Закрыть

Включение симистора в цепь переменного тока: принцип работы, варианты схем, как сделать своими руками

Содержание

Схемы регуляторов мощности (диммеров) на симисторах

Принцип работы симисторных регуляторов мощности (напряжения) в цепях
переменного тока.

Что такое симистор, принцип его работы, а также справочные характеристики некоторых популярных приборов мы с Вами внимательно рассмотрели на странице &nbspСсылка на страницу.
Там же мы отметили, что симистор пришёл на смену рабочей лошадке-тиристору и практически полностью вытеснил его из электроцепей переменного тока.

Вспомним пройденный материал.
Отличительной чертой симистора является то, что при подаче на его управляющий электрод тока (напряжения), прибор переходит в проводящее состояние, замыкая нагрузку, причём проводит ток, независимо от полярности, приложенного к нагрузке напряжения.
Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью «анодного» напряжения (т.

е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения отрицательной).

Итак. Важным плюсом симисторных схем в электроцепях переменного тока является отсутствие выпрямительных устройств, и двухполюсность напряжения в нагрузке, что даёт возможность подключать их, помимо всего прочего, как трансформаторам, так и электродвигателям переменного тока.

Познакомимся с расхожими схемами симисторных регуляторов.

Для начала давайте рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности с фазово-импульсным управлением, позволяющего работать с нагрузками вплоть до 1200 Вт.

Рис.1

При замене симистора на другой, с большей величиной допустимого тока, мощность нагрузки можно увеличивать практически неограниченно.

А теперь — как это всё работает?

В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис. 1 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях и обмотках трансформаторов), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.1 показана синим цветом).

В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

Существуют и различные модификации приведённой выше простейшей схемы диммера.

Рис.2

Дополнительная цепочка R3 C2 (Рис.2 слева) призвана увеличить максимально достижимый фазовый сдвиг между сетевым напряжением и напряжением, поступающим на левый вывод динистора, что в свою очередь позволяет производить более глубокую регулировку мощности, подводимой к нагрузке.

На схеме, приведённой на Рис.2 справа, цепь, образованная диодами D1, D2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без неё характеристика управления регулятором имеет гистерезис, что проявляется в скачкообразном повышении регулируемой мощности от нуля до 3…5% от максимальной.

Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и, тем самым, устраняет эффект скачкообразного начального увеличения мощности в нагрузке.

Изредка можно встретить устройства, в которых регулировка мощности производится посредством отдельной схемы, которая формирует импульсы с регулируемой длительностью для управления симистором.
Такие диммеры обладают значительно лучшими характеристиками, чем представленные выше, однако обратной стороной медали является повышенная сложность устройств и необходимость наличия отдельного источника питания схемы. Исключения составляют устройства, выполненные на специализированных ИМС. Примером такой микросхемы является фазовый регулятор КР1182ПМ1.

Рис.3

Применение КР1182ПМ1 в регуляторах мощности (Рис.3) позволяет добиваться как хорошей повторяемости, так и широкого диапазона перестройки и высокой температурной стабильности.

А если уж мы решили заморачиваться созданием отдельной схемы формирования управляющих импульсов, то имеет смысл отказаться от фазово-импульсного метода управления, и обратиться в сторону регуляторов мощности, работающих по принципу пропускания через нагрузку определённого целого числа периодов сетевого напряжения в единицу времени.
При таком способе регулирования появляется возможность включения симистора вблизи точки пересечения сетевым переменным напряжением нулевого потенциала, вследствие чего радикально снижается уровень помех, вносимых в электросеть.
Освещение таким диммером не запитаешь ввиду заметного мерцания, а вот для беспомехового регулирования мощности электронагревательных приборов — самое то.

Рис.4

Данная схема (Рис.4) перекочевала со страницы https://www.radiokot.ru/circuit/power/converter/50/ и представляет собой модификацию регулятора мощности, описанного в журнале Радио, 2009, № 9, с. 40–41 «В.Молчанов Симисторный регулятор мощности». Вот, что пишет автор.

«Устройство предназначено для беспомехового регулирования мощности электронагревательных приборов, работающих от сети переменного тока 220 В.
Кроме снижения уровня коммутационных помех, в регуляторе реализован принцип пропускания в нагрузку целого числа периодов сетевого напряжения. При таком способе регулирования с высокой точностью обеспечивается отсутствие постоянной составляющей напряжения на нагрузке, вследствие чего дополнительно снижается уровень искажений, вносимых в электросеть. Это особенно важно в случае мощной нагрузки.
Максимальная мощность нагрузки, подключаемой к регулятору, составляет 1 кВт. Потребляемый регулятором ток от сети не превышает 4 мА (действующее значение), типовое потребление – 3,5 мА.

На микросхеме DD1 и элементах R1, C1, VD1, VD2 выполнен синхронизированный с сетью генератор прямоугольных импульсов. Период импульсов, вырабатываемых генератором, составляет около 1,3 с. Резистор R1 регулирует скважность импульсов. Элементы DD1.1, DD1.2 и DD1.3, DD1.4 включены как два RS‑триггера, на входы которых (выводы 1 и 9 микросхемы) через делитель R7R6 поступает часть сетевого напряжения. Транзисторы VT1 и VT2 выполняют функцию мощного инвертора логических сигналов для управления симистором. Питание устройства осуществляется через параметрический стабилизатор, в котором задействованы балластный резистор R7, стабилитрон VD3 и сглаживающий конденсатор C3. Когда напряжение на верхнем по схеме сетевом выводе относительно нижнего отрицательное, стабилитрон VD3 пропускает ток в прямом направлении, когда положительное – ограничивает напряжение на выводах 1 и 9 микросхемы DD1 на уровне 10 В. Ток, проходящий через эти выводы и внутренние защитные диоды микросхемы, заряжает конденсатор C3 до напряжения около 9,2 В, которое служит для питания низковольтной части устройства.

Использование защитных диодов микросхемы не приводит к её защёлкиванию, поскольку амплитудное значение тока через резистор R7 ограничено и составляет около 5 мА.

Во время проверки регулятора мощности удобно в качестве нагрузки подключить лампу накаливания (желательно на 100 Вт или более). Устройство обычно не нуждается в налаживании, но если оказалось, что симистор VS1 открывается ненадёжно (лампа в нагрузке не включается или мерцает), можно попробовать уменьшить сопротивление резистора R4 или подобрать экземпляр симистора с меньшим током открывания. Резистор R4 позволяет выставить мгновенное напряжение сети, при котором происходит открывание симистора. Это напряжение может быть рассчитано по формуле Uпор ≈ Uпит∙R7/(2∙R4), где Uпит ≈ 9,2 В – напряжение на конденсаторе C3, сопротивления резисторов R6 и R7 должны быть равны. Уменьшение сопротивления резистора R4 обеспечивает более надёжное открывание симистора, но увеличивает уровень создаваемых помех, поэтому делать его сопротивление менее 30 кОм нежелательно».

И конечно, было бы совсем неправильно не упомянуть о таком важном представителе симисторного семейства, как — оптосимистор.
Оптосимистор включается посредством освещения полупроводникового слоя и представляет собой комбинацию оптоизлучателя и симистора в одном корпусе. Преимущество — простая однополярная схема управления и гальваническая изоляция цепей управления от фаз сетевого напряжения.

Оптосимисторы могут коммутировать нагрузку как сами (Рис.5),


Рис.5

так и управлять более мощными симисторами (Рис.6).


Рис.6

За счёт полной гальванической развязки управляющих цепей оптосимистора, основное его предназначение — это управление мощностью нагрузки при помощи логических устройств или микроконтроллеров с собственными цепями питания.

Рис.7

В качестве примера на Рис.7 приведена схема регулятора мощности паяльника.
Вот, как работу этой схемы описывает уважаемый Falconist на странице сайта http://forum. cxem.net .

«Оптосимистор серии МОС204х/306х/308х содержит внутри себя схему пересечения питающим напряжением нуля, т.е. открывается только в точке нулевого значения синусоидального сетевого напряжения, независимо от момента поступления управляющего напряжения на его светодиод. Тем самым обеспечивается ключевой режим подключения нагрузки, с практически полным отсутствием ВЧ помех, проникающих в сеть 220 В. Поэтому его замена на оптосимисторы МОС302х/305х, не имеющих такой схемы, крайне нежелательна, т.к. порочит сам принцип беспомехового регулирования.
Конденсатор С1 является балластным реактивным сопротивлением. Ток, который он пропускает совместно с подключенным параллельно ему резистором R1,приближенно составляет 16 мА. Данный ток используется для питания таймера DA1 и инфракрасного светодиода оптрона DA2».

Работа таймера, формирующего управляющий сигнал для оптотиристора, аналогична работе DD1 на Рис.4 и сводится к формированию импульсов с изменяемой скважностью.

 

принцип работы триака, как работает, схема управления, ВАХ симистора.

Для управления мощными нагрузками в цепях переменного тока часто используются электромагнитные реле. Контактные группы этих приборов служат дополнительным источником ненадежности из-за склонности к обгоранию, привариванию. Также недостатком выглядит возможность искрения при коммутации, что в некоторых случаях требует дополнительных мер безопасности. Поэтому предпочтительнее выглядят электронные ключи. Один из вариантов такого ключа выполняется на симисторах.

Что такое симистор и для чего нужен

В силовой электронике в качестве управляемого коммутирующего элемента часто применяются один из видов тиристоров — тринисторы. Их преимущества:

  • отсутствие контактной группы;
  • отсутствие вращающихся и движущихся механических элементов;
  • небольшая масса и габариты;
  • длительный ресурс, независящий от количества циклов включения-выключения;
  • невысокая стоимость;
  • высокое быстродействие и бесшумная работа.

Но при применении тринисторов в цепях переменного тока проблемой становится их односторонняя проводимость. Чтобы тринистор пропускал ток в двух направлениях, приходится идти на ухищрения в виде параллельного включения во встречном направлении двух тринисторов, управляемых одновременно. Логичным выглядит объединение этих двух тринисторов в одной оболочке для удобства монтажа и уменьшения габаритов. И этот шаг был сделан в 1963 году, когда советские ученые и специалисты General Electric почти одновременно подали заявки на регистрацию изобретения симметричного тринистора – симистора (в зарубежной терминологии триака, triac – triode for alternative current).

На самом деле симистор не является в буквальном смысле двумя тринисторами, помещенными в один корпус.

Вся система реализована на одном кристалле с различными зонами p- и n- проводимостей, и эта структура не симметрична (хотя вольт-амперная характеристика триака имеет симметрию относительно начала координат и представляет собой отзеркаленную ВАХ тринистора). И в этом состоит принципиальное отличие симистора от двух тринисторов, каждый из которых должен управляться положительным, по отношению к катоду, током.

У симистора по отношению к направлению пропускаемого тока анода и катода нет, но по отношению к управляющему электроду эти выводы неравнозначны.  В литературе встречаются термины «условный катод» (МТ1, А1) и «условный анод» (МТ2, А2). Ими удобно пользоваться для описания работы триака.

При подаче полуволны любой полярности, прибор сначала заперт (красный участок ВАХ). Также, как и у тринистора, отпирание триака может произойти при превышении порогового уровня напряжения при любой полярности волны синусоиды (синий участок). В электронных ключах это явление (динисторный эффект), скорее, вредное. Его надо избегать при выборе режима работы. Открывание триака происходит подачей тока в управляющий электрод. Чем больше ток, тем раньше откроется ключ (красный штриховой участок). Этот ток создается приложением напряжения между управляющим электродом и условным катодом. Это напряжение должно быть или отрицательным, или совпадать по знаку с напряжением, приложенным между МТ1 и МТ2.

При определенном значении тока, симистор открывается сразу и ведет себя как обычный диод – вплоть до запирания (зеленый штриховой и сплошной участки). Совершенствование технологий ведет к уменьшению потреблённого тока для полного отпирания симистора. У современных модификаций он составляет до 60 мА и ниже. Но увлекаться снижением тока в реальной схеме не следует – это может привести к нестабильному открыванию триака.

Закрывание, как и у обычного тринистора, происходит при снижении тока до определенного предела (почти до нуля). В цепи переменного тока это происходит при очередном прохождении через ноль, после чего потребуется снова подать управляющий импульс. В цепях постоянного тока управляемое запирание симистора требует громоздких технических решений.

Особенности и ограничения

Существуют ограничения применения симистора при коммутации реактивной (индуктивной или ёмкостной) нагрузки. При наличии такого потребителя в цепи переменного тока, фазы напряжения и тока сдвинуты относительно друг друга. Направление сдвига зависит от характера реактивности, а величина – от величины реактивной составляющей. Уже сказано, что триак выключается в момент перехода тока через ноль. А напряжение между MT1 и МТ2 в этот момент может быть достаточно большим. Если скорость изменения напряжения dU/dt при этом превысит пороговую величину, то симистор может не закрыться. Чтобы избежать этого эффекта, параллельно силовому тракту симистора включают варисторы. Их сопротивление зависит от приложенного напряжения, и они ограничивают скорость изменения разности потенциалов. Того же эффекта можно добиться применением RC-цепочки (снаббера).

Опасность от превышения скорости нарастания тока при коммутации нагрузки связана с конечным временем отпирания симистора. В момент, когда триак ещё не закрылся, может оказаться, что к нему приложено большое напряжение и одновременно через силовой тракт протекает достаточно большой сквозной ток. Это может привести к выделению на приборе большой тепловой мощности, и кристалл может перегреться. Для устранения этого дефекта надо по возможности компенсировать реактивность потребителя последовательным включением в цепь реактивности примерно той же величины, но противоположного знака.

Также надо иметь в виду, что в открытом состоянии на симисторе падает около 1-2 В. Но так как область применения – мощные высоковольтные ключи, это свойство на практическое применение триаков не влияет. Потеря 1-2 вольт в 220-вольтовой цепи сравнима с погрешностью измерения напряжения.

Примеры использования

Основная область использования триака – ключ в цепях переменного тока. Принципиальных ограничений для применения симистора в качестве ключа постоянного тока нет, но и смысла в этом нет. В этом случае проще использовать более дешевый и распространенный тринистор.

Как и любой ключ, симистор включается в цепь последовательно с нагрузкой. Включением и выключением триака управляется подача напряжения на потребителя.

Также симистор можно применять в качестве регулятора напряжения на нагрузках, которым не важна форма напряжения (например, лампы накаливания или термоэлектронагреватели). В этом случае схема управления выглядит так.

Здесь на резисторах R1, R2 и конденсаторе С1 организована фазовращающая цепь. Регулировкой сопротивления добиваются сдвига начала импульса относительно перехода сетевого напряжения через ноль. За формирование импульса отвечает динистор с напряжением открывания около 30 вольт. При достижении этого уровня он открывается и пропускает ток на управляющий электрод триака. Очевидно, что этот ток совпадает по направлению с током через силовой тракт симистора. Некоторые производители выпускают полупроводниковые приборы под названием Quadrac. У них в одном корпусе расположены симистор и динистор в цепи управляющего электрода.

Такая схема проста, но ток её потребления имеет резко несинусоидальную форму, при этом в питающей сети создаются помехи. Для их подавления надо использовать фильтры – хотя бы простейшие RC-цепочки.

Достоинства и недостатки

Достоинства симистора совпадают с плюсами тринистора, описанными выше. К ним надо лишь добавить возможность работы в цепях переменного тока и простое управление в таком режиме. Но имеются и минусы. В основном они касаются области применения, которая ограничена реактивной составляющей нагрузки. Предложенные выше меры защиты применить не всегда возможно. Также к недостаткам надо отнести:

  • повышенную чувствительность к шумам и помехам в цепи управляющего электрода, которая может вызвать ложные срабатывания;
  • необходимость отведения тепла от кристалла — обустройство радиаторов компенсирует небольшие габариты прибора, и для коммутации мощных нагрузок использование контакторов и реле становится предпочтительным;
  • лимитирование по рабочей частоте — оно не имеет значения при работе на промышленных частотах 50 или 100 Гц, но ограничивает применение в преобразователях напряжения.

Для грамотного применения симисторов необходимо знать не только принципы работы прибора, но и его недостатки, определяющие границы применения триаков. Только в этом случае разработанный прибор будет работать долго и надежно.

 

принцип работы, применение, устройство и управление ими

Из статьи вы узнаете о том, что такое симистор, принцип работы этого прибора, а также особенности его применения. Но для начала стоит упомянуть о том, что симистор – это то же, что и тиристор (только симметричный). Следовательно, не обойтись в статье без описания принципа функционирования тиристоров и их особенностей. Без знания основ не получится спроектировать и построить даже простейшую схему управления.

Тиристоры

Тиристор является переключающим полупроводниковым прибором, который способен пропускать ток только в одном направлении. Его нередко называют вентилем и проводят аналогии между ним и управляемым диодом. У тиристоров имеется три вывода, причем один – это электрод управления. Это, если выразиться грубо, кнопка, при помощи которой происходит переключение элемента в проводящий режим. В статье будет рассмотрен частный случай тиристора – симистор — устройство и работа его в различных цепях.

Тиристор – это еще выпрямитель, выключатель и даже усилитель сигнала. Нередко его используют в качестве регулятора (но только в том случае, когда вся электросхема запитывается от источника переменного напряжения). У всех тиристоров имеются некоторые особенности, о которых нужно поговорить более подробно.

Свойства тиристоров

Среди огромного множества характеристик этого полупроводникового элемента можно выделить самые существенные:

  1. Тиристоры, подобно диодам, способны проводить электрический ток только в одном направлении. В этом случае они работают в схеме, как выпрямительный диод.
  2. Из отключенного во включенное состояние тиристор можно перевести, подав на управляющий электрод сигнал с определенной формой. Отсюда вывод – у тиристора как у выключателя имеется два состояния (причем оба устойчивые). Таким же образом может функционировать и симистор. Принцип работы ключа электронного типа на его основе достаточно прост. Но для того чтобы произвести возврат в исходное разомкнутое состояние, необходимо, чтобы выполнялись определенные условия.
  3. Ток сигнала управления, который необходим для перехода кристалла тиристора из запертого режима в открытый, намного меньше, нежели рабочий (буквально измеряется в миллиамперах). Это значит, что у тиристора есть свойства усилителя тока.
  4. Существует возможность точной регулировки среднего тока, протекающего через подключенную нагрузку, при условии, что нагрузка включена с тиристором последовательно. Точность регулировки напрямую зависит от того, какая длительность сигнала на электроде управления. В этом случае тиристор выступает в качестве регулятора мощности.

Тиристор и его структура

Тиристор – это полупроводниковый элемент, который имеет функции управления. Кристалл состоит из четырех слоев р и п типа, которые чередуются. Так же точно построен и симистор. Принцип работы, применение, структура этого элемента и ограничения в использовании рассмотрены детально в статье.

Описанную структуру еще называют четырехслойной. Крайнюю область р-структуры с подключенным к ней положительной полярности выводом источника питания, называют анодом. Следовательно, вторая область п (тоже крайняя) – это катод. К ней приложено отрицательное напряжение источника питания.

Какими свойствами обладает тиристор

Если провести полный анализ структуры тиристора, то можно найти в ней три перехода (электронно-дырочных). Следовательно, можно составить эквивалентную схему на полупроводниковых транзисторах (полярных, биполярных, полевых) и диодах, которая позволит понять, как ведет себя тиристор при отключении питания электрода управления.

В том случае, когда относительно катода анод положительный, диод закрывается, и, следовательно, тиристор тоже ведет себя аналогично. В случае смены полярности оба диода смещаются, тиристор также запирается. Аналогичным образом функционирует и симистор.

Принцип работы на пальцах, конечно, объяснить не очень просто, но мы попробуем сделать это далее.

Как работает отпирание тиристора

Для понимания принципа работы тиристора нужно обратить внимание на эквивалентную схему. Она может быть составлена из двух полупроводниковых триодов (транзисторов). Вот на ней и удобно рассмотреть процесс отпирания тиристоров. Задается некоторый ток, который протекает через электрод управления тиристора. При этом ток имеет смещение прямой направленности. Этот ток считается базовым для транзистора со структурой п-р-п.

Поэтому в коллекторе ток у него будет больше в несколько раз (необходимо значение тока управления умножить на коэффициент усиления транзистора). Далее можно видеть, что это значение тока базовое для второго транзистора со структурой проводимости р-п-р, и он отпирается. При этом коллекторный ток второго транзистора будет равен произведению коэффициентов усиления обоих транзисторов и первоначально заданного тока управления. Симисторы (принцип работы и управление ими рассмотрены в статье) обладают аналогичными свойствами.

Далее этот ток необходимо суммировать с ранее заданным током цепи управления. И получится именно то значение, которое необходимо, чтобы поддерживать первый транзистор в отпертом состоянии. В том случае, когда ток управления очень большой, два транзистора одновременно насыщаются. Внутренняя ОС продолжает сохранять свою проводимость даже тогда, когда исчезает первоначальный ток на управляющем электроде. Одновременно с этим на аноде тиристора обнаруживается довольно высокое значение тока.

Как отключить тиристор

Переход в запертое состояние тиристора возможен в том случае, если к электроду управления открытого элемента не прикладывается сигнал. При этом ток спадает до определенной величины, которая называется гипостатическим током (или током удержания).

Тиристор отключится и в том случае, если произойдет размыкание в цепи нагрузки. Либо когда напряжение, которое прикладывается к цепи (внешней), меняет свою полярность. Это происходит под конец каждого полупериода в случае, когда питается схема от источника переменного тока.

Когда тиристор работает в цепи постоянного тока, запирание можно осуществить при помощи простого выключателя или кнопки механического типа. Он соединяется с нагрузкой последовательно и применяется для обесточивания цепи. Аналогичен и принцип работы регулятора мощности на симисторе, правда, имеются в схеме некоторые особенности.

Способы отключения тиристоров

Но можно выключатель соединить параллельно, тогда с его помощью происходит шунтирование тока анода, и тиристор переводится в запертое состояние. Некоторые виды тиристоров могут включаться повторно, если разомкнуть контакты выключателя. Объяснить это можно тем, что во время размыкания контактов паразитные емкости переходов тиристора накапливают заряд, создавая тем самым помехи.

Поэтому желательно располагать выключатель так, чтобы он находился между катодом и электродом управления. Это позволит гарантировать, что тиристор отключится нормально, а удерживающий ток отсечется. Иногда для удобства и повышения быстродействия и надежности применяют вместо механического ключа вспомогательный тиристор. Стоит отметить, что работа симистора во многом схожа с функционированием тиристоров.

Симисторы

А теперь ближе к теме статьи – нужно рассмотреть частный случай тиристора – симистор. Принцип работы его схож с тем, что был рассмотрен ранее. Но имеются некоторые отличия и характерные особенности. Поэтому нужно поговорить о нем более подробно. Симистор представляет собой прибор, в основе которого находится кристалл полупроводника. Очень часто используется в системах, которые работают на переменном токе.

Самое простое определение этого прибора – выключатель, но управляемый. В запертом состоянии он работает точно так же, как и выключатель с разомкнутыми контактами. При подаче сигнала на электрод управления симистора происходит переход прибора в открытое состояние (режим проводимости). При работе в таком режиме можно провести параллель с выключателем, у которого контакты замкнуты.

Когда сигнал в цепи управления отсутствует, в любой из полупериодов (при работе в цепях переменного тока) происходит переход симистора из режима открытого в закрытый. Симисторы широко используются в режиме релейном (например, в конструкциях светочувствительных выключателей или термостатов). Но они же нередко применяются и в системах регулирования, которые функционируют по принципам фазового управления напряжения на нагрузке (являются плавными регуляторами).

Структура и принцип работы симистора

Симистор – это не что иное, как симметричный тиристор. Следовательно, исходя из названия, можно сделать вывод – его легко заменить двумя тиристорами, которые включаются встречно-параллельно. В любом направлении он способен пропустить ток. У симистора имеется три основных вывода – управляющий, для подачи сигналов, и основные (анод, катод), чтобы он мог пропускать рабочие токи.

Симистор (принцип работы для «чайников» этого полупроводникового элемента предоставлен вашему вниманию) открывается, когда на управляющий вывод подается минимальное необходимое значение тока. Или в том случае, когда между двумя другими электродами разность потенциалов выше предельно допустимого значения.

В большинстве случаев превышение напряжения приводит к тому, что симистор самопроизвольно срабатывает при максимальной амплитуде питающего напряжения. Переход в запертое состояние происходит в случае смены полярности или при уменьшении рабочего тока до уровня ниже, чем ток удержания.

Как отпирается симистор

При питании от сети переменного тока происходит смена режимов работы за счет изменения полярности у напряжения на рабочих электродах. По этой причине в зависимости от того, какая полярность у тока управления, можно выделить 4 типа проведения этой процедуры.

Допустим, между рабочими электродами приложено напряжение. А на электроде управления напряжение по знаку противоположно тому, которое приложено к цепи анода. В этом случае сместится по квадранту симистор — принцип работы, как можно увидеть, довольно простой.

Существует 4 квадранта, и для каждого из них определен ток отпирания, удерживающий, включения. Отпирающий ток необходимо сохранять до той поры, покуда не превысит в несколько раз (в 2-3) он значение удерживающего тока. Именно это и есть ток включения симистора – минимально необходимый ток отпирания. Если же избавиться от тока в цепи управления, симистор будет находиться в проводящем состоянии. Причем он в таком режиме будет работать до той поры, покуда ток в цепи анода будет больше тока удержания.

Какие накладываются ограничения при использовании симисторов

Его сложно использовать, когда нагрузка индуктивного типа. Скорость изменения напряжения и тока ограничивается. Когда симистор переходит из запертого режима в открытый, во внешней цепи возникает значительный ток. Напряжение не падает мгновенно на силовых выводах симистора. А мощность будет мгновенно развиваться и достигает довольно больших величин. Та энергия, которая рассеивается, за счет малого пространства резко повышает температуру полупроводника.

В случае превышения критического значения происходит разрушение кристалла, ввиду чрезмерно быстрого нарастания силы тока. Если к симистору, который находится в запертом состоянии, приложить некоторое напряжение и резко его увеличить, то произойдет открытие канала (при отсутствии сигнала в цепи управления). Такое явление можно наблюдать по причине того, что происходит накапливание заряда внутренней паразитной емкостью полупроводника. Причем ток заряда имеет достаточное значение, чтобы отпереть симистор.

Управление симистором через транзистор

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) – это полупроводниковый полууправляемый ключ. Полууправляемый – значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор – двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление – тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Такие схемы регулировки напряжения называется СИФУ – система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами – схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени – достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) – это полупроводниковый полууправляемый ключ. Полууправляемый – значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор – двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление – тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Такие схемы регулировки напряжения называется СИФУ – система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами – схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени – достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

% PDF-1.3 % 1 0 obj > поток конечный поток endobj 2 0 obj > / Родительский 3 0 R / Тип / Страница / Содержание 4 0 R / Ресурсы> / ProcSet [/ PDF / Text / ImageC] / Font >>> / MediaBox [0 0 595.) EJ9w_¯KPHQ36OLmRX4 LvB * h9 U! |; Uye / XDGf0 & F’DTK] g ~ \ ͞ ~ fGб | * ‘FKӠ%? 9 = 4 «44 / (. ~ 6> \ a @ ȳvυʇh ډ r1eȓI» т # do? h3 * @ = fC & D ڦ n ~ ԍs q% wz ܣ e | eǪ_G’n4 ߑ OG ‘; 6E ֯ i + SmonFtL’ΊdP ՘} cmKUdL @ 5vbWUwn ۅ

% PDF-1.3 % 64 0 объект > endobj xref 64 68 0000000016 00000 н. 0000001725 00000 н. 0000001867 00000 н. 0000002006 00000 н. 0000002523 00000 н. 0000002754 00000 н. 0000002834 00000 н. 0000002958 00000 н. 0000003064 00000 н. 0000003170 00000 н. 0000003224 00000 н. 0000003331 00000 н. 0000003385 00000 н. 0000003536 00000 н. 0000003590 00000 н. 0000003687 00000 н. 0000003741 00000 н. 0000003829 00000 н. 0000003912 00000 н. 0000003966 00000 н. 0000004071 00000 н. 0000004125 00000 н. 0000004179 00000 п. 0000004283 00000 п. 0000004337 00000 н. 0000004471 00000 н. 0000004525 00000 н. 0000004578 00000 н. 0000004660 00000 н. 0000004762 00000 н. 0000004815 00000 н. 0000004868 00000 н. 0000004922 00000 н. 0000005004 00000 н. 0000005101 00000 п. 0000005154 00000 н. 0000005208 00000 н. 0000005409 00000 н. 0000005615 00000 н. 0000006302 00000 п. 0000006412 00000 н. 0000006628 00000 н. 0000006724 00000 н. 0000006940 00000 н. 0000007635 00000 п. 0000007657 00000 н. 0000008402 00000 п. 0000008424 00000 н. 0000008537 00000 н. 0000008843 00000 н. 0000008930 00000 н. 0000009632 00000 н. 0000009654 00000 н. 0000009767 00000 н. 0000010474 00000 п. 0000010496 00000 п. 0000011208 00000 п. 0000011230 00000 п. 0000011411 00000 п. 0000012124 00000 п. 0000012146 00000 п. 0000012819 00000 п. 0000012841 00000 п. 0000013413 00000 п. 0000013435 00000 п. 0000013514 00000 п. 0000002068 00000 н. 0000002501 00000 п. трейлер ] >> startxref 0 %% EOF 65 0 объект > endobj 66 0 объект B- | [Bd) / U (& E 䱃 -rZY} [] «9« / V) / П-12 >> endobj 67 0 объект > endobj 130 0 объект > поток ǬN} ~ {:}, R گ Ҋp` ۇ GɐRc) 95RfC ~ o.»QFic» «> Dq :: r Y ٮ og% _j¶xr {gH [@ GB $ 7? R * +. (Pq ژ * kC

Что такое чисто резистивная цепь? — Фазорная диаграмма и осциллограмма

Схема, содержащая только чистое сопротивление R Ом в цепи переменного тока известно как Pure Resistive AC Circuit . Наличие индуктивности и емкости не существует в чисто резистивной цепи. Переменный ток и напряжение движутся как вперед, так и назад в обоих Таким образом, переменный ток и напряжение соответствуют форме синусоидальной волны или известной как синусоидальная форма волны.

В комплекте:

В чисто резистивной схеме мощность рассеивается резисторами, а фаза напряжения и тока остается одинаковой, т.е. напряжение и ток достигают своего максимального значения одновременно. Резистор — это пассивное устройство, которое не производит и не потребляет электроэнергию. Он преобразует электрическую энергию в тепло .

Описание резистивной цепи

В цепи переменного тока отношение напряжения к току зависит от частоты источника питания, угла сдвига фаз и разности фаз.В резистивной цепи переменного тока значение сопротивления резистора будет одинаковым независимо от частоты питания.

Пусть переменное напряжение, приложенное к цепи, определяется уравнением

Тогда мгновенное значение тока, протекающего через резистор, показанное на рисунке ниже, будет:

Значение тока будет максимальным при ωt = 90 ° или sinωt = 1

Подставляя значение sinωt в уравнение (2), получаем


Фазовый угол и форма волны резистивной цепи

Из уравнений (1) и (3) ясно, что нет разности фаз между приложенным напряжением и током, протекающим через чисто резистивную цепь, т.е.е. фазовый угол между напряжением и током ноль . Следовательно, в цепи переменного тока, содержащей чистое сопротивление, ток находится в фазе с напряжением, как показано на рисунке ниже.

Форма волны и фазовая диаграмма чисто резистивной цепи

Мощность в чисто резистивной цепи

Три цвета: красный, синий и розовый, показанные на кривой мощности или на форме волны, обозначают кривую тока, напряжения и мощности соответственно. Из векторной диаграммы видно, что ток и напряжение находятся в фазе друг с другом, что означает, что значение тока и напряжения достигает своего пика в один и тот же момент времени, а кривая мощности всегда положительна для всех значений тока. и напряжение.

Как и в цепи питания постоянного тока, произведение напряжения и тока известно как мощность в цепи. Точно так же мощность такая же и в цепи переменного тока, с той лишь разницей, что в цепи переменного тока учитывается мгновенное значение напряжения и тока.

Следовательно, мгновенная мощность в чисто резистивной цепи определяется уравнением, показанным ниже:

Мгновенная мощность, p = vi

Средняя мощность, потребляемая в цепи за полный цикл, определяется как
Поскольку клапан cosωt равен нулю.

Итак, подставив значение cosωt в уравнение (4), значение мощности будет равно Где,

  • П — средняя мощность
  • В среднеквадратичное значение — среднеквадратичное значение напряжения питания
  • I r.m.s — среднеквадратичное значение тока

Следовательно, мощность в чисто резистивной цепи определяется выражением:

Напряжение и ток в чисто резистивной цепи находятся в фазе друг с другом, имея отсутствие разности фаз с нулевым фазовым углом.Переменная величина достигает своего пикового значения в интервале одного и того же периода времени, т.е. повышение и падение напряжения и тока происходит одновременно.

PPT — Презентация PowerPoint по цепям переменного тока, бесплатная загрузка

  • Глава 33 Цепи переменного тока

  • Цепи переменного тока • Цепь переменного тока состоит из комбинации элементов схемы и генератора или источника переменного тока • Выход источник питания переменного тока имеет синусоидальную форму и изменяется во времени в соответствии со следующим уравнением Δv = ΔVmaxsinωt • Δv: мгновенное напряжение • ΔVmax — максимальное напряжение (амплитуда) генератора • ω — угловая частота переменного напряжения

  • Резисторы в цепи переменного тока • Рассмотрим схему, состоящую из источника переменного тока и резистора ΔvR = ΔVmax sin ωt • ΔvR — мгновенное напряжение на резисторе • Мгновенный ток в резисторе составляет • Мгновенное напряжение на резисторе также задается как ΔvR = ImaxR sin ωt

  • Резисторы в цепи переменного тока • На графике показан ток через и напряжение на резисторе • Ток и напряжение достигают своих максимальных значений одновременно • Считается, что ток и напряжение находятся в фазе • Направление тока не влияет на поведение резистора

  • Резисторы в цепи переменного тока • Скорость, с которой электрическая энергия рассеивается в цепи, определяется как • i: мгновенный ток • Эффект нагрева, производимый переменным током с максимальным значением Imax, не такой, как у постоянный ток того же значения • Максимальный ток возникает в течение небольшого промежутка времени

  • действующее значение тока и напряжения • Среднеквадратичный ток — это постоянный ток, который рассеивает такое же количество энергии в резисторе, что и на самом деле рассеивается переменным током • Переменное напряжение также можно рассматривать в терминах действующего значения • Средняя мощность, рассеиваемая резистором в цепи переменного тока, по которой проходит ток I, составляет

  • Закон Ома в цепи переменного тока • При обсуждении токов и напряжений переменного тока будут использоваться среднеквадратические значения • Амперметры и вольтметры переменного тока предназначены для считывания среднеквадратичных значений • Многие уравнения будут в той же форме, что и в цепях постоянного тока • Закон Ома для резистор R в цепи переменного тока ΔVR, rms = Irms R • Та же формула применяется к максимальным значениям v и i

  • Конденсаторы в цепи переменного тока • Рассмотрим схему, содержащую конденсатор и источник переменного тока • Правило петли Кирхгофа дает: • ΔvC: мгновенное напряжение на конденсаторе

  • Конденсаторы в цепи переменного тока • Напряжение на конденсаторе отстает от тока на 90 ° • Тормозящее влияние конденсатора на ток в переменном токе цепь называется емкостным реактивным сопротивлением (измеряется в омах):

  • Дроссели в цепи переменного тока • Рассмотрим цепь переменного тока с источником и катушкой индуктивности • Правило петли Кирхгофа дает: • ΔvL: мгновенно напряжение на катушке индуктивности

  • Катушки индуктивности в цепи переменного тока • Напряжение на катушке индуктивности всегда опережает ток на 90 ° • Эффективное сопротивление катушки в цепи переменного тока называется ее индуктивным реактивным сопротивлением (измеряется в омах):

  • Глава 33 Задача 11 Определите максимальный магнитный поток через индуктор, подключенный к стандартной электрической розетке (ΔVrms = 120 В, f = 60.0 Гц).

  • Цепь серии RLC • Резистор, катушка индуктивности и конденсатор могут быть объединены в цепь • Ток в цепи одинаков в любое время и изменяется синусоидально со временем

  • Цепь серии RLC • Мгновенное напряжение на резисторе синфазно с током • Мгновенное напряжение на катушке индуктивности опережает ток на 90 ° • Мгновенное напряжение на конденсаторе отстает от тока на 90 °

  • Фазорные диаграммы • Потому что различных фазовых соотношений с током, напряжения не могут быть добавлены напрямую • Чтобы упростить анализ цепей переменного тока, можно использовать графический конструктор, называемый векторной диаграммой • Вектор — это вектор, вращающийся против часовой стрелки; его длина пропорциональна максимальному значению переменной, которую он представляет. • Вектор вращается с угловой скоростью, равной угловой частоте, связанной с переменной, а проекция вектора на вертикальную ось представляет мгновенное значение величины

  • Фазорные диаграммы • Напряжение на резисторе синфазно с током • Напряжение на катушке индуктивности опережает ток на 90 ° • Напряжение на конденсаторе отстает от тока на 90 °

  • Фазорные диаграммы • Векторы добавляются как векторы для учета разности фаз в напряжениях • ΔVL и ΔVC находятся на одной линии, поэтому чистый y-компонент равен ΔVL — ΔVC

  • Фазорные диаграммы • Напряжения не указаны фазы, поэтому их нельзя просто сложить, чтобы получить напряжение на комбинации элементов или источнике напряжения •  — фазовый угол между током и максимальное напряжение • Уравнения также применимы к среднеквадратичным значениям

  • Фазорные диаграммы ΔVR = Imax R ΔVL = Imax XL ΔVC = Imax XC

  • Импеданс цепи • Полное сопротивление Z также может быть представлены на векторной диаграмме • φ: фазовый угол • Закон Ома может применяться к импедансу ΔVmax = Imax Z • Это можно рассматривать как обобщенную форму закона Ома, применяемого к последовательной цепи переменного тока

  • Сводка элементов схемы , Импеданс и фазовые углы

  • Решение проблем для цепей переменного тока • Рассчитайте как можно больше неизвестных величин (например,g. найдите XL и XC) • Будьте осторожны с единицами измерения — используйте F, H, Ω • Примените закон Ома к интересующей части цепи • Определите все неизвестные, запрошенные в задаче

  • Глава 33 Задача 24 Источник переменного тока с Vmax = 150 В и f = 50,0 Гц подключен между точками a и d на рисунке. Вычислите максимальное напряжение между (a) точками a и b, (b) точками b и c, (c) точками c и d и (d) точками b и d.

  • Мощность в цепи переменного тока • Чистые конденсаторы и чистые катушки индуктивности в цепи переменного тока не связаны с потерями мощности • В конденсаторе в течение половины цикла энергия накапливается, а в течение другой половины энергии сохраняется возвращается в цепь • В катушке индуктивности источник действительно работает против обратной ЭДС катушки индуктивности, и энергия накапливается в катушке индуктивности, но когда ток в цепи начинает уменьшаться, энергия возвращается в цепь

  • Мощность в цепи переменного тока • Средняя мощность, выдаваемая генератором, преобразуется во внутреннюю энергию в резисторе Pav = Irms ΔVR, rms ΔVR, rms = ΔVrms cos  Pav = Irms ΔVrms cos  • cos  называется коэффициентом мощности схемы • Для увеличения выходной мощности можно использовать фазовый сдвиг.

  • Глава 33 Проблема 28 Последовательная RLC-цепь имеет сопротивление 45.0 Ом и полное сопротивление 75,0 Ом. Какая средняя мощность поступает в эту цепь при ΔVrms = 210 В?

  • Резонанс в цепи переменного тока • Резонанс возникает на частоте ω0, где ток имеет максимальное значение • Для достижения максимального тока импеданс должен иметь минимальное значение • Это происходит, когда XL = XC и

  • Резонанс в цепи переменного тока • Теоретически, если R = 0, ток будет бесконечным при резонансе • Реальные цепи всегда имеют некоторое сопротивление • Настройка радио: изменяющийся конденсатор изменяет резонансную частоту схемы настройки вашего радио на соответствует принимаемой станции

  • Трансформаторы • Трансформатор переменного тока состоит из двух катушек с проволокой, намотанных вокруг сердечника из мягкого железа. • Сторона, подключенная к источнику входного напряжения переменного тока, называется первичной и имеет N1 витков. другая сторона, называемая вторичной обмоткой, подключена к резистору и имеет N2 витков. • Сердечник используется для увеличения магнитного потока и обеспечения среды, в которой поток проходит от одной катушки к o тер

  • Трансформаторы • Скорость изменения магнитного потока одинакова для обеих катушек, поэтому напряжения связаны следующим образом: • Когда N2> N1, трансформатор называется повышающим трансформатором, а когда N2

  • Глава 33 Проблема 43 Линия передачи с сопротивлением на единицу длины 4.50 × 10-4 Ом / м должно использоваться для передачи 5,00 МВт на расстояние 400 миль (6,44 × 105 м). Выходное напряжение генератора 4,50 кВ. (а) Каковы потери в линии, если для повышения напряжения до 500 кВ используется трансформатор? (б) Какая часть входной мощности теряется в линии при этих обстоятельствах?

  • Ответы на проблемы с четными номерами • Глава 33: • Проблема 4 • 25,3 рад / с • 0,114 с

  • Ответы на проблемы с четными номерами Глава 33: Проблема 10 3.80 Дж

  • Calculus II — Испытание чередующейся серии

    Онлайн-заметки Павла

    Ноты Быстрая навигация Скачать

    • Перейти к
    • Ноты
    • Проблемы с практикой
    • Проблемы с назначением
    • Показать / Скрыть
    • Показать все решения / шаги / и т. Д.
    • Скрыть все решения / шаги / и т. Д.
    • Разделы
    • Сравнительный тест / Сравнительный тест по пределам
    • Абсолютная сходимость
    • Разделы
    • Параметрические уравнения и полярные координаты
    • Векторы
    • Классы
    • Алгебра
    • Исчисление I
    • Исчисление II
    • Исчисление III
    • Дифференциальные уравнения
    • Дополнительно
    • Алгебра и триггерный обзор
    • Распространенные математические ошибки
    • Праймер для комплексных чисел
    • Как изучать математику
    • Шпаргалки и таблицы
    • Разное
    • Свяжитесь со мной
    • Справка и настройка MathJax
    • Мои студенты
    • Заметки Загрузки
    • Полная книга
    • Текущая глава
    • Текущий раздел
    • Practice Problems Загрузок
    • Полная книга — Только проблемы
    • Полная книга — Решения
    • Текущая глава — Только проблемы
    • Текущая глава — Решения
    • Текущий раздел — Только проблемы
    • Текущий раздел — Решения
    • Проблемы с назначением Загрузок
    • Полная книга
    • Текущая глава
    • Текущий раздел
    • Прочие товары
    • Получить URL для загружаемых элементов
    • Распечатать страницу в текущем виде (по умолчанию)
    • Показать все решения / шаги и распечатать страницу
    • Скрыть все решения / шаги и распечатать страницу
    • Дом
    • Классы
    • Алгебра
      • Предварительные мероприятия
        • Целочисленные экспоненты
        • Рациональные экспоненты
        • Радикалы
        • Полиномы
        • Факторинговые многочлены
        • Рациональные выражения
        • Комплексные числа
      • Решение уравнений и неравенств
        • Решения и наборы решений
        • Линейные уравнения
        • Приложения Linear Equat

    CBSE Class 12 Physics ACQ для переменного тока Набор A, вопросы с несколькими вариантами ответов по физике

    Q.1 Переменный ток не может быть измерен амперметром постоянного тока, потому что

    Опции:

    (a) переменный ток виртуальный
    (b) переменный ток меняет свое направление
    (c) переменный ток не может проходить через амперметр постоянного тока
    (d) среднее значение A . C для полного цикла равно нулю

    Ответ = D

    Q.2 Электроэнергия передается от электростанции при высоком напряжении как

    Опции:

    (a) скорость передачи выше при высоком напряжении
    (b) это более экономично из-за меньших потерь мощности
    (c) мощность не может передаваться при низких напряжениях
    (d) меры предосторожности против кражи линий передачи

    Ответ = B

    Q.3 Если частота переменного тока в 4 раза больше его начального значения, индуктивное реактивное сопротивление будет

    Варианты:

    (a) будет в 4 раза (b) быть в 2 раза больше
    (c) будет вдвое (d) останется равным то же

    Ответ = A

    Q.4 Если на конденсатор C подается переменное напряжение 220 В, то

    Варианты:

    (a) максимальное напряжение между пластинами составляет 220 В.
    (b) ток синфазен с приложенным напряжением.
    (c) заряд на пластине не совпадает по фазе с примененным вотумом.
    (d) мощность, подаваемая на конденсатор за цикл, равна нулю

    Ответ = D

    Q.5 Источник переменного тока подключен к резистивной цепи. Какие из следующих утверждений верно?

    Опции:

    (a) Токоподводы впереди напряжения в фазе
    (b) Ток отстает от напряжения в фазе
    (c) Ток и напряжение находятся в одной фазе
    (d) Любое из вышеперечисленных может быть верным в зависимости от значения сопротивления.

    Ответ = C

    Q.6 При увеличении частоты A.C. питания, индуктивное реактивное сопротивление

    Опции:

    (a) уменьшается
    (b) увеличивается напрямую с частотой
    (c) увеличивается, поскольку квадрат частоты
    (d) уменьшается обратно пропорционально частоте

    Ответ = B

    Q.7 Емкостное реактивное сопротивление в цепи переменного тока составляет

    Варианты:

    (a) эффективное сопротивление из-за емкости
    (b) эффективная мощность
    (c) эффективное напряжение
    (d) Ни один из этих

    Ответ = A

    Q.8 В какой из следующих цепей наблюдается максимальное рассеивание мощности?

    Опции:

    (a) Чистая емкостная цепь (b) Чистая индуктивная цепь
    (c) Чистая резистивная схема (d) Ни один из этих

    Ответ = C

    Q.9 В L.C.R. серия a.c. цепь, ток

    Опции:
    (a) всегда в фазе с напряжением
    (b) всегда отстает от напряжения генератора
    (c) всегда опережает напряжение генератора
    (d) Ни один из этих

    Ответ = D

    Q.10 Если последовательная цепь LCR подключена к источнику переменного тока, то при резонансе напряжение на

    Варианты:
    (a) R равно нулю
    (b) R равно приложенному напряжению
    (c) C равно нулю
    (d ) L равно приложенному напряжению

    Ответ = B

    Другие вопросы ……………

    1. Обычно в цепи переменного тока

    (a ) среднее значение тока равно нулю

    (b) среднее значение квадрата тока равно нулю

    (c) средняя рассеиваемая мощность равна нулю

    (d) разность фаз между напряжением и током равно нулю

    2.Частота сети переменного тока в Индии:

    (a) 30 c / s

    (b) 50 c / s

    (c) 60 c / s

    (d) 120 c / s

    3. Электроэнергия передается от электростанции при высоком напряжении, так как

    (a) скорость передачи выше при высоком напряжении

    (b) это более экономично из-за меньше потерь мощности

    (c) мощность не может передаваться при низком напряжении

    (d) меры предосторожности против кражи линий передачи

    4.Электропитание в наших домах и офисах представляет собой напряжение , которое изменяется как синусоидальная функция со временем, например, напряжение называется … А …, а ток, которым он управляет в цепи , называется … B … Здесь A и B относятся к

    (a) Постоянное напряжение, переменный ток

    (b) Переменное напряжение, постоянный ток

    (c) Напряжение переменного тока, постоянное напряжение

    (г) Напряжение переменного тока, ток переменного тока

    5.Переменный ток может генерироваться с помощью

    (а) динамо-машины

    (б) дроссельной катушки

    (в) трансформатора

    (г) электродвигателя

    6. Переменный ток эквивалентного значения I 0√ 2

    (а) пиковый ток

    (б) действующее значение текущий

    (c) постоянный ток ток

    (d) все эти

    7.Параллельная комбинация катушки индуктивности и конденсатора называется как

    (a) схема выпрямителя

    (b) контур резервуара

    (c) схема приемника

    (d) схема фильтра

    8. Пиковое значение переменного тока ток, протекающий через резистор , определяется выражением

    (a) I = e / R

    (b) I = e / R

    (c) I = e

    (d) I = R / e

    9.Переменный ток можно измерить с помощью

    (a) амперметр с горячей проволокой

    (b) вольтметр с горячей проволокой

    (c) гальванометр с подвижным магнитом

    (d) подвесная катушка тип гальванометр

    10. Переменный ток нельзя измерить амперметром постоянного тока, , потому что

    (a) Переменный ток виртуальный

    (b) Переменный ток меняет направление

    (c) A .C. не может проходить через амперметр постоянного тока

    (d) среднее значение A. C для полного цикла равно нулю

    11. Сердечник трансформатора ламинирован для уменьшения

    (a) утечки потока

    (b) гистерезис

    (c) потери в меди

    (d) вихревой ток

    12. Трансформатор основан на принципе

    (a) взаимного индукция

    (б) самоиндукция

    (в) закон Ампера

    (г) Рентгеновская кристаллография

    13.Коэффициент трансформации в повышающем трансформаторе составляет

    (a) один

    (b) больше одного

    (c) меньше одного

    (d) коэффициент больше или меньше один зависит от другого фактора

    14. Источник переменного тока подключен к резистивной цепи. Что из верно?

    (a) Токоподводы впереди напряжения в фазе

    (b) Ток отстает от напряжения в фазе

    (c) Ток и напряжение находятся в одной фазе

    (d) Любая из приведенное выше может быть верным в зависимости от значения сопротивления.

    15. В какой из следующих цепей наблюдается максимальное рассеивание мощности?

    (a) Чистая емкостная цепь

    (b) Чистая индуктивная цепь

    (c) Чистая резистивная цепь

    (d) Ни одна из этих

    16. С увеличением частоты переменного тока индуктивное реактивное сопротивление

    (a) уменьшается

    (b) увеличивается непосредственно с частотой

    (c) увеличивается как квадрат частоты

    (d) уменьшается обратно пропорционально частота

    17.Средняя мощность, рассеиваемая на чистой индуктивности, составляет

    (a) 1 / 2LI 2

    (b) LI 2

    (c) LI 2 /4

    06

    06 (d) ноль

    19. В случае индуктора

    (a) напряжение отстает от тока на / 2

    (b) напряжение опережает ток на Π / 2

    (c) напряжение опережает ток на / 3

    (d) напряжение опережает ток на / 4

    18.Вихревые токи в сердечнике трансформатора не могут возникать на

    (а) увеличение числа витков вторичной обмотки

    (б) использование многослойного трансформатора

    (в) создание понижающего трансформатора

    (d) с использованием слабого переменного тока при высоком потенциале

    19. Количество, которое остается неизменным в трансформаторе, составляет

    (а) напряжение

    (б) ток

    (в) частота

    (г) Ни один из этих

    20.Если частота переменного тока в 4 раза больше его начального значения , индуктивное реактивное сопротивление будет

    (a) будет в 4 раза больше

    (b) будет 2 раза

    (c) будет вдвое меньше

    (d) остается прежним

    21. Индуктивность L, имеющая сопротивление R, подключена к источнику переменного тока с угловой частотой ω. Добротность Q индуктивности составляет

    (a ) R / ωL

    (b) (ωL / R) 2

    (c) (R / ωL) ½

    (d) ω L / R

    22.Конденсатор действует как бесконечное сопротивление для

    (a) постоянного тока

    (b) переменного тока

    (c) постоянного тока, а также переменного тока

    (d) ни переменного, ни постоянного тока

    23 Емкостное реактивное сопротивление в цепи переменного тока составляет

    (a) эффективное сопротивление за счет емкости

    (b) эффективная мощность

    (c) эффективное напряжение

    (d) Ни один из этих

    24.Что из следующего о емкостном реактивном сопротивлении составляет правильно?

    (a) Реактивное сопротивление конденсатора прямо пропорционально его способности накапливать заряд

    (b) Емкостное реактивное сопротивление обратно пропорционально частоте тока

    (c) Емкостное реактивное сопротивление равно измеряется в фарадах

    (d) Реактивное сопротивление конденсатора в цепи переменного тока аналогично сопротивлению конденсатора в цепи D.C. Схема

    25. Разность фаз между напряжением и током в конденсаторе в цепи переменного тока составляет

    (a) π

    (b) π / 2

    ( c) 0

    (d) π / 3

    26. Конденсатор имеет емкость C и реактивное сопротивление X, если емкость и частота удваиваются, то реактивное сопротивление будет

    (a) 4X

    (б) X / 2

    (в) X / 4

    (г) 2X

    27.Когда на конденсатор C подается переменное напряжение 220 В, тогда

    (a) максимальное напряжение между пластинами составляет 220 В.

    (b) ток синфазен с приложенным напряжением.

    (c) заряд на пластине не совпадает по фазе с примененным залогом.

    (d) мощность, подаваемая на конденсатор за цикл, равна нулю.

    28. В цепи LCR, если сопротивление увеличивается, коэффициент качества

    (a) увеличивается плавно

    (b) плавно уменьшается

    (c) остается постоянным

    (d) Ни один из них

    29.Катушка индуктивности, резистор и конденсатор соединены последовательно с источником переменного тока. Поскольку частота источника немного увеличивается на от очень низкого значения, реактивное сопротивление катушки индуктивности

    (a) увеличивается

    (b) резистор увеличивается

    (c) конденсатор увеличивается

    (d) цепь увеличивается

    30. С увеличением частоты переменного тока полное сопротивление последовательной цепи LCR

    (a) остается постоянным

    (b) увеличивается

    (в) уменьшается

    (г) сначала уменьшается, становится минимальным, а затем увеличивается.

    31. Если последовательная цепь LCR подключена к источнику переменного тока, то при резонансе напряжение на

    (a) R равно нулю

    (b) R равно приложенному напряжению

    (c) C равно нулю

    (d) L равно приложенному напряжению

    32. Потери энергии в виде тепла в железном сердечнике трансформатора составляют

    ( a) потеря железа

    (b) потеря меди

    (c) механическая потеря

    (d) ничего из этого

    33.В L.C.R. серия a.c. цепи, ток

    (a) всегда находится в фазе с напряжением

    (b) всегда отстает от напряжения генератора

    (c) всегда опережает напряжение генератора

    (d) Нет из них

    34. Последовательная цепь LCR, подключенная к источнику E, находится в резонансе. Тогда напряжение на

    (a) R равно нулю

    (b) R равно приложенному напряжению

    (c) C равно нулю

    (d) L равно приложенному напряжению

    35.Используется трансформатор

    (a) преобразование переменного тока в постоянный ток

    (b) преобразование постоянного тока в переменный ток

    (c) получение подходящего переменного напряжения

    (d) получение подходящего постоянного напряжения

    36. Трансформаторы используются

    (a) только в цепях постоянного тока

    (b) только в цепях переменного тока

    (c) как в цепях постоянного, так и переменного тока

    (d ) ни в цепях постоянного, ни в цепях переменного тока

    37 .Коэффициент мощности цепи переменного тока варьируется от

    (a) от 0 до 0,5

    (b) от 0,5 до 1

    (c) от 0 до 1

    (d) от 1 до 2

    38.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *