Изолированная нейтраль. Устройство и работа. Применение
Изолированная нейтраль — в процессе передачи, распределения и потребления электрической энергии применяется симметричная 3-фазная система. Такую симметричность можно достичь, приведя в одинаковое положение линейные и фазные напряжения. Поэтому на всех фазах создается равномерная нагрузка по току, равный фазный сдвиг напряжений и токов.
Но при эксплуатации такой системы часто возникают аварийные режимы, приводящие к различным неисправностям проводников. Вследствие этого возникает нарушение симметричности трехфазной системы. Такие нарушения необходимо быстро устранять. На это оказывает большое влияние быстродействие релейной защиты.
Ее правильное функционирование зависит от нейтралей, которые бывают изолированными или глухозаземленными. Каждая из них имеет свои недостатки и преимущества, и используется в соответствующих условиях работы. От технического состояния релейной защиты зависит ее нормальная эксплуатация.
Устройство
Изолированная нейтраль создает режим, который нашел применение в российских энергосистемах для трансформаторов, а также генераторов. Их нейтральные точки не имеют соединения с контуром заземления. В сетях высокого напряжения (от 6 до 10 кВ) нейтральная точка не обязательна, так как обмотки трансформаторов выполнены по схеме треугольника.
По правилам имеется возможность ограничить режим изолированной нейтрали током емкости. Этот ток возникает при замыкании одной фазы.
Ток замыкания можно компенсировать путем использования дугогасящих реакторов в следующих случаях:
- Более 30 А, напряжение от 3 до 6 кВ.
- Больше 20 А, напряжение 10 кВ.
- Ток более 15 А, напряжение от 15 до 20 кВ.
- Ток больше 10 А, напряжение от 3 до 20 кВ, с опорами линий передач электроэнергии.
- Все сети питания на напряжение 35 кВ.
- В группе «генератор-трансформатор» при нагрузке 5 А и напряжении на генераторе от 6 до 20 кВ.
Допускается производить компенсацию тока замыкания на заземляющий контур путем замены ее на заземление нейтрали специальным резистором. В таком случае порядок действия релейной защиты изменится. Изолированная нейтраль впервые была заземлена в электрических устройствах с небольшой величиной напряжения.
В отечественных сетях питания изолированная нейтраль применяется в:
- 2-проводных сетях постоянного тока.
- 3-фазных сетях переменного тока до 1 кВ.
- 3-фазных сетях от 6 до 35 киловольт при условии допустимого тока замыкания.
- Низковольтных сетях, имеющих защитные устройства в виде разделяющих трансформаторов, защитной изоляции, для создания безопасных условий человека.
Принцип действия
Изолированная нейтраль применяется в схемах сетей питания в случаях соединения вторичных обмоток трансформаторов по схеме треугольника, а также при невозможности отключения питания при аварии. Поэтому точка нейтрали отсутствует.
Замыкание фазы на землю не считается коротким при схеме сети с изолированной нейтралью, так как нет соединения между землей и проводниками сети. Но это не значит, что не будет тока утечки при замыкании.
Это объясняется тем, что изоляция кабеля – это не абсолютный диэлектрик, как и другие изоляторы, которые имеют некую минимальную проводимость. Чем больше длина линии, тем выше ток утечки. Представим жилу кабеля обкладкой конденсатора. Второй обкладкой будет земля. Воздух и изоляция будет диэлектриком между токоведущими частями без напряжения, и кабелем. Емкость такого воображаемого конденсатора будет тем выше, чем длиннее линия передач.
Сеть с изолированной нейтралью представляет собой цепь замещения, учитывая удельную электроемкость сети и сопротивление изоляции. Это изображено на рисунке.
Такие компоненты цепи создают ток утечки. При различных условиях в таких сетях 380 вольт ток утечки незначителен, и составляет несколько миллиампер. Несмотря на это, такое замыкание приводит к аварии сети, хотя сеть еще может некоторое время работать.
Нельзя забывать, что в аналогичных сетях при замыкании 1-фазы на землю значительно повышается напряжение между землей и исправными фазами. Это напряжение приближается к величине 380 вольт (линейное напряжение). Этот факт может привести к удару электрическим током электротехнических работников.
Также, изолированная нейтраль при замыкании одной фазы на землю способствует пробиванию изоляции и появлению замыкания на других фазах, то есть, может возникнуть межфазное замыкание с большими токами. Чтобы обеспечить защиту в такой ситуации, необходимы плавкие вставки или автоматические выключатели.
Двойное замыкание на землю очень опасно для работников, обслуживающих сети. Поэтому, если в сети имеется однофазное замыкание, то такую сеть считают аварийной, так как условия безопасности резко снижаются. Наличие «земли» повышает опасность удара током при касании к элементам под напряжением. Поэтому замыкания даже одной фазы на землю немедленно должны устраняться.
Незначительная величина тока 1-фазного замыкания при изолированной нейтрали является причиной такого фактора, что такое замыкание невозможно отключить предохранителями и автоматами защиты. Поэтому потребуется вспомогательные релейные электроустановки, которые предупредят об аварийном режиме.
Эта система питания требует значительного числа сигнализаций и защитных устройств, а к работникам, которые обслуживают сети, предъявляются высокие квалификационные требования.
Преимущества
Режим изолированной нейтрали обладает достоинством, которое заключается в отсутствии надобности оперативного отключения первого 1-фазного замыкания на землю. В местах неисправности появляется незначительный ток, при условии небольшой емкости тока на заземление.
Изолированная нейтраль применяется ограниченно, так как имеет несколько серьезных недостатков.
Недостатки
- Сложное обнаружение неисправностей.
- Все электроустановки требуется изолировать на линейное напряжение.
- Если замыкание продолжается длительное время, то существует действительная опасность удара человека электрическим током.
- При 1-фазных замыканиях не обеспечивается нормальное функционирование релейной защиты, так как величина действительного тока замыкания напрямую зависит от работы сети питания, а именно от числа подключенных веток цепи.
- Снижается срок службы изоляции из-за постепенного накапливания дефектов вследствие воздействия на нее дуговых перенапряжений в течение длительного времени.
- Повреждения могут появиться в различных местах из-за пробоя изоляции в других местах, где появляются дуговые перенапряжения. Поэтому многие кабели выходят из строя, так же, как электродвигатели и другие электроустановки.
- Возможно появление дуговых перенапряжений, дуги незначительного тока в местах 1-фазного замыкания на землю.
В результате можно сказать, что значительное число недостатков превосходит все преимущества этого режима. Но при некоторых условиях такой способ вполне проявляет свою эффективность и не нарушает требований правил электроустановок.
Похожие темы:
electrosam.ru
Глухозаземленная нейтраль: принцип действия, устройство, схемы
В подавляющем большинстве электросетей (до 1 кВ) применяется глухозаземленная нейтраль, поскольку такое исполнение наиболее оптимально для действующих требований электробезопасности. Учитывая распространенность этой схемы заземления нейтрали, имеет смысл подробно ознакомиться с ее устройством, принципом работы и техническими особенностями, а также основными требованиями ПУЭ к электроустановкам до 1 кВ.
Что такое глухозаземленная нейтраль?
Начнем с определения нейтрали, в электротехнике под этим термином подразумевается точка в месте соединения всех фазных обмоток трансформаторов и генераторов, когда применяется тип подключения «Звезда». Соответственно, при включении «Треугольником» нейтрали быть не может.
Включение обмоток: а) «звездой»; б) «треугольником»Если нейтраль обмоток генератора или трансформатора заземлить, то такая система получит название глухозаземленной, с ее организацией можно ознакомиться ниже.
Устройство сетей с голухозаземленной нейтралью
Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром. Согласно действующим нормам, максимальное сопротивление такого соединения – 4-е Ома (для сетей 0,4 кВ). При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.
В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.
Пример устройства сети TN-C-SЕсли от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.
Технические особенности
В данной системе, где используется общая средняя точка, помимо межфазного присутствует и фазное напряжение. Последнее образуется между рабочим нулем и линейными проводами. Наглядно отличие первого от второго продемонстрировано ниже.
Разница между фазным и линейным напряжениемРазность потенциалов UF1, UF2 и UF3 принято называть фазными, а величины UL1, UL2 и UL3 – линейными или межфазными. Характерно, что U
В идеально сбалансированной сети трехфазного электрического тока должны выполняться поддерживаться следующие соотношения:
UF1= UF2=UF3;
UL1=UL2=UL3.
На практике добиться такого результата невозможно по ряду причин, например из-за неравномерной нагрузки, токов утечки, плохой изоляции фазных проводников и т.д. Когда нейтраль заземлена, дисбаланс линейных и фазных характеристик энергосистемы существенно снижается, то есть, рабочий ноль позволяет выравнивать потенциалы.
Обрыв нулевого провода считается серьезной аварией, которая с большой вероятностью приведет к нарушению симметрии нагрузки, более известной под термином «перекос фаз». В таких случаях в сетях однофазных потребителей произойдет резкое увеличение амплитуды электрического тока, что с большой вероятностью выведет из строя оборудование, рассчитанное на напряжение 220 В. Получить более подробную информацию о перекосе фаз и способах защиты от него, можно на страницах нашего сайта.
Принцип действия сетей с глухозаземленной нейтралью
Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:
- Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
- Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
- Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
- В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.
В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.
Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.
Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.
Движение тока при КЗ на корпусГоворя о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.
При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.
Отличия глухозаземленной нейтрали от изолированной
Чтобы дать объяснить различие необходимо, кратко рассказать об основных особенностях изолированной нейтрали, пример такого исполнения приведен ниже.
Рис. 6. Электроустановка с изолированной нейтральюНизкий уровень электробезопасности основной, но не единственный недостаток изолированной нейтрали, с их полным списком, а также другими особенностями этой схемы электроснабжения, можно ознакомиться на нашем сайте.
Системы TN и её подсистемы
Начнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:
- T (от англ. terra – земля) – обозначает глухозаземленную нейтраль.
- I (от англ. isolate – изолировать) – указывает, что соединение с «землей» отсутствует.
Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно.
Сейчас практикуется три схемы нейтрали:
- Эффективное заземление обозначается, как ТТ. Особенность такой схемы заключается в том, что глухозаземленный вывод (N)считается рабочим проводом, а для защиты используется собственный заземляющий проводник (РЕ). Схема заземления ТТ
- Изолированная нейтраль (принятое обозначение IT), схема системы была представлена выше на рис. 6.
- Вариант TN (глухозаземленное исполнение).
У последнего варианта исполнения есть три подвида:
- Совмещенный вариант, принятое обозначение TN-С
- Вариант TN-S, нулевой и защитный проводники проложены раздельно. Такая схема наиболее безопасна, но для нее требуется использовать не 4-х, а 5-ти жильный кабель, что повышает стоимость реализации. Схема заземления TN-S
- Подсистема, совмещающая в себе два предыдущих варианта – TN-C-S. От подстанции до ввода потребителя идет один провод, в РУ он подключается к шинам PE, N и заземляющему контуру. Такая подсистема заземленной нейтрали сейчас наиболее распространена. Схема заземления TN-C-S
Требования ПУЭ
В Правилах нормам и требованиям к глухозаземленной посвящена глава 1.7, приведем наиболее значимые выдержки из нее:
- Для подключения нейтрали к контуру заземления необходимо использовать специальный проводник.
- При выборе места под заземляющее устройство следует исходить из минимально допустимого расстояния между ним и нейтралью.
- Если в качестве заземления используется жб конструкция фундамента, то к его армирующему основанию следует подключаться не менее чем в 2-х точках, это гарантирует наиболее эффективную защиту.
- Сопротивление заземляющего проводника для трехфазной цепи электрической сети 0,4 кВ имеет ограничение 4-е Ома. В исключительных случаях эта норма может быть пересмотрена исходя из характеристик грунта.
- В линии глухозаземленной нейтрали запрещено устанавливать предохранители, защитные устройства и другие элементы, способные нарушить целостность проводника.
- Правилами предписывается обеспечить заземляющему проводнику надежную защиту от механических повреждений.
- ВЛ должна быть оборудована дублирующими заземлителями, они устанавливаются в начале и конце линии, на отводах, а также через каждые 200 м.
- Дублирующее заземление должно выполняться и на вводе потребителя и обязательно указываться в схеме щитка ВРУ.
- При организации бытовых однофазных сетей от ВРУ должна выполняться разводка тремя проводами, один из которых фаза, второй – ноль (N) и третий – защитный (РЕ).
- Скорость срабатывания защитных автоматов, установленных в однофазных сетях с глухозаземленной нейтралью, не должна быть продолжительней 0,40 сек.
www.asutpp.ru
Изолированная и глухозаземленная нейтраль
Содержание:
- Изолированная нейтраль
- Достоинства и недостатки изолированной нейтрали
- Глухозаземленная нейтраль
- Особенности глухого заземления
- Видео: зануление и заземление
В процессе производства, преобразования, транспортировки, распределения и потребления электроэнергии используется трехфазная симметричная система проводов. Достичь такой симметричности стало возможно путем приведения фазных и линейных напряжений в одинаковое состояние. В результате, на всех фазах образуется равномерная токовая загрузка, а также одинаковый сдвиг фаз токов и напряжений.
Однако во время функционирования всей этой системы рано или поздно возникают аварийные ситуации в виде обрыва провода, пробоя изоляции и прочих специфических неисправностей, приводящих к нарушениям симметрии трехфазной системы. Последствия таких нарушений должны быть устранены как можно скорее. Большую роль в этом играет степень быстродействия релейной защиты, на работу которой влияет изолированная и глухозаземленная нейтраль. Каждый из этих режимов имеет свои достоинства и недостатки и применяется в наиболее подходящих условиях. В любом случае от их состояния во многом зависит нормальное функционирование релейной защиты.
Изолированная нейтраль
Изолированная нейтраль нашла достаточно широкое применение в отечественных энергетических системах. Данный способ заземления применяется для генераторов или трансформаторов. В этом случае их нейтральные точки не соединяются с заземляющим контуром. В распределительных сетях на 6-10 киловольт нейтральной точки может не быть вообще, поскольку соединение трансформаторных обмоток выполняется методом треугольника.
В соответствии с ПУЭ, режим изолированной нейтрали может быть ограничен емкостным током, представляющим собой ток однофазного замыкания на землю сети. Его компенсация с помощью дугогасящих реакторах предусматривается при следующих значениях:
- Ток свыше 30 ампер, напряжение 3-6 киловольт;
- Ток свыше 20 ампер, напряжение 10 киловольт;
- Ток свыше 15 ампер, напряжение 15-20 киловольт;
- Ток свыше 10 ампер, напряжение 3-20 киловольт, с металлическими и железобетонными опорами воздушных ЛЭП
- Все электрические сети с напряжением 35 киловольт.
- В блоках «генератор-трансформатор» при токе 5 ампер и генераторном напряжении 6-20 киловольт.
Компенсация тока замыкания на землю может быть заменена резистивным заземлением нейтрали с помощью резистора. В этом случае алгоритм действия релейной защиты будет изменен. Впервые заземление в режиме изолированной нейтрали было применено в электроустановках со средним значением напряжения.
Достоинства и недостатки изолированной нейтрали
Несомненным достоинством режима изолированной нейтрали является отсутствие необходимости быстрого отключения первого однофазного замыкания на землю. Кроме того, в местах повреждений образуется малый ток, при условии малой токовой емкости на землю.
Однако этот режим имеет ряд существенных недостатков, из-за которых его использование существенно ограничено.
Основные недостатки изолированной нейтрали:
- Возможные дуговые перенапряжения перемежающегося характера дуги малого тока в месте однофазного замыкания на землю.
- Повреждения могут возникнуть во многих местах по причине пробоя изоляции на других соединениях, где возникают дуговые перенапряжения. По этой причине выходят из строя сразу многие кабели, электродвигатели и другое оборудование.
- Дуговые перенапряжения воздействуют на изоляцию в течение продолжительного времени. В результате, в ней постепенно накапливаются дефекты, что приводит к снижению срока эксплуатации.
- Все электрооборудование необходимо изолировать на линейное напряжение относительно земли.
- Места повреждений довольно сложно обнаружить.
- Реальная опасность поражения людей электротоком в случае продолжительного замыкания на землю.
- При однофазных замыканиях не всегда может быть обеспечена правильная работа релейной защиты, поскольку значение реального тока замыкания полностью связано с режимом работы сети, в частности, с количеством включенных присоединений.
Таким образом, большое количество недостатков перекрывает все достоинства данного режима заземления. Однако в определенных условиях этот метод считается достаточно эффективным и не противоречит требованиям ПУЭ.
Глухозаземленная нейтраль
Более прогрессивным способом считается режим глухозаземленной нейтрали. В этом случае нейтраль генератора или трансформатора непосредственно соединяется с заземляющим устройством. В некоторых случаях соединение осуществляется с использованием малого сопротивления, например, трансформатора тока. В отличие от защитного, такое заземление нейтрали называется рабочим. Значение сопротивления заземляющих устройств, соединенных с нейтралью, не должно превышать 4 Ом в электроустановках с напряжением 380/220 вольт.
В электроустановках, где используется глухозаземленная нейтраль, поврежденный участок должен быстро и надежно отключаться в автоматическом режиме в случае возникновения замыкания между фазой и заземляющим проводником. С связи с этим, при напряжении до 1000 вольт, корпуса оборудования должны обязательно соединяться с заземленной нейтралью установок. Таким образом, обеспечивается быстрое отключение поврежденного участка в случае короткого замыкания с помощью реле максимального тока или предохранителя.
Особенности глухого заземления
Заземление нейтрали в глухом режиме предусмотрено для четырехпроводных сетей переменного тока. В таких случаях выполняется глухое заземление нулевых выводов силовых трансформаторов. Соединяются все части, подлежащие заземлению и нулевой заземленный вывод. Нулевой провод должен быть цельным, без предохранителей и каких-либо разъединяющих приспособлений.
В качестве глухозаземленной нейтрали воздушных линий с напряжением до 1 киловольта используется нулевой провод, прокладываемый вместе с фазными линиями на тех же опорах.
Все ответвления или концы воздушных линий, длиной свыше 200 метров подлежат повторному заземлению нулевого провода. То же самое касается вводов в здания, где имеются установки, подлежащие заземлению. В качестве естественных заземлителей могут использоваться железобетонные опоры, а также заземляющие устройства, защищающие от грозовых перенапряжений.
Таким образом, изолированная и глухозаземленная нейтраль обеспечивает нормальную работу релейной защиты генераторов и трансформаторов. Кроме того, они надежно защищают людей от поражения электрическим током.
electric-220.ru
Сети с изолированной нейтралью — ElectrikTop.ru
Электрические сети — это сложные системы. Схемы подключения генераторов и трансформаторов предполагает подключение глухозаземленной и изолированной нетрали. В нашей энергосистеме в основном используется система с глухозаземленной нетралью. Однако, существует оборудование, которое должно работать в условиях где применяется трехпроводная сеть с изолированной нейтралью.
Это передвижные установки, оборудование торфоразработок, при добыче калийных удобрений и угольных шахтах, то есть оборудование, работающее на напряжение 380-660 В и 3-35 Кв. Питающий кабель передвижных установок выполняется четырехпроводным кабелем. Отличие одного вида заземления от другого заключается в том, что общая точка вторичной обмотки трансформатора подключается непосредственно в трансформаторной подстанции к заземлителю.
Такая система с изолированной нейтралью получается при подключении вторичных обмоток трансформатора треугольником. В этом случае средней точки просто не существует. Это используется, когда по условия безопасности не допускают аварийное обесточивание при коротком замыкании на землю. Такие системы получили обозначение IT.
Что является определением изолированной нейтрали
В правилах эксплуатации электроустановок (ПЭУ)существует определение, что собой представляет схема с изолированной нейтралью. Рассмотрим, чем называют IT схемой. Это система, в которой нулевой провод генератора или трансформатора не подключается к заземлителю. Он может быть подключен к контуру заземления путем соединения приборов сигнализации, средств измерения, защиты или аналогичных приборов к нулю. Все эти устройства должны обладать большим сопротивлением.
Систему с изолированной нейтралью можно представить трехфазной сетью, обмотка трансформатора, в которой соединена треугольником, но может быть и звездой. А от линии отходят резисторы, подключенные к заземлению и параллельно сопротивлению стоят конденсаторы. Через которые в кабельной или воздушной линии протекают токи утечки, их можно представить двумя составляющими. Одна из которых активная, а вторая реактивная.
Так как сопротивление не поврежденной изоляции имеет величину около мегаома. При таком сопротивлении ток утечки очень маленький и рассчитывается по закону Ома. I=U/R, а при величине сопротивления 0,5 Мом и напряжении 220 В, составляет 0,44 Ма. Реактивную составляющую представляют в виде конденсатора. Одной обкладкой служит провод линии, а второй земля.
Когда имеется исправная трехфазная сети с изолированной нейтралью нагрузка между фазами распределяется равномерно. При возникновении пробоя одной фазы на землю, т. е. возникают однофазные замыкания на землю в сетях с изолированной нейтралью.
В этом случае возникает аварийный ток однофазного замыкания. Чаще всего замыкание происходит на корпус электрического потребителя. В качестве последнего могут выступать электродвигатели или металлические конструкции.
Если они не заземлены, то на корпусе прибора возникает фазное напряжение или близкое к нему. Прикосновение человека к корпусу будет равносильно прикосновению к фазе. Что смертельно опасно.
Когда возникает однофазное КЗ в сети с изолированной нейтралью, ток замыкания небольшой, его значение составляет миллиамперы. При таких токах невозможно установить защитные устройства.
Поэтому для обеспечения отключения используются приборы, которые автоматически контролируют состояние изоляции. Такие системы устанавливают, когда необходима защита от замыкания на землю в сетях с изолированной нейтралью.
Достоинства
Какие же существуют достоинства и недостатки сети с изолированной нейтралью? К основным достоинствам следует отнести то, что нет необходимости оперативного отключения питающего напряжения при возникновении короткого замыкания одной фазы на землю.
Недостатки
Это считается аварийным режимом, и он не предполагает длительной работы оборудования. Такой режим имеет следующие недостатки:
- Обнаружить неисправный участок довольно непросто;
- Изоляция электроприборов должна быть рассчитана на пробой от линейного напряжения;
- При продолжительном замыкании увеличивается вероятность поражения обслуживающего персонала электричеством;
- Вследствие постоянного воздействия дуговых перенапряжений и постоянного накопления дефектов, снижается срок службы изоляции;
- Из-за появления дуговых перенапряжений возникают повреждения изоляции в разных местах;
- Однофазное замыкание на землю в сетях с изолированной нейтралью затрудняет работу релейной защиты;
- Возможное появление дуги малых токов в месте однофазного замыкания на землю.
Большое количество недостатков существенно снижает применение такой схемы в сетях до 1 000 В. Более широкое распространение такая система получила в высоковольтных сетях.
Что такое и чем отличается изолированная нейтраль в сетях с напряжением выше 1 000В
В сетях среднего напряжения (6 — 10 КВ) изолированная нейтраль трансформатора отсутствует, так как обмотки трансформатора соединены треугольником. При соединении обмоток звездой появляется возможность в организации защиты компенсации тока однофазного замыкания на землю в высоковольтной сети с изолированной нейтралью.
Для компенсации реактивных токов короткого замыкания применяют дугогасящие реакторы в случае:
- Линии напряжением 3-6 КВ и током свыше 30А;
- Напряжение сети 10 КВ и ток больше 10А;
- Ток, превышающий 15 А и напряжения 15-20 КВ;
- Воздушная линия электропередач напряжением 3 – 20 КВ и током, превышающим 10 А;
- Кабельные и ЛЭП напряжением 35 КВ;
- При напряжении на генераторе 6-20 КВ и токе на землю 5А в схеме «генератор – трансформатор».
Трехпроводная трехфазная система с изолированной нейтралью допускает производить корректировку тока КЗ, что осуществляется подключением нейтрали к заземлению при помощи высокоомного сопротивления.
В нашем случае изолированная нейтраль используется в сетях:
- Применяется в двухфазных сетях постоянного тока;
- Трехфазные сети переменного тока до 1 000 кВ;
- Трехфазные сети 6 – 35 кВ при допустимом токе короткого замыкания;
- Сети 0,4 КВ, в которых применяются устройства защиты в виде разделяющих трансформаторов.
electriktop.ru
Глухозаземленная нейтраль. Устройство и работа. Применение
Схема сети с глухозаземленной нейтралью служит для защиты человека от поражения электрическим током. В аварийных случаях глухозаземленная нейтраль выравнивает потенциалы, вследствие чего касание человека к металлическим частям электрооборудования становится безопасным.
Защитное устройство также сыграет свою роль в аварийных ситуациях, отключив подачу питания, так как при коротких замыканиях сила тока в сети возрастает.
Глухозаземленная нейтраль — устройство и работа
Питание потребителей электрической энергией производится с помощью силовых трансформаторов и генераторов. Чаще всего обмотки трех фаз этих устройств соединены по схеме звезды, в которой общая точка является нейтралью. Если эта нейтраль соединена с заземлением через малое сопротивление, либо напрямую, непосредственно возле источника питания, то ее называют глухозаземленная нейтраль.
Рис 1
Применяются также и другие режимы работы нейтрали с заземлением, в зависимости от режимов работы сети при замыканиях на землю, необходимых методов защиты человека от удара током, методов ограничения перенапряжений с:
- Эффективно заземленной нейтралью.
- Незаземленной нейтралью.
- Компенсированной нейтралью.
Такие режимы используются для электрических устройств на 6 киловольт и более. Изолированная нейтраль используется до 1 кВ, и не нашла широкого применения. Она делает безопасной работу только передвижных устройств, в которых невозможно выполнить контур заземления.
Монтаж на нейтрали устройств компенсации дает возможность снизить емкостный ток замыкания устройств, действующих с напряжением более 1 кВ. Компенсация производится с помощью катушек индуктивности, вследствие чего ток в точке замыкания становится нулевым. Для эффективной работы защиты применяется заземление нейтрали резистором. Он образует активную часть тока, на который действует защитное реле.
Глухозаземленная нейтраль является наиболее эффективным способом защиты людей от поражения током. Она применяется в большинстве электрических сетей питания. Напряжение между фазами называется линейным, а между фазой и нолем – фазным. Номинальное напряжение электроустановки определяется по линейному значению напряжения. Оно может быть 220, 380, 660 вольт. В бытовых сетях питания напряжение равно 380 вольт.
Однофазные потребители подключаются между фазами и нолем равномерно. Силовой трансформатор на подстанции имеет заземляющий контур. В него входят металлические детали, соединенные между собой, и углубленные в землю. Размеры контура определяют с учетом эффективного распределения тока по земле при замыкании.
Работоспособность заземления определяется величиной сопротивления растекания тока. Допустимые величины этого параметра указаны в правилах электроустановок. Для электроподстанций сопротивление заземления не должно быть выше 4 Ом при напряжении 380 вольт.
Заземляющий контур соединяется с нулевой шиной, выполненной в виде металлической полосы. К ней подключается провод нулевого вывода трансформатора. Также к ней подключаются жилы кабелей, которые отходят к потребителям. Фазы подключаются к автоматическим выключателям, рубильникам, контактам предохранителей.
Кабели, отходящие от подстанции, имеют четыре жилы. В кабелях старого образца могут быть три жилы в алюминиевой оболочке, которая выступает в качестве провода ноля. Для ввода питания существуют вводные распределительные устройства, которые содержат шину ноля. К ней присоединяют нулевые жилы отходящих и питающих кабелей. Вводное устройство может иметь контур повторного заземления, подключенного также к шине ноля.
Чтобы понять, как работает глухозаземленная нейтраль, рассмотрим аварийный режим.
Пример аварийного случая
На некотором электрооборудовании, на котором работают люди, произошел обрыв провода фазы. При этом фазный провод прикоснулся к металлическим корпусным элементам. В результате возникло короткое замыкание, при котором резко повысилась сила тока. Плавкий предохранитель или электрический автомат сработают и отключат питание сети.
Резистор R0 (Рис. 1) будет иметь меньшее сопротивление, нежели сопротивление по пути протекания тока по телу человека, который случайно прикоснулся фазного проводника. Это исключает удар электрическим током.
В теории потенциал провода ноля относительно земли имеет нулевое значение. Повторное заземление в электроустановке потребителя упрочняет эту нулевую величину.
Возможные случаи поражения людей током:
- Ошибки при эксплуатации и ремонте, которые приводят к прикосновению к частям и элементам оборудования, находящегося под напряжением.
- Повреждение изоляции в электрооборудовании, в результате чего металлический корпус попадает под напряжение.
- Повреждение изоляции токоведущих элементов или неисправность электрооборудования, вследствие чего на поверхности пола возникает зона разности потенциалов, которая создает опасность для прохождения в ней людей. Это называется шаговым напряжением.
- Повреждение изоляции кабелей и проводников, вследствие чего металлические конструкции, по которым проходят кабели, оказываются под напряжением.
Чтобы исключить аварийные случаи, корпуса устройств соединяют с заземлением. В промышленности по периметру цехов прокладывают металлическую полосу, к которой подключают все металлические элементы. Таким образом уравниваются потенциалы с землей.
При замыкании фазы на корпус заземленного устройства, ток будет протекать к заземлению, даже при отказе защитных устройств. Сопротивление тела человека относительно земли значительно выше сопротивления между корпусом устройства и землей. Таким образом, человека спасает глухозаземленная нейтраль.
Другим принципом защиты является быстрое обесточивание сети. Этому способствует защитное устройство в виде автоматического выключателя, либо предохранителя.
Шаговое напряжение действует следующим образом. Если на влажном бетонном полу лежит неизолированный проводник, находящийся под напряжением, то подходить к нему очень опасно. Напряжение отходит от него волнами, подобно кругам на воде. При попадании ног человека в эту зону, возникает удар электрическим током.
Чтобы защитить людей от шагового напряжения, в полу помещения встраивают металлическую сетку, которая в разных местах соединяется с заземляющим контуром. Этим способом ноги человека шунтируются металлической арматурой решетки, и основная часть электрического тока пройдет мимо человека.
Требования ПУЭ
Заземление должно подключаться к устройству специальным проводником. Для сокращения пути протекания электрического тока и уменьшения затрат, подбирают место непосредственно рядом с источником напряжения, например, трансформатором. Имеется ограничение, заключающееся в том, что если заземлителем является имеющийся бетонный фундамент, то к арматуре бетонного основания, выполненного из металла, подключение выполняют в двух и более местах.
Подобное число подключений выполняют к каркасам из металла, которые расположены в глубине грунта. При таких условиях система заземления способна достаточно эффективно защитить человека от неприятных ситуаций.
Если в качестве источников питания выступают трансформаторы, находящиеся на разных этажах здания, то подключение к нейтрали производится отдельным проводом, который подключают к металлическому каркасу всего строения.
В цепи подключения заземления не должно находиться предохранителей, плавких вставок и других компонентов, которые могут нарушить неразрывность этой цепи. Также принимают вспомогательные меры, которые препятствуют механическим повреждениям.
Некоторые ограничения ПУЭ
- Если на рабочих, защитных или нулевых проводниках установлен токовый трансформатор, то провод заземлителя монтируется сразу за этим устройством, к нейтральному проводнику.
- Сопротивление заземляющего устройства в сети 220 вольт ограничивается наибольшей величиной 4 Ом, за исключением особых свойств земли, которые создают повышенное сопротивление более 100 Ом на метр.
- на воздушных линиях передач заземление устанавливают на конце и на вводе линии для дублирования заземления. Это дает возможность эффективной работы защитных устройств. Это правило используют в случае, когда нет надобности в монтаже большого числа устройств, которые могут устранить перенапряжения при ударах молнии.
• При выборе проводников для устройства заземления необходимо применять нормативы по наименьшим допустимым размерам и материалу проводников, применяющихся для повторного заземления, проложенного в земле.
Например, если используется стальной уголок, то толщина его стенки должна быть не менее 4 мм. Общая площадь сечения для проводов заземления, соединяющихся с основной шиной, согласно п. 1.7.117 ПУЭ, должна быть:
- 10 мм2 – медный провод.
- 16 мм2 – алюминиевый проводник.
- 75 мм2 – стальной проводник.
Электрический автомат, устанавливаемый для защиты, должен иметь скорость срабатывания при коротком замыкании более 0,4 с при 220 вольт.
В бытовой сети согласно п. 7.1.36 ПУЭ требуется прокладывать сеть к потребителям от общих щитков тремя проводниками: фаза, рабочий ноль и защитное заземление (глухозаземленная нейтраль). Однако во многих квартирах это требование нередко нарушается, что подтверждается отсутствием в розетках заземляющего контакта.
Старые нормативные требования для отечественных зданий были определены для незначительных мощностей. На сегодняшний день мощности бытовых электрических устройств значительно повысились. В квартирах появились кондиционеры, варочные панели, духовые шкафы, которые имеют повышенную мощность.
Для повышения эффективности защиты в современных квартирах обязательным условием является наличие заземления. В новых домостроениях глухозаземленная нейтраль уже заложена в стандартных проектах. В старых постройках хорошие хозяева монтируют заземление при капитальном ремонте.
Похожие темы:
electrosam.ru
📌 изолированная нейтраль — это… 🎓 Что такое изолированная нейтраль?
- изолированная нейтраль
3.23 изолированная нейтраль: Нейтраль сети, которая не имеет соединений с землей, за исключением приборов сигнализации, измерения и защиты, имеющих весьма высокое сопротивление, или которая соединена с землей через дугогасящий реактор, индуктивность которого такова, что при однофазном замыкании на землю ток реактора в основном компенсирует емкостную составляющую тока замыкания на землю.
62 Изолированная нейтраль
[ГОСТ Р 52726-2007, пункт 3.23]
Нейтраль сети, которая не имеет соединений с землей, за исключением приборов сигнализации, измерения и защиты, имеющих весьма высокое сопротивление, или которая соединена с землей через дугогасящий реактор, индуктивность которого такова, что при однофазном замыкании на землю ток реактора в основном компенсирует емкостную составляющую тока замыкания на землю
изолированная нейтраль: Нейтраль сети, которая не имеет соединений с землей, за исключением приборов сигнализации, измерения и защиты, имеющих весьма высокое сопротивление, или которая соединена с землей через дугогасящий реактор, индуктивность которого такова, что при однофазном замыкании на землю ток реактора в основном компенсирует емкостную составляющую тока замыкания на землю.
[ГОСТ Р 52726-2007, пункт 3.23]
5.3. Изолированная нейтраль — нейтраль генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы регулирования, измерения, защиты, сигнализации и другие аппараты, имеющие большое сопротивление.
2.10. Изолированная нейтраль — нейтраль генератора или трансформатора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы регулирования, измерения, защиты, сигнализации и другие аппараты, имеющие большое сопротивление.
3.3.75 изолированная нейтраль : Нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.
[ title=»Правила технической эксплуатации электроустановок потребителей»] [3]
Изолированная нейтраль
Нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты и другие устройства, имеющие большое сопротивление
6.4.23. ИЗОЛИРОВАННАЯ НЕЙТРАЛЬ
Нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы и подобные им устройства, имеющие большое сопротивление
title=»Правила устройства электроустановок»
Изолированная нейтраль
Нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации измерения, защиты, заземляющие дугогасящие реакторы и подобные им устройства, имеющие большое сопротивление
7. Изолированная нейтраль
Нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление
Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.
- Изолированная или неэффективно заземленная система
- изолированная сборочная среда
Смотреть что такое «изолированная нейтраль» в других словарях:
Изолированная нейтраль — нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление … Российская энциклопедия по охране труда
изолированная нейтраль — Нейтраль сети, которая не имеет соединений с землей, за исключением приборов сигнализации, измерения и защиты, имеющих весьма высокое сопротивление, или которая соединена с землей через дугогасящий реактор, индуктивность которого такова, что при… … Справочник технического переводчика
Изолированная нейтраль — – нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств. ПУЭ, п. 1.7.6 … Коммерческая электроэнергетика. Словарь-справочник
Изолированная нейтраль — English: Insulated neutral Нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление (по ГОСТ 12.1.030 81) Источник: Термины и определения в электроэнергетике.… … Строительный словарь
Нейтраль трансформатора изолированная — Нейтраль изолированная нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы и подобные им устройства, имеющие … Официальная терминология
Изолированная или неэффективно заземленная система — 2.3 Изолированная или неэффективно заземленная система система, у которой ни одна точка не заземлена или у которой одна точка, как правило, нейтраль (в системах переменного тока) или средняя точка (в системах постоянного тока) соединена с землей… … Словарь-справочник терминов нормативно-технической документации
Изолированная или неэффективно заземленная система — English: Insulated system Система, у которой ни одна точка не заземлена или у которой одна точка, как правило, нейтраль (в системах переменного тока) или средняя точка (в системах постоянного тока) соединена с землей через ограничивающий резистор … Строительный словарь
Нейтральный провод — Нейтральный (нулевой рабочий) провод провод, соединяющий между собой нейтрали электроустановок в трёхфазных электрических сетях. Содержание 1 Назначение 2 Обозначение 3 Нейтраль в ЛЭП … Википедия
Заземление — Статья не является нормативным документом. Предупреждение: статья носит чисто информативный характер и не является нормативным документом. При выполнении работ, связанных с электричеством, следует руководствоваться … Википедия
СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО «Газпром». Термины и определения — Терминология СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО «Газпром». Термины и определения: 3.1.31 абонент энергоснабжающей организации : Потребитель электрической энергии (тепла), энергоустановки которого присоединены к сетям… … Словарь-справочник терминов нормативно-технической документации
normative_reference_dictionary.academic.ru
Глухозаземленная нейтраль — принцип работы, преимущества и недостатки
Уберечь человека от поражения электрическим током во время возникновения аварийных ситуаций помогает глухозаземленная нейтраль, обеспечивающая его защитное отключение. Это становится возможным за счет выравнивания потенциалов и срабатывания устройства в момент возрастания силы тока.
Схема глухозаземленной нейтралиНужно понимать, что использование этого механизма в реальной жизни так же, как и с изолированной нейтралью, строго регулируется специальными правилам устройства электроустановок (ПУЭ).
к содержанию ↑Принцип действия
Согласно Правилам, под этим термином стоит понимать соединение трансформатора (нейтрали генератора) с устройством для заземления. Так, например, если речь идет о трехпроводной сети, прокладываемой к жилому дому от источника питания, нейтраль будет распределена по щиткам с последующим к ней подключением контуров заземления электрооборудования дома. Цепь такого рода не допускает установку предохранителей, подверженных плавлению, и устройств, способных выступить в роли разрушителей единства цепи.
Рабочий ноль — проводник, работающий в тандеме с третьим проводом. Они помогают создавать в доме нужное для работы основных электроприборов напряжение.
Плакат по электробезопасности «Установки с глухозаземленной нейтралью»Рассмотрим пример аварийной ситуации. В стиральной машине вибрация стала причиной отсоединения фазного провода от места крепления, что привело к его контакту с металлическим корпусом. Что происходит? Короткое замыкание, в процессе чего сила тока быстро набирает обороты. Автовыключатель справится с задачей — питание отключится. Человек, случайно коснувшийся провода, не будет поражен током, так как сопротивление R0 окажется меньше, чем при прохождении тока через человеческое тело.
к содержанию ↑Для эффективной работы системы с глухозаземленной нейтралью или с изолированной нейтралью (без подключения к устройству заземления) в ответственный момент важно опять же следовать Правилам.
Достоинства и недостатки метода
Система имеет как плюсы, так и минусы.
К достоинствам можно отнести следующие факты:
- Сеть незаменима в процессе подавления перенапряжений.
- Нейтраль данного типа открывает возможности в использовании оборудования с таким уровнем изоляции, который изначально предполагает фазное напряжение.
- Не потребуется специальная схема защиты, достаточно будет обычных функций защиты от тока перегрузки в фазах для удаления глухих замыканий фазы на землю.
К минусам стоит отнеси:
- Сети с нейтралью глухозаземленного типа — это риск повреждений и помех вследствие большого замыкания тока на землю.
- Фидер после повреждения будет работать со сбоями.
- Сохраняется опасность для человека во время действия повреждения в результате создания высокого напряжения прикосновения.
Немного о применении метода заземления с глухозаземленной нейтралью: его не выбирают для создания подземных или воздушных сетей среднего напряжения в Европе, зато активно используют в распределительных сетях североамериканских объектов. Целесообразно использование глухозаземленной нейтрали в случаях маломощности источника при коротком замыкании.
к содержанию ↑Что такое системы TN
TN будут называться системы с использованием глухозаземленной нейтрали для подключения защитных и нулевых функциональных проводников. Важный момент — в таких системах к нулевому проводнику, в свою очередь соединенному с нейтралью, должны быть подключены все корпусные электропроводящие детали.
Такая система отличается подключением нейтрали к контуру заземления вблизи трансформаторной подстанции. Нейтраль в этом случае не заземляется с помощью дугогасящего реактора.
На предприятиях промышленного типа наиболее целесообразными являются четырехпроводные трехфазные сети с глухозаземленной нейтралью напряжением 380/220 В со вторичной обмоткой, объединенной в звезду и наглухо соединенной нейтральной точкой с устройством для заземления.
Двигатели при подключении к фазам сети питаются при линейном напряжении, источником питания ламп является фазное напряжение при подключении их между нейтральными и фазными проводами. N -проводу отводится сразу две роли — он является рабочим, необходимым для присоединения однофазных приемников, и проводом зануления с присоединенными металлическими корпусами установок, которые не находятся под нормальным напряжением.
Зануление пробоя изоляции обмотки двигателя приведет к появлению большого тока короткого замыкания и срабатыванию механизма защиты, в результате чего двигатель будет отключен от сети. В случае отсутствия зануления корпуса двигателя повреждение изоляции обмотки приведет к созданию опасной ситуации на корпусе касательно земли.
В случае однофазного КЗ на землю относительно нее напряжения на целых фазах остается прежним, поэтому изоляция может быть устроена с уклоном не на линейное, а на фазное напряжение.
Итак, глухозаземленной нейтралью называется нейтраль генератора или трансформатора, которая подсоединена к заземляющему устройству.
Главным преимуществом ее использования является возможность предотвращения воспламенения электропроводки за счет автоматического отключения поврежденного участка от сети. Кроме того, в случае короткого замыкания между нейтральным проводом и поврежденной фазой и соответственно увеличивающимся током срабатывают токовые реле, опасность поражения сводится к минимуму.
Глухозаземленная нейтраль — принцип работы, преимущества и недостатки
220.guru