Закрыть

Закон ома в чем измеряется – простое объяснение для чайников с формулой и понятиями

Закон Ома для участка цепи

закон ома

Эмпирический физический закон Ома для участка цепи установил Georg Simon Ohm почти два столетия назад, и получил название в честь этого знаменитого физика из Германии.

Именно этим законом определяется связь, которая возникает между электродвижущей силой источника, силой электротока и показателями сопротивления внутри проводника.

Классическая формулировка

Рассмотрим определение закона Ома.

Весь объём прикладной электротехника базируется на физическом законе Ома и представлен двумя основными формами:

  • учacтoк электрoцепи;
  • пoлнaя электрoцепь.

В классическом виде формулировка такого закона очень хорошо известна всем ещё со школьной скамьи: сила тока в электрической цепи является прямо пропорциональной показателям напряжения, а также обладает обратной пропорциональностью показателям сопротивления.

Интегральная форма такого закона следующая: I = U / R, где

  • I – показатель силы тока, который проходит через участок электроцепи при показателях сопротивления, обозначаемых R;
  • U – показатель напряжения.

Сопротивление или «R» принято считать наиболее важной характеристикой, что обусловлено зависимостью от таких параметров проводника.

Необходимо помнить, что такая форма закона, помимо растворов и металлов, справедлива исключительно для электрических цепей, в которых отсутствует реальный источник тока или он идеален.

Закон Ома для неоднородного участка цепи

Участок любой электрической цепи является неоднородным, если в него подключен источник электродвижущей силы. Таким образом, в этой электроцепи отражается воздействие посторонних сил.

I=ϕ21+ℰ/R+r, где

  • I — обозначение силы тока;
  • ϕ1 — обозначение пoтeнциaлa точки «A»;
  • ϕ2 — обозначение пoтeнциaлa точки «B»;
  • ℰ — показатели электродвижущей силы источника электрического тока в вольтах;
  • R — обозначение сопротивления участка;
  • r — внутреннее сопротивление источника тока.
формулировка закона ома

Закон Ома для участка цепи

Для стандартных неоднородных участков характерным является наличие некоторой разницы потенциалов на концевой части электроцепи, а также внутренних скачков потенциалов.

приборы учетаВ последние годы индукционный счетчик электроэнергии выходит из обращения и заменяется более новыми моделями. Однако, такие приборы учета все же используются. В статье рассмотрим, как правильно установить индукционный счетчик.

Сколько можно эксплуатировать электросчетчик по закону и кто должен его менять, читайте далее.

В некоторых случаях выгодно использовать счетчик день-ночь. В каких случаях выгодны двойные тарифы и как снимать показания, расскажем в этой теме.

Закон Ома для участка цепи

сопротивлениеСогласно закону, сила тока на участке электрической цепи имеет прямую пропорциональность уровню напряжения и обратную пропорциональность электрическому сопротивлению на данном участке.

Например, если проводник обладает сопротивлением в 1 Ом и током в 1 Ампер, то его концах напряжение составит 1 Вольт, что означает падение напряжения или U = IR.

Если концы проводника обладают напряжением в 1 Вольт и током в 1 Ампер, то показатели сопротивления проводника составят 1 Ом или R = U/I

Участок цепи может быть представлен простой цепью с одним потребителем, параллельным подключением с парой потребителей, а также последовательным подключением и смешанным топом соединением, отличающимся совокупностью последовательного и параллельного подсоединения.

Закон Ома для участка цепи с ЭДС

ЭДС или электродвижущая сила является физической величиной, определяющей отношение посторонних сил в процессе перемещения заряда в сторону положительного полюса источника тока к величине данного заряда:

  • ε = Acт / q
  • ε – электродвижущая сила;
  • Acт – работа сторонних сил;
  • q – заряд;

Единица измерения электродвижущей силы – В (вольт)

наглядное определение закона ома для замкнутого участка цепи

Закон Ома для участка цепи с ЭДС

Аналитическое выражение закона для участка цепи с источником электродвижущей силы следующее:

  • I = (φa – φc + E) / R = (Uac + E) / R;
  • I = (φa – φc – E) / R = (Uac – E) / R;
  • I = E /(R+ r), где
  • Е – показатели электродвижущей силы.

Электрический ток в этом случае представляет собой алгебраическую сумму, полученную при сложении показателей напряжения на зажимах с показателями электродвижущей силы, разделенной на показатели сопротивления.

Правило, касающееся наличия одного ЭДС гласит: наличие постоянного тока предполагает поддерживание неизменной разности потенциалов на концах электрической цепи посредством стандартного источника тока.

Внутри источника электрического тока положительный заряд переносится в сторону большего потенциала с разделением зарядов на положительные и отрицательно заряженные частицы.

Закон Ома для участка цепи без ЭДС

Нужно учитывать, что для участка цепи, не содержащего источника электродвижущей силы, устанавливается связь, возникающая между электрическим током и показателями напряжения на данном участке.

I = Е / R

Согласно данной формуле, сила тока имеет прямую пропорциональность напряжению на концах участка электрической цепи и обратную пропорциональность показателям сопротивления на этом участке.

Источник электродвижущей силы

Благодаря внешним характеристикам ЭДС определяется степень зависимости показателей напряжения на зажимах источника и величины нагрузки.

Например, U= E-R0 х I, в соответствии с двумя точками: I=0 E=U и U=0 E=R0I.

Идеальный источник электродвижущей силы: R0=0, U=E. В этом случае величина нагрузки не оказывает воздействия на показатели напряжения.

направление токаЭмпирический физический закон Ома для полной цепи определяет два следствия:

  • В условиях r < < R, показатели силы тока в электрической цепи являются обратно пропорциональными показателям сопротивления. В некоторых случаях источник может являться источником напряжения.
  • В условиях r > > R, свойства внешней электрической цепи или величина нагрузки не оказывают влияния на показатели сила тока, а источник может назваться источником тока.

Электродвижущая сила, находящаяся в условиях замкнутой цепи с электрическим током, чаще всего равна: Е = Ir + IR = U(r) + U(R)

Таким образом, ЭДС можно определить, как скалярную физическую величину, отражающую воздействие сторонних сил неэлектрического происхождения.

Принятые единицы измерения

К основным, общепринятым единицам измерения, которые используются при выполнении любых расчётов, касающихся закона Ома, относятся:

  • отражение показателей напряжения в вольтах;
  • отражение показателей тока в амперах;
  • отражение показателей сопротивления в омах.

Любые другие величины перед тем, как приступить к расчётам, необходимо в обязательном порядке перевести в общепринятые.

Важно помнить, что физический закон Ома не соблюдается в следующих случаях:

  • высокие частоты, сопровождающиеся значительной скоростью изменений электрического поля;
  • при сверхпроводимости в условиях низкотемпературных режимов;
  • в лампах накаливания, что обусловлено ощутимым нагревом проводника и отсутствием линейности напряжения;
  • при наличии пробоя, вызванного воздействием на проводник или диэлектрик напряжения с высокими показателями;
  • внутри вакуумных источников света и электронных ламп, заполненных газовыми смесями, включая люминесцентные осветительные приборы.

Такое же правило распространяется на гетерогенные полупроводники и полупроводниковые приборы, характеризующиеся наличием p/n-переходов, включая диодные и транзисторные элементы.

точность прибораЧем точнее счетчик измеряет затраченную электроэнергию, тем лучше. Класс точности электросчетчика отражает возможную погрешность прибора учета.

О такой величине как коэффициент трансформации счетчика электроэнергии, поговорим в этом материале.

Видео на тему

proprovoda.ru

Закон Ома

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

Единицы измерения в электронике. Закон Ома.

Единицы измерения в электронике

Единицы измерения служат для количественного определения какой-либо физической величины. К примеру, покупая яблоки, вы измеряете их вес в килограммах. Аналогично мультиметр измеряет сопротивление элементов в омах, напряжение — в вольтах, а ток — в амперах. В табл. 1.1 показаны общепринятые единицы измерения и их аббревиатуры для физических величин, которые используются в электронике.

Физическая величина АббревиатураЕдиницы измеренияСимвол единиц измерения
СопротивлениеRомОм, ?
ЕмкостьСфарадФ
ИндуктивностьLгенриГн
Напряжение U (V или Е)вольтВ
ТокIамперА
МощностьРваттВт
ЧастотаfгерцГц

Таблица 1.1. Единицы измерения, используемые в электронике

Переход к большим или меньшим величинам. При измерении веса яблок очень даже можно столкнуться с малым количеством яблока (или его кусочка), а можно измерять и центнерами, не так ли? Диапазон измерения физических величин в электронике еще шире. В одной схеме вы можете иметь сопротивление в миллионы ом, тогда как в другой протекающий ток будет меньше одной тысячной ампера. Говоря о подобных величинах — как громадных, так и предельно малых, — приходится иметь дело со специальной терминологией. Чтобы показывать очень большие и очень малые числа, в электронике применяют специальные префиксы, или приставки, и экспоненциальное представление. В табл. 1.2 показаны самые широко используемые префиксы и тип записи числовых величин.

Тблица 1.2. Приставки, используемые в электронике

ЧислоНазваниеЭкспоненциальное представлениеПрефиксАббревиатура
10000000001 миллиард109ГигаГ
10000001 миллион106Мегам
10001 тысяча103килок
1001 сотня102
101 десяток101
1один100
0,11 десятая 10-1
0,011 сотая 10-2
0,0011 тысячная 10-3миллим
0,0000011 миллионная10-6микромк
0,0000000011 миллиардная 10-9нанон
0,0000000000011триллионная10-12пикоп

Как же правильно прочитать число, записанное как 106 или 10-6? Экспоненциальное представление представляет собой наиболее удобный способ указания того, сколько нулей нужно добавить к числу в десятичной системе счисления, т.е. основанной на степени числа 10. Например, верхний индекс “6” в записи 106 означает, что точка, разделяющая целую и дробную части числа, должна находиться на шесть разрядов правее, а в записи 10-6 — что эту точку нужно сдвинуть на шесть разрядов левее. Таким образом, в числе 1 х 106 разделитель разрядов сдвигается на шесть мест вправо, и мы получаем в результате число 1 000 000 (1 миллион). В числе же 1 х 10-6 разделитель разрядов сдвигается на столько же мест влево, и результатом является 0,000001, или одна миллионная. 3,21 х 104 можно записать, сдвинув запятую на 4 знака вправо: 32100.

Префиксы + единицы измерения = ?

В предыдущих абзацах вы увидели как для обозначения физических величин и единиц их измерения используются аббревиатуры. В этом разделе мы научимся объединять их и использовать очень краткую запись. Например, ток 5 миллиампер можно записать в виде 5 мА, а частоту 3 мегагерца — как 3 МГц.

Кроме того, так же, как при измерении яблок удобнее всего пользоваться килограммами, а при строительстве загородного офиса большой компании вес стальных конструкций определенно будут измерять не иначе как в тоннах, в электронике тоже существуют такие физические величины, для измерения которых пользуются большими числами, и такие, которые измеряются малыми. Это значит, что чаще всего вам придется иметь дело с одним и тем же набором приставок для каждой физической величины. Ниже приведены такие комбинации величин и единиц их измерения.

> Ток: пА, нА, мкА, мА, А.

> Индуктивность: нГн, мГн, мкГн, Гн.

> Емкость: пФ, нФ, мкФ, мФ, Ф.

> Напряжение: мкВ, мВ, В, кВ.

> Сопротивление: Ом, кОм, МОм.

> Частота: Гц, кГц, МГц, ГГц.

Использование некоторых новых терминов

Хотя ранее мы уже рассматривали такие понятия, как сопротивление, напряжение и ток, есть еще некоторые термины, которые могут оказаться для вас внове.

Емкость представляет собой способность накапливать заряд под воздействием электрического поля. Такой накопленный заряд может повышать или понижать напряжение более плавно, чем в отсутствие емкости. Для применения данного свойства на практике используется такой компонент, как конденсатор.

Частотой переменного тока называется мера повторяемости сигнала. Например, напряжение в настенной розетке совершает один полный цикл изменения 50 раз в секунду.

Индуктивность – это способность запасать энергию в магнитном поле; эта накопленная энергия препятствует изменению тока точно так же, как энергия, накопленная конденсатором, препятствует резким изменениям напряжения. Для использования данного свойства на практике в электронике применяются катушки индуктивности, или дроссели.

Мощность служит мерой количества работы, которую электрический ток совершает при протекании через элементы схемы. К примеру, если приложить к электрической лампе напряжение, подведя ток при помощи проводов, то на нагрев этих проводов будет затрачивться какая-то работа. В данном случае мощность можно вычислить, перемножив приложенное к лампе напряжение на ток, протекающий по проводам.

Используя информацию, приведенную в табл. 1.1 и 1.2, вы уже можете перевести экспоненциальную запись числа или аббревиатуру физической величины на человеческий язык. Ниже дано несколько примеров:

> мА: миллиампер, или 1 тысячная ампера;

> мкВ: микровольт, или 1 миллионная вольта;

> нФ: нанофарада, или 1 миллиардная фарады;

> кВ: киловольт, или 1 тысяча вольт;

> МОм: мегаом, или 1 миллион ом;

> ГГц: гигагерц, или 1 миллиард герц.

В аббревиатурах префиксов, которые представляют числа, превышающие 1, такие как М (для приставки Мега), используют прописные буквы. Аббревиатуры приставок, которые меньше 1, пишутся со строчной буквы — как, например, в слове милли. Единственным исключением из этого правила является приставка к для обозначения префикса кило-, которая также записывается с маленькой буквы.

Иногда все же для обозначения тысяч используют и прописную литеру К — а именно при записи килоом; если вы увидите запись вида 3,3 К, то это будет значить 3,3 килоома.

Вы должны научиться преобразовывать любое число к экспоненциальному виду, чтобы затем нормально проводить расчеты. Убедиться в этом вы сможете уже в следующем разделе.


Понятие о законе Ома

Итак, давайте предположим, что вы собрали свою первую схему. Вы знаете величину тока, которую компонент схемы может выдержать, не выходя из строя, и напряжение, выдаваемое источником питания. Следовательно, вам нужно рассчитать сопротивление, которое не позволит току в цепи превысить пороговое значение.

В начале 1800-х годов Георг Ом опубликовал уравнение, названное впоследствии законом Ома, которое позволяет выполнить такой расчет. Закон Ома гласит: напряжение равняется произведению тока на сопротивление, или (в стандартной математической записи):

U = I x R

Выводы из закона Ома

Помните ли вы из школы основы алгебры? Давайте еще раз вспомним вместе: если в уравнении с тремя величинами известны две, то достаточно легко рассчитать третью неизвестную величину. Закон Ома основывается именно на таком уравнении; члены уравнения можно переставлять как угодно, но зная любые два, всегда можно вычислить третий. Например, можно сказать, что ток является частным от деления напряжения на сопротивление:

 I = U / R

Наконец, можно рассчитать сопротивление при известных токе и напряжении, переставив члены того же уравнения:

R = U / I

Итак, пока вроде бы все ясно. Теперь давайте попробуем проверить наши знания на практике: пусть есть схема, питающаяся от 12-вольтовой батареи, и электрическая лампа (скажем, большой фонарик). Перед установкой лампочки в фонарик вы измерили сопротивление схемы мультиметром и нашли, что оно равно 9 Ом. Вот формула для расчета электрического тока по закону Ома:

 I = U / R = 12  вольт / 9 Ом = 1,3 A

Ну, а что, если вы обнаружили, что лампочка светит чересчур уж ярко? Яркость можно изменить, уменьшив ток, т.е. просто добавив в схему резистор. Изначально мы имели сопротивление схемы 9 Ом; добавив 5-омный резистор в схему, мы повысим ее сопротивление до 14 Ом. В этом случае ток будет равен:

I = U / R = 12 вольт / 14 Ом = 0,9 А

Расчеты с применением больших и малых величин

Предположим, что у вас есть схема с небольшой сиреной, которая имеет сопротивление 2 килоома, а также 12-вольтовая батарея. Для того чтобы рассчитать ток, вам нужно выразить сопротивление цепи не в килоомах, а в базовых единицах — омах, не используя приставку “кило”. В нашем случае это значит, что нужно разделить напряжение на 2000 Ом:

I = U / R = 12 вольт / 2000 Ом = 0,006 A

В результате мы получили ток, записанный как доля 1 А. После окончания расчета будет удобнее вновь использовать префикс, чтобы дать ответ в более лаконичном виде: 0,006 А = 6 мА

Подводя итоги, можно сказать: для проведения расчетов необходимо все исходные величины преобразовать к базовым единицам счисления.

Мощность и закон Ома

Георг Ом (вот уж поистине, наш пострел везде поспел!) также нашел выражение для мощности, вычисляемое при известных напряжении и токе:

Р = U х I; или Мощность = напряжение умноженное на силу тока.

Это уравнение можно использовать для расчета мощности, потребляемой сиреной из предыдущего примера:

Р = 12 В х 0,006 А = 0,072 Вт, или 72 мВт.

Ладно, а что же делать, если напряжение на сирене нам не известно? Вы можете заняться простейшим преобразованием формулы для мощности, используя школьные знания (а вы-то думали, что зря протираете штаны на уроках физики!). Поскольку U = I х R, можно подставить это выражение в формулу для мощности, получив

Р = I2 х R; или Мощность = сила тока в квадрате умноженная на сопротивление.

Вы также можете использовать алгебраические преобразования, чтобы самостоятельно прикинуть, как можно рассчитать сопротивление, напряжение или ток, зная мощность и любой другой из этих же параметров.



radio-stv.ru

Что такое Ом

Ом (Ом, Ω) — единица измерения электрического сопротивления. Ом равен электрическому сопротивлению проводника, между концами которого возникает напряжение 1 вольт при силе постоянного тока 1 ампер.

\[ Ом = \frac{В}{А} \]

Ом — единица электрического сопротивления в системе СИ. Если проводник соединяет две точки с разными электрическими потенциалами, то через проводник течёт ток. Величина тока зависит от разности потенциалов, а также от сопротивления проводника этому току. Электрическое сопротивление является характеристикой цепи и измеряется в омах.

Что такое Ом?

1 ом представляет собой “электрическое сопротивление между двумя точками проводника, когда постоянная разность потенциалов 1 вольт, приложенная к этим точкам, создаёт в проводнике ток 1 ампер, а в проводнике не действует какая-либо электродвижущая сила”. CIPM, резолюция 2, 1946 год.

Это небольшое сопротивление, в применяемых на практике цепях сопротивление часто измеряется в мегаомах, то есть в миллионах ом. Единица ом названа в честь немецкого физика Георга Симона Ома (1787–1854). Имя Ома впервые было применено в качестве электрической единицы в 1861 году, когда Чарльз Брайт и Латимер Кларк предложили использовать название ohma для единицы электродвижущей силы. В качестве обозначения для ома применяется большая греческая буква омега Ω, поскольку букву O можно легко принять за ноль. Хотя в Юникоде и присутствует значок ома (Ω, Ohm sign, U+2126), но его каноническим разложением[1] является заглавная греческая буква омега (Ω, U+03A9), т. е. эти два символа должны быть неразличимы с точки зрения пользователя. Рекомендуется для обозначения ома использовать омегу.

Закон Ома

Закон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.

Строгая формулировка закона Ома может быть записана так:
сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.

Формула закона Ома записывается в следующем виде:

\[ I = \frac{U}{R} \]

где

I – сила тока в проводнике, единица измерения силы тока — ампер [А];

U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];

R – электрическое сопротивление проводника, единица измерения электрического сопротивления — ом [Ом].

Ом и зависимости от других величин

Еще на заре исследования электричества ученые заметили, что сила тока, проходящего через разные материалы, отличается, хотя эксперимент проводится в одинаковых условиях, образцы подключаются одинаково к одинаковым источникам. Было сделано предположение, что разные образцы обладают разным сопротивлением электрическому току, которое и определяет силу этого тока.

Был экспериментально получен закон, связывающий силу тока и напряжение (закон Ома). Коэффициент в этом законе назвали сопротивлением электрическому току.

Раньше ученые работали только с постоянным током и только со средами, чье сопротивление электричеству не зависит от силы тока, напряжения, времени и условий, то есть постоянно. Сейчас представления усложнились, но для постоянного тока и постоянного сопротивления по-прежнему верен закон Ома.

Определение омического сопротивления электрическому току:

[Сила тока, А] = [Напряжение, В] / [Сопротивление, Ом]

Говорят, что проводник имеет сопротивление один Ом, если при напряжении в один Вольт через него течет ток один Ампер.

Основные соотношения между электрическим сопротивлением (Ом) и другими физическими величинами:

[Выделяемая тепловая мощность, Вт] = [Сила тока, А] ^ 2 × [Сопротивление проводника, Ом]

[Выделяемая тепловая мощность, Вт] = [Напряжение, В] ^ 2 / [Сопротивление проводника, Ом]

[Действующая сила тока, А] = [Действующее напряжение, В] / [Сопротивление, Ом]

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Ом декаом даОм daΩ 10−1 Ом дециом дОм
102 Ом гектоом гОм 10−2 Ом сантиом сОм
103 Ом килоом кОм 10−3 Ом миллиом мОм
106 Ом мегаом МОм 10−6 Ом микроом мкОм µΩ
109 Ом гигаом ГОм 10−9 Ом наноом нОм
1012 Ом тераом ТОм 10−12 Ом пикоом пОм
1015 Ом петаом ПОм 10−15 Ом фемтоом фОм
1018 Ом эксаом ЭОм 10−18 Ом аттоом аОм
1021 Ом зеттаом ЗОм 10−21 Ом зептоом зОм
1024 Ом йоттаом ИОм 10−24 Ом йоктоом иОм
     применять не рекомендуется      не применяются или редко применяются на практике

Что такое резисторы?

Радиоэлектронные элементы, имеющие заданное постоянное омическое сопротивление, не проявляющие в разумных пределах индуктивность и емкость, называются в электронике резисторами.

В практике применяются резисторы от долей Ома до десятков мегаомов.

мегаом / мегом МОм MOhm 1E6 Ом 1000000 Ом
килоом кОм kOhm 1E3 Ом 1000 Ом
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

calcsbox.com

ЗАКОН ОМА — это… Что такое ЗАКОН ОМА?

  • ЗАКОН ОМА — один из основных законов электрического тока, согласно которому сила постоянного электрического тока / на участке электрической цепи прямо пропорциональна приложенному напряжению U и обратно пропорциональна электрическому сопротивлению R данного… …   Большая политехническая энциклопедия

  • закон Ома — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Ohm s law …   Справочник технического переводчика

  • Закон Ома —     Классическая электродинамика …   Википедия

  • закон Ома — Ohmo dėsnis statusas T sritis automatika atitikmenys: angl. Ohm s law vok. Ohmsches Gesetz, n rus. закон Ома, m pranc. loi d Ohm, f ryšiai: sinonimas – Omo dėsnis …   Automatikos terminų žodynas

  • закон Ома — Omo dėsnis statusas T sritis fizika atitikmenys: angl. Ohm’s law vok. Ohmsches Gesetz, n rus. закон Ома, m pranc. loi d’Ohm, f …   Fizikos terminų žodynas

  • закон Ома для магнитной цепи — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Rowland law …   Справочник технического переводчика

  • Закон Ома для полной цепи — Классическая электродинамика Магнитное поле соленоида Электричество · Магнетизм Электростатика Закон Кулона …   Википедия

  • закон Ома в акустике — akustinis Omo dėsnis statusas T sritis fizika atitikmenys: angl. Ohm’s law of acoustics vok. akustisches Ohmsches Gesetz, n rus. закон Ома в акустике, m pranc. loi d’Ohm de l’acoustique, f …   Fizikos terminų žodynas

  • Акустический закон Ома — Феномен, заключающийся в том, что аудиальная система человека выполняет (в весьма приблизительном виде) анализ Фурье, разделяя сложную звуковую волну на составляющие ее компоненты. Функционально это означает, что в определенных пределах человек… …   Психология ощущений: глоссарий

  • обобщённый закон Ома — Соотношение, устанавливающее тензорную связь между вектором плотности электрического тока и системой обобщённых сил, вызывающих его протекание …   Политехнический терминологический толковый словарь

  • dic.academic.ru

    Закон Ома (формула и определение)

    Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна характеристике участка, которую называют электрическим сопротивлением этого участка. I = U / R

    I=U/R Сила тока прямо пропорциональна напряжению и обратно пропорционально сопротивлению. I — ток, U — напряжение, R — сопротивление

    Ответ. Закон Ома для участка цепи: Сила тока в участке цепи пропорциональна напряжению на участке цепи и обратно пропорциональна сопротивлению данного участка (J=U/R). Закон Ома для полной цепи: Сила тока в цепи прпорциональна ЭДС источника тока включенного в эту цепь, и обратно пропорциональна полному сопротивлению цепи ( J=E/(R+r)). Есть еще закон Ома для не однородного участка цепи и закон Ома в дифференциальной форме! Но это уж ВЫ самостоятельно прочитайте!

    ццццццццццццццццццц

    Зако́н О́ма — эмпирический физический закон, определяющий связь электродвижущей силы источника (или электрического напряжения) с силой тока, протекающего в проводнике, и сопротивлением проводника. Установлен Георгом Омом в 1826 году и назван в его честь.

    закон ома- пока электрик на работе, жену еб…. т дома

    touch.otvet.mail.ru

    сколько есть законов Ома, и о чём они?

    Существует всего один закон Ома, он гласит, что ток в цепи пропорционален ЭДС источника и обратнопропорционален сумме сопротивлений внешней цепи и источника тока. Выглядит он так: <img src=»//content.foto.my.mail.ru/mail/majorreserve/_answers/i-42.jpg» > На практике чаще используют закон Ома для участка цепи, он вытекает из общего закона, если считать, что сопротивление источника тока (внутреннее сопротивление) много меньше сопротивления внешнего контура, то есть r = 0,его можно записать в 3-х вариантах: <img src=»//content.foto.my.mail.ru/mail/majorreserve/_answers/i-43.jpg» >

    а не 2 ли их. о чём не вспомню.

    По-моему есть Закон Ома при полной и неполной цепи .. а о чем???. мда.. сложный вопрос)))

    Два и один общий, и частный и всё о сопротивлении прохождению электротока. Ещё и Киргофа еасть.

    Я знаю один ток в цепи прямопропорционален напряжению и обратно пропорционален сопротивлению.

    Я, например, знаю только один его закон из электрофизики (в общем виде) : сила тока в проводнике прямо пропорциональна напряжению на его концах и обратнопропорциональна его сопротивлению. I = U / R.

    про электрическое сопротивление, вобще то только один

    Зако&#769;н О&#769;ма — это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома. Суть закона проста: сила тока в проводнике прямо пропорциональна напряжению между концами проводника, если при прохождении тока свойства проводника не изменяются. Следует также иметь в виду, что закон Ома является фундаментальным и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Осталбные-типа для участка, цепи, для трёхфазной цепи и т. д. — частные виды закона.

    Некоторые путают разные записи закона Ома с разными законами Ома. Закон Ома можно записать в интергральной и дифференциальной форме; для мгновенных, средних, действующих или комплексных величин (для переменного тока).

    2 закона, для участка цепи (I=U/R) и для полной цепи (I=E/(R+r))

    3 закона. 1. Закон Ома для однородного участка цепи, 2. Закон Ома для замкнутой цепи, 3. Закон Ома для неоднородного участка цепи.

    4й закон ома: тело посланное нах$й назад не возвращается!

    touch.otvet.mail.ru

    ЗАКОН ОМА — это… Что такое ЗАКОН ОМА?

  • ЗАКОН ОМА — ЗАКОН ОМА, утверждение, что сила постоянного тока в проводнике пропорциональна напряжению на концах проводника. Предложенный в 1827 г. Георгом Омом закон Ома имеет математическое выражение: U = IR , где U напряжение, измеряется в вольтах; I сила… …   Научно-технический энциклопедический словарь

  • закон Ома — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Ohm s law …   Справочник технического переводчика

  • Закон Ома —     Классическая электродинамика …   Википедия

  • закон Ома — Ohmo dėsnis statusas T sritis automatika atitikmenys: angl. Ohm s law vok. Ohmsches Gesetz, n rus. закон Ома, m pranc. loi d Ohm, f ryšiai: sinonimas – Omo dėsnis …   Automatikos terminų žodynas

  • закон Ома — Omo dėsnis statusas T sritis fizika atitikmenys: angl. Ohm’s law vok. Ohmsches Gesetz, n rus. закон Ома, m pranc. loi d’Ohm, f …   Fizikos terminų žodynas

  • закон Ома для магнитной цепи — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Rowland law …   Справочник технического переводчика

  • Закон Ома для полной цепи — Классическая электродинамика Магнитное поле соленоида Электричество · Магнетизм Электростатика Закон Кулона …   Википедия

  • закон Ома в акустике — akustinis Omo dėsnis statusas T sritis fizika atitikmenys: angl. Ohm’s law of acoustics vok. akustisches Ohmsches Gesetz, n rus. закон Ома в акустике, m pranc. loi d’Ohm de l’acoustique, f …   Fizikos terminų žodynas

  • Акустический закон Ома — Феномен, заключающийся в том, что аудиальная система человека выполняет (в весьма приблизительном виде) анализ Фурье, разделяя сложную звуковую волну на составляющие ее компоненты. Функционально это означает, что в определенных пределах человек… …   Психология ощущений: глоссарий

  • обобщённый закон Ома — Соотношение, устанавливающее тензорную связь между вектором плотности электрического тока и системой обобщённых сил, вызывающих его протекание …   Политехнический терминологический толковый словарь

  • polytechnic_dictionary.academic.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *