Закрыть

Вторая гармоника частоты: Общая физика. Оптика и волны

Содержание

Гармоники тока и напряжения в электросетях

Проблема гармоник….

Любые приборы и оборудование с нелинейными характеристиками являются источниками гармоник в своей сети. Если вы сталкиваетесь с таким оборудованием или имеете опыт работы в сетях с гармониками, тогда дроссели с конденсаторами или фильтрокомпенсирующие установки (ФКУ) могут прийти вам на помощь. Гармонические искажения  и связанные с этим проблемы в электрических сетях, становятся все более превалирующими в распределительных сетях.

Проблемы создаваемые гармониками.
  • дополнительный нагрев и выход из строя конденсаторов, предохранителей конденсаторов, трансформаторов, электродвигателей, люминесцентных ламп и т.п.;

  • ложные срабатывания автоматических выключателей и предохранителей;

  • наличие третьей гармоники и ее производных 9,12 и т.д. в нейтрали может потребовать увеличения сечения ее проводника;

  • гармонический шум (частые переходы через 0) может служить причиной неправильной работой компонентов систем контроля;

  • повреждение чувствительного электронного оборудования;

  • интерференция систем коммуникации.

 

Следующие разделы являются описанием гармоник, характеризацией проблемы и поиском решения.

Происхождение гармонических искажений

Постоянно увеличивающиеся требования промышленности и народного хозяйства к стабильности, приспосабливаемости и точности контроля в электрическом оборудовании привело к появлению относительно дешевых силовых диодов, тиристоров, SCR (Silicon Controlled Rectifier) и других силовых полупроводников.

Сейчас, широко используемые в выпрямительных цепях UPS полупроводники, статические преобразователи переменного напряжения в постоянное, устройства плавного пуска пришедшие на смену устаревшим устройствам изменили картину формы тока и напряжения в электросетях. Хотя твердотельные реле, такие как тиристоры привнесли существенные изменения в схемотехнику систем контроля, они, также, создали проблему генерации гармоник тока. Гармоники тока могут сильно влиять на энергоснабжающие сети, а также перегружать косинусные конденсаторы служащие для компенсации реактивной мощности (при увеличении частоты, снижается сопротивление конденсатора и растет ток через него).

Мы сфокусировали наше внимание на таких источниках гармоник, как твердотельные элементы силовой электроники, однако существует много других источников гармонических токов. Эти источники могут быть сгруппированы в трех основных типах:

  1. Силовое электронное оборудование: частотные привода переменного тока, привода постоянного тока, источники бесперебойного питания UPS, выпрямители (шестифазные, по схеме Ларионова), конвертеры, тиристорные системы, диодные мосты, плавильные печи высокой частоты.

  2. Сварочное, дуговое оборудование: дуговые плавильные печи, сварочные автоматы, освещение (ДРЛ-ртутные лампы, люминесцентные лампы)

  3. Насыщаемые устройства: Трансформаторы, двигатели, генераторы, и т.д. Гармонические амплитуды на этих устройствах являются обычно незначительна по сравнению с элементами силовой электроники и сварочным оборудованием, при условии что насыщение не происходит.

Форма синусоиды тока

Гармоники – это синусоидальные волны суммирующиеся  с фундаментальной (основной) частотой 50 Гц (т.е 1-я гармоника=50 Гц, 5-я гармоника = 250 Гц). Любая комплексная форма синусоиды может быть разложена  на составляющие частоты, таким образом комплексная синусоида есть сумма определенного числа четных или нечетных гармоник с меньшими или большими величинами.

Гармоники – есть продолжительные возмущения или искажения в электрической сети, имеющие различные источники и проявления такие как импульсы, перекосы фаз, броски и провалы, которые могут быть категоризованы как переходные возмущения.

Переходные возмущения обычно решаются путем установки подавляющих или разделяющих (изолирующих) устройств, таких как импульсных конденсаторов, изолирующих (разделяющих) трансформаторов. Эти устройства помогают устранить переходные возмущения, но они не помогают устранить гармоники низких порядков или устранить проблемы резонанса в связи с присутствием гармоник в сети.

 

Гармоническое содержание синусоиды

Тиристоры и SCR выпрямители обычно проявляются числом пульсаций постоянного тока которые они производят каждый период. Обычно это 6-и или 12-пульсные выпрямители. Есть много факторов, которые могут влиять на гармоническое содержание, но типичные гармонические токи, показанные как процент от фундаментального тока 50 Гц, показаны в таблице. Другие номера гармоник также будут присутствовать, в небольшой степени, но из практических соображений они не приводятся.

Номер гармоники

Типичное содержание в % гармоник тока

6-ти пульсный

выпрямитель

12-ти пульсный

выпрямитель

1

100

100

5

20

7

14

11

9

9

12

8

8

17

6

19

5

23

4

4

23

4

4

Разложение формы кривой тока на гармонические составляющие

Перегрузка конденсаторов гармониками

Согласно закону Ома сопротивление цепи определяет протекающий по ней ток. Так как сопротивление источника энергии является индуктивным, кроме того, импеданс сети увеличивается с частотой, в то время как сопротивление конденсатора с ростом частоты уменьшается. Это вызывает рост тока через конденсаторы и оборудование содержащее их. При определенных обстоятельствах, гармонические потоки могут превысить ток фундаментальной гармоники 50 Гц протекающей через конденсатор. Эти гармонические проблемы могут также вызвать увеличение напряжения на конденсаторе, которое может превысить максимально допустимое значение и привести к пробою конденсатора.

Гармонический резонанс

Резонанс в сети достигается когда сопротивление конденсатора равно сопротивлению источника. Когда мы применяем конденсаторы для компенсации реактивной мощности в распределительных сетях, которые содержат и емкостную и индуктивную (индуктивность линии, силовых трансформаторов) составляющую, всегда существует частота на которой возможно явление параллельного резонанса конденсатора с источником.

Если это происходит, или частота близка к частоте резонанса, то гармоники генерируемые силовыми полупроводниками (большие токи гармоник) начинают циркулировать между генерирующей сетью  и конденсаторным оборудованием. Эти токи ограничиваются только сопротивлением линии. Такие токи приводят к возмущениям и искажениям напряжения в сети. Как результат: повышенное напряжение на конденсаторах, и повышенный ток через них, Резонанс может произойти на любой частоте, но в основном это 5-я, 7-я, 11-я и 13-я гармоники которые генерируются 6-пульсными системами выпрямления трехфазного напряжения.

Предотвращение резонанса в электросетях

Есть несколько путей, чтобы избежать явлений резонанса в распределительных сетях где установлены конденсаторы. В больших распределительных сетях, есть возможность установки их в части сети, которая не имеет параллельного резонанса с индуктивностью трансформатора. Изменяя выходную мощность конденсаторной установки, мы можем отстроиться от опасной резонансной частоты. Резонансная частота с включением каждого шага конденсаторной установки изменяется.

Резонансные явления при использовании конденсаторов в электросетях с нелинейными потребителями

Сдвиг резонансной частоты

Если резонанса нельзя избежать вышеприведенным методом, необходимо альтернативное решение. Последовательно с каждым конденсатором ставится реактор (трехфазный дроссель)  таким образом, чтобы система конденсатор-дроссель имела индуктивный характер на критических частотах, и емкостной характер на основной частоте 50 Гц. Для этого система конденсатор-дроссель должна иметь резонансную частоту ниже наименьшего частоты гармоники присутствующей в сети, которая обычно бывает 5-ой (250 Гц). Это означает, что частота настройки системы конденсатор дроссель д.б. между значениями 175…270 Гц. В системе конденсатор дроссель напряжение основной частоты на дросселе повышается, соответственной мы должны использовать конденсаторы на повышенное напряжение.

Снижение гармонических искажений

Гармонические искажения могут подавляться в электрических системах при использовании гармонических фильтров. В классическом виде фильтр представляет собой последовательно соединенные конденсатор и индуктивность и настроенные на определенную гармоническую частоту. В теории сопротивление фильтра равно нулю на частоте резонанса, поэтому гармонический ток абсорбируется фильтром. Этот эффект вместе с сопротивлением линии означает, что таким образом можно хорошо подавлять гармоники в сети.

Типы фильтров гармоник

Эффективность фильтра любой формы зависит от его реактивной мощности, точности настройки, и импеданса сети в точке подключения. Гармоники ниже частоты резонанса фильтра будут усиливаться. Схемотехника фильтра важна, чтобы быть уверенным в том что искажения не будут усиливаться до неприемлемых уровней. Когда несколько различных порядков гармоник присутствуют в сети мы можем подавлять одни в то же время усиливая другие. Фильтр 7-ой гармоники создает параллельный резонанс на частоте 5-ой и усиливает ее, поэтому к фильтру 7-ой гармоники необходим фильтр 5-ой гармоники. Поэтому часто необходимо использовать несколько фильтров, настроенных каждый на свою частоту.

Анализ и измерение гармоник в сети

Прежде чем приступать к внедрению конденсаторных установок для компенсации реактивной мощности на предприятии, а также фильтров гармоник необходимо провести всесторонние измерения параметров сети: активную реактивную, полную мощность, величину и уровни  гармоник тока и напряжения, провалы и перенапряжения в линии, фликкер. Для этих целей компания Матик электро имеет в своем штате профессиональных инженеров с анализаторами сети и ноутбуками для обработки информации на месте съема. Мы проводим выездные измерения по всей России, предоставляем отчет и рекомендации с последующим внедрением энергосберегающего оборудования (конденсаторных установок для компенсации реактивной мощности) и фильтров гармоник.

Гармоники в электрических сетях: причины, источники, способы защиты

Работа большинства электрических приборов обеспечивается качеством поступающей на них электрической энергии. Но даже в условиях безаварийной работы в системе возникают процессы, обуславливающие возникновение гармоник в электрических сетях. При этом никаких отключений или нарушений может и не происходить, большинство гармоник спокойно вырабатываются во всех цепях, независимо от рода нагрузки. Однако с возрастанием их величины, возможен ряд негативных последствий, как для потребителей, так и для энергосистемы в целом.

Что такое гармоники?

Если напряжение и ток, вырабатываемые источником, максимально приближается к форме идеальной синусоиды, то из-за нелинейных нагрузок, подключенных к электрической цепи, форма начального сигнала получает искажение. Гармоники представляют собой производные по частоте от основной синусоиды в 50 Гц и являются кратными ее величине.

По кратности гармоники подразделяются на четные и нечетные.  То есть гармоника №1 – это 50 Гц, 2 – 100 Гц, 3 -150 Гц и т.д. Каждая из них является одной из составляющих результирующей формы напряжения и тока. А значит, что напряжение и ток в сети можно свободно разложить на гармонические составляющие.

Гармоники и их сложение

Посмотрите на рисунок выше, здесь вы видите детальный пример разложения синусоиды на гармоники и их влияние на форму синусоидального напряжения. В первой позиции изображены результирующая функция с нелинейными искажениями, которые обусловлены показанными ниже нечетными гармониками и подобными им с большей частотой. Величина этих гармоник будет определять величину скачков и провалов на результирующем сигнале. Поэтому, чем больше проявляется та или иная гармоника, тем больше кривая будет отличаться от синусоиды.

По сути, гармоника представляет собой паразитную ЭДС, которая никак не поглощается существующими потребителями или поглощается только частично. Из-за чего возникает негативное влияние на все силовые сети. Естественное поглощение осуществляют лишь активные сопротивления, но в размере пропорциональном потребляемой ими мощности. В то же время, сами потребители можно рассматривать как источники, активно генерирующие искаженный сигнал.

Причины и источники гармоник в электрических сетях

Главной причиной гармонического искажения является протекание каких-либо переходных процессов в электрических сетях. Независимо от характера созданной нагрузки, переходной процесс можно наблюдать в работе той же лампы накаливания, которая, казалось бы, характеризуется исключительно активными потерями. Так, разница между сопротивлением нити лампы в холодном и нагретом состоянии создает переходной процесс, который привносит скачок. Но из-за низкого уровня искажения и относительно кратковременного протекания, влияние на всю систему получается ничтожным.

Поэтому можно смело сказать, что и активные, и реактивные сопротивления в сетях электропитания могут способствовать генерации гармоник. Тем не менее, существует ряд устройств, обуславливающих весомую величину искажения, которая способна нанести существенный ущерб приборам. На практике к источникам искажения относят такие виды оборудования:

  • Силовое электрооборудование – приводы постоянного и переменного тока, высокочастотные плавильные печи, полупроводниковые преобразователи, источники бесперебойного питания (ИБП), преобразователи частоты.
  • Устройства, работающие по принципу формирования электрической дуги – электросварочные установки, дуговые печи, лампы освещения (ДРЛ, люминесцентные и другие).
  • Насыщаемые приборы – двигатели, трансформаторы, обладающие магнитопроводом, который может достигнуть насыщения петли гистерезиса. Без такового насыщения их вклад в формирование гармонической составляющей будет незначительным.

Среди бытовых приборов значительный вклад в генерацию несинусоидальных составляющих вносят те же микроволновые печи. Обратите внимание, что из-за особенностей режима работы одна такая печь способна кратковременно снижать уровень напряжения в сети на 2 – 4%, и, что куда более существенно, повышать коэффициент искажения его кривой на 6 – 18%.

Категории и принцип разделения

В соответствии с особенностями протекания процесса в сетях и источниках электропитания, все гармонические составляющие условно разделяются по таким параметрам:

  • по пути распространения выделяют пространственные либо кондуктивные;
  • по прогнозируемости времени возникновения выделяют случайные либо систематические;
  • по продолжительности могут быть кратковременными (импульсными) либо длительными.

Так, импульсные возмущения обуславливаются единичными коммутациями в питающей сети, короткими замыканиями, перенапряжениями, которые после их отключения потребовали бы ручного включения. А в случае срабатывания АПВ, в основной гармонике появляются уже прогнозируемые изменения, наблюдающиеся в нескольких периодах.

Длительные изменения обуславливаются какой-либо циклической нагрузкой, подаваемой мощными потребителями. Для возникновения таких высших гармоник, как правило, необходима ограниченная мощность сети и относительно большие нелинейные нагрузки, обуславливающие генерацию реактивной мощности.

Возможные последствия

В случае постоянно присутствующего фактора, генерирующего гармоники, их воздействие может обуславливать различные негативные последствия в электрической сети.  Из которых особо следует выделить:

  • Сопутствующий нагрев, выводящий из строя изоляцию двигателей, обмоток трансформаторов, снижающий сопротивление конденсаторов и.т. При нагревании фазного провода или других токопроводящих элементов в диэлектриках возникают необратимые процессы, снижающие их изоляционные свойства.
  • Ложное срабатывание в распределительных сетях – приводит к отключению автоматов, высоковольтных выключателей и прочих устройств, реагирующих на изменение режима, обусловленное гармониками.
  • Вызывает асимметрию в промышленных сетях с трехфазными источниками при возникновении гармоники на одной фазе. От чего может нарушаться нормальная работа трехфазных выпрямителей, силовых трансформаторов, трехфазных ИБП и прочего оборудования.
  • Возникновение шума в сетях связи, влияние на смежные слаботочные и силовые кабели за счет наведенной ЭДС. На величину гармоники ЭДС влияет как расстояние между проводниками, так и продолжительность их приближения.
  • Приводит к преждевременному электрическому старению оборудования. За счет разрушения чувствительных элементов, высокоточные приборы утрачивают класс точности и подвергаются преждевременному изнашиванию.
  • Обуславливает дополнительные финансовые расходы, обуславливаемые потерями от индуктивных нагрузок, остановкой производства, внеочередными ремонтами и преждевременной поломкой.
  • Потребность увеличения сечения нулевых проводов в связи с суммированием гармоник кратных 3-ей в трехфазных сетях.

Рассмотрите на примере негативное влияние на работу трехфазных цепей. В идеальном варианте, когда каждая из фаз запитывает линейную нагрузку, система находится в равновесии. Это означает, что в сети отсутствуют гармоники, а в нулевом проводе ток, так как все токи при симметричной нагрузке смещены на 120º и компенсируют друг друга в нейтрали.

Если в схеме электроснабжения на одной из фаз возникает потребитель или фактор, искривляющий переменный ток, то возникает автоматическое изменение остальных фазных токов, их смещение относительно начальной величины и угла. Из-за нарушения симметрии и отсутствия компенсации в нулевом проводе начинает протекать ток.

Рис. 2. Развитие тока в нейтрали

Как показано на рисунке 2, нечетные гармоники кратные 3-ей обладают тем же направлением, что и основной ток. Но в связи с нарушением компенсирующего эффекта симметричной системы, они накладываются друг на друга и способны выдать в нейтраль ток, значительно превышающий номинальный для этой цепи. Из-за чего возникает перегрев, который может вызвать аварийные ситуации.

Все вышеперечисленные последствия ведут к снижению качества электрической энергии, чрезмерным перегрузкам и последующему падению фазного напряжения. В частных случаях, последствия протекания гармоник могут создавать угрозу для персонала и потребителей. С целью предотвращения таких последствий на электростанциях, трехфазных кабелях и прочем оборудовании устанавливается защита от гармоник.

Защита от гармоник

Для защиты применяются устройства с активными и пассивными элементами, действие которых направлено на поглощение или компенсацию гармоник в сети. Наиболее простым вариантом являются LC-фильтры, состоящие из линейного дросселя и конденсатора.

Рис. 3. Схема  LC-фильтра

Посмотрите на рисунок 3, здесь изображена принципиальная схема фильтра. Его работа основана на индуктивном сопротивлении катушки L, которое не позволяет току мгновенно набирать или терять величину. И на емкости конденсатора C, которая обеспечивает постепенное нарастание или падение напряжения. Это означает, что гармоники не могут резко изменить форму синусоиды и обеспечивают ее плавное нарастание и спад на нагрузке RН.

При последовательном включении катушки и конденсатора с конкретной подборкой параметров,  их комплексное сопротивление будет равно нулю для какой-то гармоники. Недостатком такого пассивного фильтра является необходимость формирования отдельной цепи для каждой составляющей в сети. При этом необходимо учитывать их взаимодействие. Так, к примеру, при гашении пятой гармоники происходит усиление седьмой, поэтому на практике устанавливаются несколько фильтров подряд, как показано на рисунке 4.

Рис. 4. Шунтирующий фильтр

За счет того, что каждая цепочка  L1-C1, L2-C2, L3-C3 шунтирует соответствующую составляющую, фильтр получил название шунтирующего. Помимо этого, в качестве входного фильтра могут применяться устройства с активным подавлением гармоник.

Рис. 5 Принцип действия активного кондиционера гармоник

Посмотрите на рисунок 5, здесь изображен активный фильтр. Источник питания генерирует ток ips, на который оказывает влияние нелинейная нагрузка, из-за чего в сети получается несинусоидальная кривая in. Активный кондиционер гармоник (АКГ) измеряет величину всех нелинейных токов iahc и выдает в сеть такие же токи, но с противоположным углом. Что позволяет нейтрализовать гармоники и выдать потребителю ток первой гармоники максимально приближенный к синусоиде.

Установка любого из существующих видов защиты требует детального анализа гармонических составляющих, нагрузок, коэффициентов амплитуды и коэффициентов мощности для конкретной сети. Чтобы подобрать наиболее эффективный способ удаления и выполнить соответствующие настройки.

Список использованной литературы

  • Арриллага Дж., Брэдли Д., Боджер П. «Гармоники в электрических системах» 1990
  • Бржезицкий В.А., Найдовский А. В., Бутов С. В. «О влиянии высших гармонических составляющих напряжения на характеристики измерительных трансформаторов» 1983
  • Волков А.И., Макарова ТМ., Полевая В.П., Рыжов ЮМ., Федченко В.Г. «О влиянии долевого участия выпрямительной нагрузки на гармонический состав напряжения автономной системы» 1974
  • Жаркий А.Ф., Каплычный Н.Н. «Анализ высших гармоник в низковольтных сетях с помощью традиционных моделей» 2001
  • Шидловский А.К., Драбович Ю.И., Комаров Н.С., Москаленко ГА., Козлов А.В. «Анализ гармонического состава потребляемого тока преобразователя переменного напряжения в постоянное с улучшенной электромагнитной совместимостью»  1987

основных и гармонических частот — Teach Me Audio

Музыкальные звуки состоят из основной частоты, гармоник и обертонов.

  • Основная частота
  • Гармоники
  • обертонов
  • Результирующий тембр

Основная частота

Самая низкая частота любого вибрирующего объекта называется основной частотой . Основная частота придает звуку самый сильный слышимый высота тона ссылка — это преобладающая частота в любом сложном сигнале.

Синусоидальная волна является самой простой из всех форм волны и содержит только одну основную частоту и не содержит гармоник, обертонов или частичных составляющих.

Практически все музыкальные звуки имеют волны, бесконечно более сложные, чем синусоиды. Именно добавление к волне гармоник и обертонов позволяет различать разные звуки и инструменты; тембр.

Гармоники

Гармоника является одним из восходящих рядов звуковых компонентов, которые звучат выше слышимой основной частоты.

Гармоники более высокой частоты, которые звучат выше основной, составляют гармонический спектр звука. Гармоники бывает трудно отчетливо воспринимать как отдельные компоненты, тем не менее, они есть.

Гармоники имеют меньшую амплитуду  , чем основная частота.

Гармоники – это целые кратные основной частоты. Например, если основная частота равна 50 Гц (также известная как первая гармоника), то второй гармоникой будет 100 Гц (50 * 2 = 100 Гц), третьей гармоникой будет 150 Гц  (50 * 3 = 150 Гц) и так далее.

Рисунок 1 – Гармоники

Обертоны

Обертоны — это частоты волны, которые выше, но не имеет прямого отношения к , основной частоте.

Результирующий тембр

Два тона, воспроизводимые разными инструментами, могут иметь одну и ту же основную частоту и, следовательно, одинаковую высоту тона, например нота до, но звучать очень по-разному из-за наличия разного количества гармоник и обертонов.

Это присутствие гармоник и обертонов в звуковой волне, что помогает производить звук уникальный звук.

Тембр описывает те характеристики звука, которые позволяют уху различать звуки, имеющие одинаковую основную высоту .

Именно по тембру мы можем отличить один инструмент от другого, например, пианино, играемое в ноте C3, звучит иначе, чем гитара, играющая в ноте C3.

Тембр часто описывается субъективно, например, тростниковый или золотой.

Обновлено 6 мая 2020 г.

Что такое гармоника? Определение из WhatIs

К

  • Эндрю Золя

Что такое гармоника?

Гармоника – это волна или сигнал, частота является целым (целым) кратным частоты того же опорного сигнала или волны. В рамках гармонического ряда этот термин также может относиться к отношению частоты такого сигнала или волны к частоте опорного сигнала или волны.

Основная частота или исходная волна известна как первая, или 1 st, , гармоника. Следующие гармоники называются высшими гармониками. Основная частота всех гармоник периодична, и общее количество гармоник также периодично на этой конкретной частоте.

Термин гармоника используется в различных областях, таких как электронная передача энергии, музыка, радио и все технологии, использующие волны в других формах. Их частоты всегда относятся к этим волнам и всегда находятся в целых числах.

Например, f представляет собой основную или основную частоту сигнала переменного тока (AC), электромагнитного поля или звуковой волны. Эта частота измеряется в герцах и представляет собой частоту, на которой она содержит большую часть энергии. Он также может представлять, когда сигнал должен произойти. Если сигнал отображается на осциллографе, форма сигнала будет повторяться с частотой, соответствующей 90 116 f 90 117 Гц.

Как измеряется длина волны.

Для сигнала с основной частотой f вторая гармоника имеет частоту 2 f . Третья гармоника имеет частоту 3 f и так далее. Кроме того, w представляет собой длину волны сигнала или волны в указанной среде. Вторая гармоника имеет длину волны w /2, а третья гармоника имеет длину волны w /3. Сигналы, возникающие на частотах 2 f , 4 f , 6 f и более, называются четными гармониками. Сигналы на частотах 3 f , 5 f и 7 f называются нечетными гармониками. Теоретически сигнал может иметь бесконечное число гармоник.

Почти все сигналы содержат энергию на частотах гармоник в дополнение к энергии на основной частоте. Если он содержит всю энергию сигнала на основной частоте, то этот сигнал является идеальной синусоидой. Если сигнал не является идеальной синусоидой, то в гармониках содержится некоторая энергия. Некоторые формы сигналов содержат большое количество энергии на частотах гармоник, например прямоугольные, пилообразные и треугольные волны.

Распространенные формы сигнала.

В беспроводной связи и радиовещании передатчики были спроектированы так, чтобы излучать минимум энергии на гармонических частотах. Обычно беспроводные устройства используют только одну частоту. Выходной сигнал на гармонических частотах может создавать помехи для других протоколов связи или вещания.

Например, вещательный сигнал на частоте 90,5 мегагерц (МГц) в стандартном диапазоне FM будет иметь вторую гармонику на частоте 181 МГц, третью гармонику на частоте 271,5 МГц, четвертую гармонику на частоте 362 МГц и так далее. Некоторые или все эти гармонические сигналы, в зависимости от их силы, могут нарушить работу других беспроводных служб.

Другое использование гармоники

Harmonic имеет несколько дополнительных значений, в том числе:

Что такое гармонические искажения?

В системах распределения электроэнергии гармонические искажения представляют собой стандартное изменение напряжения и тока в результате изменения частоты. Например, это может быть отклонение от типичных синусоидальных колебаний напряжения или тока.

Что такое гармоническое движение?

В физике гармоническое движение или простое гармоническое движение представляет собой повторяющееся движение — вперед и назад — через центральное или позиционное равновесие. В этом случае максимальное перемещение в одну сторону равно полному перемещению в противоположную сторону.

Интервал каждой завершенной вибрации всегда одинаков. Сила, создающая движение, всегда направлена ​​к центральному положению или положению равновесия. Она всегда прямо пропорциональна расстоянию от него.

Что такое гармонический балансир?

В автомобилях балансир гармоник представляет собой компонент привода, который соединяется с коленчатым валом двигателя. Часто называемый демпфером коленчатого вала, крутильным демпфером или виброгасителем, гармонический балансир помогает снизить вибрацию двигателя. Иногда гармонический балансир также работает как шкив для приводных ремней.

Что такое гармонический ряд?

В математике гармонический ряд описывает расходящийся бесконечный ряд обертонов или гармоник в музыке. В этом сценарии длины волн обертонов вибрирующей струны равны 12, 13, 14 и т. д. основной длины волны струны.

Что такое гармоника в электрическом контексте?
Гармоники

описывают искажение нормальных форм сигналов электрического тока. Обычно они передаются нелинейными нагрузками.

Примеры нелинейных нагрузок включают:

  • Зарядные устройства
  • Персональные компьютеры
  • Лазерные принтеры
  • Двигатели и приводы с регулируемой скоростью
  • Импульсные источники питания (SMPS)

Узнайте все о Wi-Fi 6 и 5G на предприятии . Узнайте, почему тактика маршрутизации оптических сетей может изменить правила игры , и взгляните на Передовой опыт проектирования сетей Wi-Fi .

Последнее обновление: ноябрь 2021 г.

Продолжить чтение о гармонике
  • Спектр частот 5G заставляет по-новому взглянуть на стратегии покрытия
  • Как динамический доступ к спектру используется подключенными автомобилями?
  • Реальная стоимость беспроводного питания
  • Влияние типов шума в системах передачи данных на сеть
  • Обеспечение энергоснабжения центра обработки данных с помощью регулярного обслуживания ИБП
Симуляция Монте-Карло

Моделирование по методу Монте-Карло — это математический метод, который моделирует диапазон возможных исходов неопределенного события.

Сеть

  • ACK (подтверждение)

    В некоторых протоколах цифровой связи ACK — сокращение от «подтверждение» — относится к сигналу, который устройство посылает, чтобы указать. ..

  • поставщик сетевых услуг (NSP)

    Поставщик сетевых услуг (NSP) — это компания, которая владеет, управляет и продает доступ к магистральной инфраструктуре Интернета и …

  • неэкранированная витая пара (UTP)

    Неэкранированная витая пара (UTP) — это повсеместно распространенный тип медных кабелей, используемых в телефонной проводке и локальных сетях (LAN).

Безопасность

  • Требования PCI DSS 12

    Требования PCI DSS 12 представляют собой набор мер безопасности, которые предприятия должны внедрить для защиты данных кредитных карт и соблюдения …

  • данные держателя карты (CD)

    Данные держателя карты (CD) — это любая личная информация (PII), связанная с лицом, у которого есть кредитная или дебетовая карта.

  • Уровни продавца PCI DSS Стандарт безопасности данных индустрии платежных карт (PCI DSS)

    ранжирует продавцов по количеству транзакций за . ..

ИТ-директор

  • системное мышление

    Системное мышление — это целостный подход к анализу, который фокусируется на том, как взаимодействуют составные части системы и как…

  • краудсорсинг

    Краудсорсинг — это практика обращения к группе людей для получения необходимых знаний, товаров или услуг.

  • синтетические данные

    Синтетические данные — это информация, созданная искусственно, а не в результате событий реального мира.

HRSoftware

  • вовлечения сотрудников

    Вовлеченность сотрудников — это эмоциональная и профессиональная связь, которую сотрудник испытывает к своей организации, коллегам и работе.

  • кадровый резерв

    Кадровый резерв — это база данных кандидатов на работу, которые могут удовлетворить немедленные и долгосрочные потребности организации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *