Закрыть

Закон ома в векторной форме: Закон Ома в дифференциальной форме

Содержание

Закон Ома в дифференциальной форме

Закон Ома в интегральной форме для однородного участка цепи (не содержащего ЭДС)

  (7.6.1) 

Для однородного линейного проводника выразим R через ρ:

  , (7.6.2) 

ρ – удельное объемное сопротивление; [ρ] = [Ом·м].

      Найдем связь между  и  в бесконечно малом объеме проводника – закон Ома в дифференциальной форме.

      В изотропном проводнике (в данном случае с постоянным сопротивлением) носители зарядов движутся в направлении действия силы, т.е. вектор плотности тока  и вектор напряженности поля  коллинеарны (рис. 7.6).

Рис. 7.6

      Исходя из закона Ома (7.6.1), имеем:

      А мы знаем, что  или . Отсюда можно записать

  , (7.6.3) 

      это запись закона Ома в дифференциальной форме.

Здесь  – удельная электропроводность.

Размерность σ – [].

      Плотность тока можно выразить через заряд электрона е, количество зарядов n и дрейфовую скорость :

.

      Обозначим , тогда ;

  (7.6.4) 

Теперь, если удельную электропроводность σ выразить через

е, n и b:  то вновь получим выражение закона Ома в дифференциальной форме:

.


Закон Ома для неоднородного участка цепи     Работа и мощность тока. Закон Джоуля – Ленца

Закон Ома в интегральной и дифференциальной форме. — КиберПедия

Закон Ома в интегральной форме:

— для участка цепи: «Сила тока на однородном участке электрической цепи прямо пропорциональна напряжению на данном участке и обратно пропорциональна сопротивлению этого участка »:

— для всей цепи:

где – электродвижущая сила, В;

– сопротивление всех элементов цепи, Ом;

внутреннее сопротивление источника питания, Ом;

сила тока, А.

Закон Ома в дифференциальной форме:

— для участка цепи: «Плотность тока в каждой точке однородного участка цепи пропорциональна напряженности электрического поля в этой же точке»:

Где – вектор плотности тока, А/м²;

– удельная проводимость, См= ;

– вектор напряженности электрического поля, В/м.

Работа и мощность электрического тока. Закон Джоуля-Ленца в интегральной и дифференциальной форме.

За время t по участку электрической цепи будет перенесён заряд и при этом будет совершена работа:

где – электрический заряд, Кл;

– напряжение, В;

– сила тока, А;

– время, с.

Работа, совершаемая в единицу времени – мощность электрического тока:

Закон Джоуля-Ленца в дифференциальной форме: «Мощность тепла , выделяемого в единице объёма среды при протекании постоянного электрического тока, равна произведению плотности электрического тока на величину напряженности электрического поля »:

где – удельная электрическая проводимость, См= .

Закон Джоуля-Ленца в интегральной форме:

где – полное количество теплоты, выделенное за промежуток времени от до , Дж;

– сила тока, А;

– сопротивление. Ом.

Закон Ома для участка цепи и для замкнутой цепи, содержащей э.д.с.

Закон Ома для участка цепи:

«Сила тока на однородном участке электрической цепи прямо пропорциональна напряжению на данном участке и обратно пропорциональна сопротивлению этого участка »:

Закон Ома для неоднородного участка цепи (содержащего ЭДС):

где – разность потенциалов (напряжение), В;

– электродвижущая сила, В;

– сопротивление участка, Ом.

Если направление тока совпадает с направлением обхода, его принято считать положительным; если источник тока повышает потенциал в направлении обхода (источник посылает ток в направлении обхода), то ЭДС такого источника считается положительной.

Закон Ома для замкнутой цепи, содержащей ЭДС:

где – электродвижущая сила, В;

– сопротивление всех элементов цепи, Ом;

внутреннее сопротивление источника питания, Ом;

сила тока, А.

 

Законы Кирхгофа.



Первое правило Кирхгофа: «Алгебраическая сумма токов, сходящихся в узле, равна нулю:

».

Второе правило Кирхгофа: «В любом замкнутом контуре алгебраическая сумма напряжений равна алгебраической сумме ЭДС, встречающихся в этом контуре:

где – число источников ЭДС;

– число ветвей в замкнутом контуре;

ток и сопротивление -той ветви, А, Ом».

Правило знаков:

1) ЭДС положительна, если ее направление совпадает с направлением произвольно выбранного обхода контура;

2) падение напряжения на резисторе положительно, если направление тока в нем совпадает с направлением обхода.

 

Закон Ома для однородного участка цепи — КиберПедия

Закон, устанавливающий связь между силой тока в проводнике и разностью потенциалов (напряжением) на его концах, был открыт Г. Омом опытным путем в 1826 году.

Закон Ома формулируется следующим образом.

Сила тока, текущего по однородному участку цепи, прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника,

Эту формулу еще называют законом Ома в интегральной форме. Напомним, что в случае однородного участка цепи напряжение равно разности потенциалов

Сопротивление проводника зависит от материала и его геометрических размеров, т. е.

где l — длина проводника, S — площадь его поперечного сечения, ρ — удельное сопротивление проводника, которое зависит от рода вещества, а также от его состояния (в первую очередь, температуры). Например, при температуре 20oС удельное сопротивление меди , а у фарфора .

Единицей сопротивления служит ом (Ом), .

Закон Ома справедлив для широкого класса материалов: металлов, угля, электролитов. Его широко применяют для расчета различных электрических цепей.

Его используют во многих других случаях, например, в технике безопасности. Так, допустимое напряжение определяют, исходя из сопротивления тела человека и допустимого для него значения тока. Смертельным считается ток 100 мА. Наиболее опасный путь его прохождения: правая рука — ноги. Сопротивление тела при влажной коже , при сухой . Рассчитайте самостоятельно допустимое напряжение.

 

Закон Ома в дифференциальной форме

Закон Ома в дифференциальной форме справедлив для любой точки участка цепи как с постоянным, так и с переменным сечением.

Для однородного участка цепи плотность тока равна

; отсюда: .

Подставим эту формулу, а также формулу для сопротивления (2.26) в закон Ома (2.24)

.

Учтем, что для однородного поля справедлива формула (2.19)

Тогда

Величина, обратная удельному сопротивлению, называется

удельной проводимостью, т. е.

В векторной форме формулу (2.27) можно записать следующим образом

Формула (2.28) выражает закон Ома в дифференциальной форме. Плотность тока пропорциональна напряженности электрического поля и имеет одинаковое с ней направление (рис. 2.8).

Рис.2.8

В такой форме закон Ома выражает связь между величинами, относящимися к данной точке, и поэтому применим к неоднородным проводникам.

 

Объяснение закона Ома

Задача физики — выяснить природу явлений, описываемых физическими законами.

Для объяснения закона Ома (2.28) в начале XIX в. была разработана классическая теория электропроводности металлов. Согласно классическим представлениям, электроны проводимости в металлах образуют так называемый электронный газ. Подобно молекулам идеального газа электроны в металле участвуют в хаотическом движении. При приложении электрического поля на хаотическое движение электронов накладывается упорядоченное движение.

Среда оказывает сопротивление движению зарядов в определенном направлении. Поэтому в однородном веществе при постоянной напряженности поля заряды движутся с постоянной скоростью , пропорциональной напряженности поля



где μ — подвижность носителей, которая зависит от природы носителей, плотности и состояния вещества.

Подставим формулу (2.29) в (2.23) и получим закон Ома в дифференциальной форме

Основанная на этих представлениях классическая теория электропроводности помогла понять и объяснить ряд физических явлений. Но следует отметить, что некоторые экспериментальные факты (например, сверхпроводимость металлов, зависимость сопротивления от температуры, значение их теплоемкости и др.) можно объяснить только с помощью квантовой теории. Однако, классическая теория электропроводности не утратила своего значения и в наши дни, так как во многих случаях (например, при малой концентрации электронов проводимости и высокой температуре, как это имеет место для полупроводников) она дает правильные результаты.

 

Лекция № 6 — Закон Ома

        

Георг Симон Ом

    Закон Ома, основанный на опытах, представляет собой в электротехнике основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением.

   Закон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.

   

Закон Ома для участка цепи

 

   Строгая формулировка закона Ома может быть записана так:

      сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.

   Формула закона Ома записывается в следующем виде:

где

I – сила тока в проводнике, единица измерения силы тока — ампер [А];

U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];

R – электрическое сопротивление проводника, единица измерения электрического сопротивления — ом [Ом].

    Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза

    И напротив, уменьшение тока в два раза при фиксированном напряжении будет означать, что сопротивление увеличилось в два раза.

    Рассмотрим простейший случай применения закона Ома.

    Пусть дан некоторый проводник сопротивлением 3 Ом под напряжением 12 В. Тогда, по определению закона Ома, по данному проводнику течет ток равный:

      Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома. Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.

Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.

Где и когда можно применять закон Ома?

       Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).

    Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.

Значение Закона Ома

     Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении. Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.

   Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.

    Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:

       Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.

 

Задача 1.1

  Рассчитать силу тока, проходящую по медному проводу длиной 100 м, площадью поперечного сечения 0,5 мм2, если к концам провода приложено напряжение 12 B.

 

  Задачка простая, заключается в нахождении сопротивления медной проволоки с последующим расчетом силы тока по формуле закона Ома для участка цепи. Приступим.

 

Закон Ома для полной цепи 

  Формулировка закона Ома для полной цепи — сила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи , где E – ЭДС, R- сопротивление цепи, r – внутреннее сопротивление источника.

  Здесь могут возникнуть вопросы. Например, что такое ЭДС?

    Электродвижущая сила — это физическая величина, которая характеризует работу внешних сил в источнике ЭДС. К примеру, в обычной пальчиковой батарейке, ЭДС является химическая реакция, которая заставляет перемещаться заряды от одного полюса к другому. Само слово электродвижущая говорит о том, что эта сила двигает  заряд.

  В каждом источнике присутствует внутреннее сопротивление r, оно зависит от параметров самого источника. В цепи также существует сопротивление R, оно зависит от параметров самой цепи.

  Формулу закона Ома для полной цепи можно представить в другом виде. А именно: ЭДС источника цепи равна сумме падений напряжения на источнике и на внешней цепи.

  

Для закрепления материала, решим две задачи на формулу закона Ома для полной цепи.

Задача 2.1

  Найти силу тока в цепи, если известно что сопротивление цепи 11 Ом, а источник подключенный к ней имеет ЭДС 12 В и внутреннее сопротивление 1 Ом.

 

  Теперь решим задачу посложнее.

 Задача 2.2

  Источник ЭДС подключен к резистору сопротивлением 10 Ом с помощью медного провода длиной 1 м и площадью поперечного сечения 1 мм2. Найти силу тока, зная что ЭДС источника равно 12 В, а внутреннее сопротивление 1,9825 Ом.

Приступим.

 

 

Закон Ома ? для участка цепи, формула. Закон Ома ? в дифференциальной форме для полной цепи и её участка

Автор Даниил Леонидович На чтение 5 мин. Просмотров 3.2k. Опубликовано Обновлено

Физический закон ома получен путём экспериментов. 3 формулировки ома – одни из основополагающих в физике, устанавливающие связь между электротоком, сопротивлением и энергонапряжением. Год открытия – 1826. Впервые все 3 физических закона ома сформулировал физик-экспериментатор немецкого происхождения Георг Ом, с фамилией которого связано их определение.

Мнемоническая схема

Согласно мнемосхеме, чтобы высчитать электросопротивление по закону ома для участка цепи постоянного тока, необходимо комплексное напряжение на участке цепи разделить на силу тока для полной цепи. Однако, с физико-математической точки зрения, формулу ома для участка цепи для вычисления только по первому закону ома принято считать неполной.

Альтернативный способ вычислить токовое сопротивление по закону ома кратко подразумевает умножение электросопротивления материи, из которой выполнен проводник, на длину с последующим делением на площадь пересекающегося сечения.

Для выполнения вычислений сформулируйте по закону ома для участка цепи уравнение, исходя из имеющихся числовых данных:

Применение на линии электропередач

В процессе доставки на линию электропередач потери энергии должны быть минимизированы. Причиной энергетических потерь является нагрев провода, во время которого энергия электротока превращается в теплоэнергию.

Чтобы дать определение по закону ома потерянной мощности, необходимо показатель электрической мощности во второй степени умножить на внутреннее сопротивление источника напряжения и разделить на ЭДС в квадрате.

Из этого следует, что рост потери энергомощности осуществляется пропорционально протяжённости линии электропередач и квадрату электродвижущей силы.

Поскольку электродвижущую силу ограничивает прочность обмотки генератора, то повышение энергонапряжения возможно после того, как из генератора выйдет электроток, на участке входа линии.

Переменный ток легче всего распределяется по линии через трансформатор. Однако, поскольку следствием повышения энергонапряжения является потеря коронирования, а надёжность изоляции обеспечивается с трудом, напряжение на участке цепи протяжённой линии электропередач не превышает миллиона вольт.

Внимание!

Поведение линии электропередач в пространстве подобно антенне, ввиду чего берётся во внимание потеря на излучение.

Отображение в дифференциальной форме

На подсчёт сопротивления влияет тип материи, по которой протекает электроток, а также геометрические габариты проводника.

Дифференциальная форма формулировки Ома, записывающаяся достаточно кратко, отображает электропроводящие характеристики изотропных материалов и заключается в умножении удельной проводимости на вектор напряжённости электрополя с целью вычисления вектора плотности энерготока.

Для выполнения требуемых вычислений, уравнение сформулируйте по закону ома:

Интересно!

Если исходить из научных данных, следует сделать вывод о законе ома в дифференциальной форме об отсутствии зависимого соотношения геометрических габаритов.

При использовании анизотропеновых электроэлементов нередко встречается несовпадение вектора плотности токового энергонапряжения. Данное суждение справедливо для закона ома в интегральной и дифференциальной формах.

Переменный ток

Величины являются комплексными, если речь идёт о синусоидальных формах энерготока с циклической частотой, в цепях которых присутствуют активная ёмкость с индуктивностью.

В перечень комплексных величин входят:

  • разность между потенциалами;
  • сила тока;
  • комплексное электросопротивление;
  • модуль импеданса;
  • разность индуктивного и ёмкостного сопротивлений;
  • омическое электросопротивление;
  • фаза импеданса.

Если несинусоидальный энерготок допустимо измерить временными показателями, закон ома для неполной электрической цепи может быть представлен в виде сложенных синусоидальных Фурье-компонентов. В линейной цепи составные элементы фурье-разложения являются независимо функционирующими. В нелинейных цепях образуются гармоники и множество колебаний. Таким образом, можно сделать вывод о невозможности выполнения правила Ома для нелинейной электроцепи.

Внимание!

Гармоника – это колебание, частота которого кратна частоте напряжения.

Как трактуется правило Ома

Так как обобщённая формула ома не считается основополагающей, правило применяется для описания разновидностей проводников в условиях приближения незначительной частоты, плотности тока и напряжения электрополя. Следует отметить, что в ряде случаев как первый закон, так и второй закон, применяемый для полной цепи, не соблюдаются.

Существует теория Друде, для выражения которой используются следующие величины:

  • удельная электропроводимость;
  • концентрированное размещение электронов;
  • показатель элементарного заряда;
  • время затихания по импульсам;
  • эффективная масса электрона.

Внимание!

Все формулы Ома – первый, второй физический закон ома и третий распространяются на омические компоненты.

Перечень условий, при которых становится невозможным соблюдения правила Ома:

  1. высокие частоты с чрезмерно большой скоростью изменения электротока;
  2. пониженная температура сверхпроводимого вещества;
  3. перегрев проводника проходящим электротоком;
  4. в ситуации пробоя, возникшего в результате подсоединения к проводниковому элементу высокого напряжения;
  5. в вакуумной или газонаполненной электролампе;
  6. для гетерогенного полупроводникового прибора;
  7. при образовании пространственного диэлектрического заряда в контакте металлического диэлектрика.

Интерпретация

Определяющаяся действием приложенного напряжения мощностная сила тока является пропорциональной показателю его напряжения. К примеру, при двойном увеличении приложенного напряжения, интенсивность постоянного тока также удваивается.

Интересно!

Наиболее часто правило Ома применяется для металла и керамики.

Методы запоминания формулы

Чтобы легче запомнить формулу расчёта напряжения на участке цепи, следует выписать на бумажном листе все величины, из которых она состоит, в которую также входит сопротивление и сила тока. Искомую величину закрыть пальцем, вследствие чего соотношение оставшихся величин будет отображать действие, которое необходимо совершить для её вычисления.

Ниже будет представлено видео с подробным объяснением всех правил и формул, относящихся к рассматриваемой теме.