Закрыть

Закон кирхгофа простыми словами: Законы Кирхгофа, объясняем простыми словами | Энергофиксик

Содержание

Законы Кирхгофа, объясняем простыми словами | Энергофиксик

С помощью первого и второго законов Кирхгофа, а также закона Ома можно найти параметры схемы любой сложности. Поэтому знание, а самое главное понимание этих трех законов строго обязательно для всех кто занимается электроникой. В этой статье я постараюсь максимально просто объяснить и на простейших схемах показать, как работают законы Кирхгофа. Итак, давайте начнем.

Первый закон Кирхгофа

Итак, Первый закон Кирхгофа говорит нам о том, что сумма токов в любом узле абсолютно любой электрической цепи равна нулю. Или так же говорит, что алгебраическая сумма втекающих токов равна алгебраической сумме вытекающих из узла токов.

Узлом в сети называется такой участок цепи, в котором соединяются три и более проводника. Ток, входящий в узел, обозначается стрелочкой, имеющей направление к узлу, а вытекающий - стрелочкой, имеющей направление от узла

И теперь на основании первого закона Кирхгофа запишем следующее уравнение:

Эта же формула может быть записана следующим образом:

При этом положительные и отрицательные знаки токам присвоены условно и если вы поменяете их с точностью до наоборот, то ничего принципиально не изменится.

Для того, чтобы наглядно увидеть работу Первого закона Кирхгофа, давайте соберем простейшую схему.

В качестве источника питания вы можете выбрать абсолютно любой элемент, начиная от пальчиковой батарейки и заканчивая блоком питания с возможностью регулировки.

Примечание. Не обязательно использовать резисторы с номиналом, который указан на схеме. Вы можете подобрать абсолютно любые, какие есть у вас в наличии.

Итак, согласно 1 закону Кирхгофа у нас должно быть верно, следующее уравнение:

Либо верно:

Для проведения практических измерений нам нужно в место на схеме где указан амперметр подключить, например, мультиметр.

Как мы видим по показаниям мультиметра закон работает.

Второй закон Кирхгофа

С пониманием второго закона у многих радиолюбителей в самом начале пути возникают трудности. Но если объяснить по-простому, то все более чем просто, сейчас докажу.

Итак, определение второго закона Кирхгофа звучит так:

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме напряжений на всех пассивных элементах цепи.

Согласитесь, звучит не очень понятно, а вот если сказать проще то:

Сумма ЭДС в замкнутом контуре равна сумме падений напряжений и формула, выражающая этот закон, будет иметь такой вид

Или же

Для понимания давайте разберем самую простую схемку с одним пассивным элементом (резистором) и источником питания в виде пальчиковой батарейки.

Так как у нас резистор один, то падение напряжение на его выводах будет равно величине ЭДС элемента питания (батарейки), то есть 1,5 В = 1,5 В.

Если несколько усложнить схему и добавить к резистору еще один с аналогичным сопротивлением, то в этом случае, то напряжение в 1,5 Вольта поделится пополам на резисторах и будет равно 0,75 В.

Так же произойдет деление напряжения, если мы в цепочку включим третий резистор с одинаковым сопротивлением.

Формула обретет следующий вид:

Давайте для понимания соберем эту схему и произведем измерения.

Как видите, согласно второму закону Кирхгофа, небольшое расхождение в показаниях мультиметра спишем на погрешность прибора (китай как никак).

Кроме одного источника питания в цепи их может быть несколько как, например, в этой схеме

В этом случае у нас два источника питания подключены последовательно встречно, в таком варианте к нашим резисторам будет приложена разность ЭДС, то есть формула обретет следующий вид:

Второй закон Кирхгофа функционирует в цепях независимо от того сколько источников ЭДС и нагрузок будет в схеме. Так же нет принципиальной разницы, где они будут располагаться.

Так же первый и второй законы Кирхгофа одинаково применимы как для постоянного, так и для переменного тока.

Статья оказалась полезна или интересна, тогда ставим лайк и спасибо за уделенное внимание!

Объясняю 1 и 2 законы Кирхгофа простыми словами | ASUTPP

Законы Кирхгофа, которые касаются тока и напряжения - это два закона, которые действительно полезны, когда вы работаете с электрическими цепями.

Знание их значительно облегчит понимание принципиальных схем, конструирование электроники, ремонт электроники и многого другого.

Хотя эти законы могут показаться сложными - это не так.

Первый закон Кирхгофа

Первый закон Кирхгофа гласит: весь ток, поступающий в узел, равен всему току, выходящему из узла.

Другими словами можно перефразировать:

«То, что входит, должно выйти»

Рис. 1.

Согласно 1 закона Кирхгофа получаем: I1=I2+I3

Примеры первого закона Кирхгофа на практике:

  • Ток, который "втекает в цель", должен выходить из цепи.
  • Ток, который течет в резисторе, должен выходить из резистора.
  • Ток, который течет в четыре резистора параллельно, должен выходить из четырех резисторов параллельно.
Рис. 2. Пример схемы

В схеме выше (рис. 2), вы можете использовать первый закон Кирхгофа, чтобы найти ток через компоненты:

То, что входит в резистор R1, должно из него выйти. И этому току больше некуда идти, кроме как на две ветви со светодиодами. И тот ток, который входит в две ветви со светодиодами, должен выходить из этих двух ветвей.

Итак, вы знаете, что ток через резистор такой же, как суммарный ток двух светодиодов.

И пока светодиоды одного типа, половина тока будет уходить в левый светодиод, а половина в светодиод справа.

Два параллельных светодиода 2 В не влияют на падение напряжения, которое все еще равно 2 В. Теперь вы можете рассчитать ток точно так же, как мы это сделали в приведенном ниже примере со 2 законом Кирхгофа. Затем разделите ток пополам, чтобы получить текущее значение для каждого светодиода.

Когда вы знаете как применять 1 закон Кирхгофа, вы можете многое упростить. Если у вас большая цепь с множеством компонентов, включенных параллельно и последовательно, может быть сложно найти отдельные токи.

Но, может быть, вам это и не нужно?

Иногда достаточно просто знать, что если 500 мА входит в этот участок цепи - 500 мА выйдет из него.

Второй закон Кирхгофа

Второй закон Кирхгофа гласит, что если вы просуммируете все падения напряжения в цепи - вы получите напряжение источника питания.

Когда я узнал об этом впервые, я подумал «ВАУ! НЕУЖЕЛИ ЭТО ТАК?». Но потом это стало очевидным явлением.

ПРИМЕР:

На рисунке 3 ниже у вас есть 9-вольтовая батарея, подключенная к трем резисторам последовательно. Если вы измеряете напряжения на компонентах - сумма их составит 9 вольт.

Рис. 3.

Vr1 + Vr2 + Vr3 = 9 Вольт

Как это помогает вам понимать и читать принципиальные схемы?

Ну, часто у вас есть компоненты в цепи, которые, как вы знаете, имеют определенное падение напряжения.

Например: светодиод с прямым напряжением 2 В будет иметь падение напряжения 2 В, когда он горит (рисунок 4).

Рис. 4

Итак, если у вас есть такой светодиод в цепи с резистором и батарея 9 В питает цепь, вы знаете это:

Резистор будет иметь падение напряжения 7 В (9 В минус 2 В равно 7 В).

Зная падение напряжения на резисторе, давайте посчитаем ток через резистор.

Просто используйте закон Ома:

  • Ток = напряжение / сопротивление
  • Ток = 7В / 350 Ом
  • Ток = 0,02А

Итак, просто зная закон напряжения Кирхгофа, вы можете обнаружить, что ток в цепи составляет 20 мА.

Законы Кирхгофа простыми словами, теория и примеры

Два приема, которые применяют для упрощения процесса составления уравнений, необходимых при расчетах сложных разветвленных цепей постоянного тока называют законами (вернее было бы сказать правилами) Кирхгофа. Прежде чем перейти к самим правила Кирхгофа введем два необходимых определения.

Разветвлёнными цепями названы цепи, которые имеют несколько замкнутых контуров, несколько источников электродвижущей силы (ЭДС).

Узлом разветвлённой цепи называют точку, в которой сходятся три или более проводников с токами.

Первый закон (правило) Кирхгофа, простыми словами

Первое правило Кирхгофа называют правилом узлов, так как оно касается сил токов в узах цепи. Словесно первый закон Кирхгофа формулируют следующим образом: Алгебраическая сумма сил токов в узле равна нулю. В виде формулы это правило запишем как:

   

С каким знаком сила тока будет входить в сумму (1), зависит от произвольного выбора. Но при этом следует считать, что все входящие в узел токи имеют одинаковые знаки, а все исходящие из узла токи имеют противоположные входящим, знаки. Пусть все входящие токи мы примем за положительные, тогда все исходящие их этого узла токи будут отрицательными. Если направления токов изначально не заданы, то их задают произвольно. Если при расчетах получено, что сила тока отрицательна, значит, что верное направление тока является противоположным тому, которое предполагали.

Первый закон Кирхгофа является следствием закона сохранения заряда. Если в цепи текут только постоянные токи, то нет в этой цепи точек, которые накапливали бы заряд. Иначе токи не были бы постоянными.

Первый закон Кирхгофа дает возможность составить независимое уравнение, при наличии в цепи k узлов.

Второй закон (правило) Кирхгофа, простыми словами

Второй закон Кирхгофа относят к замкнутым контурам, поэтому его называют правилом контуров. Согласно этому правилу суммы произведений алгебраических величин сил тока на внешние и внутренние сопротивления всех участков замкнутого контура равны алгебраической сумме величин сторонних ЭДС (), входящих в рассматриваемый контур.

В виде формулы второй закон Кирхгофа запишем как:

   

где величину часто называют падением напряжения; N – число рассматриваемых участков избранного контура. При использовании второго правила Кирхгофа важно помнить о направлении обхода контура. Как это делается? Произвольно выберем направление обхода рассматриваемого в задаче контура (по часовой стрелке или против нее). В случае совпадения направления обхода контура с направлением силы тока в рассматриваемом элементе, величина входит в (2) со знаком плюс. ЭДС войдет в сумму правой части выражения (2) со знаком плюс, если при движении вдоль контура, в соответствии с избранным направлением обхода первым мы встречаем отрицательный полюс источника ЭДС.

Используя второе правило Кирхгофа можно получить независимые уравнения для тех контуров цепи, которые не получены наложением уже описанных контуров. Количестов независимых контуров (n) равно:

   

где p – количество ветвей в цепи; k – число узлов.

Количество независимых уравнений, которые дадут оба правила Кирхгофа равно (s):

   

Делаем вывод о том, что число независимых уравнений будет равно числу разных токов в исследуемой цепи.

Второе правило Кирхгофа — следствие закона Ома. В принципе любую цепь можно рассчитать, применяя только закон Ома и закон сохранения заряда. Правила Кирхгофа являются всего лишь упрощающими приемами для решения задач, рассматривающих цепи постоянного тока.

Используя правила Кирхгофа для составления уравнений необходимо внимательно следить за расстановкой знаков токов и ЭДС.

Первое и второе правила Кирхгофа дают метод расчета цепи, то есть используя их можно найти все токи в цепи, если известны все ЭДС и сопротивления, в том числе и внутренние сопротивления источников.

Примеры решения задач

Законы Кирхгофа - это... Что такое Законы Кирхгофа?

Зако́ны Кирхго́фа (или правила Кирхгофа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного и квазистационарного тока.[1] Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач теории электрических цепей.

Применение правил Кирхгофа к линейной цепи позволяет получить систему линейных уравнений относительно токов, и соответственно, найти значение токов на всех ветвях цепи. Сформулированы Густавом Кирхгофом в 1845 году.

Формулировка

Для формулировки законов Кирхгофа, в электрической цепи выделяются узлы — точки соединения трёх и более проводников и контуры — замкнутые пути из проводников. При этом каждый проводник может входить в несколько контуров.

В этом случае законы формулируются следующим образом.

Первый закон

Первый закон Кирхгофа (Закон токов Кирхгофа, ЗТК) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит p узлов, то она описывается p − 1 уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины.

Второй закон

Второй закон Кирхгофа (Закон напряжений Кирхгофа, ЗНК) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:

для постоянных напряжений
для переменных напряжений

Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению. Если цепь содержит ветвей, из которых содержат источники тока ветви в количестве , то она описывается уравнениями напряжений. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

Пример
На этом рисунке для каждого проводника обозначен протекающий по нему ток (буквой «I») и напряжение между соединяемыми им узлами (буквой «U»)

Например, для приведённой на рисунке цепи, в соответствии с первым законом выполняются следующие соотношения:

Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например здесь, токи, втекающие в узел, считаются положительными, а вытекающие — отрицательными.

В соответствии со вторым законом, справедливы соотношения:

Особенности составления уравнений для расчёта токов

  • Законы Кирхгофа, записанные для узлов и контуров цепи, дают полную систему линейных уравнений, которая позволяет найти все токи и напряжения.
  • Перед тем, как составить уравнения, нужно произвольно выбрать:
    • положительные направления токов в ветвях и обозначить их на схеме;
    • положительные направления обхода контуров для составления уравнений по второму закону.
  • С целью единообразия рекомендуется для всех контуров положительные направления обхода выбирать одинаковыми (напр.: по часовой стрелке)
  • Если направление тока совпадает с направлением обхода контура (которое выбирается произвольно), перепад напряжения считается положительным, в противном случае — отрицательным.
  • При записи линейно независимых уравнений по второму закону, стремятся, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых уже записаны уравнения по второму закону (достаточное, но не необходимое условие)

О значении для электротехники

Правила Кирхгофа имеют прикладной характер и позволяют наряду и в сочетании с другими приёмами и способами (метод эквивалентного генератора, метод контурных токов, метод узловых напряжений, принцип суперпозиции, способ составления потенциальной диаграммы) решать задачи электротехники. Правила Кирхгофа нашли широкое применение благодаря простой формулировке уравнений и возможности их решения стандартными способами линейной алгебры (методом Крамера, методом Гаусса и др.).

Существует мнение, согласно которому «Законы Кирхгофа» следует именовать «Правилами Кирхгофа», ибо они не отражают фундаментальных сущностей природы (и не являются обобщением большого количества опытных данных), а могут быть выведены из других положений и предположений.[источник не указан 912 дней]

Закон излучения

Закон излучения Кирхгофа — отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты для равновесного излучения и не зависит от их формы, химического состава и проч.

Примечания

Литература

  • Матвеев А. Н. Электричество и магнетизм — Учебное пособие. — М.: Высшая школа, 1983. — 463 с.
  • Калашников С. Г. Электричество — Учебное пособие. — М.: Физматлит, 2003. — 625 с.
  • Бессонов Л. А. Теоретические основы электротехники. Электрические цепи — 11-е издание. — М.: Гардарики, 2007.

Второй закон Кирхгофа - Основы электроники

Второй закон Кирхгофа или закон напряжений Кирхгофа формулируется так: полная ЭДС, действующая в замкнутом контуре, равна сумме падений напряжения на всех резисторах в этом контуре.

Рассмотрим схему на рисунке. 1, состоящую из одного контура.

Здесь полная ЭДС Е1 + Е2, действующая внутри контура, равна сумме падений напряжения на резисторах R1 и R2:

E1 + E2 = UR1 + UR2

Если изменить полярность Е2 на противоположную (рис. 2), то она будет иметь то же направление (против часовой стрелки), что и UR1 и UR2

E1- Е2 = UR1 + UR2 или E1 = Е2 + UR1 + UR2

Рассмотрим схему, имеющую несколько контуров (рис. 3).

Для кон­тура ABEF можно записать

E1= UR1 + UR2,

а для контура ACDF

E12 = UR1 + UR3

Обходя контур BCDE, видим, что ЭДС Е2 имеет то же направление (про­тив часовой стрелки), что и UR3:

Е2 + UR3 = UR2

В цепи с одним контуром второй закон Кирхгофа является частным случаем закона Ома.

ДРУГИЕ СТАТЬИ ПО ТЕМЕ:

Первый и второй законы Кирхгофа - статья в интернет-журнале ЭЛЕКТРОН, где подробно с примерами расчетов и моделирования на компьютере изложены эти основопологающие законы элеектротехники.

Видеоурок по расчету цепей с помощью первого и второго закона Кирхгофа.

 

Хотите подробностей? Посмотрите это видео, поясняющее второй закон Кирхгофа:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

 

Добавить комментарий

Все законы Кирхгофа — формулы и определения первого и второго закона для тока и напряжения

Содержание

По всем проводникам, которые являются частью электрической цепи, протекает электрический ток. При проведении расчётов не редкостью являются случаи, когда необходимо вычислить параметры тока и напряжения в цепях сложной формы, то есть в тех, где имеются разветвления. Для получения точных расчётов применяют правила Кирхгофа, которые иногда называют законами. Используя их вместе с законами Ома, можно с легкостью определять параметры независимых контуров в самых разветвленных и сложных цепях. Важным преимуществом данных законов является то, что не нужно использовать глубокие расчёты, благодаря приведенным алгоритмам посчитать сможет даже неопытный физик, сложные и многоуровневые расчёты превращаются в простые односложные сложения.

Закон Кирхгофа своими словами, кратко и понятно для чайников

История возникновения закона начинается с первого упоминания немецкого учёного Кирхгофа в XIX веке. В этот период в стране проходили репрессии, остро ощущалась нехватка новых технологий. Учёные искали решения, способные ускорить развитие промышленности. Вышеупомянутый учёный занимался исследованиями в области электричества. Он точно осознавал, что будущее за технологиями. Однако была проблема: как провести точные математические вычисления в цепях сложной формы. Тогда и возник закон.

К узлу подходят два провода, в то время как отходит всего один. Значение тока, который протекает по направлению от узла, равняется сумме протекающего по оставшимся двум проводникам, иными словами, идущим к нему. Правило, о котором идёт речь в статье, даёт понятное объяснение тому, что в противном случае происходило бы накопление заряда, однако такого никогда не бывает. Каждый физик на практике знает, что любую сложную цепь можно разделить на небольшие участки.

Возникает другая сложность: трудно определить путь, по которому он проходит. Более того, важно понимать, что на различных участках сопротивления разные, а из этого следует, что энергия будет распределяться неравномерно.

Первый закон Кирхгофа: определение

Первый закон, или, как он известен некоторым, правило, Густава Кирхгофа был выведен на основании другого закона – сохранения заряда. Как уже было упомянуто раннее, физик осознавал, что в узле надолго заряд задержаться не сможет, так как распределится по ветвям контура, которые образуют эти соединения.

Важно! У Кирхгофа было предположение, которое он впоследствии сумел доказать, благодаря проведенным экспериментам, что количество зарядов, оказавшихся в узле, равняется количеству тока, вытекающего из него.

Схема первого закона Кирхгофа

На рисунке показана схема, состоящая из нескольких контуров. Все части рисунка подписаны. Итак, закон № 1 утверждает, что сумма токов в любом узле абсолютно любой электрической цепи равняется нулю. Согласно правилу, входящий ток равен сумме выходящих, поэтому I1 = I2 + I3. Узлами сети называются такие участки, в которых соединяются несколько проводников. Ток, который оказывается в узле, обозначается стрелкой, направленной к узлу, в то время вытекающий ток – стрелкой от узла. Таким образом, обозначение воспринимается проще в любой задаче.

Наглядно это показано на картинке.

Первый закон Кирхгофа

На основании вышесказанного запишем уравнение первого закона ученого:

I1 + I2 − I3 − I4 − I5 = 0

Эта же формула может быть записана в более сокращенном виде:

I1 + I2 = I3 + I4 + I5

Важно! Положительные или же противоположные – отрицательные – знаки токам присвоены в условном порядке. Их можно поменять, значение не поменяется.

Для примера разберём схему, изображённую на картинке выше.

Источник питания может быть абсолютно любой природы, им могут быть пальчиковые батарейки или же полноценный блок питания с возможностью регулировки. Итак, следуя первому закону, верным будет уравнение:

I1 − I2 − I3 = 0 или же I1 = I2 + I3

Чтобы продолжить измерения, необходимо в место на схеме, где указан амперметр, подключить мультиметр, который покажет, что закон полностью работает.

Формула для электрической и магнитной цепи

При проведении расчётов используют вышеупомянутые законы.

Первый закон для магнитных цепей вытекает из принципа непрерывности магнитного потока, который известен ещё из курса физики.

Второй же закон, если разобрать по частям, понятно, является иной формой записи закона полного тока. Прежде чем записать уравнения, необходимо в любом порядке остановить свой выбор на положительном направлении потоков в ветвях, аналогичное действие необходимо провести с напряжением обхода контуров. Если направление магнитного потока на определённом участке совпадает с направлением обхода, то магнитное напряжение на этом участке будет положительным, если же оно определяется как противоположное, то значение будет отрицательным.

Схожий случай, если МДС совпадает с направлением обхода, тогда знак положительный, в противном случае – отрицательный.

Закон для магнитных цепей

Для примера рассмотрим схему. Левая ветвь пусть будет первой, все относящиеся к ней величины будут записаны с индексом 1. Средняя весть будет второй, и величины получат индекс 2. Соответственно, величины правой ветви – индекс 3.

В произвольном порядке выберем направление потоков в ветвях. Предположим, что направление всех потоков будет вверх. Следуя первому закону, необходимо составить для каждого узла цепи уравнение. В цепи всего два узла, соответственно, составим всего одно уравнение:

Ф1 + Ф2 + Ф3 = 0

Далее используем второй закон Кирхгофа, по которому нужно составить столько уравнений, сколько ветвей, не учитывая числа уравнений, составленных по первому закону.

Итак, запишем уравнения. Первое будет предназначено для контура, образованного первой и второй ветвями, второе – для контура, который будет образован первой и третьей ветвями.

Перед тем как составлять уравнения по второму закону, нужно выбрать положительное направление обхода контуров. Контуры будем обходить по часовой стрелке.

Итак, итоговое уравнение имеет вид:

H1l1 + Hδ1δ1 − H2l2 − Hδ2δ2 = I1w1 − I2w2

В левую часть уравнения были включены слагаемые со знаком плюс, потому что на первом участке поток направлен соответственно обходам контура, а слагаемые – с отрицательным знаком, потому что поток направлен в противоположную обходу контура сторону.

Второй закон Кирхгофа: определение

Второй закон вызывает у многих вопросы, так как он несколько труднее первого, но этот миф легко можно развеять, объяснив принцип работы. Для начала необходимо разобрать определение закона, который звучит таким образом: в любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме напряжений на всех пассивных элементах цепи.

Формулировка определения несколько затрудняет его понимание, поэтому можно упростить: сумма ЭДС в замкнутом контуре равняется сумме падений напряжений. Так намного проще и понятнее.

Закон напряжения и формула для магнитной цепи

Формула, которая выражает этот закон, примет такой вид:

Формула второго закон Кирхгофа

В качестве примера возьмём самый элементарный и понятный для всех случай. Нам понадобится взять батарейку и резистор – всё в одном экземпляре. Так как резистор в единичном количестве, так же как и батарейка, то ЭДС батарейки будет равняться 1,5 ватт, и это равно падению напряжения на резисторе.

Если для примера взять уже два резистора и подключить их к батарейке, то 1,5 ватт будут распределяться равномерно на обоих резисторах, то есть на каждом окажется по 0,75 ватт. Если взять уже три резистора по 1 кОм, то падение напряжения будет на них уже по 0,5 ватт. Логика расчётов сохраняется в любом случае. Формула примет вид:

Формула Е1 = IR1 + IR2 + IR3
Преобразование 1,5 Вт = 0,5 Вт + 0,5 Вт + 0,5 Вт
Итог 1,5 Вт = 1,5 Вт

Важно! Второй закон будет работать независимо от того, сколько использовано источников питания и нагрузок. Не влияет на расчёты и место их расположения в контуре схемы. Так что даже у разных схем решение может быть одинаковым, но должно быть соблюдено условие – количество элементов должно быть идентичным.

Закон Кирхгофа для теплового излучения

Данный закон имеет другое название «третий закон». Сперва для лучшего понимания введем понятие теплового излучения. Принято называть тепловым излучение электромагнитное излучение, возникающее благодаря чужеродной энергии вращательного и колебательного движения атомов, молекул. Данное явление можно обнаружить абсолютно у всех тел, имеющих температуру не равняющуюся нулю или меньше. Основной количественной характеристикой теплового излучения выступает энергетическая светимость. Она должна быть вычислена одной из первых или же указана в условиях. Рассчитать её самостоятельно весьма проблематично. Её значение не постоянное, оно может меняться в зависимости от определенных характеристик: оказывает влияние температура окружающей среды, а также уровень нагретости тела. Имеет значение и длина, чем длиннее — тем значение меньше.

Формула выглядит таким образом:

R = E/(S·t), [Дж/(м2с)] = [Вт/м2]

Ещё одной характеристикой остаётся спектральная плотность энергетической светимости.

Важно ввести ещё одно понятие: коэффициент поглощения – это отношение поглощенной телом энергии к падающей энергии. Только теперь перейдем непосредственно к выделенному закону. Первое, что нужно сказать, что тепловое излучение является равновесной величиной. Это указывает на то, что сколько энергии будет излучаться телом, столько и им же и поглотится. При расчётах данное заявление имеет существенное значение. Можно сразу приравнивать оба значение. Таким образом, для трёх тел, которые находятся в замкнутой полости, формула примет вид:

Закон для теплового излучения

Раннее указанная формула будет верной даже тогда, когда какое-либо тело из указанных будет АЧ:

Закон звучит данным образом: отношение спектральной плотности энергетической светимости тела к его монохроматическому коэффициенту поглощения (при определенной температуре и для определенной длины волны) не зависит от природы тела и равно для всех тел спектральной плотности энергетической светимости при тех же самых температуре и длине волны.

Законы Кирхгофа в комплексной форме

Итак, для того, чтобы вывести математическую формулировку первого закона в комплексной формуле, необходимо представить все синусоидальные токи в комплексных значениях. Формула примет данный вид:

Комплексная форма первого закона Кирхгофа

Расшифровывая формулу получим, что алгебраическая сумма комплексных значений токов всех ветвей, которые сходятся в узле цепи, будет равняться нулю.

Закон №2 сформулирован не менее просто. Для контура замещения, который содержит лишь неактивные элементы и источники ЭДС, в каждую секунду алгебраическая сумма напряжений на данных элементах контура равняется числовой сумме ЭДС. Некоторым может показаться данная формулировка трудной, но при реальном разборе станет ясно, что все весьма просто и элементарно:

Комплексная форма второго закона Кирхгофа

Например, рассмотрим рисунок. Для выбранного на схеме замещения контура 1

u1-u2-u3+u4=0

Для второго контура:

ur-uL=e1-e2

В комплексной записи закон выглядит таким образом:

Контур 1

Контур 2

Задачи и примеры на законы Кирхгофа с решением

На картинках ниже подробно разобраны 2 задачи с применением законов Кирхгофа. Полное решение с наглядным примером на схемах и ответ.

Пример решения задачи по законам КирхгофаЧитайте также. Похожие записи.

Поделитесь статьей:

comments powered by HyperComments

Формулировка и физический смысл закона утечки энергии в пределах замкнутой цепи

Немецкий учёный Густав Роберт Кирхгоф является одним из великих физиков девятнадцатого века. Будучи отличным знатоком математики, он оставил богатейшее наследство из научных работ в области математической физики. Рядом с достижениями учёного в различных областях науки достойное место занимают первый и второй законы Кирхгофа.

Густав Роберт Кирхгоф

Термины, введённые в правила электротехники

Появление законов Кирхгофа дало возможность рассчитывать разнообразные электрические схемы. Для формулировки этих правил в электротехнике были введены конкретные термины:

  • ветвь;
  • узел;
  • контур.

Ветви

Ветви – это части электрических цепей, соединяющие соседние узлы. Ветвь – это отрезок, ограниченный двумя полюсами электрической системы.

Узел

Этим термином обозначают точки схождений нескольких разных проводников. Узлом может быть точка схождения трёх или нескольких ветвей.

Контур

Этим словом обозначают несколько ветвей, образующих замкнутую электрическую цепь. Замкнутая схема представляет систему, в которой однократное прохождение тока из определённой точки (узла) по всей схеме возвращается в исходный узел. Элементы этой системы определяются как единая схема – контур.

Обратите внимание! Ветви и узлы могут быть одновременно частями разных контуров.

Первый закон Кирхгофа

Принципы зависимости сил токов и величин напряжений, электродвижущей силы (ЭДС) и сопротивления всего контура, представляющего последовательные соединения источников и приёмников электричества, построены на основании закона Ома. Зачастую ЭДС из конкретной точки вхождения может проходить разными путями. В обособленной цепи ток не накапливается, иначе это может вызвать изменение значений потенциалов точек.

Действие закона Кирхгофа в разветвлённой цепи

В нижеприведённой схеме разветвлённой цепи можно увидеть, как действует первое правило Кирхгофа. В точке «А» провод разделяется на 4 проводника, сходящихся затем в узле «В».

На рисунке символы означают:

  • I – ток, входящий в точку А и одновременно выходящий из точки В;
  • I1, I2, I3, I4 – токи в ветвях.

Согласно правилу последовательного соединения сопротивлений (R), соотношение токов будет следующим:

I = I1 + I2 + I3 + I4.

Схематичное изображение первого правила Кирхгофа

Параллельное соединение сопротивлений (рис. выше) направляет ток по 4 веткам. Это понижает сопротивление всего контура и повышает общую проводимость. Она, на основании 1 закона Кирхгофа, составляет сложение проводимостей 4 веток. Применяя закон Ома, на всех участках силы тока можно обозначить следующим образом:

  • I = U/R;
  • I1 = U/R1;
  • I2 = U/R2;
  • I3 = U/R3;
  • I4 = U/R4.

Следовательно, можно записать следующее:

U/R = U/R1+U/R2+U/R3+U/R4.

Если исключить в обеих частях расчёта значение U, уравнение приобретёт простейшее выражение:

1/R = 1/R1+1/R2+1/R3+1/R4.

Для двух параллельных сопротивлений R1 и R2 получают такое выражение:

1/R =1/R1+1/R2.

Следовательно, сопротивление цепи будет таким:

R = R1 х R2/ R1 + R2.

В итоге учёный определил физический смысл первого закона Кирхгофа. Первый закон Кирхгофа гласит: «Сумма электрических зарядов, идущих в узел в течение определённого времени, равна сумме зарядов, уходящих из этой точки, за это же время.

Первое правило Кирхгофа

Второй закон Кирхгофа

Правило имеет второе название – закон напряжений. Второе правило Кирхгофа выражают в виде уравнения Кирхгофа:

Формула 2 закона Кирхгофа

Это означает, что в какой-либо замкнутой цепи падение напряжений равняется сумме ЭДС, находящихся в пределах этого контура.

Суть второго закона Кирхгофа можно выразить простыми словами: «При прохождении токов через все ветви контура падает потенциал. При их возвращении в исходный узел потенциал достигает своей первоначальной величины. То есть утечка потенциала (энергии) в пределах замкнутой электрической цепи равняется нулю».

Прежде, чем приступить к расчёту разветвленной схемы, подсчитывают необходимые уравнения, соответствующие 2 закону Кирхгофа. Количество уравнений равно разнице числа веток и числа узлов в контуре плюс единица.

При написании формул по закону Кирхгофа надо охватывать весь контур. Это даёт возможность определения токов и напряжений на всех участках закрытой системы. На плане указывают положительные движения токов. Одновременно обозначают направление обхода контура. Обычно обход производят по кругу движения стрелок часов.

Если в итоге вычислений ток получается отрицательным, то движение меняют в обратную сторону. При написании уравнений каждый раз включают последующую ветвь, не учтённую в предыдущих уравнениях.

Важно! Первый и второй закон Кирхгофа верны для всех нелинейных и линейных цепей. Абсолютно никакого значения не имеют перемены напряжений и токов в течение определённого времени.

На нижнем изображении приведён пример разветвлённой цепи для написания уравнений согласно теореме Кирхгофа.

Образец разветвлённой цепи

Согласно приведенной схеме, уравнения будут такими:

Значение законов Кирхгофа для мировой науки

Они на сегодняшний день сохранили своё актуальное значение для такой отрасли науки, как электротехника. Наряду с другими методиками расчётов, эти правила необходимы для разработки схем в области радиоэлектроники. Законы до сих пор не устарели и применяются для создания и развития новых компьютерных технологий.

Благодаря своим открытиям, немецкий учёный возглавил блестящую плеяду учёных-физиков второй половины девятнадцатого века. Его достижения в развитии науки пришлись по времени к началу индустриальной революции в промышленном развитии Германии. Основные правила законов электротехники легли в методику получения новейших технологий и способствовали появлению совершенно неизвестных ранее отраслей промышленности.

Середина 19 века ознаменовалась чередой открытий основных законов электричества, среди которых главенствующее положение заняли законы Кирхгофа. Именно они создали базу для математических расчётов электрических цепей.

Содержание обоих законов не составляет особых сложностей и вполне доступно для понимания широкому кругу людей.

Дополнительная информация. Прикладная природа правил вместе с другими методиками способствуют разрешению множества задач электротехники. Простая формулировка законов дала возможность применить методы линейной алгебры.

Во многих странах открытия учёного именуют по-разному. Большинство представителей научной общественности склонны к тому, что законы вернее называть правилами. В нашей стране приняты названия в обоих вариантах.

Видео

Оцените статью:

правил Кирхгофа | Безграничная физика

Введение и значение

Законы цепи Кирхгофа - это два уравнения, которые касаются сохранения энергии и заряда в контексте электрических цепей.

Цели обучения

Опишите взаимосвязь между законами цепи Кирхгофа и энергией и зарядом в электрических цепях.

Основные выводы

Ключевые моменты
  • Кирхгоф использовал работу Георга Ома в качестве основы для создания закона Кирхгофа (KCL) и закона напряжения Кирхгофа (KVL) в 1845 году.Их можно вывести из уравнений Максвелла, которые появились 16-17 лет спустя.
  • Невозможно проанализировать некоторые схемы с обратной связью путем упрощения в виде суммы и / или ряда компонентов. В этих случаях можно использовать законы Кирхгофа.
  • Законы Кирхгофа - частные случаи сохранения энергии и заряда.
Ключевые термины
  • резистор : Электрический компонент, который передает ток прямо пропорционально напряжению на нем.
  • электродвижущая сила : (ЭДС) - напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея.Она измеряется в вольтах (не в ньютонах, Н; ЭДС - это не сила).
  • конденсатор : Электронный компонент, состоящий из двух проводящих пластин, разделенных пустым пространством (иногда вместо этого между пластинами помещается диэлектрический материал), и способный хранить определенное количество заряда.

Введение в законы Кирхгофа

Законы цепи Кирхгофа - это два уравнения, впервые опубликованные Густавом Кирхгофом в 1845 году. По сути, они касаются сохранения энергии и заряда в контексте электрических цепей.

Хотя законы Кирхгофа можно вывести из уравнений Джеймса Клерка Максвелла, Максвелл не публиковал свою систему дифференциальных уравнений (которые составляют основу классической электродинамики, оптики и электрических цепей) до 1861 и 1862 годов. Кирхгоф, скорее, использовал Георга. Работа Ома как основа для текущего закона Кирхгофа (KCL) и закона напряжения Кирхгофа (KVL) .

Законы Кирхгофа чрезвычайно важны для анализа замкнутых цепей.Рассмотрим, например, схему, показанную на рисунке ниже, состоящую из пяти резисторов, соединенных последовательно и параллельно. Упрощение этой схемы до комбинации последовательного и параллельного включения невозможно. Однако, используя правила Кирхгофа, можно проанализировать схему, чтобы определить параметры этой схемы, используя номиналы резисторов (R 1 , R 2 , R 3 , r 1 и r 2 ). . Также важно в этом примере то, что значения E 1 и E 2 представляют источники напряжения (например.г., батарейки).

Замкнутая цепь : Чтобы определить все переменные (т. Е. Падение тока и напряжения на различных резисторах) в этой цепи, необходимо применить правила Кирхгофа.

В заключение, законы Кирхгофа зависят от определенных условий. Закон напряжения является упрощением закона индукции Фарадея и основан на предположении, что в замкнутом контуре нет флуктуирующего магнитного поля. Таким образом, хотя этот закон может быть применен к схемам, содержащим резисторы и конденсаторы (а также другие элементы схемы), его можно использовать только как приближение к поведению схемы при изменении тока и, следовательно, магнитного поля.

Правило пересечения

Правило соединений Кирхгофа гласит, что в любом соединении цепи сумма токов, текущих в это соединение и из него, равна.

Цели обучения

Сформулируйте правило пересечения Кирхгофа и опишите его ограничения

Основные выводы

Ключевые моменты
  • Правило соединения Кирхгофа - это применение принципа сохранения электрического заряда: ток - это поток заряда за время, и если ток постоянный, то, что течет в точку в цепи, должно быть равно тому, что вытекает из нее.{\ text {n}} \ text {I} _ \ text {k} = 0 [/ latex], где I k - ток k, а n - общее количество проводов, входящих и выходящих из соединения. с учетом.
  • Закон перехода Кирхгофа ограничен в его применимости в регионах, в которых плотность заряда может быть непостоянной. Поскольку заряд сохраняется, это возможно только при наличии потока заряда через границу области. Этот поток был бы током, нарушая закон.
Ключевые термины
  • электрический заряд : квантовое число, определяющее электромагнитные взаимодействия некоторых субатомных частиц; По соглашению, электрон имеет электрический заряд -1, а протон +1, а кварки имеют дробный заряд.
  • ток : временная скорость протекания электрического заряда.

Правило соединения Кирхгофа, также известное как текущий закон Кирхгофа (KCL), первый закон Кирхгофа, правило точки Кирхгофа и узловое правило Кирхгофа, является применением принципа сохранения электрического заряда.

Правило соединений Кирхгофа гласит, что в любом соединении (узле) в электрической цепи сумма токов, протекающих в этом соединении, равна сумме токов, вытекающих из этого соединения. Другими словами, при условии, что ток будет положительным или отрицательным в зависимости от того, течет ли он к стыку или от него, алгебраическая сумма токов в сети проводников, встречающихся в одной точке, равна нулю. Визуальное представление можно увидеть на.

Закон соединений Кирхгофа : Закон соединений Кирхгофа, проиллюстрированный как токи, текущие в соединение и выходящие из него.

Теория правил Кирхгофа петли и соединений : Мы оправдываем правила Кирхгофа, исходя из сохранения энергии.{\ text {n}} \ text {I} _ \ text {k} = 0 [/ latex]

, где n - общее количество ветвей, по которым ток идет к узлу или от него.

Этот закон основан на сохранении заряда (измеряемого в кулонах), который является произведением силы тока (в амперах) и времени (в секундах).

Ограничение

Применимость закона Кирхгофа ограничена. Это справедливо для всех случаев, когда полный электрический заряд (Q) постоянен в рассматриваемой области. На практике это всегда верно, если закон применяется к определенной точке.Однако в определенной области плотность заряда может быть непостоянной. Поскольку заряд сохраняется, это возможно только при наличии потока заряда через границу области. Этот поток был бы током, что нарушало бы закон Кирхгофа.

Правило цикла

Правило петли Кирхгофа гласит, что сумма значений ЭДС в любом замкнутом контуре равна сумме падений потенциала в этом контуре.

Цели обучения

Сформулируйте правило петли Кирхгофа, учитывая его допущения.

Основные выводы

Ключевые моменты
  • Правило петли Кирхгофа - это правило, относящееся к схемам, основанное на принципе сохранения энергии.\ text {n} \ text {V} _ \ text {k} = 0 [/ latex].
  • Правило петли Кирхгофа является упрощением закона индукции Фарадея и выполняется при предположении, что нет флуктуирующего магнитного поля, связывающего замкнутый контур.
Ключевые термины
  • электродвижущая сила : (ЭДС) - напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
  • резистор : Электрический компонент, который передает ток прямо пропорционально напряжению на нем.

Правило петли Кирхгофа (также известное как закон напряжения Кирхгофа (KVL), правило сетки Кирхгофа, второй закон Кирхгофа, или второе правило Кирхгофа ) является правилом, относящимся к схемам, и основано на принципе сохранения энергия.

Сохранение энергии - принцип, согласно которому энергия не создается и не разрушается - широко используется во многих исследованиях в области физики, включая электрические схемы. Применительно к схемотехнике подразумевается, что направленная сумма разностей электрических потенциалов (напряжений) вокруг любой замкнутой сети равна нулю. Другими словами, сумма значений электродвижущей силы (ЭДС) в любом замкнутом контуре равна сумме падений потенциала в этом контуре (которые могут исходить от резисторов).

Другое эквивалентное утверждение состоит в том, что алгебраическая сумма произведений сопротивлений проводников (и токов в них) в замкнутом контуре равна общей электродвижущей силе, доступной в этом контуре. Математически правило петли Кирхгофа можно представить как сумму напряжений в цепи, которая приравнивается к нулю:

Теория правил Кирхгофа петли и соединений : Мы оправдываем правила Кирхгофа, исходя из сохранения энергии.\ text {n} \ text {V} _ \ text {k} = 0 [/ latex].

Здесь V k - это напряжение на элементе k, а n - общее количество элементов в замкнутой цепи. Иллюстрация такой схемы показана на. В этом примере сумма v 1 , v 2 , v 3 и v 4 (и v 5 , если она включена) равна нуль.

Правило петли Кирхгофа : Правило петли Кирхгофа гласит, что сумма всех напряжений вокруг петли равна нулю: v1 + v2 + v3 - v4 = 0.

Учитывая, что напряжение является мерой энергии на единицу заряда, правило петли Кирхгофа основано на законе сохранения энергии, который гласит: общая энергия, полученная на единицу заряда, должна равняться количеству энергии, потерянной на единицу заряда .

Пример

иллюстрирует изменения потенциала в простой петле последовательной цепи. Второе правило Кирхгофа требует, чтобы ЭДС-Ir-IR 1 -IR 2 = 0. В перестановке это ЭДС = Ir + IR 1 + IR 2 , что означает, что ЭДС равна сумме падений IR (напряжения) в контуре.ЭДС подает 18 В, которое уменьшается до нуля из-за сопротивлений, с 1 В на внутреннем сопротивлении и 12 В и 5 В на двух сопротивлениях нагрузки, всего 18 В.

Правило цикла : пример второго правила Кирхгофа, согласно которому сумма изменений потенциала вокруг замкнутого контура должна быть равна нулю. (a) В этой стандартной схеме простой последовательной цепи ЭДС подает 18 В, которое снижается до нуля из-за сопротивлений, с 1 В на внутреннем сопротивлении и 12 В и 5 В на двух сопротивлениях нагрузки для всего 18 В.(b) Этот вид в перспективе представляет потенциал как что-то вроде американских горок, где потенциал повышается за счет ЭДС и понижается за счет сопротивлений. (Обратите внимание, что сценарий E означает ЭДС.)

Ограничение

Правило петли Кирхгофа является упрощением закона индукции Фарадея и выполняется при предположении, что нет флуктуирующего магнитного поля, связывающего замкнутый контур. В присутствии переменного магнитного поля могут индуцироваться электрические поля и возникать ЭДС, и в этом случае правило петли Кирхгофа нарушается.

Приложения

Правила Кирхгофа можно использовать для анализа любой схемы и модифицировать для схем с ЭДС, резисторами, конденсаторами и т. Д.

Цели обучения

Опишите условия, при которых полезно применять правила Кирхгофа.

Основные выводы

Ключевые моменты
  • Правила Кирхгофа применимы к любой цепи, независимо от ее состава и структуры.
  • Поскольку часто легко комбинировать элементы параллельно и последовательно, не всегда удобно применять правила Кирхгофа.
  • Для определения тока в цепи можно применить правила петли и соединения. Как только все токи связаны правилом соединения, можно использовать правило петли для получения нескольких уравнений, которые будут использоваться в качестве системы для нахождения каждого значения тока в терминах других токов. Их можно решить как систему.
Ключевые термины
  • электродвижущая сила : (ЭДС) - напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.

Обзор

Правила Кирхгофа можно использовать для анализа любой схемы, изменяя их для схем с электродвижущими силами, резисторами, конденсаторами и т. Д. На практике, однако, правила полезны только для характеристики тех цепей, которые нельзя упростить, комбинируя элементы последовательно и параллельно.

Последовательные и параллельные комбинации, как правило, намного проще выполнить, чем применение любого из правил Кирхгофа, но правила Кирхгофа применимы более широко и должны использоваться для решения проблем, связанных со сложными схемами, которые нельзя упростить путем объединения элементов схемы последовательно или параллельно.

Пример правил Кирхгофа

показывает очень сложную схему, но правила Кирхгофа для петель и соединений могут быть применены. Чтобы решить схему для токов I 1 , I 2 и I 3 , необходимы оба правила.

Правила Кирхгофа: пример задачи : На этом изображении показана очень сложная схема, которую можно сократить и решить с помощью правил Кирхгофа.

Применяя правило Кирхгофа в точке a, находим:

[латекс] \ text {I} _1 = \ text {I} _2 + \ text {I} _3 [/ latex]

, потому что I 1 течет в точку a, а I 2 и I3 вытекает.То же самое можно найти в точке e. Теперь мы должны решить это уравнение для каждой из трех неизвестных переменных, что потребует трех разных уравнений.

Учитывая цикл abcdea, мы можем использовать правило цикла Кирхгофа:

[латекс] - \ text {I} _2 \ text {R} _2 + \ mathrm {\ text {emf}} _ 1- \ text {I} _2 \ text {r} _1- \ text {I} _1 \ text { R} _1 = - \ text {I} _2 (\ text {R} _2) + \ text {r} _1) + \ mathrm {\ text {emf}} _ 1- \ text {I} _1 \ text {R} _1 = 0 [/ латекс]

Подставляя значения сопротивления и ЭДС из рисунка на диаграмме и отменяя единицу измерения ампер, получаем:

[латекс] -3 \ text {I} _2 + 18-6 \ text {I} _1 = 0 [/ латекс]

Это вторая часть системы трех уравнений, которую мы можем использовать, чтобы найти все три текущих значения. Последнюю можно найти, применив правило цикла к циклу aefgha, которое дает:

[латекс] \ text {I} _1 \ text {R} _1 + \ text {I} _3 \ text {R} _3 + \ text {I} _3 \ text {r} _2- \ mathrm {\ text {emf}} _2 = \ text {I} _1 \ text {R} _1 + \ text {I} _3 (\ text {R} _3 + \ text {r} _2) - \ mathrm {\ text {emf}} _ 2 = 0 [/ латекс ]

Используя замену и упрощение, это становится:

[латекс] 6 \ text {I} _1 + 2 \ text {I} _3-45 = 0 [/ латекс]

В этом случае знаки поменялись местами по сравнению с другим циклом, потому что элементы перемещаются в противоположном направлении.

Теперь у нас есть три уравнения, которые можно использовать в системе. Второй будет использоваться для определения I 2 и может быть изменен на:

[латекс] \ text {I} _2 = 6-2 \ text {I} _1 [/ латекс]

Третье уравнение может использоваться для определения I 3 и может быть преобразовано в:

[латекс] \ text {I} _3 = 22,5-3 \ text {I} _1 [/ латекс]

Подставляя новые определения I 2 и I 3 (которые являются общими терминами I 1 ) в первое уравнение (I 1 = I 2 + I 3 ), получаем:

[латекс] \ text {I} _1 = (6-2 \ text {I} _1) + (22. 5-3 \ text {I} _1) = 28,5-5 \ text {I} _1 [/ latex]

Упрощая, получаем, что I 1 = 4,75 A. Подставляя это значение в два других уравнения, мы находим, что I 2 = -3,50 A и I 3 = 8,25 A.

Законы Кирхгофа для тока и напряжения

В 1845 году немецкий физик Густав Кирхгоф впервые описал два закона, которые стали центральными в электротехнике. Текущий закон Кирхгофа, также известный как закон соединения Кирхгофа и первый закон Кирхгофа, определяют способ распределения электрического тока, когда он проходит через соединение - точку, где встречаются три или более проводника.Другими словами, законы Кирхгофа гласят, что сумма всех токов, покидающих узел в электрической сети, всегда равна нулю.

Эти законы чрезвычайно полезны в реальной жизни, поскольку они описывают соотношение значений токов, протекающих через точку соединения, и напряжений в контуре электрической цепи. Они описывают, как электрический ток течет во всех миллиардах электроприборов и устройств, а также во всех домах и на предприятиях, которые постоянно используются на Земле.

Законы Кирхгофа: основы

В частности, в законах говорится:

Алгебраическая сумма тока в любом соединении равна нулю.

Поскольку ток - это поток электронов через проводник, он не может накапливаться на стыке, а это означает, что ток сохраняется: то, что входит, должно выходить. Представьте себе хорошо известный пример соединения: распределительную коробку. Эти ящики устанавливаются в большинстве домов. Это коробки, в которых проложена проводка, по которой должно протекать все электричество в доме.

При выполнении расчетов ток, текущий в переход и выходящий из него, обычно имеет противоположные знаки. Вы также можете сформулировать Действующий закон Кирхгофа следующим образом:

Сумма тока в соединении равна сумме тока вне соединения.

Вы можете более конкретно разбить два закона.

Действующий закон Кирхгофа

На картинке показано место соединения четырех проводов (проводов). В стык текут токи v 2 и v 3 , а из него вытекают токи v 1 и v 4 .В этом примере правило соединения Кирхгофа дает следующее уравнение:

v 2 + v 3 = v 1 + v 4

Закон Кирхгофа о напряжении

Закон Кирхгофа о напряжении описывает распределение электрического напряжения в петле или замкнутом проводящем пути электрической цепи. Закон Кирхгофа о напряжении гласит, что:

Алгебраическая сумма разностей напряжений (потенциалов) в любом контуре должна равняться нулю.

Различия в напряжении включают в себя те, которые связаны с электромагнитными полями (ЭМП) и резистивными элементами, такими как резисторы, источники питания (например, батареи) или устройства - лампы, телевизоры и блендеры, подключенные к цепи. Представьте себе это как повышение и падение напряжения по мере того, как вы двигаетесь по любой из отдельных петель в цепи.

Закон Кирхгофа о напряжении возникает потому, что электростатическое поле в электрической цепи является консервативным силовым полем.Напряжение представляет собой электрическую энергию в системе, поэтому рассматривайте его как особый случай сохранения энергии. Когда вы идете по циклу, когда вы прибываете в начальную точку, имеет тот же потенциал, что и в начале, поэтому любые увеличения и уменьшения по циклу должны отменяться, чтобы общее изменение было нулевым. В противном случае потенциал в начальной / конечной точке имел бы два разных значения.

Положительные и отрицательные признаки в законе напряжения Кирхгофа

Использование правила напряжения требует некоторых условных обозначений, которые не обязательно столь же ясны, как в правиле тока.Выберите направление (по часовой стрелке или против часовой стрелки), в котором будет проходить петля. При переходе от положительного к отрицательному (+ к -) в ЭДС (источнике питания) напряжение падает, поэтому значение становится отрицательным. При переходе от отрицательного к положительному (- к +) напряжение возрастает, поэтому значение будет положительным.

Помните, что, путешествуя по цепи для применения закона Кирхгофа, убедитесь, что вы всегда движетесь в одном и том же направлении (по часовой стрелке или против часовой стрелки), чтобы определить, представляет ли данный элемент увеличение или уменьшение напряжения.Если вы начнете прыгать, двигаться в разных направлениях, ваше уравнение будет неверным.

При переходе через резистор изменение напряжения определяется по формуле:

I * R

где I - значение тока, а R - сопротивление резистора. Пересечение в том же направлении, что и ток, означает, что напряжение падает, поэтому его значение отрицательное. При пересечении резистора в направлении, противоположном току, значение напряжения положительное, поэтому оно увеличивается.

Применение закона Кирхгофа о напряжении

Самые основные применения законов Кирхгофа относятся к электрическим цепям. Вы, возможно, помните из физики средней школы, что электричество в цепи должно течь в одном непрерывном направлении. Если, например, вы щелкнете выключателем света, вы нарушите цепь и, следовательно, выключите свет. Как только вы снова щелкнете выключателем, вы снова включите цепь, и снова загорится свет.

Или подумайте о том, как повесить огни на свой дом или рождественскую елку.Если перегорает только одна лампочка, гаснет вся цепочка огней. Это потому, что электричеству, остановленному разбитым светом, некуда деться. Это то же самое, что выключить свет и разорвать цепь. Другой аспект этого в отношении законов Кирхгофа состоит в том, что сумма всего электричества, входящего и вытекающего из соединения, должна быть равна нулю. Электричество, поступающее в соединение (и протекающее по цепи), должно быть равно нулю, потому что электричество, которое входит в него, также должно выходить.

Итак, в следующий раз, когда вы будете работать над своей распределительной коробкой или наблюдать за тем, как это делает электрик, натягивая электрические праздничные огни, или включаете или выключаете телевизор или компьютер, помните, что Кирхгоф сначала описал, как все это работает, тем самым открывая эпоху электричество.

Объясните закон Кирхгофа простым английским языком

Представьте себе тротуар, по которому едут люди. Предположим, что все продолжают двигаться, никогда не останавливаются. Теперь возьмем одну точку на тротуаре. Подсчитайте количество людей, входящих в эту точку, и количество людей, покидающих эту точку.Два числа должны быть равны! Поскольку вы не можете внезапно создать дополнительных людей или испарить существующих людей (юридически), количество людей постоянно, и все, что доходит до этой точки, должно выходить за пределы этой точки.

  | |
 | |
 | |
 ххххх
 xxxxx <---- точка измерения
 ххххх
 | |
 | |
 | |
  

Другими словами, «xxxx» - это, скажем, один квадрат на тротуаре. Здесь никому не разрешается задерживаться. Каждый, кто ступит на эту площадь, должен выйти! Таким образом, очевидно, что число в равно числу вне!

Теперь разделите одну сторону на два тротуара.\ / / \ \ / / \ \

Итак, люди идут в верхней и нижней паре. Это по-прежнему верно, количество людей, пересекающих точку «xxxx», должно быть таким же, как на входе, так и на выходе, поэтому, если верхняя часть является входом, а две нижние - выходами, мы можем сказать, что сумма людей, вышедших из двух выходы равны числу, идущему вверху.

Представьте ЛЮБОЕ ЧИСЛО входов и выходов, соединяющихся в точке ХХХ. По-прежнему предполагая, что все продолжают движение, количество людей, пересекающих один квадрат тротуара под названием «ххх», должно равняться количеству людей, пересекающих ВНЕ квадрата ххх.

Любая точка на проволоке подобна квадрату на тротуаре. Если вы посмотрите на любую точку в любом месте вдоль нее, так как многие электроны входят в эту точку, они также выходят из этой точки! Потому что никто не «задерживается». Все просто, а?

Это не сложнее: воткнуть палец в воду в реке. В палец врывается столько воды, сколько выходит из него! Буквально, ток через любую точку, подпункт, область, группу точек и т. Д. - это то же самое, что и входящий, и выходящий, если только он не «накапливается», т. е. Несколько притоков входят, несколько потоков выходят, не имеет значения, вода в любой точке испытывает выход = вход.

Посмотрите на первую диаграмму, приведенную выше в ответе Стивенва, с фиолетовыми стрелками, некоторые указывают внутрь, а некоторые указывают. Переставьте их так, чтобы все стрелки, указывающие IN, были слева, а все стрелки, указывающие OUT, были справа. Думайте об этом как о наших тротуарах. Только для электронов *. Число (людей или электронов), приходящих слева, должно равняться числу, выходящим справа. Это очевидно, а? Потому что никому из них не разрешается задерживаться в этой точке в центре (то есть у него нет емкости, поймите, емкости!).

Capisci?

*) Потому что электроны тоже люди!

Законы Кирхгофа (ток и напряжение): что это такое и почему это важно?

Обновлено 28 декабря 2020 г.

Автор: GAYLE TOWELL

По мере того, как электрические цепи становятся все более сложными с множеством ветвей и элементов, становится все сложнее определить, какой ток может протекать через любую данную ветвь, и как соответствующим образом отрегулировать ситуацию. Полезно иметь систематический способ анализа цепей.

Важные определения

Чтобы понять законы Кирхгофа, необходимо несколько определений:

  • Напряжение В - это разность потенциалов на элементе схемы. Он измеряется в вольтах (В).
  • Ток I - это мера скорости прохождения заряда через точку в цепи. Он измеряется в амперах (А).
  • Сопротивление R - это мера сопротивления элемента схемы протеканию тока.Он измеряется в омах (Ом).
  • Закон Ома связывает эти три величины следующим уравнением: V = IR.

Что такое законы Кирхгофа?

В 1845 году немецкий физик Густав Кирхгоф формализовал следующие два правила для схем:

1. Правило соединения (также известное как закон Кирхгофа или KCL): Сумма всех токов, протекающих в переходе в цепь должна равняться полному току, протекающему из перехода.

Другой способ формулировки этого закона состоит в том, что алгебраическая сумма токов, текущих в переход, равна 0. Это означало бы рассматривать любые токи, текущие в переход, как положительные, а любые токи, протекающие через переход, как отрицательные. Поскольку общий приток должен равняться общему оттоку, это эквивалентно утверждению, что суммы будут равны 0, поскольку это равносильно перемещению оттекающих на другую сторону уравнения с отрицательным знаком.

Этот закон выполняется при простом применении сохранения заряда.Все, что входит, должно быть равно тому, что вытекает. Представьте, что водопроводные трубы соединяются и разветвляются подобным образом. Точно так же, как вы ожидаете, что общая вода, текущая в переход, будет равна общему количеству воды, вытекающей из перехода, так и с текущими электронами.

2. Правило цикла (также известное как закон напряжения Кирхгофа или KVL): Сумма разностей потенциалов (напряжений) вокруг замкнутого контура в цепи должна равняться 0.

Чтобы понять второй закон Кирхгофа, представьте себе что бы случилось, если бы это было неправдой.Рассмотрим одноконтурный контур, в котором есть несколько батарей и резисторов. Представьте, что вы начинаете с точки A и двигаетесь по петле по часовой стрелке. Вы набираете напряжение, когда идете через батарею, а затем падаете, когда вы проходите через резистор, и так далее.

Обойдя весь круг, вы снова окажетесь в точке A . Сумма всех разностей потенциалов при обходе контура должна тогда равняться разнице потенциалов между точкой A и самой собой.Что ж, одна точка не может иметь два разных значения потенциала, поэтому эта сумма должна быть 0.

В качестве аналогии рассмотрим, что произойдет, если вы пойдете по круговой пешеходной тропе. Предположим, вы начинаете с точки A и начинаете поход. Часть похода ведет в гору, часть - под гору и так далее. После завершения цикла вы снова вернетесь в точку A . Это обязательно тот случай, когда сумма ваших подъемов и падений высоты в этом замкнутом контуре должна быть равна 0 именно потому, что высота в точке A должна равняться сама себе.

Почему законы Кирхгофа важны?

При работе с простой последовательной цепью определение тока в контуре требует только знания приложенного напряжения и суммы сопротивлений в контуре (с последующим применением закона Ома).

В параллельных цепях и электрических цепях с комбинациями При использовании последовательных и параллельных элементов задача определения тока, протекающего через каждую ветвь, быстро усложняется. Ток, входящий в соединение, будет разделяться по мере того, как он входит в разные части цепи, и не очевидно, сколько будет проходить в каждую сторону без тщательного анализа.

Два правила Кирхгофа позволяют анализировать все более сложные схемы. Хотя требуемые алгебраические шаги по-прежнему довольно сложны, сам процесс прост. Эти законы широко используются в области электротехники.

Возможность анализировать схемы важна для предотвращения перегрузки элементов схемы. Если вы не знаете, какой ток будет протекать через устройство или какое напряжение упадет на нем, вы не будете знать, какой будет выходная мощность, и все это имеет отношение к функционированию устройства.

Как применять законы Кирхгофа

Правила Кирхгофа можно применить для анализа принципиальной схемы, выполнив следующие шаги:

    Для каждой ветви, и , пометьте неизвестный ток, протекающий через это как I i и выберите направление для этого тока. (Направление не обязательно должно быть правильным. Если окажется, что этот ток на самом деле течет в противоположном направлении, то вы просто получите отрицательное значение при решении для этого тока позже.)

    Для каждой петли в цепи выберите направление. (Это произвольно. Вы можете выбрать против часовой стрелки или по часовой стрелке. Это не имеет значения.)

    Для каждого цикла начните с одной точки и двигайтесь в выбранном направлении, складывая разности потенциалов по каждому элементу. Эти разности потенциалов можно определить следующим образом:

    • Если ток проходит в положительном направлении через источник напряжения, это положительное значение напряжения. Если ток проходит через источник напряжения в отрицательном направлении, напряжение должно иметь отрицательный знак.
    • Если ток проходит в положительном направлении через резистивный элемент, то вы используете закон Ома и добавляете -I i × R (падение напряжения на этом резисторе) для этого элемента. Если ток проходит в отрицательном направлении через резистивный элемент, вы добавляете + I i × R для этого элемента.
    • После того, как вы обошли контур, установите эту сумму всех напряжений равной 0. Повторите для всех контуров в цепи.

    Для каждого перехода сумма токов, протекающих в этот переход, должна равняться сумме токов, вытекающих из этого перехода.Запишите это в виде уравнения.

    Теперь у вас должен быть набор одновременных уравнений, который позволит вам определять ток (или другие неизвестные величины) во всех ветвях цепи. Последний шаг - решить эту систему алгебраически.

Примеры

Пример 1: Рассмотрим следующую схему:

Применяя шаг 1, для каждой ветви мы маркируем неизвестные токи.

••• na

Применяя Шаг 2, мы выбираем направление для каждой петли в схеме следующим образом:

••• na

Теперь мы применяем Шаг 3: Для каждой петли, начиная с одной точки и обходя в выбранном направлении складываем разности потенциалов по каждому элементу и устанавливаем сумму равной 0.

Для цикла 1 на диаграмме мы получаем:

-I_1 \ times 40 - I_3 \ times 100 + 3 = 0

Для цикла 2 на диаграмме получаем:

-I_2 \ times 75-2 + I_3 \ times 100 = 0

Для шага 4 мы применяем правило соединения. На нашей диаграмме есть два соединения, но оба они дают эквивалентные уравнения. А именно:

I_1 = I_2 + I_3

Наконец, на шаге 5 мы используем алгебру для решения системы уравнений для неизвестных токов:

Используйте уравнение соединения, чтобы подставить в уравнение первого контура:

- (I_2 + I_3) \ times 40 - I_3 \ times 100 + 3 = -40I_2 - 140I_3 + 3 = 0

Решите это уравнение для I 2 :

I_2 = \ frac {3-140I_3} {40}

Подставьте это в уравнение второго цикла:

- [(3-140I_3) / 40] \ times 75-2 + 100I_3 = 0

-3 \ times 75/40 + (140 \ times 75/40) I_3 - 2 + 100I_3 = 0 \\ \ подразумевает I_3 = (2 + 3 \ times 75/40) / (140 \ times 75/40 + 100) = 0. 021 \ text {A}

Используйте значение I 3 , чтобы найти I 2 :

I_2 = (3-140 \ times (0,021)) / 40 = 0,0015 \ text {A}

I_1 = I_2 + I_3 = 0,021 + 0,0015 = 0,0225 \ text {A}

Итак, окончательный результат таков: I 1 = 0,0225 A, I 2 = 0,0015 A и I 3 = 0,021 A.

Подстановка этих текущих значений в исходные уравнения проверяет правильность, поэтому мы можем быть достаточно уверены в результате!

Попробуйте повторить эту же задачу еще раз, но сделайте другой выбор для ваших текущих меток и направлений петли.Если все сделать аккуратно, вы должны получить тот же результат, показывая, что первоначальный выбор действительно произвольный.

(Обратите внимание, что если вы выберете разные направления для обозначенных токов, тогда ваши ответы для них будут отличаться знаком минус; однако результаты все равно будут соответствовать тому же направлению и величине тока в цепи. )

Пример 2: Какова электродвижущая сила (ЭДС) ε батареи в следующей цепи? Какой ток в каждой ветке?

••• na

Сначала мы маркируем все неизвестные токи.Пусть I 2 = ток вниз через среднюю ветвь и I 1 = ток вниз через крайнюю правую ветвь. Изображение уже показывает текущий I в крайнем левом ответвлении с маркировкой.

Выбор направления по часовой стрелке для каждого контура и применение законов цепи Кирхгофа дает следующую систему уравнений:

\ begin {align} & I_1 = I-I_2 \\ & \ varepsilon - 4I - 6I_2 + 8 = 0 \\ & - 12I_1 - 8 + 6I_2 = 0 \ end {align}

Для решения замените I - I 2 на I 1 в третьем уравнении, а затем подставьте данное значение для I и решите это уравнение относительно I 2 .Когда вы знаете I 2 , вы можете подставить I и I 2 в первое уравнение, чтобы получить I 1 . Затем вы можете решить второе уравнение относительно ε . Следуя этим шагам, вы получите окончательное решение:

\ begin {align} & I_2 ​​= 16/9 = 1,78 \ text {A} \\ & I_1 = 2/9 = 0,22 \ text {A} \\ & \ varepsilon = 32/3 = 10.67 \ text {V} \ end {align}

Опять же, вы всегда должны проверять свои окончательные результаты, вставляя их в исходные уравнения.Совершать простые алгебраические ошибки очень легко!

Законы Кирхгофа

Кирхгофа законы

Есть два законы, необходимые для решения схемных задач. Для простого схем, мы применяли эти уравнения почти инстинктивно.

  1. The напряжения вокруг замкнутого пути в цепи должны сумма к нулю. ( закон Кирхгофа # 1), напряжение падение отрицательное (после прохождения тока через резистор), а коэффициенты усиления положительные (идущие через батарею от минуса к положительный вывод).

  2. The сумма токов, входящих в узел, должна равняться сумма токов на выходе из узла.( Кирхгофа Закон № 2)

Первый закон - простое утверждение значения потенциала. Поскольку каждая точка на цепь имеет уникальное значение потенциала, путешествуя по кругу, по любому пути должны вернуть вас к потенциалу. Используя аналогию с возвышением: если один походы от начальной точки горы, занимая несколько путей, затем заканчивается в той же точке, сумма изменения высоты каждого пути лучше добавить к нулю.

Второй закон статус текущей консервации, упомянутый ранее в Лекция по закону Ома. Для узла справа i 1 = i 2 + i 3 . Если бы все токи были определены как входящие в узла, тогда сумма токов будет равна нулю.

Примеры Кирхгофа законы / индекс RC Circuit

Закон Кирхгофа по току и напряжению (KCL & KVL)

Первый и второй законы Кирхгофа с решенным примером

Немецкий физик Роберт Кирхгоф ввел в 1847 году два важных электрических закона, с помощью которых мы можем легко найти эквивалентное сопротивление сложной сети и протекающих токов в разных проводниках. Цепи переменного и постоянного тока могут быть решены и упрощены с помощью этих простых законов, известных как закон Кирхгофа по току (KCL) и закон Кирхгофа по напряжению (KVL).

Также обратите внимание, что KCL выводится из уравнения непрерывности заряда в электромагнетизме, в то время как KVL выводится из уравнения Максвелла-Фарадея для статического магнитного поля (производная B по времени равна 0)

Закон Кирхгофа (KCL):

Согласно KCL, в любой момент алгебраическая сумма текущих токов через точку (или соединение) в сети равна нулю (0) или в любой электрической сети, алгебраическая сумма токов, встречающихся в точке (или соединение) равно нулю (0).Этот закон также известен как Точечный закон или Текущий закон.

В любой электрической сети алгебраическая сумма входных токов в точку и выходных токов из этой точки равна нулю. Или токи на входе в точку равны токам на выходе из этой точки.

Другими словами, сумма токов, текущих к точке, равна сумме токов, текущих от нее. Или алгебраическая сумма токов, входящих в узел, равна алгебраической сумме выходящих из него токов.

Объяснение KCL:

Предположим, что некоторые проводники встречаются в точке «A», как показано на рис. 1.a. в некоторых проводниках токи поступают в точку «А», в то время как в других проводниках токи уходят или исходят из точки «А».

Считайте входящие или входящие токи «положительными (+) в направлении точки« A », в то время как уходящие или исходящие токи из точки« A »считаются« отрицательными (-) ».
, затем:

I 1 + (-I 2 ) + (-I 3 ) + (-I 4 ) + I 5 = 0

OR

I 1 + I 5 -I 2 -I 3 -I 4 = 0

OR

I 1 + I 5 = I 2 + I 3 + I 4 = 0

и.е.
Входящие или входящие токи = выходящие или исходящие токи
Или
ΣI Вход = ΣI Выход

Например, 8A приближается к точке, а 5A плюс 3A выходят из этой точки на рис. 1.b, следовательно,
8A = 5A + 3А
8А = 8А.

Демонстрация действующего закона Кирхгофа (KCL)

Закон Кирхгофа о напряжении (KVL):

Второй закон Кирхгофа гласил:
В любом замкнутом пути (или цепи) в сети алгебраическая сумма IR-продукта равна ЭДС в этом пути.
Другими словами, в любом замкнутом контуре (который также известен как Mesh) алгебраическая сумма приложенной ЭДС равна алгебраической сумме падений напряжения в элементах. Второй закон Кирхгофа также известен как закон напряжения или закон сетки.
ΣIR = ΣE

Пояснение к KVL:

Замкнутый контур показан на рис., Который содержит два соединения батарей E 1 и E 2 . Общая сумма E.M.F батарей обозначена E 1 -E 2 .Воображаемое направление тока также показано на рис.

E 1 управляют током в таком направлении, которое должно быть положительным, в то время как E 2 мешает в направлении тока (то есть в направлении, противоположном предполагаемому направлению тока), следовательно, это принято как отрицательный. Падение напряжения в этой замкнутой цепи зависит от произведения напряжения и тока.

Падение напряжения в предполагаемом направлении тока известно как положительное падение напряжения, а другое - отрицательное падение напряжения.

На приведенном выше рисунке I 1 R 1 и I 2 R 2 - положительное падение напряжения, а I 3 R 3 и I 4 R 4 - отрицательное напряжение V.D.
Если мы обойдем замкнутую цепь (или каждую сетку) и умножим сопротивление проводника на протекающий в нем ток, то сумма IR будет равна сумме приложенных источников ЭДС, подключенных к цепи.

Общее уравнение для вышеуказанной схемы:

E 1 -E 2 = i 1 R 1 + i 2R 2 - i 3 R 3 - i 4 R 4

Если мы пойдем в предполагаемом направлении тока, как показано на рисунке, то произведение IR будет положительным, в противном случае - отрицательным.

Полезно знать:
Направление тока:
Очень важно определять направление тока при решении схем по законам Кирхгофа.
Направление тока можно предполагать по часовой стрелке или против часовой стрелки. После того, как вы выберете собственное направление тока, вам нужно будет применить и поддерживать одно и то же направление для всей цепи до окончательного решения схемы.

Если мы получили окончательное значение как положительное, это означает, что предполагаемое направление тока было правильным.В случае отрицательных значений, тогда ток направления меняется на противоположный по сравнению с предполагаемым.

Анализ цепи по законам Кирхгофа
Решенный пример для KCL и KVL (законы Кирхгофа)

Пример:

Резисторы R 1 = 10 Ом, R 2 = 4 Ом и R 3 = 8Ω подключаются до двух батарей (с незначительным сопротивлением), как показано. Найдите ток через каждый резистор.

Решение:
Предположим, что токи текут в направлениях, указанных стрелками.
Примените KCL к соединениям C и A.
Следовательно, ток в ячейке ABC = i 1
Ток в ячейке CA = i 2
Тогда ток в ячейке CDA = i 1 - i 2

Теперь примените KVL к сетке ABC, 20 В действуют по часовой стрелке. Приравнивая сумму IR произведений, получаем:
10 i 1 + 4 i 2 = 20 ……………. (1)

В сети ACD 12 вольт действуют по часовой стрелке, затем:
8 ( i 1 - i 2 ) - 4 i 2 = 12

8 i 1 - 8 i 2 - 4 i 2 = 12
8 i 1 - 12 i 2 = 12 …………….(2)

Умножение уравнения (1) на 3;
30 i 1 + 12 i 2 = 60

Решение для i 1
30 i 1 + 12 i 2 = 60
8 i 1 - 12 i 2 = 12

______________
38 i 1 = 72

Приведенное выше уравнение также можно упростить с помощью правила исключения или правила Крамера.

i 1 = 72/38 = 1,895 Ампер = Ток в резисторе 10 Ом

Подставляя это значение в (1), получаем:
10 (1,895) + 4 i 2 = 20

4 i 2 = 20 - 18,95

i 2 = 0,263 Ампера = Ток в резисторах 4 Ом.

Сейчас,
i 1 - i 2 = 1.895 - 0,263 = 1,632 Ампер

Применение законов Кирхгофа
  • Законы Кирхгофа можно использовать для определения значений неизвестных значений, таких как ток, напряжение, ток, а также направление потока. значения в цепи.
  • Эти законы могут быть применены к любой цепи * (см. Ограничение законов Кирхгофа в конце статьи), но полезны для поиска неизвестных значений в сложных схемах и сетях.
  • Также используется в узловом и сеточном анализе для определения значений тока и напряжения.
  • Ток через каждую независимую петлю передается путем применения KVL (каждая петля), а ток в любом элементе схемы путем подсчета всего тока (применимо в методе тока петли).
  • Ток через каждую ветвь передается за счет применения KCL (каждого перехода) KVL в каждом контуре цепи (применимо в методе тока контура).
  • Законы Кирхгофа полезны для понимания передачи энергии через электрическую цепь.

Полезно знать:

При упрощении и анализе электрических цепей по законам Кирхгофа необходимо учитывать эти правила:

  • Падение напряжения в контуре из-за тока по часовой стрелке считается положительным (+) Падение напряжения.
  • Падение напряжения в контуре из-за тока, направленного против часовой стрелки, считается отрицательным (-) падением напряжения.
  • Ток, потребляемый батареей по часовой стрелке, считается положительным (+).
  • Ток, потребляемый батареей против часовой стрелки, считается положительным (-).

Ограничения по закону Кирхгофа:
  • KCL применяется при условии, что ток течет только по проводам и проводам. В то время как в высокочастотных цепях, где паразитная емкость больше не может игнорироваться. В таких случаях ток может течь в разомкнутой цепи, потому что в этих случаях проводники или провода действуют как линии передачи.
  • KVL применимо при условии отсутствия флуктуирующего магнитного поля, связывающего замкнутый контур.В то время как в присутствии изменяющегося магнитного поля в высокочастотных, но коротковолновых цепях переменного тока электрическое поле не является консервативным векторным полем. Таким образом, электрическое поле не может быть градиентом какого-либо потенциала, а линейный интеграл электрического поля вокруг контура не равен нулю, что прямо противоречит KVL. Поэтому КВЛ в таком состоянии неприменим.
  • Во время передачи энергии от магнитного поля к электрическому, когда в KVL необходимо ввести помаду, чтобы заставить P.d (разность потенциалов) вокруг цепи равна 0.

Вы также можете проверить другие схемы, анализируя теоремы:

Законы Кирхгофа

Законы Кирхгофа

Вот несколько терминов для электрических цепей:

  • Узел: точка, в которой три или более токоведущих элемента (ветви) связаны;
  • Ветвь: путь, соединяющий два узла, по которому проходит один или несколько элементов последовательно;
  • Цикл: последовательность нескольких путей, образующих замкнутый цикл.

На принципиальной схеме как направление тока, так и полярность напряжения на элементе может быть обозначена произвольно. Фактическое направление и полярность будут определяться знаком конкретные значения, полученные после решения схемы. Например, ток, обозначенный слева направо с отрицательным значением на самом деле течет справа налево.

Законы Кирхгофа

  • Действующий закон Кирхгофа (KCL)

    Алгебраическая сумма токов в узле равна нулю:

    (70)
    за счет принципа сохранения электрического заряда (электрический заряд не может быть создан или разрушен в цепи).

    Здесь можно предположить направления всех токов через элементы находятся либо в узле, либо вне его.

  • Закон Кирхгофа по напряжению (KVL)

    Алгебраическая сумма всех падений напряжения в контуре равна нулю:

    (71)
    за счет принципа сохранения энергии (энергия не может быть созданы или уничтожены в цепи).

    Здесь мы можем предположить полярности всех напряжений на элементах от высокого (+) до низкого (-), при обходе цикла в любом по часовой стрелке или против часовой стрелки.

Пример 1:

Предположим, что токи, текущие в узел, положительны, а токи, выходящие из узел отрицательный, KCL утверждает: .

Предположим, что ток течет по петле по часовой стрелке, KVL состояния: .

Пример 2: Для приведенной ниже схемы найти,,, а также .

По закону Ома имеем .

Нанесите КВЛ на петлю справа, чтобы получить:

(72)

По закону Ома имеем .

Примените KCL к среднему узлу сверху, чтобы получить:

(73)

Опять же по закону Ома получаем .

Нанесите КВЛ на петлю слева, чтобы получить:

(74)

Последовательные и параллельные комбинации компонентов схемы

  • Последовательные резисторы:

    Согласно КВЛ, сумма напряжений на резисторы равны входному напряжению:


    где
    (76)
    а также
    (77)
  • Делитель напряжения:

    По закону Ома напряжение на k-м резисторе может быть равным найдено, что:

    (78)
    В частности, если мы имеем
    (79)
  • Резисторы параллельно:

    Согласно KCL сумма токов через резисторы равна входной ток:


    где
    (81)
    а также
    (82)

    В частности, когда,

    (83)
  • Делитель тока:

    По закону Ома ток через k-й резистор может быть найдено, что:

    (84)
    В частности, если мы имеем
    (85)
    (86)
  • Последовательные индукторы: Согласно KVL, сумма напряжений на индуктивности равно входному напряжению:
    (87)
    я. е.,
    (88)
  • Параллельные индукторы: Согласно KCL, сумма токов через индуктивности равняется входному току:
    (89)
    мы получили
    (90)
  • Конденсаторы, включенные параллельно: Согласно KCL, сумма токов через резисторы равны входному току:
    (91)
    я.е.,
    (92)
  • Последовательные конденсаторы: По КВЛ сумма напряжений на конденсаторы равны входному напряжению:
    (93)
    т.е.
    (94)

Пример 3 Рассмотрим следующие шесть цепей как ток или делители напряжения.

  • Для каждой из трех параллельных цепей найдите и в условия данного тока и сопротивлений, емкостей или индуктивности.
    • Цепь резистора:
      (95)
    • Цепь конденсатора:
      (96)
    • Цепь индуктивности:
      (97)
  • Для каждой из трех последовательных цепей найдите и в с точки зрения данного напряжения и сопротивлений, емкостей или индуктивности.
    • Цепь резистора:
      (98)
    • Цепь конденсатора:
      (99)
    • Цепь индуктивности:
      (100)
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *