление всего на 0.008% или 80 Ом. Интересен способ, которым достигается подобная точность. При увеличении температуры увеличивается и сопротивление. Но резистор делается так, что увеличение температуры приводит к сжатию фольги, из-за чего сопротивление падает. Суммарный эффект приводит к тому, что сопротивление почти не меняется.

Хорошо подходят для аудиопроектов с токами высоких частот. Также подходят для проектов, требующих высокую точность, например, электронных весов. Естественно, используются в областях, где ожидаются большие колебания температуры.


В основном применяются для поверхностного монтажа. Плёнка в толстоплёночных резисторах в 1000 раз толще, чем в тонкоплёночных. Это самые дешёвые резисторы, так как толстая плёнка дешевле.

Тонкооплёночные резисторы изготавливаются ионным напылением никель хрома на изолирующую подложку. Затем применяется фототравление, абразивная или лазерная чистка. Толстоплёночные изготавливаются печатью по трафарету. Плёнка представляет собой смесь связующего вещества, носителя и оксида металла. В конце процесса применяется абразивная или лазерная чистка.

Допуск тонкоплёночных резисторов находится на уровне 0,1%, а ТКС – от 5 до 50 ppm/C. У толстоплёночных допуск бывает 1%, а ТКС — 50 до 200 ppm/C. Тонкоплёночные резисторы меньше шумят.

Тонкоплёночные резисторы применяются там, где требуется высокая точность. Толстоплёночные можно использовать практически везде – в некоторых ПК можно насчитать до 1000 толстоплёночных резисторов поверхностного монтажа.

Существуют и другие виды резисторов постоянного номинала, но в ящичках для резисторов вы, скорее всего, встретите один перечисленных.

habr.com

Маркировка резисторов: виды, описание :: SYL.ru

Резистор – это элемент электрической цепи, имеющий собственное сопротивление. Практически ни одна электрическая схема не обходится без этих элементов. Существует множество видов резисторов. Они отличаются по номинальному сопротивлению, по мощности, по классу точности, по видам и др. Для того чтобы уметь выбрать нужный элемент, необходимо научиться читать обозначения и символы, нанесенные на резистор (его маркировку). В этой статье пойдет речь о способах нанесения нужных обозначений и символов и методах их дешифровки. Маркировка резисторов бывает трех типов: цифровая, символьная и цветовая.

Маркировка мощности

Прежде чем переходить к маркировке номинального сопротивления резистора, поговорим о его мощности и дешифровке ее маркировки. Даже в том случае, если на поврежденном корпусе резистора невозможно прочитать символы, то мощность можно определить по размеру элемента, но для этого надо иметь практический опыт определения этого параметра. Например, самые маленькие резисторы имеют и наименьшую мощность – 0,125 Вт, и дальше по возрастанию – от 0,25 Вт до 3 Вт. Но, повторимся, для такой «прикидки на глазок» необходимо иметь опыт работы с элементами. Символьное обозначение мощности на резисторах следующее:

Маркировка резисторов

— две косые линии означают мощность элемента, равную 0,125 Вт;

— одна косая линия – 0,25 Вт;

— одна горизонтальная линия – 0,5 Вт;

— одна вертикальная линия – 1 Вт;

— две вертикальные линии – 2 Вт;

— три вертикальные линии – 3 Вт.

На резисторах типа МЛТ, выпущенных в СССР, мощность указывалась, начиная от одного Ватта: МЛТ-1, МЛТ-2 и МЛТ-3 соответственно.

Описание маркировки: значения номинального сопротивления

Теперь перейдем к определению номинальных значений и рассмотрим, как наносится такая маркировка резисторов. Как было сказано выше, такая кодировка бывает трех видов. Первый – это цифровая маркировка резисторов. Она используется только для элементов, номинал которых менее 999 Ом. Например, такая запись номинального сопротивления будет иметь следующий вид: 1,5; 150; 200. При этом по умолчанию принято, что номинал записан в Ом. Второй вид – символьная (цифрово-буквенная) кодировка. При этом виде маркировки исключается такой символ, как запятая. Вместо нее используют буквы латинского алфавита R, K, M. В том случае, когда при записи номинального сопротивления используется литера R, необходимо умножить числовое значение на 1; если К — то умножить на 1000; если литера М — то необходимо умножить на 1000000. Например, номинальное сопротивление 150R – означает 150 Ом; 5К6 – означает 5600 Ом; 1М5 – означает 1500 кОм.

Маркировка SMD-резисторов

маркировка smd резисторов

Кодировка таких резисторов делится на три типа: с 3 цифрами, с 4 цифрами и с 3 символами. В первом случае первые 2 цифры обозначают номинал элемента в Ом, а последняя — количество нулей. Приведем пример: цифры на сопротивлении 152 будут означать 1500 Ом. Во втором типе первые 3 цифры указывают номинал элемента в Ом, последняя – количество нулей. Код на резисторе 5602 означает 56 кОм. Третий вид записи означает: первые 2 цифры — это номинал в Ом, который взят из таблицы, приведенной ниже, а последний символ — множитель: S=10-2; R=10-1; B=10; C=102; D=103; E=104; F=105. Пример: код на резисторе 13С означает 13300 Ом.

маркировка smd резисторов

Цветная маркировка резисторов

Для декодировки такого вида обозначений необходимо определить начало отсчета. В изделиях периода СССР штриховка всегда смещена к краю — это и есть начало отсчета. В современных элементах последняя полоса бывает или золотистого, или серебряного цветов. Эта полоса обозначает точность резистора (5% или 10%), если маркировка состоит из трех полос, точность таких элементов составляет 20%. Во всех типах цветового кода 1 и 2 полосы – это значение номинала элемента. 

Цветная маркировка резисторов

Когда штриховка состоит из 3–4 полос, то третья обозначает число, на которое необходимо умножить номинальное значение. Если кодовая штриховка резисторов содержит 5 полос, то третья тоже относится к номиналу, а четвертая означает множитель, пятая полоса — точность. Если кодировка состоит из шести полос, то последняя — это надежность элемента либо температурный коэффициент.

www.syl.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *