Закрыть

Закон ома сопротивление: Центр ресурсов Fluke | Fluke

Содержание

Закон Ома для участка цепи

В предыдущих параграфах были рассмотрены три величины, с которыми мы имеем дело во всякой электрической цепи, — это сила тока, напряжение и сопротивление. Эти величины связаны между собой. Зависимость силы тока от напряжения мы уже установили. В этом параграфе на основании опытов было показано, что сила тока в цепи прямо пропорциональна напряжению на концах проводника, или, что-то же, на концах участка цепи; так как проводник является частью (участком) электрической цепи.

В описанных опытах сопротивление проводника (участка цепи) не менялось, менялось только напряжение на его концах. Поэтому можно сказать, что сила тока в цепи прямо пропорциональна напряжению на концах проводника, если при этом сопротивление проводника не меняется.

Чтобы ответить на вопрос, как зависит сила тока в цепи от сопротивления, обратимся к опыту.

На рисунке 259 изображена электрическая цепь, источником тока в которой является аккумулятор. В эту цепь по очереди включают проводники, обладающие различными сопротивлениями

. Напряжение на концах проводника во время опыта поддерживается постоянным. За этим следят по показаниям вольтметра. Силу тока в цепи измеряют амперметром.

Ниже в таблице приведены результаты опытов с тремя различными проводниками:

В первом опыте сопротивление проводника 1 Ом и сила тока в цепи 2 А. Сопротивление второго проводника 2 Ом, т. е. в два раза больше, а сила тока в два раза меньше. И наконец, в третьем случае сопротивление цепи увеличилось в четыре раза и во столько же раз уменьшилась сила тока. Заметим, что напряжение на концах проводников во всех трех опытах было одинаковое, равное 2 В. На рисунке 260 изображен график зависимости силы тока от сопротивления проводника при одном и том же напряжении на его концах. На этом графике по горизонтальной оси в условно выбранном масштабе отложены сопротивления проводников в омах, по вертикальной — сила тока в амперах.

Обобщая результаты опытов, приходим к выводу: при одинаковом напряжении на концах проводника сила тока обратно пропорциональна сопротивлению проводника.

Зависимость силы тока от напряжения на концах участка цепи и сопротивления этого участка называется законом Ома по имени немецкого ученого Ома, открывшего этот закон в 1827 г.

Закон Ома читается так:  сила тона в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению:

сила тока = напряжение/сопротивление

Введем буквенные обозначения величин: U — напряжение, I — сила тока, R — сопротивление — и запишем закон Ома в виде формулы:

I = U/R

Закон Ома — один из основных физических законов.

Пример 1. Напряжение в сети 220 В, а сопротивление спирали лампы 440 Ом, Рассчитать силу тока в электрической лампе.

Ом Георг (1 787—1854) — немецкий физик. Он открыл теоретически и подтвердил на опыте закон, выражающий связь между силой тока в цепи, напряжением и сопротивлением.

Пример 2. Сила тока в спирали электрической плитки 5 А, сопротивление спирали 44 Ом. Определить напряжение, под которым находится спираль.

Пример 3. Напряжение на концах участка цепи 4,5 В, сила тока в цепи 0,3 А. Рассчитать сопротивление участка цепи.

Вопросы. 1. О связи, каких трех электрических величин говорится в законе Ома? 2. Как формулируется закон Ома? 3. Как математически выразить закон Ома? 4. Как выразить напряжение на концах участка цепи через силу тока и сопротивление участка? 5. Как выразить сопротивление цепи через напряжение и силу тока?

Упражнения. 1. Напряжение на зажимах электрического утюга 220В, сопротивление нагревательного элемента утюга 50 Ом. Чему равна сила тока в цепи? 2. Сила тока в спирали электрической лампы 0,7 А, сопротивление лампы 310 Ом. Определите напряжение, под которым горит лампа. 3. Каким сопротивлением обладает вольтметр, рассчитанный на 150 В, если сила тона в нем не должна превышать 0,01 А?

4. Используя приведенные ниже табличные данные, изобразите графически зависимость силы тока от сопротивления при постоянном напряжении, равном 10 В. По горизонтальной оси в выбранном масштабе откладывайте сопротивление, а по вертикальной оси — силу тока. 5. Определите по графику (рис. 257) сопротивление проводника. 6. На рисунке 261 изображены графики зависимости силы тока от напряжения для двух проводников А ив. Какой из этих проводников обладает большим сопротивлением? Определите сопротивление каждого из проводников.

Закон Ома для участка цепи. Сопротивление. Соединение проводников.

Металлический проводник, подключенный к источнику тока является примером однородного участка цепи.

Немецкий физик Георг Симон Ом экспериментально изучил зависимость силы тока в металлических проводниках от напряжения, пришел к выводу: если состояние проводника с течением времени не меняется, а его температура постоянна, то для каждого проводника существует однозначная связь между I и U - вольт-амперная характеристика.

Закон Ома для участка цепи: 

Сила тока на участке цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Электрическое сопротивление проводника

Это физическая скалярная величина, характеризующая свойство проводника уменьшать скорость упорядоченного движения свободных зарядов.

Сопротивление однородного металлического проводника постоянного сечения зависит от его геометрических размеров, формы и вещества, из которого изготовлен проводник.

Удельное сопротивление проводника  зависит от рода вещества и его состояния, например, температуры. Удельное сопротивление для определенного вещества имеет постоянное табличное значение.

Величина, обратная сопротивлению, называется электрической проводимостью данного проводника.

Параллельное и последовательное соединение проводников

Резистор - элемент электрической цепи, характеризуемый только сопротивлением электрическому току. На схемах резистор обозначается прямоугольником:  Реостат - прибор, служащий для регулировки и получения требуемой величины сопротивления. Обозначение на схемах: 

Резисторы Реoстат

???Вопросы

  1. Что называют вольт-амперной зависимостью?
  2. Как зависит сила тока от напряжения? от сопротивления?
  3. Сформулируйте закон Ома для участка цепи?
  4. Что называют сопротивлением?
  5. От каких величин зависит сопротивление? Формула?
  6. Назовите единицы измерения I, U,R?
  7. Какие вы знаете соединения проводников?
  8. Какое соединение называют последовательным?
  9. Запишите законы последовательного соединения?
  10. Какое соединение называют параллельным?
  11. Запишите законы параллельного соединения?
  12. Какое соединение больше применяется на практике? Почему?
  13. Как называется этот прибор? Какова цена деления?

Закон Ома для участка цепи, пример расчета.

21 Января 2017

4292

Всем привет.
В предыдущей статье мы собрали простую замкнутую цепь, состоящий из источника питания, проводников по которым протекает ток и нагрузки. Выяснили, что такое сопротивление проводника и сопротивление нагрузки. Так же рассмотрели взаимосвязь между напряжением тока, силой тока и сопротивлением на разных участках цепи (проводника и нагрузки). Все эти отношения установлены в основном законе электротехники – в законе Ома.

В этой статье, мы рассмотрим Закон Ома для участка цепи.

Закон Ома для участка цепи

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Давайте рассмотрим этот закон на примере. Соберем следующую схему:

Так как сопротивление проводников близко к нулю, будем считать, что они равны нулю. В нашу электрическую цепь, кроме нагрузки, мы еще добавили два прибора.
Амперметр – прибор для измерения силы тока, или другими словами измеряет сколько потребляет нагрузка, так легче запомнить. Соединяется последовательно с нагрузкой.
Вольтметр – прибор для измерения напряжения тока, при подключении к нагрузке, показывает сколько падает напряжение на нагрузку. Соединятся параллельно с нагрузкой.

Давайте нагрузку поставим сопротивлением равной 100 Ом, с источника питания пустим напряжение 5 В (вольт). Снимем показания с приборов. Нас интересует показатель амперметра. Амперметр показывает - 0,05 А (ампер) для удобства можно перевести в миллиамперы – 50 мА (миллиампер).

наведите или кликните мышкой, для анимации

Теперь поменяем напряжение тока, вместо 5 В установим 10 В. Снимем показатель амперметра. Амперметр показывает - 0,1 А переводим в миллиамперы – 100 мА. Сразу отметим для себя - с увеличением напряжения увеличилась сила тока.
В законе ома: «сила тока в участке цепи прямо пропорциональна напряжению … ».

наведите или кликните мышкой, для анимации

Теперь вернемся к первому опыту, то есть установим напряжение обратно на значение 5 В. Попробуем изменить сопротивление нагрузки. Поменяем нагрузку со значение сопротивления 200 Ом. Снимем показатели с амперметра и сравним с показателями первого опыта. Амперметр показывает - 0,025 А переводим в миллиамперы – 25 мА. Таким образом увеличение сопротивления нагрузки, уменьшило силу тока.

В законе ома: «сила тока в участке цепи … обратно пропорциональна электрическому сопротивлению».

наведите или кликните мышкой, для анимации

Закон Ома для участка цепи записывается следующей формулой: I = U/R
Как нам уже известно:
I = сила тока
U = напряжение тока
R = сопротивление (сопротивление нагрузки)

Так же эту формулу можно преобразовывать для определения напряжения тока или сопротивления нагрузки. Что бы легче запомнить формулы, надо запомнить треугольник Ома, который изображен выше. Закрывая искомую величину пальцем, можно увидеть формулу для нее.

Формула для определения напряжения:

Формула для определения сопротивления:

Рассмотрим простой пример расчета используя закон Ома для участка цепи. Если в примере выше, мы бы не использовали амперметр, зная напряжение тока 5 В (U) и сопротивление нагрузки 100 Ом (R). Использую следующую формулу I = U/R, мы бы получили результат: 5/100 = 0,05. Ответ 0,05 А = 50 мА.

Мы разобрали закон Ома для участка цепи, ознакомились с формулами для определения силы тока, напряжение тока и сопротивления. Так же хочу добавить, при расчетах, необходимо переводить единицы измерения в систему СИ. В примерах выше для демонстраций замкнутой цепи, я использовал программу - Electronics Workbench. Программа предназначена для моделирования и анализа электронных схем.

Закон Ома | Физика

В предыдущих параграфах были рассмотрены три величины, характеризующие протекание электрического тока в цепи,— сила тока I, напряжение U и сопротивление R. Между этими величинами существует определенная связь. Закон, выражающий эту связь, был установлен в 1827 г. немецким ученым Г. Омом и поэтому носит его имя.

Выделим в произвольной электрической цепи участок, обладающий сопротивлением R и находящийся под напряжением U (рис. 37). Согласно закону Ома:

Сила тока на участке цепи равна отношению напряжения на этом участке к его сопротивлению.

Математически закон Ома записывается в виде следующей формулы:

I = U/R      (14.1)

Закон Ома позволяет установить, что будет происходить с силой тока на участке цепи при изменении его сопротивления или напряжения.

1. При неизменном сопротивлении сила тока прямо пропорциональна напряжению: чем больше напряжение U на концах участка цепи, тем больше сила тока I на этом участке. Увеличив (или уменьшив) напряжение в несколько раз, мы во столько же раз увеличим (или уменьшим) силу тока.

Проиллюстрируем эту закономерность на опыте. Соберем электрическую цепь из источника тока, лампы, амперметра и ключа (рис. 38, а). В качестве источника тока будем использовать устройство, позволяющее регулировать выходное напряжение от 4 до 12 В. Измеряя силу тока в цепи при разных напряжениях, можно убедиться в том, что она действительно пропорциональна напряжению.

2. При неизменном напряжении сила тока обратно пропорциональна сопротивлению: чем больше сопротивление R участка цепи, тем меньше сила тока I в нем.

Для проверки этой закономерности заменим в используемой цепи лампу на магазин сопротивлений (рис. 38, б). Измеряя силу тока при разных сопротивлениях, мы увидим, что сила тока I и сопротивление R действительно находятся в обратно пропорциональной зависимости.

При уменьшении сопротивления сила тока возрастает. Если сила тока превысит допустимое для данной цепи значение, включенные в нее приборы могут выйти из строя; провода при этом могут раскалиться и стать причиной пожара. Именно такая ситуация возникает при коротком замыкании. Так называют соединение двух точек электрической цепи, находящихся под некоторым напряжением, коротким проводником, обладающим очень малым сопротивлением.

Короткое замыкание может возникнуть при соприкосновении оголенных проводов, при небрежном ремонте проводки под током, при большом скоплении пыли на монтажных платах и даже при случайном попадании какого-нибудь насекомого внутрь прибора.

На законе Ома основан экспериментальный способ определения сопротивления. Из формулы (14.1) следует, что

R = U/I      (14.2)

Поэтому для нахождения сопротивления R участка цепи надо измерить на нем напряжение U, затем силу тока I, после чего разделить первую из этих величин на вторую. Соответствующая этому схема цепи изображена на рисунке 39.

Если, наоборот, известны сопротивление R и сила тока I на участке цепи, то закон Ома позволяет рассчитать напряжение U на его концах. Из формулы (14.1) получаем

U = IR     (14.3)

Чтобы найти напряжение U на концах участка цепи, надо силу тока I на этом участке умножить на его сопротивление R.

Опубликовав книгу, в которой излагался открытый им закон «Теоретические исследования электрических цепей», Георг Ом написал, что «рекомендует ее добрым людям с теплым чувством отца, не ослепленного обезьяньей любовью к детям, но довольствующегося указанием на открытый взгляд, с которым его дитя смотрит на злой мир». Мир действительно оказался для него злым, и уже через год после выхода его книги в одном из журналов появилась статья, в которой работы Ома были подвергнуты уничтожающей критике. «Тот, кто благоговейными глазами взирает на вселенную,— говорилось в статье,— должен отвернуться от этой книги, являющейся плодом неисправимых заблуждений, преследующих единственную цель — умалить величие природы».

Злобные и безосновательные нападки на Ома не прошли бесследно. Теорию Ома не приняли. И вместо продолжения научных исследований он должен был тратить время и энергию на полемику со своими оппонентами. В одном из своих писем Ом написал: «Рождение «Электрических цепей» принесло мне невыразимые страдания, и я готов проклясть час их зарождения».

Но это были временные трудности. Постепенно, сначала в России, а затем и в других странах, теория Ома получила полное признание. Закон Ома внес такую ясность в правила расчета токов и напряжений в электрических цепях, что американский ученый Дж. Генри, узнав об открытиях Ома, не удержался от восклицания: «Когда я первый раз прочел теорию Ома, то она мне показалась молнией, вдруг осветившей комнату, погруженную во мрак».

??? 1. Сформулируйте закон Ома. 2. Как изменится сила тока на участке цепи, если при неизменном сопротивлении увеличить напряжение на его концах? 3. Как изменится сила тока, если при неизменном напряжении увеличить сопротивление участка цепи? 4. Как с помощью вольтметра и амперметра можно измерить сопротивление проводника? 5. По какой формуле находится напряжение, если известны сила тока и сопротивление данного участка? 6. Что называют коротким замыканием? Почему при этом увеличивается сила тока? 7. Объясните причину короткого замыкания в ситуациях, изображенных на рисунке 40.

Закон Ома для участка цепи. Расчет электрического сопротивления проводника

Цель

Обобщить знания учащихся об электрическом токе и напряжении и установить на опыте зависимость силы тока от напряжения на однородном участке электрической цепи и от сопротивления этого участка, вывести закон Ома для участка цепи. Установить, что электрическое сопротивление зависит от длины проводника, удельного сопротивления и площади поперечного сечения.

Задачи урока

  • обучающие: закрепление понятия сила тока, напряжение, сопротивление; вывести зависимость между силой тока, напряжением и сопротивлением участка цепи. Закон Ома для участка цепи. Примеры на расчёт силы тока, напряжения и сопротивления проводника.
  • развивающие: развивать умения наблюдать, сопоставлять, сравнивать и обобщать результаты экспериментов; продолжить формирование умений пользоваться теоретическими и экспериментальными методами физической науки для обоснования выводов по изучаемой теме и для решения задач.
  • воспитательные: развитие познавательного интереса к предмету, тренировка рационального метода запоминания формул, развитие аккуратности, умения организовывать свою работу в определённом промежутке времени.

 

Тип урока

Урок формирования новых знаний с использованием электронных образовательных ресурсов.

Формы работы учащихся

Фронтальная, групповая, индивидуальная.

Используемые приемы обучения

проблемный; исследовательский.

Методы

Словесный, частично-поисковый, Практический, методы контроля и самоконтроля.

Средства обучения

Мел, доска, компьютер, мультимедийный проектор, наличие доступа в Интернет.

Демонстрации

1.Зависимость силы тока от сопротивления проводника при постоянном напряжении;
2. Зависимость силы тока от напряжения при постоянном сопротивлении участка цепи.
ЦОР Физика.

Формируемые УУД

  • регулятивные: самостоятельность, целеполагание, контроль;
  • познавательные:практическое освоениеоснов проектно-исследовательскойдеятельности, интерес к новому учебному материалу;
  • коммуникативные:организация и планирование учебного сотрудничества с учителем и сверстниками, общительность, умение договариваться, работать в группе, аргументировать, отвечать на поставленные вопросы;
  • личностные: справедливость, формирование адекватнойпозитивной самооценки, оценивание успехов, установка на ЗОЖ.

Ожидаемые результаты
Учащиеся научатся:

  • Объяснять зависимость силы тока от напряжения и сопротивления на участке цепи;
  • Строить графики зависимости силы тока от напряжения и сопротивления;
  • Собирать простейшие электрические схемы;
  • Применять закон Ома для решения количественных задач.

Ход урока

1. Организационный момент (приветствие, присутствие).

2. Этап актуализации знаний

Учитель: Ребята, обратите внимание на слайд. Как Вы видите тема нашего сегодняшнего урока звучит как «Закон Ома для участка цепи. Расчет электрического сопротивления».


Но прежде, чем начать изучать новый материал, следует выяснить, к каким из физических явлений относится данная тема? (выслушиваются варианты ответа, возможно, понадобится вспомнить все остальные пять физических явлений). Итак, подведем итог, явления, к которым имеет отношение тема сегодняшнего урока называются электрические . Давайте вспомним, что же такое электрические явления? (выслушиваются предположения детей, далее работа по слайду).


Учитель: замечательно, ребята! Теперь когда мы знаем что такое электрические явления, необходимо поставить цель нашего урока, к которой мы будем стараться прийти в конце.


3. Мотивационный этап

Ребята, прежде чем устанавливать зависимости между физическими величинами, нам необходимо четко усвоить каждую из этих величин. Для этого давайте повторим по слайдам все физические величины, ос которыми нам сегодня придется работать при решении задач, а также повторим составные части электрической цепи, какие приборы помогают нам снимать показания.


Чтобы было легче понять, что такое сила тока, представьте, что перед Вами вместо провода труба, в которой находится вода, а воде плавают маленькие рыбки. Так вот рыбки, благодаря действию течения потока воды, начинают одновременно плыть в одном направлении. Если мы представим, что вместо рыбок у нас электроны, а вместо течения воды - электрическое поле, то в таком случае в проводнике возникает электрический ток, то есть упорядоченное движение заряженных частиц. За направление тока мы принимаем направление движения положительно заряженных частиц, то есть от + к -.


А теперь вспомним, что такое напряжение.


Если мы представим, что под действием течения воды в трубе одна из рыбок переместилась влево на расстояние 1 м, то мы можем сказать, что течение совершило работу по перемещению рыбки. Так и в случае электричества. Электрическое поле, перемещая заряженную частицу совершает работу, и если мы разделим значение этой работы на величину заряда частицы, то получим величину, которая называется электрическое напряжение.

Обратимся к еще одной физической величине


Электроны, передвигаясь вдоль проводника испытывают различные препятствия. Так, например, хорошими проводниками электрического тока являются металлы, а у них имеется кристаллическая решетка, чем более плотно устроена эта решетка, тем и электронам сложнее перемещаться из одного места проводника в другое, а следовательно электроны встречают некоторое сопротивление. Я неспроста сказала сопротивление, именно из этого физического смысла и вытекает понятие электрического сопротивления. Чем сложнее электронам передвигаться по проводнику, тем меньшее их количество в единицу времени будет перемещаться сквозь поперечное сечение и следовательно сила тока также будет меньше.

Давайте выясним, от каких параметров зависит электрическое сопротивление


И последнее, что мы сделаем перед изучением нового материала, это повторим, как правильно собираться электрические цепи по схемам, основные составные части электрической цепи.


4. Этап изучения нового материала

Ребята, зависимость этих трех физических величин друг от друга в 1827 году впервые вывел немецкий ученый Георг Ом. Поэтому и формула носит название его фамилии. Закон Ома.



Рассматривая зависимость друг от друга двух величин, третья должна оставаться постоянной. Мы с Вами сейчас опытным путем подтвердим что сила тока на участке цепи действительно будет увеличиваться при увеличении напряжения, но с учетом того, что сопротивление у нас будет величиной постоянной. (обращаемся к ЦОР).

По графику мы видим, что сила тока увеличивалась ровно настолько же, насколько мы увеличивали напряжение, а значит первое утверждение из закона Ома о том, «что сила тока на участке цепи прямо пропорциональна напряжению на концах этого участка,» ВЕРНО!

Теперь выясним, как же сила тока зависит от сопротивления при постоянном напряжении и прав ли бы Георг Ом в своих суждениях.

По графику мы убедились с Вами «Что сила тока обратно пропорциональна сопротивлению».

А теперь предлагаю Вам правило треугольника, для более удобного запоминая данной формулы


5. Этап применения нового знания

Приступим к решению задач. От простого к сложному.

Задача №1

Напряжение на зажимах электрического утюга 220(В), сопротивление нагревательного элемента утюга 50 (Ом). Чему равна сила тока в нагревательном элементе? Рассчитайте величину электрического заряда, проходящего через проводник за время 0,5 сек?

Задача №2

Используя данные предыдущей задачи, рассчитайте длину проводника (спирали в нагревательном элементе утюга), если известно, что площадь поперечного сечения проводника S равна 0,8 кв.мм., и проводник выполнен из меди.


Задача №3

Сборник ОГЭ физика 2017. автор ЗОРИН Н. И.

Вариант 6 № 16

Через поперечное сечение проводника прошел заряд, равный 6 Кл, за время, равное 5 минутам. Сопротивление проводника 5 (Ом). Рассчитайте напряжение проводника.

Задача №4

Вариант 8 № 18


Задача №5

Вариант 9 № 16

Как изменится сила тока в электрической цепи, если площадь поперечного сечения проводника уменьшить вдвое?

Задача №6

Вариант 9 №15


6. Рефлексивный этап

Учитель: А сейчас подведем итог нашего урока. Вспомним цели, которые мы ставили перед собой! Как Вы считаете, удалось ли нам их добиться? Тогда давайте ответим на следующие вопросы: Какую взаимозависимость между силой тока, напряжением и сопротивлением на участке цепи мы раскрыли?

Ученики: Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.(слайд)

Учитель: В какой формуле выражена эта взаимозависимость?

Ученики: Взаимозависимость силы тока, напряжения и сопротивления выражена законом Ома для участка цепи.

Учитель: Кто впервые установил эту зависимость?

Ученики: Георг Ом (немецкий физик) в 1927 году.

Учитель: А как зависит электрическое сопротивление от длины проводника и площади поперечного сечения?

Ученики:Чем больше длина, тем больше сопротивление, чем больше площадь поперечного сечения, тем меньше сопротивление.

Учитель: Замечательно, надеюсь, данное занятие было полезным для Вас и теперь Вы сможете применять полученные знания на практике при решении задач.

Закон Ома для участка цепи

Пожалуй, закон Ома для участка цепи является основой электротехники и электроники. Любое Пособие по физике для поступающих в вузы описывает Закон Ома и любой инженер должен его знать. Этот закон настолько прост, что его, по идее, должен знать и понимать каждый школьник. Однако я встречал людей с высшим техническим образованием, которые не знали как рассчитать простейшую электрическую цепь из двух резисторов. И это не шутка. Именно поэтому я решил написать небольшую статью, посвящённую Закону Ома для участка цепи. Постараюсь сделать это понятными словами.

Закон Ома для участка цепи определяет зависимость между силой тока в проводнике и напряжением (разностью потенциалов) между двумя точками этого проводника. Эти точки ещё называют сечениями. Почему? Проводник, каким бы он ни был (круглым, квадратным или любой другой формы) можно мысленно рассечь (см. рис. 1). Это и будет сечение. А ещё есть понятие площадь поперечного сечения (обычно, когда говорят «сечение» по отношению к проводнику, то как раз и подразумевают площадь поперечного сечения, но это уже другая тема).

Рис. 1. Сечение проводника.

В 1826 г. немецким учёным Георгом Омом (1787-1854) было замечено, что отношение разности потенциалов (напряжения) на концах металлического проводника к силе тока является величиной постоянной, то есть:

U/I = R = const
Эта величина зависит от геометрических свойств проводника (то есть от его размеров, в частности, от площади поперечного сечения), а также от его электрических свойств и температуры. Эта величина называется омическим (активным) сопротивлением, или просто сопротивлением.

Определение закона Ома для участка цепи следующее

Сила тока прямо пропорциональна разности потенциалов (напряжению) на концах участка цепи и обратно пропорциональна сопротивлению этого участка:
I = U/R
Где
U – напряжение на данном участке цепи
R – сопротивление данного участка цепи
Сопротивление проводника – это основная электрическая характеристика проводника. Эта характеристика определяет упорядоченное перемещение носителей тока в этом проводнике (или на участке цепи).

Единица измерения омического сопротивления в СИ – ом (Ом). Проводник имеет сопротивление 1 Ом, если при силе тока в этом проводнике 1 А разность потенциалов (напряжение) на его концах равна 1 В, то есть

 
1 Ом = 1 В / 1 А
Иными словами, если взять проводник, по которому течёт ток силой 1 А, отмерить отрезок этого проводника таким образом, чтобы напряжение на концах этого отрезка было равно 1 В, то сопротивление этого отрезка будет 1 Ом (рис. 2).

Рис. 2. Сопротивление проводника.

Как говаривал один известный товарищ – теория без практики мертва. Надеюсь, что всё прочитанное выше вы поняли. Но остался один вопрос – зачем это надо? Где можно применить полученные знания на практике? Приведу два простых примера, которые, однако, используются очень часто в электронике.

Делитель напряжения

Довольно часто приходится сталкиваться с необходимостью понизить напряжение, например, с 12 до 3 вольт. Сделать это можно с помощью двух резисторов (см. рис. 3). Если вы не знаете, что такое резисторы, то советую ознакомиться со статьёй РЕЗИСТОРЫ. Ну а если знаете, то дальше можете прочитать о том, как это сделать.

Задача, в общем-то, не сложная. Требуется подобрать два резистора таким образом, чтобы падение напряжения на одном из них составляло 3 вольта, а на втором – (12 – 3) = 9 вольт (для нашего примера). Кроме того, необходимо знать ток, который должен протекать в цепи. Допустим, что в нашем случае ток должен быть равен 50 мА (0,05 А). Тогда, используя закон Ома для участка цепи, вычислим полное сопротивление цепи, то есть общее сопротивление резисторов R1 и R2:

R = U/I = 12 В / 0,05 А = 240 Ом
Напомню, что все единицы измерения должны соответствовать принятым в СИ, то есть напряжение измеряется в ВОЛЬТАХ, ток – в АМПЕРАХ, а сопротивление – в ОМАХ.

Поскольку на любом участке цепи из последовательно включенных элементов ток одинаков, то вычислить сопротивление резисторов R2 и R1 не составит труда:

R1 = U1 / I = 9 / 0,05 = 180 Ом
R2 = U2 / I = 3 / 0,05 = 60 Ом
Ну вот и всё. Задача решена. Однако использовать такой делитель нужно с умом. Ведь любая нагрузка имеет своё сопротивление, которое называется входным сопротивлением. Это значит, что, подключив нагрузку к выходу делителя, мы тем самым уменьшим сопротивление цепи, а это, в свою очередь, увеличит ток в цепи и падение напряжения на резисторе R1 увеличится, а на нагрузке, соответственно, уменьшится. Что из этого следует? А следует из этого тот печальный факт, что сколь-нибудь мощную нагрузку подключать к выходу делителя нецелесообразно. Поэтому такие делители используются в основном, в электронных схемах, где протекают относительно небольшие токи.

Если интересно, то вы можете немного поэкспериментировать с делителем напряжения при помощи представленного ниже флэш-ролика (рис. 3). Для изменения входного напряжения и сопротивления резисторов воспользуйтесь соответственными "ползунками" или непосредственно введите данные в поля жёлтого цвета. Если флэш-ролик не отображается или не работает, то вам придётся настроить (или заменить) ваш браузер и/или установить (обновить) флэш-плеер.

Рис. 3. Делитель напряжения.

Как зажечь (но не сжечь) светодиод?

Светодиоды в наше время применяются очень широко – от простых устройств индикации до автомобильных фонарей и светофоров. Возможно, у вас возникала мысль поменять лампочки в автомобиле на светодиоды. Как бывалый автомобилист я вам этого делать не советую – возни много, а смысла мало. А вот как электронщик – помогу разобраться в премудростях включения светодиодов в электрическую цепь. Дело это несложное, но многие просто понятия не имеют, что и здесь нужно всё делать «по науке». А потом говорят, что светодиоды – вещь ненадёжная, хотя, как правило, выходят из строя светодиоды при правильной эксплуатации очень и очень редко. А вот при неправильной – ещё как. При желании сжечь светодиод можно моментально.

Надо сказать, что сейчас в магазинах довольно много разных «мигающих» и прочих светодиодов, которые на самом деле являются электронными устройствами, встроенными в корпус светодиодов. Такие устройства можно подключать непосредственно к источнику питания, без гасящего резистора. Однако мы здесь будем говорить об обычных светодиодах.

Схема включения светодиода показана на рис. 4. При включении светодиода в цепь постоянного тока необходимо соблюдать полярность (см. документацию на светодиод).

Итак, главное, что нам нужно знать:

  • Максимальное напряжение
  • Максимально допустимый ток светодиода
Максимально допустимый ток светодиода – это ток, при котором гарантируется долговременная работа светодиода без выхода его из строя. Не надо путать с кратковременным максимальным током. Эти данные берутся из справочных материалов. Но обычно ток светодиода составляет 10…20 мА.

Итак, допустим, что мы зачем-то хотим установить светодиод на автомобиль. Напряжение бортовой сети автомобиля при исправном оборудовании не может превышать 15 В. На это напряжение и будем рассчитывать. Допустим, что максимальный ток нашего светодиода составляет 20 мА (0,02 А). Далее нам необходимо учесть тот факт, что на любом полупроводнике (коим является и светодиод) падает какое-то напряжение. Для светодиодов это обычно 1,5…2 В. Примем его для нашего случая равным 2 В.

Поскольку резистор и светодиод будут подключены последовательно, то максимально возможное напряжение на резисторе для нашего примера будет

U1 = U – Ud = 15 – 2 = 13
Где
U1 – напряжение на гасящем резисторе R1
U – входное напряжение
Ud – напряжение, падающее на светодиоде
Теперь остаётся рассчитать резистор таким образом, чтобы через него протекал ток 20 мА при напряжении 13 В. Делаем это с помощью известного нам закона Ома для участка цепи:
R = U1 / I = 13 / 0,02 = 650 Ом
Ну вот и всё. Задача решена – для включения светодиода с заданными характеристиками нам потребуется резистор сопротивлением 650 Ом. Однако сопротивление – это не единственный параметр резистора. Резистор ещё должен иметь подходящую мощность. Кроме того, промышленностью не выпускаются резисторы сопротивлением 650 Ом (точнее, выпускаются, но для особых случаев). Но это уже другая история. Хотите знать больше? Читайте статью РЕЗИСТОРЫ.

Ну и кроме того предоставлю вам возможность закрепить полученный материал с помощью флэш-ролика (рис. 4).

Рис. 4. Подключение светодиода.

См. также:


Закон Ома | Справочник радиолюбителя

Сила тока в участке цепи прямо пропорциональна напряжению, и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Закон Ома записывается формулой:

  

Где: I — сила тока (А), U — напряжение (В), R — сопротивление (Ом).

Следует иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков . 

Закон Ома определяет связь трех фундаментальных величин: силы тока, напряжения и сопротивления. Он утверждает, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Ток течет из точки с избытком электронов в точку с дефицитом электронов. Путь, по которому следует ток, называется электрической цепью. Все электрические цепи состоят из источника тока, нагрузки и проводников. Источник тока обеспечивает разность потенциалов, которая позволяет течь току. Источником тока может быть батарея, генератор или другое устройство. Нагрузка оказывает сопротивление протеканию тока. Это сопротивление может быть высоким или низким, в зависимости от назначения цепи. Ток в цепи течет через проводники от источника к нагрузке. Проводник должен легко отдавать электроны. В большинстве проводников используется медь.

Путь электрического тока к нагрузке может проходить через три типа цепей: последовательную цепь, параллельную или последовательно-параллельную цепи.Ток электронов в электрической цепи течет от отрицательного вывода источника тока, через нагрузку к положительному выводу источника тока.

Пока этот путь не нарушен, цепь замкнута и ток течет.

Однако если прервать путь, цепь станет разомкнутой и ток не сможет по ней идти.

Силу тока в электрической цепи можно изменять, изменяя либо приложенное напряжение, либо сопротивление цепи. Ток изменяется в таких же пропорциях, что и напряжение или сопротивление. Если напряжение увеличивается, то ток также увеличивается. Если напряжение уменьшается, то ток тоже уменьшается. С другой стороны, если сопротивление увеличивается, то ток уменьшается. Если сопротивление уменьшается, то ток увеличивается. Это соотношение между напряжением, силои тока и сопротивлением называется законом Ома.

Закон Ома утверждает, что ток в цепи (последовательной, параллельной или последовательно-параллельной) прямо пропорционален напряжению и обратно пропорционален сопротивлению

.

При определении неизвестных величин в цепи, следуйте следующим правилам:

  1. Нарисуйте схему цепи и обозначьте все известные величины.
  2. Проведите расчеты для эквивалентных цепей и перерисуйте цепь.
  3. Рассчитайте неизвестные величины.

Помните: закон Ома справедлив для любого участка цепи и может применяться в любой момент. По последовательной цепи течет один и тот же ток, а к любой ветви параллельной цепи приложено одинаковое напряжение.

История закона Ома

Георг Ом, проводя эксперименты с проводником, установил, что сила тока в проводнике пропорциональна напряжению, приложенному к его концам. Коэффициент пропорциональности назвали электропроводностью, а величину принято именовать электрическим сопротивлением проводника. Закон Ома был открыт в 1826 году.

Ниже приведены анимации схем иллюстрирующих закон Ома. Обратите внимание, что (на первой картинке) Амперметр (А) является идеальным и имеет нулевое сопротивление.

Данная анимация показывает как меняется ток в цепи при изменении приложенного напряжения.

Следующая анимация показывает как меняется сила тока в цепи при изменении сопротивления.

Следующие изображения покажут какие процессы и изменения происходят в цепи при паралельном подключении сопротивлений (резисторов)

При смешанном, параллельно-последовательном включении сопротивлений происходят следующие процесы.

Рассеивание мощности в резестивной цепи.

Сопротивление

и закон Ома | Книга Ultimate Electronics

Ultimate Electronics: практическое проектирование и анализ схем


Как решить задачи закона Ома для резисторов. Микроскопические причины макроскопической линейности закона Ома. Читать 11 мин

В разделе «Электроны в движении» мы обсуждали, как электрические поля вызывают силу → F = qe → E на электрон. Так же, как и любой объект, испытывающий чистую силу, электрон будет ускоряться → Fnet = me → a в ответ на эту силу.Со временем это ускорение вызывает увеличение скорости: → a = d → vdt . Скорость носителей заряда можно описать как электрический ток.

Для свободных электронов, летающих в вакууме, это конец истории.

Однако для электронов, движущихся в материале - обычно, но не всегда в твердом теле - столкновения между электроном и самим материалом являются невероятно доминирующим фактором в общем движении электрона.

Хотя электрон все еще ускоряется электрическим полем, он часто теряет энергию из-за столкновений с материалом.Каждое столкновение рассеивает кинетическую энергию , которую электрон накопил в материале, который становится теплом.

В результате, чтобы электроны двигались через материал с постоянной средней скоростью (нулевое среднее ускорение), нам все еще нужно продолжать добавлять энергию, чтобы преодолеть кинетическую энергию, потерянную при столкновениях с неподвижным материалом. Это свойство называется сопротивлением .

(Изучая механику и кинематику, существует спектр между упругими столкновениями, которые сохраняют полную кинетическую энергию, и неупругими столкновениями, которые не сохраняют полную кинетическую энергию, потому что часть этой энергии преобразуется в тепло, звук, деформацию материал и т. д.В случае трения или омического сопротивления мы имеем в виду неупругие столкновения.)


Электрическое сопротивление при столкновении аналогично сопротивлению воздуха.

Представьте себе мяч для настольного тенниса, упавший с башни. Под действием силы тяжести мяч ускоряется по направлению к земле. Если бы не было сопротивления воздуха, скорость мяча продолжала бы расти и расти без ограничений. Но в воздухе происходят столкновения между мячом и молекулами воздуха, поэтому мяч достигает некоторой установившейся скорости, которую в этой ситуации часто называют «конечной скоростью».При этой установившейся скорости энергия, полученная при движении вниз в поле гравитационной потенциальной энергии, равна энергии, потерянной в результате столкновений при выталкивании воздуха с пути. Когда мы усредняем многие из этих микроскопических столкновений, кажется, что мяч не ускоряется и не замедляется, а вместо этого продолжает падать с постоянной скоростью.

Это действительно рассеивающая кинетическая энергия. В противном случае добавление энергии привело бы к постоянному ускорению, а не просто к поддержанию постоянной скорости.

Разумна и жидкая аналогия. Для проталкивания жидкости по трубе требуется энергия (обычно определяемая как разность давлений) для поддержания постоянной скорости (обычно указываемой как расход), потому что поток постоянно теряет энергию из-за сопротивления внутренних стенок трубы, а также вязким взаимодействиям между молекулами жидкости. Эти силы сопротивления действительно рассеиваются в виде тепла. (Однако, поскольку вода имеет такую ​​высокую удельную теплоемкость, мы обычно не замечаем этого повышения температуры в повседневной жизни!)

Автомобиль, движущийся с постоянной скоростью по ровной автомагистрали, демонстрирует и то, и другое: для поддержания постоянной скорости необходимо добавлять энергию из-за сопротивления воздуха, а также сопротивления жидкостей внутри двигателя и трансмиссии, трения в колесе. подшипники, неупругая деформация резиновых покрышек и т. д.Если бы это было не так, мы могли бы просто поставить машину на нейтраль и выключить двигатель, как только наберем крейсерскую скорость.

Когда мы движемся через что-либо, кроме вакуума без трения (или сверхпроводника!), Материалы будут взаимодействовать, сталкиваться, деформироваться и вызывать потери кинетической энергии. Независимо от того, едет ли это автомобиль по шоссе или электрон, путешествующий по металлу, результат один: нужно постоянно добавлять больше энергии просто для поддержания постоянной средней кинетической энергии.


Закон Ома обычно называют:

В = ИК

где R - сопротивление резистора, В - падение напряжения на резисторе, а I ток через резистор. (См. Оставшуюся часть этой главы, в том числе Закон Кирхгофа о напряжении (KVL) и Закон Кирхгофа по току (KCL), Обозначение напряжений, токов и узлов, а также Решение схемных систем для получения дополнительной информации о правильном указании напряжения и тока!)

Поскольку напряжение - это мера работы на единицу заряда, закон Ома означает, что для материалов с более высоким сопротивлением требуется больше работы, чтобы протолкнуть такой же поток тока.

Закон Ома гласит, что сопротивление является линейной функцией, но это правило не универсально ; на самом деле это эмпирический (основанный на наблюдениях, а не на теории). На самом деле это линеаризованная модель триллионов или более взаимодействий атомного масштаба внутри материала, и оказывается, что в среднем , агрегированное поведение выглядит примерно линейным.


Если мы знаем любые два из V, I или R , мы можем найти третью переменную:

В = I⋅RI = VRR = VI

Это одно из самых основных практических уравнений в электронике, поэтому мы уделяем ему особое внимание во всех его формах.

Эти отношения можно рассматривать с теоретической точки зрения при установлении связи токов и напряжений в цепи, но они также имеют практическое значение:

  • Если у нас есть известный ток , протекающий через известное сопротивление , мы можем умножить два, чтобы получить напряжение: V = I⋅R .
  • Если у нас есть известное напряжение на известном сопротивлении , мы можем разделить два, чтобы получить ток: I = VR .
  • Наконец, если у нас есть известное напряжение и известный ток , мы можем разделить два, чтобы получить сопротивление: R = VI .

В математическом смысле, когда мы используем слово известное , мы противопоставляем его переменной неизвестно , для которой мы вычисляем. (См. Системы уравнений.)

Но в практическом смысле известный может означать две несколько разные вещи:

  • «Известный» может означать , управляемый извне, или , фиксированный . Например, если у нас есть источник тока, который всегда выдает 2 ампера, то этот ток известен, потому что он контролируется и устанавливается на определенное значение.
  • «Известный» может означать , измеренный . Например, мы можем измерить напряжение 6 В на выходе источника тока. Это напряжение известно, потому что оно измеряется, а не фиксируется каким-либо процессом.

В большинстве вопросов, связанных с законом Ома, мы комбинируем два типа «известных». Чтобы объединить два приведенных выше примера, если наши 2 A источник тока подключаем к неизвестному сопротивлению, и мы измеряем 6 В. на выходе мы можем определить, что неизвестное сопротивление составляет:

R = VI = 62 = 3 Ом

Линейность закона Ома чрезвычайно полезна при проведении измерений.Резисторы - это компоненты, которые линейно преобразуют разность напряжений в ток и наоборот, и это полезный эффект во многих аналоговых схемах. Подробнее о вольтметрах, амперметрах и омметрах мы поговорим в статье «Мультиметры и измерения».


Наш первый пример - одиночный 100 Ом резистор R1, подключенный к источнику напряжения:

Exercise Щелкните схему, затем щелкните «Simulate» и щелкните «Run DC Solver». Это покажет расчетный ток:

I = VR = 5 В 100 Ом = 0.05 А = 50 мА

Затем нажмите «Run DC Sweep». Это настроено для регулировки значения источника напряжения от -5 до +5. Симулятор мгновенно построит график с настройкой напряжения по оси x и результирующим током по оси y.

Вместо того, чтобы управлять сопротивлением с источником напряжения, мы можем вместо этого подключить его к фиксированному источнику тока:

Exercise Щелкните схему, щелкните «Simulate» и «Run DC Solver». Это покажет расчетное напряжение:

ВА = I⋅R = (1 A) ⋅ (100 Ом) = 100 В

Затем нажмите «Run DC Sweep».Это настроено для регулировки значения текущего источника. Симулятор мгновенно построит график с текущими настройками по оси x и результирующим напряжением по оси y.

Использование симулятора CircuitLab для изменения токов и напряжений и построения графика DC Sweep - это очень простая функциональность. Немного более сложный случай - варьировать сопротивление:

Exercise Щелкните схему, щелкните «Simulate» и «Run DC Sweep». Теперь имитатор подключает различные резисторы от 1 до 1000 Ом и строит результирующую кривую тока с сопротивлением в Ом по оси x и током по оси y.

Это работает, устанавливая для параметра DC Sweep значение «R1.R», что означает «сопротивление резистора с именем R1». Просмотр параметров компонента - мощный инструмент моделирования схем.


Сопротивление - это свойство выбора материала (например, алюминия по сравнению с медью) и его физических размеров. Для твердого тела постоянной площади поперечного сечения A и длиной L , сопротивление:

R = ρLA

Размеры имеют смысл: если мы сделаем резистор вдвое длиннее, то расстояние между столкновениями и отводом энергии будет вдвое больше, как у резисторов, соединенных последовательно.Вместо этого, если мы увеличим площадь поперечного сечения, средняя скорость дрейфа будет ниже для того же количества тока, поэтому при каждом столкновении теряется меньше энергии.

Удельное сопротивление ρ является свойством материала, а также функцией температуры: подробнее см. раздел «Практические резисторы: температурный коэффициент».


Почему ток в резистивном материале линейно пропорционален напряжению?

Это часто считается само собой разумеющимся, но на самом деле это не очевидно. В свободном пространстве заряд в постоянном электрическом поле будет иметь линейно возрастающую скорость , а не (в среднем) постоянную скорость в резистивном материале.

Вот одна из возможных моделей:

Даже при нулевом приложенном электрическом поле (т. Е. Нулевом напряжении) заряды не остаются. Из-за теплового движения они постоянно натыкаются.

Теперь давайте приложим электрическое поле (т.е. ненулевое напряжение). Это поле → E поле вызывает силу на заряд:

→ F = q → E = m → а

Эта сила действует для небольшого ускорения заряда в направлении поля. Однако, прежде чем он начнет работать особенно быстро, заряд сталкивается с другими зарядами в материале.Это столкновение вызывает потерю кинетической энергии (преобразованной в тепло в материале), и заряд должен снова начать с нулевой скорости. Оттуда он начинает ускоряться из-за поля, и цикл ускорения и столкновения повторяется.

Предположим, что среднее время между столкновениями равно tcollision . В этом случае между столкновениями → E поле может ускорить заряд от v = 0 до некоторой скорости vmax до столкновения. В этом случае (при фиксированной коллизии ), средняя скорость частицы будет пропорциональна ускорению, обусловленному полем.(Если это неясно, постройте график зависимости скорости заряда от времени. Это будет похоже на пилообразную форму: увеличение от 0 до vmax во время столкновения , затем внезапно падает до 0 и повторяется снова. Средняя скорость ¯¯¯¯¯vd = vmax2 .)

Для получения более подробной информации о том, как все это проявляется в виде случайных тепловых колебаний в трех измерениях, посмотрите модель Drude .

Вы можете спросить, почему у нас среднее время между столкновениями, а не среднее расстояние между столкновениями.Это связано с тем, что тепловая скорость намного больше, чем скорость дрейфа, поэтому эти случайные тепловые скорости в основном определяют, когда происходит столкновение, а не скорость дрейфа, которая важна для определения скорости столкновения.

Для большинства материалов более высокая температура означает более высокие тепловые скорости и более короткое столкновение. , поэтому более высокое сопротивление. Подробнее о взаимосвязи между сопротивлением и температурой см. В разделе «Практические резисторы: температурный коэффициент».


Резисторы

обычно имеют линейную характеристику на много порядков величины тока - в отличие от полупроводникового перехода, как мы увидим позже.

Резисторы

обычно имеют линейную характеристику независимо от того, в каком направлении течет ток - также в отличие от полупроводникового перехода.

Подумайте о механической винтовой пружине: сила линейна для крошечных толчков и для больших толчков, но в какой-то момент вы начинаете необратимо деформировать металл (пластическая деформация) и получаете нелинейное поведение.

Таким же образом, если вы превысите пределы резистора, вы можете навсегда изменить его, обычно путем перегрева. Дополнительные сведения см. В следующих нескольких разделах «Мощность и практические резисторы: номинальная мощность (мощность)».


Сверхпроводники когда-то были экзотическими материалами, но становятся все более и более распространенными по мере того, как дешевеют и растут в диапазоне рабочих температур. В настоящее время нет известных материалов, которые были бы сверхпроводниками при комнатной температуре и давлении, но исследования в этой области обнаружили материалы, которые работают при все более высоких температурах.

Сверхпроводники не только имеют низкое сопротивление , но предлагают действительно нулевое сопротивление при протекании тока.

В сверхпроводнике нет внутренних неупругих столкновений между носителями заряда и материалом.

Существуют практические ограничения на сверхпроводники в нескольких измерениях:

  1. Ток. Сверхпроводник может поддерживать только определенную максимальную плотность тока, известную как критический ток .
  2. Магнитное поле. Сверхпроводящие материалы имеют ограничения на напряженность магнитного поля, в которой они могут работать.
  3. Рабочая температура. Сверхпроводящие материалы перестают быть сверхпроводящими при превышении некоторого максимального предела температуры.

В дополнение к этому, сверхпроводники и сверхпроводящие провода все еще относительно сложны с точки зрения производства. Материалы часто бывают хрупкими, их необходимо охлаждать до чрезвычайно низких температур, их трудно соединять и соединять с другими компонентами.


В следующем разделе, Power, мы поговорим о том, куда уходит тепло от этих резистивных столкновений, и больше подумаем о потоках энергии и мощности в целом.


Роббинс, Майкл Ф. Ultimate Electronics: Практическое проектирование и анализ схем. CircuitLab, Inc., 2021, ultimateelectronicsbook.com. Доступно. (Авторское право © CircuitLab, Inc., 2021)

Что такое сопротивление? | Fluke

Сопротивление - это мера сопротивления току в электрической цепи.

Сопротивление измеряется в омах и обозначается греческой буквой омега (Ом). Ом назван в честь Георга Симона Ома (1784-1854), немецкого физика, изучавшего взаимосвязь между напряжением, током и сопротивлением.Ему приписывают формулировку закона Ома.

Все материалы в некоторой степени сопротивляются току. Они попадают в одну из двух широких категорий:

  • Проводники: Материалы с очень низким сопротивлением, в которых электроны могут легко перемещаться. Примеры: серебро, медь, золото и алюминий.
  • Изоляторы: Материалы, обладающие высоким сопротивлением и ограничивающие поток электронов. Примеры: резина, бумага, стекло, дерево и пластик.
Золотая проволока служит отличным проводником

Измерения сопротивления обычно проводятся для определения состояния компонента или цепи.

  • Чем выше сопротивление, тем меньше ток. Если он слишком высокий, одной из возможных причин (среди многих) может быть повреждение проводов из-за горения или коррозии. Все проводники выделяют определенное количество тепла, поэтому перегрев часто связан с сопротивлением.
  • Чем меньше сопротивление, тем больше ток. Возможные причины: повреждение изоляторов из-за влаги или перегрева.

Многие компоненты, такие как нагревательные элементы и резисторы, имеют фиксированное значение сопротивления.Эти значения часто печатаются на паспортных табличках компонентов или в руководствах для справки.

Когда указывается допуск, измеренное значение сопротивления должно находиться в пределах указанного диапазона сопротивления. Любое значительное изменение значения фиксированного сопротивления обычно указывает на проблему.

«Сопротивление» может звучать отрицательно, но в электричестве его можно использовать с пользой.

Примеры: Ток должен с трудом проходить через маленькие катушки тостера, достаточный для выделения тепла, которое подрумянивает хлеб.Лампы накаливания старого образца заставляют ток течь через такие тонкие нити, что возникает свет.

Невозможно измерить сопротивление в рабочей цепи. Соответственно, специалисты по поиску и устранению неисправностей часто определяют сопротивление, измеряя напряжение и ток и применяя закон Ома:

E = I x R

То есть, вольт = амперы x Ом. R в этой формуле означает сопротивление. Если сопротивление неизвестно, формулу можно преобразовать в R = E / I (Ом = вольт, разделенный на амперы).

Примеры: В цепи электрического нагревателя, как показано на двух рисунках ниже, сопротивление определяется путем измерения напряжения и тока цепи с последующим применением закона Ома.

Пример нормального сопротивления цепи Пример повышенного сопротивления цепи

В первом примере полное нормальное сопротивление цепи, известное опорное значение, составляет 60 Ом (240 ÷ 4 = 60 Ом). Сопротивление 60 Ом может помочь определить состояние цепи.

Во втором примере, если ток в цепи составляет 3 А вместо 4, сопротивление цепи увеличилось с 60 Ом до 80 Ом (240 ÷ 3 = 80 Ом).Увеличение общего сопротивления на 20 Ом может быть вызвано неплотным или грязным соединением или обрывом катушки. Секции с разомкнутой катушкой увеличивают общее сопротивление цепи, что снижает ток.

Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

2.2.4 Закон Ома и почему мы заботимся о сопротивлении

2.2.4 Закон Ома и почему мы заботимся о сопротивлении

Устройство, известное нам как тостер, на удивление простое. Он состоит в основном из провода, по которому пропускается ток.Проволока нагревается, поджаривая хлеб. Это оно!

а почему нагревается провод? Ответ в том, что провод имеет некоторое сопротивление. Когда ток проходит через материал с некоторым сопротивлением, материал нагревается. Это тепло в первую очередь является рассеянием некоторой части электроэнергии, проходящей через материал. Это рассеяние мощности в виде тепла называется «потерями» в электросети.

Сопротивление материала, через который проходит ток, помогает определить потери, но это не единственный фактор.Напряжение, при котором энергия проходит через материал, также имеет значение, как и величина тока.

Эта взаимосвязь четко резюмируется в законе Ома, который гласит, что напряжение равно произведению тока и сопротивления, или V = I × R. Закон Ома используется для определения величины напряжения, необходимого для перемещения заданного количества тока (I) через некоторый материал с заданным сопротивлением (R).

Между тем, вспомните наше определение мощности: P = I × V. По сути, это количество мощности, передаваемой в цепи, подобной той, что была в нашем последнем упражнении.

Мы можем включить закон Ома в наше определение мощности, чтобы получить:

P = I × V = I × (I × R) = I2 × R

Это уравнение описывает количество мощности, рассеиваемой в цепи. Он также описывает количество потерь. Таким образом, закон Ома говорит нам, что потери будут увеличиваться пропорционально квадрату тока. Таким образом, если мы сохраним постоянное напряжение и удвоим ток, потери увеличатся в четыре раза.

Чтобы понять важность этого, предположим, что мы пропускаем 1000 ампер тока через цепь с падением напряжения 100 В.Итак, у нас есть мощность 100 кВт. Потери в цепи будут пропорциональны I2 × R, или 10002 × R в этом случае.

Но, если бы мы хотели 100 кВт мощности, мы могли бы сделать это по-другому, пропустив 100 А через цепь при напряжении 1000 В. Сопротивление в цепи не изменится, но потери в цепи теперь будут равны пропорционально 100 2 × R.

Таким образом, увеличивая напряжение (и уменьшая ток) в 10 раз, мы уменьшили наши потери в 100 раз.Это объясняет причину того, что у нас есть сеть переменного тока вместо сети постоянного тока. Помните, что в технологии питания постоянного тока Эдисона напряжение в источнике должно быть близко к напряжению в точке потребления. Но с помощью технологии переменного тока, разработанной Tesla и Westinghouse, мощность могла генерироваться и передаваться при очень высоких напряжениях, а затем снижаться до более низких напряжений в точке потребления. Это имело два больших преимущества: во-первых, можно было существенно снизить потери при передаче, а во-вторых, для домов и предприятий было намного безопаснее использовать электроэнергию низкого напряжения, а не высокого напряжения.

Что такое закон Ома и как он применим к тепловым системам?

Применение закона Ома к тепловым системам

Чтобы понять, как сопротивление электрической цепи влияет на вашу тепловую систему, просмотрите различные схемы и решения по обогреву. Эти знания помогут вам приобрести оптимальный электрический нагреватель и контроллер для вашего приложения.

Определение тока

Определение силы тока, протекающего в вашей системе, важно для обеспечения защиты компонентов системы с помощью соответствующих предохранителей или автоматических выключателей.Ток также можно определить по закону Ома. Ток I в амперах (A) равен напряжению E в вольтах (V), деленному на сопротивление R в омах (Ω).

  • ● Ток = напряжение / сопротивление, поэтому I = E / R

Например, если нагреватель измеряет сопротивление 100 Ом, а напряжение, подаваемое в систему, составляет 240 вольт, каков ток в амперах? I = 240/100, поэтому I = 2,4 ампера.

Расчет сопротивления последовательных и параллельных цепей

Электрические цепи состоят из четырех основных компонентов.Эти четыре компонента могут быть включены в последовательную или параллельную схему для питания ваших нагревательных приборов:

  • ● Резистивное устройство (нагревательные элементы)
  • ● Источник напряжения
  • ● Текущий путь
  • ● Переключатель

Последовательная цепь соединяет нагреватели встык. Сопротивление каждого нагревателя необходимо сложить, чтобы получить общее сопротивление цепи. Параллельные цепи открывают большие возможности для прохождения электричества, поэтому добавление нагревательных элементов в параллельную цепь снижает общее сопротивление.Просто установите напряжение закона Ома как постоянное и рассчитайте сопротивление вашей системы.

Последовательная цепь характеризуется общим током, протекающим через все резисторы, так как ток может идти только по одному пути. Эквивалентное сопротивление для последовательной цепи - это сумма всех отдельных сопротивлений, поэтому R всего = R₁ + R₂ +… + Rn. Между тем, параллельная цепь характеризуется общей разностью потенциалов (напряжением) на концах всех резисторов.Эквивалентное сопротивление для параллельной цепи рассчитывается по следующей формуле: 1 / R всего = 1 / R₁ + 1 / R₂ + ... + 1 / Rn.

Рис. 1. На схеме слева показана схема, состоящая из источника напряжения и трех резисторов серии . Правая диаграмма представляет собой схему с источником напряжения и 3 резисторами, включенными параллельно . Например, у вас есть три нагревателя с R1 = 10 Ом, R2 = 16 Ом и R3 = 5 Ом. Итак, рассчитав сопротивление для последовательной цепи, R всего = 10 + 16 + 5 = 31 Ом.Расчет для параллельной схемы: 1 / R всего = 1/10 + 1/16 + 1/5, поэтому 1 / R всего = 0,3625 и R всего = 2,76 Ом.

Обратите внимание, что при последовательном размещении резисторов общее сопротивление превышает сопротивление каждого отдельного нагревателя, а при параллельном размещении общее сопротивление уменьшается до уровня, меньшего, чем сопротивление каждого отдельного нагревателя.

В параллельных цепях все нагревательные элементы имеют одинаковое напряжение, а в последовательных цепях - одинаковый ток.По сути, последовательная проводка предназначена только для двух нагревателей одинаковой мощности и напряжения. В дополнение к уменьшенному сопротивлению параллельная цепь не требует от каждого нагревателя постоянного тока электричества. Если один нагреватель выходит из строя последовательно, цепь разрывается, и вся линейка нагревателей перестает работать. Один поврежденный нагреватель в параллельной цепи влияет только на отдельный нагреватель, поэтому другие нагреватели могут продолжать работать.

Как улучшить тепловую систему Закон

Ома может помочь вам в поиске и устранении неисправностей в вашей тепловой системе.Если ваши контроллеры мощности и температуры показывают колебания электрического тока или тепловой мощности, вы можете использовать закон Ома для проверки статических значений компонентов схемы и определения измерений напряжения на компонентах.

Измерение большого тока в вашей цепи может быть вызвано увеличением напряжения или уменьшением сопротивления. Ваш испытательный прибор может идентифицировать любое изменение напряжения, что позволяет использовать закон Ома для расчета сопротивления, чтобы определить, вызвана ли проблема поврежденными компонентами или ослабленными электрическими соединениями.В этом случае это действительно вызовет увеличение сопротивления; низкий I и высокий W, при этом высокий W означает больше тепла на концах.

Закон

Ома - важный инструмент, используемый инженерами-проектировщиками для расчета взаимосвязи между напряжением, током и сопротивлением. Однако это не считается универсальным законом. Закон Ома не применяется в случаях, когда имеется индуктивная нагрузка или когда сопротивление не является постоянным. Хотя большинство нагревателей имеют стабильное сопротивление при повышении температуры, некоторые - нет.Примеры этого включают вольфрамовые лампы и нагреватели из карбида кремния.

Существуют исключения схемы, особенно когда протекающий ток не прямо пропорционален разности потенциалов в проводнике. Закон Ома нельзя применять к устройствам с нелинейной зависимостью между напряжением и током, таким как термистор. Для получения дополнительной информации о законе Ома и его исключениях обратитесь к торговому представителю Watlow.

Закон 3,2 Ома: сопротивление и простые схемы

Сопротивление и простые схемы

Если напряжение управляет током, что ему мешает? Электрическое свойство, препятствующее току (примерно такое же, как трение и сопротивление воздуха), называется сопротивлением R.R. size 12 {R} {} Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Сопротивление обратно пропорционально току, или

. 3.13 I∝1R.I∝1R. размер 12 {я подпираю {{1} над {R}} "."} {}

Таким образом, например, ток уменьшается вдвое, если сопротивление увеличивается вдвое. Комбинируя отношения тока к напряжению и тока к сопротивлению, получаем

3.14 I = VR.I = VR. размер 12 {I = {{V} больше {R}} "."} {}

Это соотношение также называется законом Ома.Закон Ома в такой форме действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими. К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах. Омические материалы имеют сопротивление RR размером 12 {R} {}, которое не зависит от напряжения VV, размера 12 {V} {} и тока I.I. размер 12 {I} {} Объект, который имеет простое сопротивление, называется резистором , даже если его сопротивление невелико.Единицей измерения сопротивления является Ом и обозначается символом ΩΩ size 12 {% OMEGA} {} (греческое омега в верхнем регистре). Перестановка I = V / RI = V / R размер 12 {I = ital "V / R"} {} дает R = V / IR = V / I размер 12 {R = ital "V / I"} {}, и Таким образом, единицы сопротивления равны 1 Ом = 1 вольт на ампер.

На рис. 3.8 показана схема простой схемы. Простая схема имеет один источник напряжения и один резистор. Можно предположить, что провода, соединяющие источник напряжения с резистором, имеют незначительное сопротивление, или их сопротивление можно включить в R.R. размер 12 {R} {}

Рис. 3.8 Простая электрическая цепь, в которой замкнутый путь для прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленной красными параллельными линиями. Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

Установление соединений: Соединения в реальном мире

Закон Ома (V = IRV = IR) - это фундаментальная зависимость, которая может быть представлена ​​линейной функцией, в которой наклон линии является сопротивлением.Сопротивление представляет собой напряжение, которое необходимо приложить к резистору для создания в цепи тока 1 А. График (на рисунке ниже) показывает это представление для двух простых схем с резисторами, которые имеют разное сопротивление и, следовательно, разные наклоны.

Рис. 3.9 На рисунке показано соотношение между током и напряжением для двух разных резисторов. Наклон графика представляет значение сопротивления, которое составляет 2 Ом и 4 Ом для двух показанных линий.

Установление соединений: Соединения в реальном мире

Материалы, которые подчиняются закону Ома, имея линейную зависимость между напряжением и током, известны как омические материалы. С другой стороны, некоторые материалы демонстрируют нелинейную зависимость напряжения от тока и, следовательно, известны как неомические материалы. На рисунке ниже показаны соотношения между текущим напряжением для двух типов материалов.

Рисунок 3.10 Показаны отношения между напряжением и током для омических и неомических материалов.

Очевидно, что сопротивление омического материала, показанного на (а), остается постоянным и может быть рассчитано путем определения наклона графика, но это неверно для неомического материала, показанного на (b).

Пример 3.4. Расчет сопротивления: автомобильная фара

Каково сопротивление автомобильной фары, через которую проходит 2,50 А при напряжении 12,0 В?

Стратегия

Мы можем изменить закон Ома, как указано I = V / RI = V / R размер 12 {I = ital "V / R"} {}, и использовать его для определения сопротивления.

Решение

Перестановка I = V / RI = V / R, размер 12 {I = ital "V / R"} {} и замена известных значений дает

3,16 R = VI = 12,0 В 2,50 A = 4,80 Ом R = VI = 12,0 В 2,50 A = 4,80 Ом. размер 12 {R = {{V} больше {I}} = {{"12" "." "0 В"} больше {2 "." "50 A"}} = "4" "." "80"% OMEGA "."} {}

Обсуждение

Это относительно небольшое сопротивление, но оно больше, чем хладостойкость фары. Как мы увидим в разделе «Сопротивление и удельное сопротивление», сопротивление обычно увеличивается с повышением температуры, поэтому лампа имеет меньшее сопротивление при первом включении и потребляет значительно больший ток во время короткого периода прогрева.

Сопротивление может быть разным. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 1012 Ом 10 12 Ом или более. У сухого человека сопротивление руки к ноге может составлять 105 Ом, 105 Ом, в то время как сопротивление человеческого сердца составляет около 103 Ом · 103 Ом. Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10-5 Ом, 10-5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в разделах «Сопротивление и удельное сопротивление».

Дополнительную информацию можно получить, решив I = V / RI = V / R размер 12 {I = ital "V / R"} {} для V, V, размер 12 {V} {}, что дает

3,17 В = ИК. В = ИК. размер 12 {V = ital "IR."} {}

Это выражение для VV размером 12 {V} {} можно интерпретировать как падение напряжения на резисторе, создаваемое током I.I. размер 12 {I} {} Фраза IRIR size 12 {ital "IR"} {} drop часто используется для этого напряжения. Например, фара в примере 3.4 имеет уменьшение IRIR размера 12 {ital "IR"} {}, равное 12.0 В. Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывающему ток - поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления. Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию).В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, так как PE = qΔVPE = qΔV размер 12 {"PE" = qΔV} {}, и такой же размер qq 12 {q} {} протекает через каждую. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны. (См. Рисунок 3.11.)

Рисунок 3.11 Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

Установление соединений: сохранение энергии

В простой электрической цепи единственный резистор преобразует энергию, поступающую от источника, в другую форму.Здесь о сохранении энергии свидетельствует тот факт, что вся энергия, подаваемая источником, преобразуется в другую форму только с помощью резистора. Мы обнаружим, что сохранение энергии имеет и другие важные применения в схемах и является мощным инструментом анализа схем.

Сопротивление по закону

Ом и резисторы

Сопротивление по закону Ома и резисторы

Сопротивление - это сила, с которой проводник испытывает ток, протекающий по нему.Каждый материал имеет разное сопротивление. Мы показываем сопротивление с помощью R, и его единицей является ом (Ом).

1 Ом = сопротивление проводника, когда ток 1 А протекает под разностью потенциалов 1 В. Сопротивление в схемах представлено на следующем рисунке;

Реостат

Реостат - это своего рода устройство, используемое для изменения существующего сопротивления. Он показан в схемах как;

Сопротивление жилы зависит от;

· Типы материала или удельное электрическое сопротивление материала.Обозначается греческой буквой ρ. Сопротивление материала прямо пропорционально удельному электрическому сопротивлению.

· Длина материала (l). Сопротивление прямо пропорционально длине проводника.

· Поперечное сечение жилы. Сопротивление обратно пропорционально площади поперечного сечения.

· Температура. Температура показывает разные эффекты в зависимости от типа материала.

Запишем формулу сопротивления с объяснением, данным выше, как;

Закон Ома

Закон

Ома определяет соотношение между напряжением, током и сопротивлением.Согласно Ому, ток в цепи прямо пропорционален приложенному напряжению и обратно пропорционален сопротивлению проводника. Мы можем резюмировать это объяснение следующей формулой;

Если мы возьмем постоянное сопротивление проводника, то разность потенциалов и ток системы изменятся линейно, как показано на следующем графике;

Пример: График зависимости разности потенциалов от тока в проводнике приведен ниже. Найдите поведение сопротивления в интервалах I, II и III.

Закон Ома гласит, что V = I.R

  • В первом интервале, поскольку разность потенциалов и ток линейно увеличиваются, сопротивление системы становится постоянным.
  • Во втором интервале разность потенциалов постоянна, но ток увеличивается. Это возможно за счет уменьшения сопротивления.
  • В третьем интервале ток постоянный, однако разность потенциалов увеличивается.Это возможно за счет увеличения сопротивления.

Электротехнические экзамены и решения

Закон Ома

Мы рассматриваем фундаментальную связь в электронике и физике.

Закон Ома был открыт Георгом Омом в 1837 году, и это основное уравнение, которое управляет многими схемами. Три основных ингредиента - это ток через простую цепь, приложенное напряжение (обычно от батареи) и сопротивление устройства, которое использует ток для выполнения некоторой работы, обычно тепла или света.На этом этапе вы узнаете о
  • , математической формулировке закона Ома и основном обратном соотношении, которое он кодирует.
  • , как аналогия с водопроводной трубой может помочь в понимании значения закона Ома.

Закон Ома

Закон Ома гласит, что если \ (\ normalsize {V} \) - это напряжение (измеренное в вольтах) на резисторе \ (\ normalsize {R} \) (измеренном в омах), который потребляет ток \ (\ normalsize {I} \) (измеряется в амперах), затем \ [\ Large {V = IR}. \] Резистор - это объект, который использует электрическую энергию и преобразует ее во что-то еще, например, тепло или свет.Примером может служить тостер. Электроэнергия, протекающая через тостер, питается от перепада напряжения, подаваемого через электрическую розетку. Чем больше напряжение, тем больше тока \ (\ normalsize {I} \) проходит через тостер. Итак, для фиксированного резистора \ (\ normalsize {R} \) закон Ома устанавливает линейную пропорциональность между напряжением и током. Нити для тостера Ник Карсон, en.wikipedia CC BY 3.0, через Wikimedia Commons Однако мы можем взглянуть на закон и по-другому. Если мы рассматриваем напряжение \ (\ normalsize {V} \) как фиксированное, то сопротивление и ток обратно пропорциональны, поскольку их произведение постоянно и равно фиксированному напряжению.Если мы увеличиваем сопротивление, то ток уменьшается, а если мы уменьшаем сопротивление, то ток увеличивается. Это ситуация с цепью, управляемой батареей, или с электричеством в нашем доме, где подаваемое напряжение является постоянным ( \ (\ normalsize {110-120} \) вольт в большинстве стран Америки, \ (\ normalsize {220-230} \) вольт в Европе, Австралии и большинстве стран Азии). Однако, строго говоря, в этом случае напряжение меняется по направлению. В предельном случае, когда сопротивление становится равным нулю, например, если вы заменяете тостер на провод, то течет бесконечно большой ток.Затем возникает короткое замыкание , часто с катастрофическими последствиями, особенно если у вас нет плавкого предохранителя, который мог бы разорвать цепь в такой аварийной ситуации.

Некоторые примеры

Если мы подключим лампу к цепи, питаемой батареей на 6 В, и потребляем ток 3 А, тогда сопротивление \ (\ normalsize R \) будет равно \ [\ Large R = \ frac {V } {I} = \ frac 63 = 2 \; \ text {ohms}. \] Теперь, если мы подключим ту же лампу к 10-вольтовой батарее, то ток \ (\ normalsize I \) будет \ [\ Large I = \ frac {V} {R} = \ frac {10} 2 = 5 \; \ text {amps}.\] Если мы хотим сделать свет ярче, нам нужно увеличить ток, скажем, до 8 ампер, тогда нам нужно увеличить напряжение до \ [\ Large V = IR = 8 \ times2 = 16 \; \ text {volts} . \]

Q1 (E): электрическое устройство подключено к напряжению 120 вольт. Найдите ток, если сопротивление 480 Ом.

Q2 (E): Предположим, что у нас есть батарея с некоторым постоянным напряжением, освещающая небольшую лампу, а амперметр показывает 40 мА, где мА означает миллиампер, что составляет одну тысячную часть ампер.Если ток упал до 20 мА, что случилось с сопротивлением?

Как резистор сопротивляется?

Резистор - это любое устройство, замедляющее прохождение тока в цепи. Электричество, по сути, перемещает электроны, и, как и вода, если поток прерывается, ограничивается или сопротивляется , проходит меньше. Некоторые материалы имеют низкое сопротивление, например медная проволока, что позволяет электронам проходить через них без особых проблем. Другие материалы, такие как дерево, обладают высоким сопротивлением, почти мгновенно останавливая электрический ток.На практике у нас есть такие вещи, как лампы и тостеры, которые генерируют свет или тепло от электронов, замедляя их, но все же пропуская.

Ом также обнаружил другой закон, который описывает, какое сопротивление имеет данный материал, например кусок проволочной трубки:

\ [\ Large R = \ frac {\ rho L} {A} \]

где \ ( \ normalsize L \) - длина резистора, \ (\ normalsize \ rho \) - величина, которая зависит от материала, а \ (\ normalsize A \) - площадь поперечного сечения резистора.Итак, \ (\ normalsize R \) равен , прямо пропорционально длине \ (\ normalsize L \): удвоить длину проволочной трубки, и ее сопротивление удвоится. Но \ (\ normalsize R \) также обратно пропорционален площади поперечного сечения \ (\ normalsize A \): удвоить площадь и половину сопротивления.

3 кв. (E): трубчатый резистор имеет форму проволоки. Если мы утроим его длину и уменьшим вдвое диаметр, что произойдет с его сопротивлением?

Гидравлическая аналогия

Для понимания закона Ома иногда бывает полезна гидравлическая аналогия для начинающих.Представьте себе воду, текущую по горизонтальной трубе. Давление воды \ (\ normalsize P \) аналогично напряжению \ (\ normalsize V \), потому что это разница давлений между двумя точками вдоль трубы, которая заставляет воду течь. Фактический расход воды \ (\ normalsize F \) тогда является аналогом текущего \ (\ normalsize I \).

А что с аналогом резистора? Это можно представить как нечто, препятствующее потоку воды, например, ограничители или отверстия в трубах. Если вода проталкивается через очень тонкую трубку, то чем длиннее трубка и меньше ее площадь поперечного сечения, тем большее сопротивление \ (\ normalsize R \) она будет оказывать на расход воды \ (\ normalsize F \) .И чем больше сопротивление, тем меньше расход.

Соответствующее уравнение для нашего гидравлического аналога в соответствующих единицах:

\ [\ Large P = FR. \]

Итак, если мы сохраним фиксированное давление, то расход и ограничение будут обратно пропорциональны: как размер ограничение \ (\ normalsize R \) уменьшается, расход \ (\ normalsize F \) должен увеличиваться.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *