Закрыть

Все о конденсаторах: Чему не учат о конденсаторах

Чему не учат о конденсаторах

В инженерной деятельности мы часто применяем сотни эмпирических правил для упрощения тех аспектов, над которыми работаем.

Если бы мы запускали квантово-физическое моделирование всякий раз, когда необходимо поморгать светодиодом, мы бы никогда ничего не добились. Тем не менее, многие из этих правил были сформулированы в прошлом, когда индустрия электроники радикально отличалась от нынешней.

Сегодня мы собираемся забыть, чему нас учили о том, что такое конденсатор. Кроме того, мы рассмотрим, как использовать конденсаторы с учетом современной электроники.

Одно из общераспространенных мнений состоит в том, что основная роль конденсатора заключается в хранении заряда, подобно тому, как ведро с водой наполняется одной чашкой и в то же время опустошается другой.

Если вы когда-либо вступали в дискуссию “протекает ли ток через конденсатор” и уходили больше в политику, чем в физику, вы знаете, что типовые аналогии не имеют особого смысла, когда речь идет о переменном токе. Конденсатор – это просто два проводника, разделенных диэлектриком, и нигде в основных физических объяснениях его свойств вы не найдете объяснения того, что с этим делать.

Хранение энергии – это лишь одно из множества применений конденсатора, таких как фильтрация, формирование и инвертирование электрических сигналов и импедансов. Мы привыкли думать, что это основное применение конденсатора, поскольку это было его первым применением на заре электричества постоянного тока и электроскопа Уильяма Гилберта, изобретенного в XV веке.

Такие термины, как развязывающий и байпасный (шунтирующий) конденсатор, часто используются как синонимы – я сам совершал эту ошибку бесчисленное количество раз.

Это приводит к большой путанице, поскольку для разных целей часто требуются конденсаторы с разными электрическими и физическими параметрами, такими как форм-фактор, номинальное напряжение, ESR (эквивалентное последовательное сопротивление), ESL (эквивалентная последовательная индуктивность) и профиль собственного резонанса.

Конденсаторы называют по-разному не только исходя из технологии, по которой они созданы (керамический, электролитический), но и их назначения.

В следующих разделах рассмотрено несколько из наиболее распространенных назначений конденсаторов.

Рис. 1. Конденсаторы на современной плате. Если присмотреться, вы заметите различные типы конденсаторов, используемые в цепях разного назначения. Изображение от Michael Dziedzic

Байпасный конденсатор

Назначением байпасного конденсатора является передача радиочастотной энергии (переменного тока достаточно высокой частоты) от одной части платы к другой. Соответственно, о хранении заряда речи не идет вообще. Байпасный конденсатор предназначен для проведения, а не для хранения.

Для этого необходим тщательный подбор конденсатора с минимально возможным импедансом на нужных частотах. Этого можно достичь максимально близким соответствием собственной резонансной частоты конденсатора и частоты сигнала.

Собственная резонансная частота – это частота, на которой резонирует емкость и паразитная индуктивность и на которой конденсатор имеет наименьшее возможное сопротивление. Математически емкость и индуктивность как будто пропадают и остается только эквивалентное последовательное сопротивление.

Для частот выше собственной резонансной частоты конденсатор начинает всё меньше работать как конденсатор и всё больше – как индуктивность.

Рис. 2. Зависимость импеданса от частоты для различных конденсаторов. Изображение от Elcap, Jens Both

На что следует обращать внимание

Одна из наиболее распространенных ошибок, которые допускаются при использовании байпасных конденсаторов для контроля электромагнитного излучения (особенно при шунтировании экранов земли), заключается в том, что их размещение ограничивается только источником шума, который нужно устранить.

Для постоянного тока это имело бы смысл – закоротить сигнал максимально близко к источнику, чтобы получить как можно более низкие его значения, минимизировать сопротивление (импеданс) между коротким замыканием (конденсатором) и источником.

Для переменного тока и особенно для радиочастотного диапазона, из-за волновой природы электрических сигналов быстрое увеличение импеданса между областью рядом с источником шума и остальной частью заземляющего слоя может быть источником отражений, т. е. энергии, отраженной из-за несоответствия импедансов. Опять же, это противоречит традиционному описанию “энергии, отраженной из-за рассогласования линий”, которое верно лишь отчасти.

При использовании байпасных конденсаторов нужно попытаться снизить импеданс экранов питания и земли, распределив конденсаторы по плате. В зависимости от используемой частоты, структуры слоев и диэлектрического материала платы, могут понадобиться конденсаторы в диапазоне от пикофарад до нанофарад

Развязывающий конденсатор

У линейных регуляторов, таких как широко используемый 7805, есть внутренний контур обратной связи, который сравнивает выходное и опорное напряжение и соответствующим образом регулирует ток для поддержания стабильного выходного сигнала.

Теоретически линейные регуляторы можно использовать без внешнего конденсатора – по крайней мере, если мы игнорируем любые проблемы, связанные с автоколебаниями. Чтобы получить стабильный выходной сигнал, требуемый ток должен изменяться с достаточно медленной скоростью нарастания, чтобы линейный регулятор мог успевать за ним. Учитывая, что большинство из них построено на технологии BJT начала 80-х годов, эти скорости нарастания совсем не высокие.

Рис. 3. Пример внутренней схемы типового линейного регулятора, подобного 7805

Аналогичным образом, импульсные преобразователи DC-DC имеют основную частоту переключения и не могут регулировать выходной сигнал быстрее этой частоты.

Многие современные цифровые устройства генерируют переходные процессы тока с частотными составляющими в сотни мегагерц, что намного больше, чем может обеспечить любой регулятор (если мы не говорим об экзотических драйверах лазерных диодов).

Развязывающие конденсаторы работают на границе между стабильным напряжением, регулируемым схемой источника питания постоянного тока, и потреблением прерывистого тока современными цифровыми устройствами.

Даже небольшой импеданс между источником питания и устройством быстро приведет к выходу напряжения питания за пределы допустимого диапазона при возникновении пика тока.

Развязывающие конденсаторы действуют как временные локализованные накопители энергии, что уменьшает импеданс источника для значений в диапазоне между нескольких мегагерц и нескольких сотен мегагерц.

Для частот выше сотен мегагерц большинство SMD-конденсаторов имеют высокий импеданс и являются неэффективными. Вместо этого необходимо использовать такие методы, как скрытая емкость (buried capacitance) в стеке слоев.

На что следует обращать внимание

Развязывающие конденсаторы полезны только в относительно узком частотном диапазоне, в основном из-за ограничений, связанных с их паразитными свойствами.

Главный параметр, на который следует обратить внимание – это, опять же, собственная резонансная частота. Разделительные конденсаторы эффективны только на частотах ниже их собственной резонансной частоты.

При выборе конденсатора часто бывает полезно придерживаться следующих эмпирических правил:

  • От постоянного тока до килогерц – конденсатор не требуется, источник питания может работать сам по себе.
  • От килогерц до мегагерц – электролитические конденсаторы высоких номиналов полезны для более низкого диапазона частот, но их высокое последовательное сопротивление ограничивает их работу из-за низкой резонансной частоты. В диапазоне МГц многие электролитические конденсаторы уже являются сильно индуктивными.
  • От мегагерц до 200 МГц – керамические конденсаторы, в зависимости от диэлектрика, размера корпуса и технологии изготовления, обычно подходят для этого диапазона.
  • Свыше 200 Мгц – керамические конденсаторы становятся неэффективными. В этих случаях, будет лучше использовать вместо них скрытую емкость.

Сглаживающий конденсатор

Сглаживающие конденсаторы используются для поддержания стабильного напряжения во время недостающих циклов линии питания и поддержки пикового тока. Для этого нужны конденсаторы высокой емкости, и поэтому они обычно являются электролитическими.

Их можно считать маленькими источниками бесперебойного питания.

Чему не учат о керамических конденсаторах

Керамические конденсаторы, несомненно, являются фундаментальными пассивными компонентами в современной электронной промышленности, и их удельная емкость увеличивается со скоростью, сравнимой с плотностью транзисторов в кремнии, что делает доступными многие современные конструкции с высокой плотностью.

Они действительно являются чудом техники, но у них также есть несколько особенностей, о которых нужно знать.

Чем меньше, тем лучше

Керамика – замечательный, но хрупкий материал. Керамические конденсаторы могут треснуть из-за изгиба печатной платы, например, при сборке больших плат (или панелей), неправильном разделении плат скрайбированием или неправильном обращении во время транспортировки.

Растрескивание при изгибе – опасное явление, поскольку если конденсатор используется в силовых устройствах с высокими токами, он зачастую может выйти из строя и вызвать возгорание.

Вопреки распространенному мнению, конденсатор меньшего размера имеет превосходные электрические и механические характеристики. Они с меньшей вероятностью треснут, и они имеют более высокую собственную резонансную частоту.

Если вашему продукту требуется высокая надежность при механических нагрузках, есть несколько методов, которые вы можете использовать для уменьшения соответствующих отказов:

  • Не размещайте конденсаторы длинной стороной в том же направлении, в котором изгибается плата.
  • Используйте конденсаторы минимально возможного размера, например 0402.
  • Используйте конденсаторы типа “soft-terminated”, которые не замыкаются под нагрузкой, и/или керамические конденсаторы X2/Y2.
  • Размещайте трассировку вокруг конденсаторов для снятия механического напряжения.
  • Если вы выбрали конденсаторы, которые размыкаются, всегда используйте параллельно как минимум два из них, чтобы ваша схема могла иметь достаточную емкость для нормальной работы при выходе из строя одного из них.

Типы диэлектриков

C0G, X7R… У диэлектриков странные названия и набор самых разных свойств. Далее представлены их характеристики и случаи, когда их использовать лучше всего:

  • C0G/NP0 – самые модные керамические конденсаторы на рынке. Обычно они доступны в диапазоне от 1 пФ до 100 нФ и имеют допуск 5%. NP0 означает “положительный-отрицательный-ноль”, для формы графика ТКЕ конденсатора, которая выглядит плоской во всем диапазоне температур. Именно их следует использовать, когда требуются точные значения и стабильность.
  • X7R – современная рабочая лошадка. Они имеют отличные коэффициенты напряжения и температуры и популярны в диапазоне от 100 пФ до 22 мкФ. Они наиболее широко используются для развязки и имеют широкий диапазон температур от -55°C до 125°C.
  • X5R – аналогичен X7R, но рассчитан на 85°C вместо 125°C.
  • Y5V – может достигать чрезвычайно высокого значения емкости, но при низких отклонениях от номинального напряжения и температуры (допускается потеря до 82% емкости).
  • Z5U – аналогично Y5V, конденсаторы Z5U имеют плохие характеристики по напряжению и температуре и стоят очень дешево. Допускается использование только до -10°C и применяются только для развязки в недорогом бытовом оборудовании.

На что следует обращать внимание

Использование конденсаторов с разными диэлектриками может привести к неожиданным результатам.

Например, конденсаторы Z5U очень дешевы и используют диэлектрик из титаната бария. Этот материал имеет высокую диэлектрическую постоянную, что обеспечивает отличное отношение емкости к объему, а также собственную резонансную частоту, обычно от 1 до 20 МГц.

Конденсаторы NP0 лучше работает на частотах выше 10 МГц, так почему бы не использовать их вместе для работы в более широком диапазоне частот?

К сожалению, когда конденсаторы Z5U и NP0 соединены параллельно, материал с более высокой диэлектрической проницаемостью снижает резонансную частоту NP0, и это сочетание приводит к худшим общим характеристикам, чем просто качественный Z5U.

Однако вопрос «почему» определенно выходит за рамки моей компетенции. Если вы понимаете это явление, пожалуйста, напишите мне.

Диэлектрические потери

Если вы закоротите выход заряженного конденсатора, то обнаружите, что полностью разряженный конденсатор сидит на скамейке и смотрит на вас печальными глазами. Однако это не всегда так. Почти все конденсаторы, за единственным заметным исключением вакуумных конденсаторов, сохраняют часть своего заряда после разрядки.

Это происходит потому, что случайно ориентированные молекулярные диполи со временем выравниваются электрическим полем, и их новая ориентация сохраняется даже в отсутствии этого поля.

Керамические конденсаторы могут удерживать до 0,6% заряженного напряжения для NP0 и до 2,5% для X7R.

Емкость, зависящая от напряжения

Конденсаторы Y5V могут терять до 82% своей емкости при номинальном напряжении, в то время как конденсаторы NP0 имеют практически горизонтальную характеристику.
Если у вас есть устройства, в которых нужно изменять выходное напряжение, например, с помощью настраиваемого источника напряжения, требуемого стандартом USB-PD, который Марк Харрис обсуждал в своей недавней статье, вы можете столкнуться с непредсказуемой работой схемы.

Инструменты проектирования в Altium Designer® включают в себя всё необходимое, чтобы идти в ногу с новыми технологиями. Поговорите с нами сегодня и узнайте, как мы можем улучшить ваш процесс проектирования.

волшебные свойства загадочных баночек / Хабр

Было ли лучшее время для энтузиастов и любителей Hi-Fi, чем конец 1970-х и начало 1980-х годов? С одной стороны, так много всего происходило с развитием цифрового аудио, а с другой — наблюдался рост субъективизма. Внезапно проигрыватели и усилители стали оценивать не по уровню детонации, выходной мощности и гармоническим искажениям, а по их звучанию! И можно было даже всерьёз говорить о звучании кабелей. В этой новой атмосфере всё, что когда-то считалось само собой разумеющимся в области Hi-Fi, стало кандидатом на переоценку.

Пристальному изучению подверглось и влияние на звук пассивных электронных компонентов — резисторов, индуктивностей и конденсаторов. В особенности, конденсаторов. Знающие люди начали обсуждать такие явления как эквивалентное последовательное сопротивление (ESR) и диэлектрическое поглощение.

Сегодня мы нечасто слышим об этой теме, но не потому, что проблема была исчерпана. Скорее всего, разработчики нынче уделяют столь же пристальное внимание используемым пассивным компонентам, как и схемам, в которых они применяются, так что общественный фурор несколько стих.

Азы

В простейшем виде конденсатор состоит из двух металлических пластин, разделённых воздухом (или, ещё лучше, вакуумом) и схематично изображён на рис. 1. Поскольку между пластинами нет проводящего пути, конденсатор блокирует постоянный ток (например, от батареи). При этом конденсатор, напротив, пропускает сигналы переменного тока — как раз такие как звуковые волны.

Рис. 1. Компоненты, из которых состоит конденсатор — две проводящие пластины, разделённые слоем диэлектрика.
Проверенное решение

Мы нечасто сталкиваемся с воздушными конденсаторами, но если вы заглядывали внутрь старого лампового радиоприемника и видели элемент, отвечающий за настройку, который состоит из чередующихся металлических пластин, это как раз воздушный конденсатор переменной ёмкости. В большинстве конденсаторов, с которыми мы сталкиваемся в аудиотехнике и прочей электронике, в качестве изолирующего материала (диэлектрика), разделяющего пластины, не используется воздух, поскольку он имеет низкую диэлектрическую постоянную (1,0), а это означает, что воздушные конденсаторы большой емкости слишком громоздкие, чтобы быть практичными. По этой причине используются, в основном, твёрдые диэлектрики, с более высокими диэлектрическими свойствами, в том числе из керамики и различных видов пластмасс (например, ПВХ с диэлектрической проницаемостью 4,0). Именно здесь история становится особенно интересной, поскольку для всех этих диэлектриков характерны те или иные компромиссы в плане влияния на звук, в то время как воздух практически идеален.

Простые фильтры

Для начала, узнаем побольше о том, как ведут себя конденсаторы и для чего они используются. Конденсаторы блокируют постоянный ток и пропускают переменный, однако они не пропускают переменный ток с разной частотой одинаково. Это объясняется тем, что конденсаторы обладают реактивным сопротивлением, которое снижается с увеличением частоты (к слову, катушки индуктивности тоже обладают реактивным сопротивлением, которое, наоборот, увеличивается с ростом частоты).

Таким образом, конденсаторы пропускают высокочастотные сигналы легче, чем низкочастотные, что делает их крайне полезными в частотно-селективных цепях (то есть, в фильтрах), а также для устранения нежелательных сигналов (например, гул или шум с шины питания постоянного напряжения).

Простые фильтры верхних и нижних частот показаны на рис. 2. В фильтре верхних частот (рис. 2а) последовательно включенный конденсатор подключен к шунтирующему резистору. В фильтре нижних частот (рис. 2b) конденсатор и резистор меняются местами.

Рис. 2. RC-фильтр первого порядка верхних (2a) и нижних (2b) частот.

Итак, конденсаторы зачастую используются для объединения цепей, отделения нежелательного шума в цепях постоянного напряжения и в частотно-селективных цепях (фильтрах). Поскольку конденсаторы накапливают электрический заряд, большие из них также применяются в качестве резервуаров в источниках питания переменного и постоянного тока. На рис. 3 показан типовой источник питания, включающий в себя понижающий трансформатор (он понижает напряжение сети), мостовой выпрямитель (который преобразует переменный ток из трансформатора в импульсный постоянный ток) и пару конденсаторов-резервуаров (сглаживающих пульсации после выпрямления переменного тока).

Рис.3. Принципиальная схема двухполупериодного источника питания, состоящего из понижающего трансформатора, двухполупериодного мостового выпрямителя и двух резервуарных конденсаторов.

Подобные схемы встречаются во многих твердотельных аудиокомпонентах. Аналогичные решения используются и в ламповом оборудовании, но из-за высоких напряжений, требуемых для работы ламп, трансформатор здесь обычно повышает напряжение сети.

Ёмкость резервуарных конденсаторов, используемых в транзисторных усилителях мощности, может достигать 50 000 мкФ и более, тогда как в других случаях в схеме могут использоваться конденсаторы емкостью 1 НФ (одна тысячная микрофарада) или даже меньше. Таким образом, очевидно, что некоторые типы конденсаторов лучше подходят под определённые задачи, чем другие.

Важное уточнение

Как правило, самые большие резервуарные конденсаторы являются электролитическими, ведь они обеспечивают высокую ёмкость в сравнительно небольшом объёме. Такие конденсаторы содержат электролит (жидкость или гель), который химически реагирует с металлической фольгой внутри банки, образуя слой диэлектрика. Подобные электролитические конденсаторы, а также некоторые другие — например, танталовые, называются полярными, а несоблюдение полярности подключения может привести к их выходу из строя.

Другая разновидность — неполярные конденсаторы, которые можно подключать без учёта полярности. Подобные электролиты иногда использовались в пассивных кроссоверах акустических систем, однако такая практика сегодня устарела, поскольку плёночные конденсаторы справляются с этой задачей лучше, хоть и занимают больше места.

Конденсаторы также могут иметь различное расположение выводов — аксиальное (осевое) или радиальное. Преимущество радиальных электролитов заключается в том, что они занимают меньше площади на плате, однако их минус — в том, что они увеличивают её высоту. В больших электролитических конденсаторах обычно отказываются от выводов под пайку — в пользу винтовых клемм.

Что скрывают конденсаторы

Настоящие конденсаторы, как и настоящие политики, ведут себя не идеально, и именно здесь кроется причина их влияния на качество звука. Во-первых, на практике ни один конденсатор не является только ёмкостью — он также имеет индуктивность и сопротивление. На принципиальной схеме конденсатор обычно обозначается одним из символов на рис. 4 (все они визуально отсылают к двум разделенным пластинам), однако в реальности он представляет собой что-то вроде схемы, представленной на рис. 5. Резистор обозначенный на рисунке как ESR (эквивалентное последовательное сопротивление) может быть не постоянным — сопротивление может зависеть от частоты. В случае с электролитическими конденсаторами, ESR обычно уменьшается с частотой.

Рис. 4. Варианты обозначения конденсаторов на схеме

Одним из последствий того, что у конденсаторов есть индуктивность (ESL или эквивалентная последовательная индуктивность на рис. 6), является то, что они, по сути, являются электрически резонансными. Если проанализировать импеданс конденсатора в зависимости от частоты, он не будет продолжать уменьшаться с ростом частоты. На рис. 6 показано, что импеданс достигает минимума (эквивалентного значению ESR) на резонансной частоте, а затем, по мере увеличения частоты, он снова начинает расти из-за ESL.

Рис. 5. Схематичный эквивалент реального конденсатора демонстрирует паразитное сопротивление (ESR) и индуктивность (ESL)Рис. 6. Паразитная индуктивность приводит к тому, что у конденсаторы имеют электрический резонанс, иногда — в пределах слышимого диапазона частот.

У больших электролитических конденсаторов частоты электрического резонанса обычно находятся в пределах звукового диапазона. У небольших конденсаторов частоты электрического резонанса могут превышать 1 МГц. Для увеличения частоты электрического резонанса для заданной емкости следует уменьшить ESL — последовательную индуктивность.

Для достижения этой цели, при разработке электролитических конденсаторов, где такая проблема стоит наиболее остро, применяются различные методы. Например, в конденсаторах DNM T-Network для снижения индуктивности используются специальные Т-образные соединения из фольги — таким образом, их резонансная частота более чем в два раза выше по сравнению со стандартной конструкцией (от 28 кГц до 75 кГц — в примере, который приводит компания DNM на своём веб-сайте).

ESR оказывает потенциально благотворное влияние на демпфирование электрического резонанса конденсатора, однако, в отличие от индуктивности или ёмкости, сопротивление генерирует тепло в то время, когда через конденсатор проходит ток. В больших ёмкостных конденсаторах, где проходящие через них токи велики, этот эффект внутреннего нагрева ограничивает безопасные условия эксплуатации. Тем не менее, электролитические конденсаторы лучше всего работают именно тёплыми.

Микрофонный эффект

Не секрет, что ламповое оборудование чувствительно к вибрации. Внутри вакуумированной стеклянной оболочки лампы находятся тонкие металлические электроды, расстояние между которыми влияет на работу лампы. Таким образом, если встряхнуть лампу достаточно сильно, это отразится на её электрической мощности — эффект, который называют «микрофонным», поскольку лампа в таком случае ведёт себя подобно микрофону.

Твердотельная электроника меньше подвержена этому эффекту, однако приведём в пример некий крайний случай: разработчики первых систем управления двигателем в гоночных автомобилях вскоре научились не прикреплять электронные блоки к двигателю, либо использовать хорошую изоляцию, иначе вибрации от двигателя могли нарушить её работу. Уровни вибрации, которые испытывает Hi-Fi оборудование при повседневном использовании, гораздо ниже, однако некоторые производители, среди которых, например, Naim Audio, по-прежнему прилагают большие усилия, чтобы свести к минимуму вероятное воздействие микрофонного эффекта.

Способность конденсатора накапливать заряд (его ёмкость) пропорциональна площади пластин и обратно пропорциональна расстоянию между ними, а «пластины» обычно представляют собой тонкую фольгу с тонкими слоями диэлектрика между ними. Это приводит к тому, что конденсаторы подвержены воздействию микрофонного эффекта, поскольку из-за вибрации расстояние между пластинами и, следовательно, значение ёмкости может меняться.

Таким образом, физические свойства материалов, из которых изготовлен конденсатор, могут быть столь же важны, как и электрические параметры. Но что ещё интереснее, вибрация извне не является необходимым условием для того, чтобы конденсаторы страдали от её воздействия, ведь силы, формируемые напряжениями и токами внутри самого конденсатора, также могут вызывать механические резонансы. Из-за этого эффекта можно даже услышать, как некоторые конденсаторы издают звук, когда через них проходит сигнал. В кроссовере акустической системы, где уровни вибраций, напряжения и токи высоки, присутствует «идеальный шторм» факторов, которые делают выбор подходящего конденсатора особенно важной задачей.

Ключевые слова

Проблема микрофонного эффекта и механических резонансов конденсаторов активно обсуждалась на протяжении многих лет, однако исследований по этому вопросу было достаточно мало. Во всяком случае, мало опубликованных исследований. Но те, что существуют, подтверждают мнение, что данный эффект может оказывать заметное влияние качества звучания.

К тому же, в некоторых случаях конденсаторы могут приводить к необычайно высоким уровням гармонических и интермодуляционных искажений. Понимание того, как и почему это происходит, позволяет разработчикам сосредоточить свои усилия на доработке электронной схемы и тщательном выборе электронных компонентов — таким образом, чтобы это принесло наибольшую пользу.

Физика конденсаторов A-Level

После изучения этого раздела вы должны уметь:

  • описать действие конденсатора и вычислить накопленный заряд
  • свяжите энергию, запасенную в конденсаторе, с графиком зависимости заряда от напряжения
  • объяснить значение постоянной времени цепи, содержащей конденсатор и резистор

В этом разделе рассматриваются следующие темы

  • Действие конденсатора
  • Емкость
  • Комбинирующие конденсаторы
  • Энергия, запасенная в конденсаторе
  • Зарядка и разрядка конденсатора
  • Постоянная времени

Действие конденсатора

Конденсаторы накапливают заряд и энергию. У них много применений, в том числе сглаживание переменных постоянных токов, электронные схемы синхронизации и питание памяти для хранения информации в калькуляторах, когда они выключены.

Конденсатор состоит из двух параллельных проводящих пластин, разделенных изолятором.

Когда он подключен к источнику напряжения, заряд течет на пластины конденсатора до тех пор, пока разность потенциалов на них не станет такой же, как у источника питания. Поток заряда и конечный заряд на каждой пластине показан на диаграмме.

Когда конденсатор заряжается, заряд течет во всех частях цепи, кроме между пластинами.

По мере зарядки конденсатора:

  • заряд –Q стекает на пластину, подключенную к минусовой клемме источника питания
  • заряд –Q стекает с пластины, подключенной к положительной клемме источника питания, оставляя ее с зарядом +Q
  • пластины конденсатора всегда имеют одинаковую величину заряда, но противоположного знака
  • заряд между пластинами конденсатора не течет.

Емкость

Говорят, что конденсатор, показанный на приведенной выше диаграмме, накапливает заряд Q, что означает количество заряда на каждой пластине. Когда конденсатор заряжен, количество сохраненного заряда зависит от:

  • напряжение на конденсаторе
  • его емкость: т.е. чем больше емкость, тем больше заряда сохраняется при данном напряжении.

КЛЮЧЕВОЙ МОМЕНТ. Емкость конденсатора C определяется следующим образом: Где Q – заряд, сохраняемый при напряжении на конденсаторе V. Емкость измеряется в фарадах (Ф). 1 фарад — это емкость конденсатора, который хранит 1 Кл заряда, когда p.d. через него 1 В.

Поскольку пластины конденсатора имеют одинаковые заряды противоположного знака, общий заряд фактически равен нулю. Однако, поскольку заряды разделены, они обладают энергией и могут совершать работу, когда их соединяют.

Один фарад — это очень большое значение емкости. Обычно значения емкости измеряют в пикофарадах (1 пФ = 1,0 × 10 –12 Ф) и микрофарадах (1 мкФ = 1,0 × 10 –6 Ф).

Комбинирующие конденсаторы

Как и резисторы, конденсаторы могут быть соединены последовательно или параллельно для достижения различных значений емкости.

При последовательном подключении конденсаторов к источнику напряжения:

  • независимо от значения его емкости, каждый конденсатор в комбинации хранит одинаковое количество заряда, так как любая одна пластина может потерять или получить только заряд, полученный или потерянный пластиной, к которой он подключен
  • общий заряд, сохраняемый последовательной комбинацией, представляет собой заряд каждой из двух внешних пластин и равен заряду, хранящемуся на каждом отдельном конденсаторе 9.0006
  • поскольку приложенная разность потенциалов распределяется между конденсаторами, общий накопленный заряд меньше, чем заряд, который мог бы храниться любым из конденсаторов, подключенных индивидуально к источнику напряжения.

Эффект последовательного добавления конденсаторов заключается в уменьшении емкости. При добавлении дополнительного конденсатора p.d. меньше. через каждый, поэтому сохраняется меньше заряда.

На схеме показан заряд на обкладках трех последовательно соединенных конденсаторов.

Это приводит к тому, что эффективное значение последовательной комбинации конденсаторов меньше, чем конденсатор с наименьшим номиналом в комбинации.

КЛЮЧЕВОЙ МОМЕНТ. Емкость C нескольких последовательно соединенных конденсаторов определяется выражением: ответ, который равен 1/C вместо C.

В отличие от этого, эффект от параллельного соединения конденсаторов заключается в увеличении емкости, так что действующее значение нескольких конденсаторов, соединенных параллельно, всегда больше, чем наибольшая стоимость комбинации.

При параллельном соединении конденсаторов:

  • все конденсаторы заряжены до одинаковой разности потенциалов
  • каждый конденсатор хранит такое же количество заряда, как если бы он был подключен отдельно к тому же напряжению
  • добавление дополнительного конденсатора увеличивает общий накопленный заряд.

КЛЮЧЕВОЙ МОМЕНТ — Емкость, C, нескольких конденсаторов, соединенных параллельно, определяется выражением: C = C 1 ​​ + C 2 + C 3

Выражения для конденсаторов, соединенных последовательно и параллельно, аналогичны выражениям для резисторов, но наоборот.

Энергия, запасенная в конденсаторе

Для зарядки конденсатора требуется энергия от источника питания или другого источника. Заряженный конденсатор может поставлять энергию, необходимую для поддержания памяти в калькуляторе или тока в цепи, когда напряжение питания слишком низкое.

Количество энергии, запасенной в конденсаторе, зависит от:

  • количество зарядов на обкладках конденсатора
  • напряжение, необходимое для размещения этого заряда на обкладках конденсатора, т. е. емкость конденсатора.

На приведенном ниже графике показано, как напряжение на обкладках конденсатора зависит от накопленного заряда.

Когда заряд ΔQ добавляется к конденсатору при разности потенциалов V, совершаемая работа равна ΔQV. Полная работа, совершаемая при зарядке конденсатора, равна ΣΔQV.

Заштрихованная область между линией графика и осью заряда представляет собой энергию, запасенную в конденсаторе.

КЛЮЧЕВОЙ МОМЕНТ — Энергия E, хранящаяся в конденсаторе, определяется выражением E = ½ QV = 900 16 ½ CV 2 где Q заряд, накопленный на конденсаторе емкостью С, когда напряжение на нем равно В.

Зарядка и разрядка конденсатора

Когда конденсатор заряжается путем прямого подключения к источнику питания, сопротивление в цепи очень мало, и кажется, что конденсатор заряжается мгновенно. Это связано с тем, что процесс происходит в течение очень короткого промежутка времени.

Размещение резистора в цепи зарядки замедляет процесс. Чем больше значения сопротивления и емкости, тем дольше заряжается конденсатор.

На приведенной ниже диаграмме показано изменение тока во времени при зарядке конденсатора.

Наличие резистора в цепи означает, что для зарядки конденсатора необходимо выполнить дополнительную работу, поскольку при протекании заряда через резистор всегда происходит передача энергии в тепло.

Этот график показывает, что:

  • зарядный ток падает по мере заряда конденсатора, а напряжение на конденсаторе возрастает на
  • зарядный ток уменьшается в той же пропорции через равные промежутки времени.

Второй пункт показывает, что изменение тока происходит по той же схеме, что и активность радиоактивного изотопа. Это пример экспоненциальное изменение , зарядный ток уменьшается экспоненциально.

Приведенный выше график можно использовать для расчета количества заряда, поступающего на конденсатор, путем оценки площади между линией графика и осью времени. Поскольку ток = скорость потока заряда , отсюда следует, что:

КЛЮЧЕВОЙ МОМЕНТ — На графике зависимости тока от времени площадь между линией графика и осью времени представляет поток заряда.

Для расчета расхода заряда:

  • оценить количество целых квадратов между линией графика и осью времени
  • умножьте это на «значение заряда» каждого квадрата, полученное путем вычисления ΔQ × Δt для одного квадрата.

Постоянная времени

Когда конденсатор заряжается или разряжается, количество заряда на конденсаторе изменяется экспоненциально. Графики на диаграмме показывают, как изменяется во времени заряд конденсатора при его зарядке и разрядке.

Графики, показывающие изменение напряжения во времени, имеют одинаковую форму. Поскольку В = Q/C , из этого следует, что единственная разница между графиком заряд-время и графиком напряжение-время заключается в метке и масштабе по оси Y.

На этих графиках показано, как заряд конденсатора приближается к конечному значению, нулю в случае разряда конденсатора, но так и не достигает его.

Скорость изменения заряда конденсатора зависит от постоянная времени цепи зарядки или разрядки.

КЛЮЧЕВОЙ МОМЕНТ — Постоянная времени τ цепи заряда или разряда конденсатора является произведением сопротивления и емкости:
τ = RC . τ измеряется в с.

Чем выше значения R и C , тем дольше длится процесс зарядки или разрядки. Знание значений R и C позволяет рассчитать количество заряда конденсатора в любое время после того, как конденсатор начал заряжаться или разряжаться. Это полезно в схемах синхронизации, где переключатель срабатывает, когда заряд и, следовательно, pd достигают определенного значения.

Постоянная времени τ представляет:

  • время, за которое заряд конденсатора упадет до 1/e его первоначального значения, когда конденсатор разряжается
  • время, за которое заряд конденсатора увеличится до 1– 1/e его конечного значения при зарядке конденсатора

Роль постоянной времени аналогична роли периода полураспада при радиоактивном распаде. Когда конденсатор разряжается, 1/e 2 начального заряда остается после времени и 1/e 3 остается после .

Экспоненциальная функция e используется для расчета оставшегося заряда на разряжающемся конденсаторе.

КЛЮЧЕВОЙ МОМЕНТ — Заряд, Q, на конденсаторе емкостью C, оставшееся время t после начала разрядки определяется выражением Q = Q 0 e –t /τ , где Q 0 начальный заряд конденсатора.

Здесь e — экспоненциальная функция, обратная натуральному логарифму, пер. Не перепутайте ее с кнопкой EXP на калькуляторе, которая используется для ввода степеней 10.

Это выражение показывает, что когда t равно τ , т. е. по истечении одной постоянной времени, оставшийся заряд равен Q 0 e –1 или Q 0 /e

ПРОВЕРКА ПРОГРЕССА

90 000 Все о конденсаторах — INFO4EEE
 Что такое конденсатор: —

Конденсатор – это пассивный элемент, накапливающий электростатический заряд и используемый в качестве устройства контроля напряжения, используемого в фильтрах и для разделения фаз в однофазных асинхронных двигателях. Конденсатор препятствует изменению напряжения, поэтому он называется устройством, управляемым напряжением, и используется в цепи зарядки в качестве конденсаторного фильтра.

При запуске, когда заряд проходит через него, он действует как короткое замыкание, а при полном заряде действует как разомкнутая цепь.

                                  XC= 1/2πfC

Для низких частот емкостное сопротивление очень велико, а для высоких частот емкостное сопротивление очень низкое, поэтому конденсатор пропускает низкие частоты и блокирует высокие частоты.

Типы конденсаторов: —
  1. Электролитические конденсаторы : — Это конденсаторы высокой емкости, в основном доступные в диапазоне микрофарад и используемые для контроля напряжения вблизи выхода и входа для регулирования напряжения. Эти конденсаторы имеют полярность, положительная точка соединена с положительным питанием, а отрицательная точка связана с отрицательным питанием или нейтралью. Они доступны в алюминиевом и танталовом материале, в котором тантал очень точен и дорог.
  2. Керамический конденсатор :- Это конденсаторы низкой емкости, имеющие пикофарадный диапазон и используемые в схемах фильтров. Эти конденсаторы не имеют полярности.
  3. Бумажный конденсатор :- Конденсаторы этого типа используются в пускателе двигателя для разделения пусковой фазы и в цепях аудиоусилителя. Эти конденсаторы доступны от 300 пикофарад до 4 миллифарад в диапазоне напряжений до 600 вольт.
  4. Конденсатор полиэфирный:-   Конденсаторы этого типа используются для нормального управления высоким переменным напряжением в цепях питания без трафомеров. Они доступны в диапазоне от 50 В до 1500 В с диапазоном емкости от 1 нФ до 15 микрофарад. Допуск для этих конденсаторов обычно остается в диапазоне 5 %, 10 % и 20 %. 9-t/RC)

     Где RC= τ  = постоянная времени 

    5τ — время полной зарядки конденсатора.

    3. Серийная комбинация конденсаторов: —

    1/Ceq= 1/C1 + 1/C2  + 1/C3

    Qeq= Q1  = Q2 = Q3 последовательный одинаковый ток протекает через все конденсаторы, и конденсаторы заряжаются посредством индукции один за другим, несмотря на разное значение всех конденсаторов

     

    4.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *