Закрыть

Формула вычисления мощности электрического тока – Мощность электрического тока | Формулы и расчеты онлайн

Содержание

Формула мощности по току и напряжению схемы

Пожаловалась бабушка соседка снизу: подарили мне дети моющий пылесос. Он прекрасно работает, но откуда-то идет запах гари.

Пошел смотреть. Проводка у нас старая: лапша из алюминия 2,5 квадрата. А пылесос потребляет 2,5 kW. Прикинул, как работает формула расчета мощности по току и напряжению для этого случая.

Разделил 2500 ватт на 220 вольт. Получил чуть больше 11 ампер. Наши провода держат нагрузку 22 А. Имеем практически двойной резерв потоку. Другие потребители при уборке отключены.

Стали проверять и нюхать: запах около квартирного щитка. Открыл, осмотрел: шина сборки ноля в саже, на одной перемычке горелая изоляция. Винт крепления ослаблен. Вот и причина начала возгорания. Исправил.

На этом примере я показываю, что всегда надо оценивать мощность потребления электроприборов и возможности проводки с защитными устройствами. Об этом рассказываю ниже.

Содержание статьи

Что такое мощность в электричестве: просто о сложном

Вспомнилась былина об Илье Муромце, когда он приложил всю свою мощь к соловью разбойнику. У бедолаги сразу посыпались искры из глаз, как пламя с верхней картинки на проводке с неправильным монтажом.

Простыми словами: мощность в электричестве — это силовая характеристика энергии, которой оценивают, как способности генераторных установок ее вырабатывать, так возможности потребителей и транспортных магистралей.

Все эти участки должны быть точно смонтированы и налажены для обеспечения безопасной работы. Как только в любом месте возникает неисправность, так сразу развивается авария во всей схеме.

Если говорить о домашнем электрическом оборудовании, то приходится постоянно соблюдать баланс между:

  1. включенными в сеть приборами;
  2. конструкцией проводов и кабелей;
  3. настройкой защитных устройств.

Только комплексное решение этих трех вопросов может обеспечить безопасность проводки и жильцов.

Как рассчитать электрическую мощность в быту

Формулы расчета мощности в электричестве позволяют выполнить качественную оценку безопасности каждого из перечисленных выше пунктов.

Пользоваться ими не сложно. Я уже приводил в предыдущих статьях шпаргалку электрика, где они помещены в наглядной форме для цепей постоянного тока.

Они полностью справедливы для активной составляющей мощности переменного тока, совершающей полезную работу. Кстати, кроме нее есть еще и бесполезная — реактивная, связанная с потерями энергии. Ее описанию посвящен второй раздел.

Такие вычисления удобно делать с помощью онлайн калькулятора. Он избавляет от рутинных математических вычислений и арифметических ошибок.

При любом из способов для расчета активной мощности требуется знать две из трех электрических величин:

  1. силу тока I;
  2. приложенное напряжение U;
  3. сопротивление участка цепи R.

Как измерить электрическую мощность дома

Существует еще одна возможность оценки активной мощности: ее измерение в действующей схеме специальными приборами: ваттметрами.

Точные замеры может обеспечить промышленный лабораторный ваттметер. Он изготавливается как прибор, работающий на аналоговых сигналах,так и с помощью цифровых технологий.

В бытовой проводке точные вычисления не нужны. Для нее выпускаются различные виды более простых ваттметров.

Популярностью пользуются приборы, которые можно вставить в розетку и подключить к ним шнур питания от потребителя, включить их в работу и сразу снять показания на дисплее в ваттах.

Их так и называют: ваттметр розетка. Они измеряют чисто активную мощность переменного тока.

Такие приборы избавляют электрика от выполнения сложных операций под напряжением, когда требуется замерять:

  • действующее напряжение;
  • силу тока;
  • угол сдвига фаз между векторами тока и напряжения.

Потом все данные дополнительно требуется вводить в формулу расчета мощности по току и напряжению, делать по ней вычисления.

Этот метод можно упростить, если внимательно наблюдать за показаниями электрического счетчика индукционной системы с вращающимся диском. Он считает совершенную работу: потребленную мощность за определенную время.

Однако скорость вращения диска как раз и характеризует величину потребления. Надо просто посчитать сколько раз он обернется за минуту и перевести в ватты по табличке, расположенной на корпусе.

Почему реактивное сопротивление схемы влияет на мощность переменного тока

Синусоидальная гармоника напряжения, поступая на резистивное сопротивление, изменяет величину тока без его отклонения на комплексной плоскости.

Такой ток совершает полезную работу с минимальными потерями энергии, вырабатывая активную мощность. Частота колебания сигнала не оказывает на нее никакого влияния.

Сопротивление конденсатора и индуктивности зависит от частоты гармоники. Его противодействие отклоняет направление тока на каждом из этих элементов в разные стороны.

Такие процессы связаны с потерей части энергии на бесполезные преобразования. На них расходуется мощность Q, которую называют реактивной.Ее влияние на полную мощность S и связь с активной P удобно представлять графически прямоугольным треугольником.

Захотелось его нарисовать на фоне оборудования из нагромождений фарфора и металла, где пришлось поработать довольно долго.Отвлекся. Не судите за это строго.

Сравните его с опубликованным мною ранее треугольником сопротивлений. Находите общие черты?

Ими являются геометрические пропорции фигуры, описывающие их формулы и угол φ, определяющий потери полной мощности. Перехожу к их более подробному рассмотрению.

Формулы расчета мощности для однофазной и трехфазной схемы питания

В идеальном теоретическом случае трехфазная схема состоит из трех одинаковых однофазных цепей. На практике всегда есть какие-то отклонения. Но, в большинстве случаев при анализах ими пренебрегают.

Поэтому рассматриваем вначале наиболее простой вопрос.

Графики и формулы под однофазное напряжение

Как работает резистор

На чисто резистивном сопротивлении синусоиды тока и напряжения совпадают по углу, направлены на каждом полупериоде одинаково.Поэтому их произведение, выражающее мощность, всегда положительно.

Его значение в произвольный момент времени t называют мгновенным, обозначая строчной буквой p.

Среднее значение мощности в течение одного периода называют активной составляющей. Ее график для переменного тока имеет фигуру симметричного всплеска с максимальным значением Pm в середине каждого полупериода Т/2.

Если взять половину его величины Pm/2 и провести прямую линию в течении одного периода Т, то получим прямоугольник с ординатой P.

Его площадь равна двум площадям графиков активной составляющих одного любого полупериода. Если посмотреть на картинку внимательнее, то можно представить, что верхняя часть всплеска отрезана,перевернута и заполнила свободное пространство внизу.

Представление этого графика помогает запомнить, что на активном сопротивлении мощность постоянного и переменного тока вычисляется по одной формуле, не меняет своего знака.

График мгновенных значений активной мощности переменного тока на резистивном сопротивлении имеет вид повторяющихся положительных волн. Но за один период им совершается такая же работа, как и в цепях постоянного тока и напряжения.

На резисторе не создается реактивных потерь.

Как работает индуктивность

Катушка с обмоткой своими витками запасает энергию магнитного поля. Благодаря процессу ее накопления индуктивное сопротивление отодвигает вперед на 90 градусов вектор тока относительно приложенного напряжения на комплексной плоскости.

Перемножая их мгновенные величины получаем значения мощности, которое за один период меняет знаки (направление) в каждом полупериоде.

Частота изменения мощности на индуктивности в два раза выше,чем у ее составляющих: синусоид тока и напряжения. Она состоит из двух частей:

  1. активной, обозначаемой индексом PL;
  2. реактивной QL.

Реактивная часть на индуктивности создается за счет постоянного обмена энергией между катушкой и приложенным источником. На ее величину влияет значение индуктивного сопротивления XL.

Как работает конденсатор

Емкость конденсатора постоянно накапливает заряд между своими обкладками. За счет этого происходит сдвиг вектора тока вперед на 90 градусов относительно приложенного напряжения.

График мгновенной мощности напоминает вид предыдущего, но начинается с отрицательной полуволны.

Реактивная составляющая, выделяемая на конденсаторе, зависит от величины емкостного сопротивления XC.

Как работает реальная схема со всеми видами сопротивлений

В чистом виде приведенные выше графики и выражения встречаются не так часто. На самом деле передача электроэнергии и ее работа на переменном токе связаны с комплексным преодолением сил электрического сопротивления резисторов, конденсаторов и индуктивностей.

Причем, какая-то из этих составляющих будет преобладать. Для таких случаев преобразования электрической энергии в мгновенную мощность могут иметь один из следующих видов.

На верхней картинке показан случай, когда вектор тока отстает от приложенного напряжения, а на нижней — опережает.

В обоих случаях величина активной составляющей уменьшается от значения полной на значение, выражаемое как cosφ. Поэтому его принято называть коэффициентом мощности.

Косинус фи (cosφ) используется при анализе треугольника мощностей и сопротивлений, характеризует потери энергии.

Как работает схема трехфазного электроснабжения

На ввод распределительного щита многоэтажного здания поступает трехфазное напряжение от электроснабжающей организации, вырабатываемое промышленными генераторами.

Его же, за отдельную плату, при желании может подключить владелец частного дома, что многие и делают. При этом рабочая схема и диаграмма напряжений выглядит следующим образом.

В старой системе заземления TN-C она выполняется четырехпроводным подключением, а у новой TN-S — пятипроводным с добавлением защитного РЕ проводника. Его на этой схеме я не показываю для упрощения.

Каждую из фаз при работе необходимо стараться нагружать одинаково равными по величине токами. Тогда в домашней проводке будет создаваться наиболее благоприятный оптимальный режим без опасных перекосов энергии.

В этом случае формула расчета мощности по току и напряжению для трехфазной схемы может быть представлена простой суммой аналогичных формул для составляющих однофазных цепей.

А поскольку они все идентичные, то их просто утраивают.

Например, когда активная мощность фазы В имеет выражением Рв=Uв×Iв×cosφ, то для всей трехфазной схемы она будет выражена следующей формулой:

Р = Рa+Рв+Рc

Если пометить фазное выражение буквой ф. например Pф, томожно записать:

P = 3Pф = 3Uф×Iф×cosφ

Аналогично будет вычисляться реактивная составляющая

Q = Qa+Qв+Qc

Или

Q = 3Qф = 3Uф×Iф×sinφ

Поскольку P и Q представляют величины катетов прямоугольного треугольника, то гипотенузу или полную составляющую можно вычислить как квадратный корень из суммы их квадратов.

S = √(P2+Q2)

Как учитывается трехфазная полная мощность

В энергосистеме, да и в частном доме, требуется анализировать подключенные нагрузки, равномерно распределять их по источникам напряжений.

С этой целью работают многочисленные конструкции измерительных приборов. На щитах управления подстанций расположены щитовые ваттметры и варметры, предназначенные для работы в разных долях кратности.

Старые аналоговые приборы показаны на этой картинке.

Для того, чтобы не путаться в записях вычислений введены разные наименования единиц. Они обозначаются:

  • ВА — (русское), VA (международное) вольтампер для полной величины мощности;
  • Вт —(русское), var (международное) ватт —активной;
  • вар (русское), var (международное) — реактивной.

Аналоговые приборы измеряют только активную или реактивную составляющую, а полную величину необходимо вычислять по формулам.

Многие современные цифровые приборы способны осуществлять эту функцию автоматически.

Видеоурок Павла Виктор дополняет мой материал. Рекомендую посмотреть.

Калькулятор мощности для своих

Здесь вы можете выполнить вычисления онлайн без использования формул и арифметических действий. Просто введите ваши исходные данные в таблицу и жмите кнопку “Рассчитать ток”.

А в заключение напоминаю, что для ваших вопросов создан раздел комментариев. Задавайте их, я отвечу.

electrikblog.ru

Расчета тока по мощности: формула, онлайн расчет

Подключение к бытовой или промышленной электрической сети потребителя, мощность которого больше той, на которую рассчитан кабель или провод чревато самыми неприятными, а порой и катастрофическими, последствиями. При правильной организации электропроводки внутри жилого помещения будут постоянно срабатывать автоматические выключатели или перегорать плавкие предохранители (пробки).

Если защита выполнена неправильно или вообще отсутствует, это может привести:

  • к перегоранию питающего провода или кабеля;
  • оплавлению изоляции и короткому замыканию между проводами;
  • перегреву медных или алюминиевых кабельных жил провода и пожару.

Поэтому перед подключение потребителя к электросети желательно знать не только его паспортную электрическую мощность, но и потребляемый от сети ток.

Расчет потребляемой мощности

Формула расчета мощности по току и напряжению знакома еще из школьного курса физики. Расчет мощности электрического тока (в ваттах) для однофазной сети проводится по выражению:

Р=U×I×Cosφ

  • в котором U – напряжение в вольтах
  • I – ток в амперах;
  • Cosφ – коэффициент мощности, зависящий от характера нагрузки.

Может возникнуть вопрос – а зачем нужна формула расчета мощности по току, когда ее можно узнать из паспорта подключаемого устройства? Определение электрических параметров, включая мощность и потребляемый ток необходим на стадии проектирования электропроводки. По максимальному току, протекающему в сети определяется сечение провода или кабеля. Для расчета тока по мощности можно использовать преобразованную формулу:

I=P/(U×Cosφ)

Коэффициент мощности зависит от типа нагрузки (активная или реактивная). При бытовых расчетах его величину рекомендуется принимать равной 0,90…0,95. Однако при подключении электроплит, обогревателей, ламп накаливания, нагрузка которых считается активной этот коэффициент можно считать равным 1.

Вышеприведенные формулы расчета мощности по току и напряжению можно использовать для однофазной сети напряжением 220,0 вольт. Для трехфазной сети они имеют несколько модифицированный вид.

Расчет мощности трехфазных потребителей

Определение потребляемой мощности для трехфазной сети имеет свою специфику. Формула расчёта мощности электрического тока трехфазных бытовых потребителей имеет вид:

Р=3,00,5 ×U×I×Cosφ или 1,73×U×I×Cosφ,

а величину тока можно рассчитать по выражению:

I=P/(1,73×U×Cosφ)

Особенности расчета

Вышеприведенные формулы предназначены для упрощенных бытовых расчетов. При определении действующих параметров необходимо учитывать реальное подключение. Характерный пример – расчет потребляемой мощности от аккумулятора. Так как ток в цепи протекает постоянный, то коэффициент мощности не учитывается, так как характер нагрузки не влияет на потребляемую мощность. И для активных и реактивных потребителей его значение принимают равным 1,0.

Вторым нюансом, который следует учитывать пи проведении бытовых электрических расчетов – реальное значение напряжения. Не секрет, что в сельской местности сетевое напряжение может колебаться в достаточно широких пределах. Поэтому пи использовании расчетных формул в них необходимо подставлять реальные значения параметров.

Еще сложнее задача расчета трехфазных потребителей. При определении протекающего тока в сети необходимо дополнительно учитывать вид подключения — «звезда» или «треугольник».

Расчет силы тока онлайн калькулятор

(Не целые числа вводим через точку. Например: 0.5)

Оцените статью: Поделитесь с друзьями!

mydesigninfo.ru

Расчет мощности электрического тока - инструкция + формула

Электричество – очень опасная штука, особенно если неправильно с ним обращаться. Во избежание проблем с электропроводами в процессе эксплуатации, изначально следует правильно производить расчеты, верно выбирать сечение электрокабеля.

Ведь это напрямую влияет на пожаробезопасность всего здания!

А вот что касается выбора сечения, то данный параметр зависит от разных факторов. При этом основным из них была и остается сила тока.

Мощность электротока

Если цепь задействована, силу тока в ней же измеряют специальными приборами. Как же быть в случае с проектированием? Измерить силу тока в цепи, которая не создана, просто невозможно. На самом деле все довольно просто. Здесь необходимо использовать расчетный метод.

Зная мощность, напряжение электричества в сети, а также какого характера нагрузка, можно легко произвести расчет силы тока, применив простую формулу для этого:

  • Если сеть 1-но фазная, используется I=P/(U×cos).
  • Если сеть трехфазная, расчет делать нужно по правилу: I=P/(1,73×U×cos).
  • В обоих случаях Р означает электромощность нагрузки, измеряемую в Ватах.
  • U означает то, каково фактическое напряжение в электросети, что также измеряется в Ватах.
  • В свою очередь cos является показателем коэфф. мощности.

Мощность можно определить, суммируя мощность потребления всех электроприборов, которые будут подключаться к данной сети. Эти показатели или хотя бы приближенные данные, записаны в паспорте каждого прибора. Мощность необходимо рассчитывать еще на том этапе, когда электропроводка лишь планируется проводиться в жилом помещении.

Что же касается коэфф. мощности, он зависит от того, каков характер загрузки. Если речь идет о нагревательных приборах, осветительных лампах, коэф.

Практически единица. При этом в любой активной загрузке имеются реактивные составляющие, благодаря которым данный коэф. приравнивают к 0,95. Данный фактор следует обязательно учитывать, занимаясь вопросом организации электрических проводов.

Если говорить о достаточно мощных электроприборах и оборудовании, к которым. Например, относятся электрические двигатели, аппараты для сварки и многое иное, реактивная нагрузка будет намного больше.

Именно по этой причине для таких приборов коэф. мощности приравнен к 0,8.

В электросети напряжение принято считать за 220 вольт, если ток однофазный. Когда ток трехфазный, принимается напряжение 380 вольт.  В то же время рекомендуется применять конкретные значения, измеренные специальным приспособлением в каждом отдельном случае.

Это позволит знать данные максимально точно.

Фото

neruds.ru

Формулы для расчета электрических величин.

Проводя диагностику и ремонт холодильников Стинол, мастер периодически сталкивается с необходимостью проводить измерения электрических величин. По результатам измерения делаются выводы о работоспособности той или иной детали электрооборудования холодильника.
На практике, рассматривая какую-либо электрическую нагрузку, полезно заранее знать, какое сопротивление соответствует какой мощности и ток какой величины потечет через эту нагрузку при подаче на нее питающего напряжения 220 Вольт. Если немного упростить теорию, все это не сложно вычислить, пользуясь формулами, приведенными ниже.

Обозначения:
I - Сила тока в цепи, единицы измерения - Амперы (А)
U - Напряжение, единицы измерения - Вольты (В)
R - Сопротивление нагрузки, единицы измерения - Омы (Ом)
P - Электрическая мощность нагрузки, единицы измерения - Ватты (W)

Эти электрические величины связаны друг с другом следующими формулами:

I=U/R
P=IU

Электрооборудование холодильников Стинол рассчитано на питание от сети переменного тока напряжением 220 Вольт. Соответственно, вместо "U" в формулы можем смело подставлять число 220. Путем нехитрых перестановок получаем следующую кучу формул на любой случай:

I=220/R
I=P/220
R=220/I
R=48400/P
P=220·I
P=48400/R

Важно!   В цепях переменного тока данные формулы справедливы только для активной нагрузки, сопротивление которой переменному току не зависит от его частоты. Для реактивных потребителей (емкости и индуктивности) эти равенства выполняться уже не будут. А это значит, что по большому счету, при ремонтах холодильников Стинол всю эту математику мы можем применять только к нагревателям системы No Frost. А различные электродвигатели (мотор-компрессор, вентилятор, микродвигатель таймера и т.п.), являясь нагрузкой реактивной (индуктивной) автоматически из подобных рассчетов выпадают.

Во время работы удобно иметь под рукой табличку для быстрого взаимного пересчета электрической мощности, сопротивления и силы тока. Подобная табличка представлена ниже, в свое время она была составлена мной для быстрого ориентирования в параметрах нагревателей оттайки различных импортных холодильников. Специалисту по ремонту холодильников Стинол она тоже может оказаться полезной.

Пользоваться таблицей достаточно просто:
• Измерив мультиметром сопротивление нагревателя, и найдя соответствующую строчку в таблице, сразу становится ясно, какой мощностью он обладает и какой ток потечет через него при подаче питающего напряжения 220 Вольт.
• Узнав при помощи токовых клещей, какой ток потребляет нагреватель, по таблице можно выяснить его сопротивление и мощность.
• Узнав по маркировке нагревателя его мощность, легко выяснить его сопротивление и ток.

сила тока, А мощность, W сопротивление, Ом
0.01 2.2 22k
0.05 11 4.4k
0.1 22 2.2k
0.2 44 1.1k
0.3 66 733
0.4 88 550
0.5 110 440
0.6 132 366
0.7 154 314
0.8 176 275
0.9 198 244
1 220 220
1.1 242 200
1.2 264 183
1.3 286 169
1.4 308 157
1.5 330 146
1.6 352 138
1.7 374 129
1.8 396 122
1.9 418 116
2 440 110
2.1 462 105
2.2 484 100
2.3 506 96
2.4 528 92
2.5 550 88
2.6 572 85
2.7 594 81
2.8 616 79
2.9 638 76
3 660 73
3.1 682 71
3.2 704 69

Распечатать таблицу удобно с этой страницы

www.stinol-repair.ru

Определение мощности электрического тока

Мощность электрического тока – один из основных параметров, определяющих работу электроцепи, наряду с напряжением и силой тока. Этот показатель всегда присутствует в технических характеристиках двигателей, трансформаторов, генераторов.

Генератор на электростанции

Определение

Чтобы понять, что такое мощность тока, надо определить его работу, так как они неразрывно связаны. Работа электротока заключается в энергопреобразовании из электрического вида в тепловой, кинетический и т. д. Мерилом этой энергии является работа. А мощность электрического тока – это скорость, с которой происходят преобразования. Формулой можно выразить:

P = A/t.

В чем измеряется мощность тока, проистекает из формулы, – Дж/с. Получилась единица измерения, называемая ватт (Вт). Другая единица измерения мощности, часто применяемая в энергетике, – следствие из другой формулы:

P = U*I.

Это вольтампер (ВА) и производные от нее кВА, мВА.

Важно! Благодаря последней формуле, можно заметить, что идентичную мощность электрического тока возможно получить при повышенном напряжении и маленьком токе либо при перемене местами количественного значения этих показателей. Так как при большом токе потери выше, эту зависимость используют, передавая электроэнергию по высоковольтным ЛЭП на значительные дистанции.

В электроцепях на постоянном токе существует один вид мощности, измеряемый в ваттах. Электрическая мощность, используемая при расчетах электросетей переменного тока, может быть:

  • активная;
  • реактивная;
  • полная;
  • комплексная.

Активная

Этот вид мощности электрического тока определяет работу, целиком затраченную на энергопреобразования. Пример – энергия, выделившаяся на нагрев сопротивления.

Формула расчета:

P = U*I cos φ,

где «φ» – это угол, на который сдвинуты фазы между векторами тока и напряжения.

Показатели U и I при подстановке в формулическое выражение берутся среднеквадратичные.

Формулы для расчета мощности

Реактивная

Реактивная мощность электрического тока применяется для оценки количественного показателя емкостной и индуктивной нагрузки на сеть.

Формула расчета:

Q = U*I sin φ.

Для реактивной мощности электрического тока применяют единицу измерения вольтампер реактивный (ВАр, кВАр, мВАр).

Реактивная часть появляется при расчете мощности в электрической цепи, к которой подключена индуктивность или емкость:

  1. Индуктивность – это любая катушка: трансформаторная, реакторная, обмотки электродвигателя и т. д. Из-за происходящих процессов самоиндукции электрическая энергия не вся преобразовывается в другой вид, а определенное количество возвращается в сеть. Так как вектор ее смещен по фазе, сеть работает с перегрузкой;
  2. Конденсатор, представляющий собой емкость, работает аналогичным образом, но смещение вектора возвращаемой энергии находится в противофазе по сравнению с индуктивным.

Важно! Для повышения качества электроэнергии и более эффективной работы электросетей свойство индуктивности и емкости работать в противофазе используется для компенсации реактивной энергии (применение конденсаторных батарей).

Конденсаторные батареи

Полная

Зная активную и реактивную составляющую, можно определить, чему равна полная мощность электрического тока. Хотя она не характеризует потребление энергии по факту, расчеты необходимы для определения нагрузки на компоненты электросетей: воздушные и кабельные линии, коммутационные аппараты, трансформаторы.

Формула расчета:

S = U*I, результат измеряется в вольтамперах.

Если использовать для расчета активную и реактивную составляющую, то полное мощностное значение определяется извлечением квадратного корня из суммы их квадратов.

Как измеряется

Количественный мощностной показатель измеряется несколькими способами с помощью разных приборов:

  • ваттметры, варметры для прямых замеров;
  • амперметры и вольтметры для косвенных замеров;
  • фазометр, позволяющий оценить влияние реактивной составляющей.

Прямые замеры

Служат для прямого измерения активного и реактивного мощностного показателя. Все ваттметры и варметры делятся на:

  1. Аналоговые. Существуют стрелочные приборы и с самопишущими устройствами. На них отображается активная мощностная величина. Состоят из неподвижной катушки, включенной в цепь последовательно, и подвижной с параллельным подключением. Стрелка отклоняется от взаимного влияния создаваемых магнитных полей;
  2. Цифровые. Содержат микропроцессоры, вычисляющие значения активной и реактивной составляющих на основе измерений тока и напряжения.

Цифровой варметр

Существуют трехфазные и однофазные приборы, многофункциональные ваттметры для замеров других параметров: частоты, силы тока, напряжения.

Косвенные замеры

При косвенных замерах в цепь подключается амперметр и вольтметр, снимаются их показания, затем, подставляя их в формулическое выражение, вычисляется количественный мощностной показатель.

Фазометры

Замерить коэффициент, на который умножается активная мощность, cos φ, можно с помощью фазометра, что позволяет оценить влияние реактивного компонента.

Аналоговое устройство работает по тому же принципу, что и идентичный ваттметр. Только шкала проградуирована в значениях cos φ. Подключение прибора производится к одним клеммам последовательно, к другим –параллельно, чтобы измерять напряжение и электроток. В трехфазных устройствах надо подсоединить все фазы.

Высокоточные цифровые приборы содержат детекторы, непосредственно сравнивающие фазы, и микропроцессоры, обрабатывающие информацию.

Фазометры нашли широкое применение при регулировании работы генераторов и синхронных электродвигателей:

  1. У синхронного электродвигателя cos φ зависит от возбуждающего тока. При регулировании его функционирования в режиме отдачи реактивной составляющей, чтобы уменьшить ее негативное влияние, используют фазометр;
  2. В генераторах применяется ручное регулирование cos φ с целью поддержания стабильности его параметров в пусковых режимах. Если нагрузка индуктивная, и cos φ в индуктивной зоне шкалы снижается, возможен опасный нагрев статорной обмотки. При нахождении cos φ в емкостной зоне генератор работает на потребление тока, что недопустимо.

Фазометр

Регулирование cos φ

Если cos φ понижается, то в сети увеличиваются потери, а полезная часть работы по преобразованию электроэнергии уменьшается. Соответственно, растет потребление из сети. При этом напряжение падает.

Важно! Для обеспечения наилучшего соотношения параметров электросети необходимо поддерживать cos φ на уровне 0,95 в индуктивной части шкалы фазометра.

Для компенсации индуктивной нагрузки, уменьшающей cos φ, на электрических подстанциях устанавливают конденсаторные батареи. Когда индуктивная составляющая падает значительно, батареи отключаются. Иногда это реализуется в автоматическом режиме. Отслеживание cos φ производится по фазометру.

Расчеты разных видов мощности показывают, насколько работа сети надежна и эффективна, позволяют оценить потери в количественном выражении.

Видео

Оцените статью:

elquanta.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *