Фоторезистор. Принцип работы, характеристики | joyta.ru
Фоторезистор (фотосопротивление, LDR) – это резистор, электрическое сопротивление которого изменяется под влиянием световых лучей, падающих на светочувствительную поверхность и не зависит от приложенного напряжения, как у обычного резистора.
Фоторезисторы чаще всего используются для определения наличия или отсутствия света или для измерения интенсивности света. В темноте, их сопротивление очень высокое, иногда доходит до 1 МОм, но когда датчик LDR подвергается воздействию света, его сопротивление резко падает, вплоть до нескольких десятков ом в зависимости от интенсивности света.
Фоторезисторы имеют чувствительность, которая изменяется с длиной волны света. Они используются во многих устройствах, хотя уступают по своей популярности фотодиодам и фототранзисторам. Некоторые страны запретили LDR из-за содержащегося в них свинца или кадмия по соображению экологической безопасности.
Определение: Фоторезистор — светочувствительный элемент, чье сопротивление уменьшается при интенсивном освещении и увеличивается при его отсутствии.
Характеристики фоторезистора
Виды фоторезисторов и принцип работы
На основании материалов, используемых при производстве, фоторезисторы могут быть разделены на две группы: с внутренним и внешним фотоэффектом. В производстве фоторезисторов с внутренним фотоэффектом используют нелегированные материалы, такие как кремний или германий.
Фотоны, которые попадают на устройство, заставляют электроны перемещаться из валентной зоны в зону проводимости. В результате этого процесса появляется большое количество свободных электронов в материале, тем самым улучшается электропроводность и, следовательно, уменьшается сопротивление.
Фоторезисторы с внешним фотоэффектом производятся из материалов, с добавлением примеси, называемой легирующая добавка. Легирующая добавка создает новую энергетическую зону поверх существующей валентной зоной, заселенную электронами. Этим электронам требуется меньше энергии, чтобы совершить переход в зону проводимости благодаря меньшей энергетической щели. Результат этого – фоторезистор чувствителен к различным длинам волн света.
Несмотря на все это, оба типа демонстрируют уменьшение сопротивления при освещении. Чем выше интенсивность света, тем больше падает сопротивление. Следовательно, сопротивлением фоторезистора является обратная, нелинейная функция интенсивности света.
Фоторезистор на схемах обозначается следующим образом:
Чувствительность фоторезистора от длины волны
Чувствительность фоторезистора зависит от длины волны света. Если длина волны находится вне рабочего диапазона, то свет не будет оказывать никакого действия на LDR. Можно сказать, что LDR не чувствителен в этом диапазоне длин волн света.
Различные материалы имеют различные уникальные спектральные кривые отклика волны по сравнению с чувствительностью. Внешне светозависимые резисторы, как правило, предназначены для больших длин волн, с тенденцией в сторону инфракрасного (ИК). При работе в ИК-диапазоне, необходимо соблюдать осторожность, чтобы избежать перегрева, который может повлиять на измерения из-за изменения сопротивления фоторезистора от теплового эффекта.
На следующем рисунке показана спектральная характеристика фотопроводящих детекторов, изготовленные из различных материалов.
Чувствительность фоторезистора
Фотрезисторы имеют более низкую чувствительность, чем фотодиоды и фототранзисторы. Фотодиоды и фототранзисторы — полупроводниковые устройства, в которых используется свет для управления потоком электронов и дырок через PN-переход, а фоторезисторы лишеные этого PN-перехода.
Если интенсивность светового потока находиться на стабильном уровне, то сопротивление по-прежнему может существенно изменяться вследствие изменения температуры, поскольку LDR также чувствительны и к изменениям температуры. Это качество фоторезистора делает его непригодным для точного измерения интенсивности света.
Инертность фоторезистора
Еще одно интересное свойство фоторезистора заключается в том, что существует инертность (время задержки) между изменениями в освещении и изменением сопротивления.
Для того чтобы сопротивление упало до минимума при полном освещении необходимо около 10 мс времени, и около 1 секунды для того, чтобы сопротивление фоторезистора возросло до максимума после его затемнения.
По этой причине LDR не может использоваться в устройствах, где необходимо учитывать резкие перепады освещения.
Конструкция и свойства фоторезистора
Впервые фотопроводимость была обнаружена у Селена, впоследствии были обнаружены и другие материалы с аналогичными свойствами. Современные фоторезисторы выполнены из сульфида свинца, селенида свинца, антимонида индия, но чаще всего из сульфида кадмия и селенида кадмия. Популярные LDR из сульфида кадмия обозначаются как CDS фоторезистор.
Для изготовления фоторезистора из сульфида кадмия, высокоочищенный порошок сульфида кадмия смешивают с инертными связующими материалами. Затем, эту смесь прессуют и спекают. В вакууме на основание с электродами наносят фоточувствительный слой в виде извилистой дорожки. Затем, основание помещается в стеклянную или пластиковую оболочку, для предотвращения загрязнения фоточувствительного элемента.
Спектральная кривая отклика сульфида кадмия совпадает с человеческим глазом. Длина волны пиковой чувствительности составляет около 560-600 нм, что соответствует видимой части спектра. Следует отметить, что устройства, содержащие свинец или кадмий не соответствуют RoHS и запрещены для использования в странах, которые придерживаются законов RoHS.
Примеры применения фоторезисторов
Фоторезисторы чаще всего используются в качестве датчиков света, когда требуется определить наличие или отсутствие света или зафиксировать интенсивность света. Примерами являются автоматы включения уличного освещения и фотоэкспонометры. В качестве примера использования фоторезистора, приведем схему фотореле для уличного освещения.
Фотореле для уличного освещения
Данная схема фотореле автоматически включает уличное освещение, когда наступает ночь и выключает когда светлеет. На самом деле вы можете использовать данную схему для реализации любого типа автоматического включения ночного освещения.
При освещении фоторезистора (R1), его сопротивление уменьшается, падение напряжения на переменном резисторе R2 будет высоким, вследствие чего транзистор VT1 открывается. Коллектор VT1 (BC107) соединен с базой транзистора VT2 (SL100). Транзистор VT2 закрыт и реле обесточено. Когда наступает ночь, сопротивление LDR увеличивается, напряжение на переменном резисторе R2, падает, транзистор VT1 закрывается. В свою очередь, транзистор VT2 открывается и подает напряжение на реле, которое включает лампу.
40) Фоторезисторы. Фотодиоды. Фототранзисторы. Особенности применения. Характеристики.
Схемы включения и применение фотоэлектронных приборов
Фотоэлектронные (фотоэлектрические) приборы предназначены для преобразования световой энергии в электрическую.
Все полупроводниковые фотоэлектрические приборы основаны на внутреннем фотоэффекте — возбуждении атомов и росте концентрации свободных носителей заряда под воздействием светового излучения. При этом в полупроводнике растет проводимость, а на p-n переходах появляется ЭДС.
К фотоэлектронным приборам относятся фоторезисторы, фотодиоды, фототранзисторы и фототиристоры.
Фоторезистор — это полупроводниковый фотоэлектрический прибор, сопротивление которого изменяется под действием светового излучения. На рис. 1 показана схема включения фоторезистора и его характеристики.
Рис.2. Схема включения фоторезистора (а), УГО (б), энергетическая (в) и вольт-амперная (г) характеристики фоторезистора.
Фоторезисторы, как и другие фотоэлектрические приборы, характеризуются световой характеристикой, т.е. зависимостью фототока , протекающего через прибор от светового потока . Она нелинейная и это является недостатком фоторезистора. ВАХ фоторезистора линейны, а их наклон зависит от величины светового потока.
Фоторезисторы могут работать и на переменном токе. Фоторезисторы являются самыми простыми и дешевыми фотоэлектрическими приборами.
Фотодиод — это полупроводниковый фотоэлектрический прибор, основанный на внутреннем фотоэффекте, содержащий один p-n переход и имеющий два вывода.
Фотодиоды могут работать в двух режимах: без внешнего источника электроэнергии (режим фотогенератора) и с внешним источником (режим фотопреобразователя). На рис. 2, а, б показаны схемы включения.
Излучающий диод (слева) должен быть включен в прямом направлении, а фотодиод — в прямом (режим фотогенератора) или в обратном направлении (режим фотопреобразователя).
ВАХ фотодиода в темноте не отличаются от ВАХ p-n перехода (рис. 2 г), а при освещении опускается вниз. Режиму фотопреобразователя соответствуют участки в третьем квадранте, а режиму фотогенератора — в четвертом.
Фотодиоды имеют большее быстродействие, чем фоторезисторы (работоспособны при частоте 1 гГц и выше), но менее чувствительны.
С целью повышения чувствительности вместо фотодиодов применяют фототранзисторы.
Фототранзистор — фотоэлектронный прибор, имеющий трехслойную структуру, как обычный транзистор, в котором ток зависит от освещения базы. Схема включения Рис. 3. Схема включения фототранзистора показана на рис. 3. Они имеют линейную световую характеристику, а выходные ВАХ аналогичны ВАХ обычного транзистора, включенного по схеме с общим эмиттером, но в качестве параметра вместо тока базы выступает световой поток. Чувствительность фототранзисторов достигает 1 А/лм. Параметры фототранзисторов существенно зависят от температуры.41.Оптоволоконные датчики
Волоконно-оптические датчики (так же часто именующиеся оптические волоконные датчики) это оптоволоконные устройства для детектирования некоторых величин, обычно температуры или механического напряжения, но иногда так же смещения, вибраций, давления, ускорения, вращения (измеряется с помощью оптических гироскопов на основе эффекте Саньяка), и концентрации химических веществ. Общий принцип таких устройств в том, что свет от лазера (чаще всего одномодового волоконного лазера) или суперлюминесцентного оптического источника передается через оптическое волокно, испытывая слабое изменение своих параметров в волокне или в одной или нескольких брэгговских решетках, и затем достигает схемы детектирования, которая оценивает эти изменения.
волокно-оптические датчики обладают следующими преимуществами:
· Они состоят из электрически непроводящих материалов (не требуют электрических кабелей), что позволяет использовать их, например, в местах с высоким напряжением.
· Их можно безопасно использовать во взрывоопасной среде, потому, что нет риска возникновения электрической искры, даже в случае поломки.
· Они не подвержены электромагнитным помехам (EMI), даже вблизи разряда молнии, и сами по себе не электризуют другие устройства.
· Их материалы могут быть химически инертны, то есть не загрязняют окружающую среду, и не подвержены коррозии.
· Они имеют очень широкий диапазон рабочих температур (гораздо больше, чем у электронных устройств).
· Они имеют возможность мультиплексирования; несколько датчиков в одиночной волоконной линии может быть интегрировано с одним оптическим источником (см. ниже).
работа в жестких условиях, таких как зондирование в устройствах с высоким напряжением, или в СВЧ печах. Сенсоры на основе брэгговских решеток могут также быть использованы, например, для мониторинга условий, внутри крыльев самолетов, в ветровых турбинах, мостах, больших плотинах, нефтяных скважинах, и трубопроводах.
studfiles.net
2. Устройство, принцип действия, характеристики и параметры фоторезисторов.
Ф
Рис.2. Устройство и схема включения фоторезистора
оторезистором (ФР) называют полупроводниковый фотоэлектронный прибор с внутренним фотоэффектом, в котором используется явление изменения электрической проводимости полупроводника под воздействием оптического излучения. Фоторезистор представляет собой полупроводниковый резистор, изменяющий свое сопротивление под действием излучения (освещенности).Принцип действия ФР основан на использовании явления фотопроводимости полупроводников, которая зависит от концентрации электронов в зоне проводимости и дырок в валентной зоне. При облучении полупроводника светом, достаточным для перехода электронов из валентной зоны в зону проводимости, проводимость ФР увеличивается.
Принцип устройства фоторезистора показан на рис.2,а. На диэлектрическую пластину 1 нанесен тонкий слой полупроводника 2 с контактами 3 на концах. Схема включения фоторезистора приведена на рис. 2,б. Полярность источника питания не играет роли. Полупроводниковый фоточувствительный слой выполняется в виде монокристаллической или поликристаллической пластинки или в виде поликристаллической пленки, нанесенной на диэлектрическую подложку (стекло, керамика или кварц). Металлические электроды (золото, платина) наносят либо на поверхность фоточувствительного слоя, либо непосредственно на диэлектрическую подложку перед осаждением полупроводникового слоя.
В качестве полупроводника используют:
— сернистый кадмий CdS (фоторезисторы ФСК) — наиболее чувствительный к видимым лучам спектра;
селенид кадмия CdSе (фоторезисторы ФСД) – наиболее чувствительный к лучам на границе между видимой и инфракрасной областями спектра;
сернистый свинец (фоторезисторы PbS)– наиболее чувствительный к инфракрасным лучам.
Для защиты от внешних воздействий фоточувствительный слой покрывают слоем прозрачного лака.
Поверхность светочувствительного материала, расположенную между электродами, называют рабочей площадкой. Световой поток направляют на полупроводник через специальное окно в корпусе фоторезистора. При эксплуатации ФР рекомендуют его рабочую площадку засвечивать полностью, так как при этом эффект изменения сопротивления ФР будет максимален.
Параметры фоторезистора
Если к неосвещенному ФР подключить источник питания, то в электрической цепи потечет небольшой ток, обусловленный наличием в полупроводнике малого количества свободных носителей заряда. Этот ток называют темновым током Iт.
Темновое сопротивление Rт – это сопротивление ФР при отсутствии освещения. Темновое сопротивление принято определять через 30 с после затемнения ФР.
При облучении ФР в электрической цепи протекает ток Iсв. Разность токов при наличии и отсутствии освещения называют фототоком Iф
Iф = Iсв – Iт.
Удельная интегральная чувствительность — это отношение фототока к световому потоку и к приложенному напряжению:
Ко = Iф/ФU
Чувствительность называют интегральной, потому что измеряют ее при освещении ФР светом сложного спектрального состава. Удельные интегральные чувствительности различных типов ФР составляют от 1 до 600 мА /(В·лм).
При воздействии на ФР источника монохроматического излучения, например, лазера используют параметр монохроматическая чувствительность.
Рабочее напряжение зависит от расстояния между электродами ФР имеет диапазон от единиц до 100 В.
Постоянная времени – это время, в течение которого фототок ФР изменяется после освещения или после затемнения ФР в е раз по отношению к установившемуся значению. Постоянная времени характеризует инерционность ФР.
В связи с тем, что скорость нарастания фототока при освещении несколько отличается от скорости его спада после затемнения ФР, различают постоянные времени нарастания н и спада с. Численные значения постоянных времени могут быть от десятков микросекунд до десятков миллисекунд.
Наличие существенной инерционности у ФР приводит к тому, что с увеличением частоты модуляции светового потока эффективное значение возникающего переменного фототока уменьшается. Максимальная частота модуляции светового потока для ФР не превосходит десятков килогерц.
Необходимо помнить, что параметры полупроводниковых ФР существенно зависят от температуры. Собственные шумы фоторезисторов значительны.
Достоинства ФР: высокая чувствительность и малые габариты.
studfiles.net
Фоторезисторы. Виды и работа. Применение и особенности
Фоторезисторы — это резисторы, у которых меняется сопротивление в зависимости от действия света на светочувствительную поверхность. Сопротивление не зависит от величины напряжения, в отличие от обычного резистора.
В основном фотосопротивления применяются для индикации или отсутствия света. В полной темноте сопротивление фоторезистора имеет большую величину, достигающую иногда до 1 мегаома. При воздействии на датчик (чувствительную часть фоторезистора) светового потока, его сопротивление в значительной степени снижается, и зависит от интенсивности освещенности. Величина сопротивления при этом может упасть до нескольких Ом.
Длина световой волны оказывает влияние на чувствительность фотосопротивления. Они применяются в различных устройствах, но не являются такими популярными, как фототранзисторы и фотодиоды. В некоторых зарубежных странах запрещено применение фотосопротивлений, так как в них содержится кадмий или свинец, вредные по экологическим требованиям.
Быстродействие фоторезисторов незначительное, поэтому они действуют только на низких частотах. В новых конструкциях устройств фоторезисторы редко применяются. Их можно встретить в основном при ремонте старых устройств.
Для проверки фотосопротивления к нему подключают мультитестер. Без света его значение сопротивления должно быть значительным, а при его освещении оно сильно падает.
Виды и принцип действия
По материалам изготовления фоторезисторы делятся на виды:
- С внутренним фотоэффектом.
- С внешним фотоэффектом.
При изготовлении фотосопротивлений с внутренним фотоэффектом применяют нелегированные вещества: германий или кремний.
При попадании на чувствительную часть фотоны воздействуют на электроны и заставляют их двигаться в зону проводимости. В итоге в материале возникает значительное число электронов, вследствие чего повышается электропроводность, а значит и снижается сопротивление.
Фоторезисторы с возникновением внешнего фотоэффекта изготавливают из смешанных материалов, в которые входят легирующие добавки. Эти вещества создают обновленную энергетическую зону сверху валентной зоны, насыщенной электронами, нуждающимися в меньшем количестве энергии для осуществления перехода в проводимую зону, с помощью энергетической щели малого размера. В результате фотосопротивление становится чувствительным к разной длине световой волны.
Несмотря на вышеописанные особенности этих видов, оба вида снижают сопротивление при освещении. При повышении интенсивности освещения снижается сопротивление. Поэтому, получается обратная зависимость сопротивления от света, причем нелинейная.
На электрических схемах фотосопротивления обозначаются:
Чувствительность и длина световой волны
Длина волны света оказывает влияние на чувствительность фотосопротивления. Если величина длины световой волны выходит за пределы диапазона работы, то освещенность уже не оказывает влияния на такой резистор, и он становится нечувствительным в этом интервале длин световых волн.
Разные материалы обладают различными спектральными графиками отклика волны. Фотосопротивления с внешней зависимостью чаще всего используются для значительной длины волны, с приближением к инфракрасному излучению. При эксплуатации светового резистора в этом диапазоне следует быть осторожным, во избежание чрезмерного нагрева, который влияет на показания измерения сопротивления в зависимости от степени нагревания.
Чувствительность фотосопротивления
Фоторезисторы обладают меньшей чувствительностью, по сравнению с фототранзисторами и фотодиодами, которые являются полупроводниковыми приборами, с управлением заряженными частицами от светового луча, посредством р-n перехода. У фотосопротивлений нет полупроводникового перехода.
При нахождении интенсивности света в стабильном диапазоне, сопротивление фоторезистора может все равно меняться в значительной степени из-за изменения величины температуры, так как она также оказывает большое влияние на сопротивление. Это свойство не позволяет использовать фоторезистор для измерения точной интенсивности света.
Инертность
Еще одним уникальным свойством обладает фотосопротивление. Оно состоит в том, что существует время задержки между изменением сопротивления и освещения, что называется инертностью прибора.
Для значительного падения сопротивления от воздействия луча света необходимо затратить время, равное около 10 миллисекунд. При обратном действии для восстановления значения сопротивления понадобится около 1 секунды.
Благодаря этому свойству такой резистор не применяется в устройствах с необходимостью учета резких скачков освещенности.
Свойства и конструктивные особенности
Фотопроводность впервые обнаружили у элемента Селена. Затем были найдены и другие материалы с подобными свойствами. Фоторезисторы из сульфида кадмия являются наиболее популярными и имеют обозначение СDS-фоторезистора. Сегодня фотосопротивления производятся и из антимонида индия, сульфида свинца, селенида свинца.
Для производства фотосопротивлений из сульфида кадмия, порошок высокой степени очистки смешивают с веществами инертного действия. Далее, смесь спрессовывают и спекают.
На основание с электродами в вакууме напыляют светочувствительный слой в форме извилистой дорожки. Далее, это напыленное основание размещают в пластиковую или стеклянную оболочку, во избежание предотвращения попадания пыли и грязи на чувствительный элемент.
Спектральный график отклика чувствительного сульфида кадмия сочетается с временем отклика глаза человека. Длина волны света наибольшей чувствительности равна 600 нанометров. Это соответствует видимому спектру. Устройства с содержанием кадмия или свинца запрещены во многих зарубежных странах.
Сфера использования фоторезисторов
Такой вид светочувствительных сопротивлений применяется в виде датчиков света, если необходимо определять отсутствие или наличие света, либо фиксацию значения интенсивности освещения. Таким примером служит автоматическая система включения освещения улиц, а также работа фотоэкспонометра.
Световое реле для освещения улиц
В виде примера на схеме изображено уличное фотореле освещения. Эта система включает освещение улиц в автоматическом режиме, при наступлении темного времени суток, и отключает его при наступлении светлого времени. Такую схему можно применять для любых автоматических систем освещения.
При падении луча света на фоторезистор, его сопротивление снижается, становится значительным падение напряжения на переменном сопротивлении R2, транзистор VТ1 открывается. Коллектор этого транзистора соединен с базой VТ2 транзистора, который в это время закрыт, и реле отключено. При наступлении темноты сопротивление фоторезистора повышается, напряжение на переменном сопротивлении снижается, а транзистор VТ1 закрывается. Транзистор VТ2 открывается и выдает напряжение на реле, подключающее лампу освещения.
Похожие темы:
electrosam.ru
13.Фотоприемники. Фоторезисторы и фотодиоды. Схемы включения. Классификация фотоприемных устройств:
Интегральные
Селективные
Интегральные фотоприемники. Принцип действия их основан на изменении механических или иных свойств при изменении температуры, изменение которой осуществляется под действием светового потока
Селективные фотоприемники. В таких фотоприемниках имеет место прямое взаимодействие падающих фотонов с электронами чувствительного слоя.
Селективные фотоприемники делятся на типы:
С внутренним фотоэффектом;
С внешним фотоэффектом.
К селективным фотоприемникам с внутренним фотоэффектом относятся:
Фоторезисторы.
Фотодиод.
Фототранзистор.
Фототиристор.
Фотоварикап.
Оптрон.
Фоторезистором называют полупроводниковый прибор, сопротивление которого меняется под действием света. У них изменяется сопротивление под действием световой энергии.
Принцип действия фоторезистора основан на внутреннем фотоэффекте, который заключается в перераспределении электронов по энергетическим состояниям, происходящем в конденсированных средах при поглощении света. Толщина рабочего тела фоторезистора обычно соизмерима с глубиной проникновения света в полупроводник. Для обеспечения необходимой механической прочности служит подложка из материала с хорошими диэлектрическими свойствами.
Характеристики фоторезисторов (темновое сопротивление, чувствительность, инерционность) сильно зависят от температуры. Темновое сопротивление и чувствительность с ростом температуры уменьшаются, а постоянная времени увеличивается. Для большинства фоторезисторов допустимый температурный диапазон составляет от -60 до +60ºС.
Зависимость темнового сопротивления от температуры называют температурной характеристикой фоторезистора.
Измерительные цепифоторезисторов строятся с использованием как постоянного, так и переменного напряжения питания. В состав современных измерительных цепей включаются операционные усилители. Пример измерительной цепи с операционным усилителем показан на рис. 12-14
Фотодиод представляет собой открытую для доступа света пластинку полупроводника, в которой имеются области электронной и дырочной электропроводности, разделенные р-n переходом.
Под действием фотонов светового потока происходит увеличение количества неосновных носителей заряда в области базы, тем самым изменяется ширина p-n перехода. Поскольку световой поток переменен во времени, то изменение ширины перехода переменно. В результате проводимость диода становится переменной и зависит от изменения светового потока.
ФД могут работать в двух режимах – фотосопротивления и фотоэлемента.
Схема преобразования тока в напряжение
ВАХ фотодиода описывается выражением:
где IФ — фототок, т. е. ток, созданный носителями, возбужденными светом; I — ток во внешней цепи.
Схемы включения фотодиодов показаны на рис. 12-17.
А) как резистор и включается в схемы делителей
Б) или мостовые измерительные цепи позволяющие в известной степени уменьшить влияние дрейфа темнового тока. ФД по напряжению питания хорошо согласуются с полупроводниковыми электронными элементами, поэтому используются обычно в схемах совместно с операционными усилителями.
В) схема включения ФД, работающего в фотогенераторном режиме. Благодаря тому, что входное сопротивление усилителя () не превышает 10 Ом, ФД работает в режиме, близком к короткому замыканию (прямая 2 на рис. 12-15, б) и обладает достаточно линейной характеристикой.
studfiles.net
Фоторезисторы, фотодиоды и фототранзисторы и как их применять
Фоторезисторы, фотодиоды и фототранзисторы и как их применять
Датчик — средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем.
Датчики бывают совершенно разными. Они отличаются по принципу действию, логике своей работы и физическим явлениям и величинам на которые они способны реагировать. Датчики света используются не только в аппаратуре автоматического управления освещением, они используются в огромном количестве устройств, начиная от блоков питания, заканчивая сигнализациями и охранными системами.
Основные виды фотоэлектронных приборов. Общие сведения
Фотоприёмник в общем смысле – это электронный прибор, который реагирует на изменение светового потока падающего на его чувствительную часть. Они могут отличаться, как по своей структуре, так и принципу работы. Давайте их рассмотрим.
Фоторезисторы – изменяют сопротивление при освещении
Фоторезистор – фотоприбор изменяющий проводимость (сопротивление) в зависимости от количества света падающего на его поверхность. Чем интенсивнее освещенность чувствительной области, тем меньше сопротивления. Вот его схематическое изображение.
Состоит он из двух металлических электродов, между которыми присутствует полупроводниковый материал. Когда световой поток попадает на полупроводник, в нём высвобождаются носители заряда, это способствует прохождению тока между металлическими электродами.
Энергия светового потока тратится на преодоление электронами запрещенной зоны и их переходу в зону проводимости. В качестве полупроводника у фоторезисторов используют материалы типа: Сульфид Кадмия, Сульфид Свинца, Селенит Кадмия и другие. От типа этого материала зависит спектральная характеристика фоторезистора
Интересно:
Спектральная характеристика содержит информацию о том, к каким длинам волн (цвету) светового потока наиболее чувствителен фоторезистор. Для некоторых экземпляров приходится тщательно подбирать излучатель света соответствующей длины волны, для достижения наибольшей чувствительности и эффективности работы.
Фоторезистор не предназначен для точного измерения освещенности, а, скорее, для определения наличия света, по его показаниям можно определить светлее или темнее стала окружающая среда. Вольт-амперная характеристика фоторезистора выглядит следующим образом.
На ней изображена зависимость тока от напряжения при различных величинах светового потока: Ф – темнота, а Ф3 – это яркий свет. Она линейна. Еще одна важная характеристика – это чувствительность, она измеряется в мА(мкА)/(Лм*В). Что отражает, сколько тока протекает через резистор, при определенном световом потоке и приложенном напряжении.
Темновое сопротивление – это активное сопротивление при полном отсутствии освещения, обозначается Rт, а характеристика Rт/Rсв – это кратность изменения сопротивления от состояния фоторезистора в полном отсутствии освещения к максимально освещенному состоянию и минимально возможному сопротивлению соответственно.
У фоторезисторов есть существенный недостаток – его граничная частота. Это величина описывает максимальную частоту синусоидального сигнала, которым вы моделируете световой поток, при которой чувствительность снижается на 1.41 раз. В справочниках это отражается либо значением частоты, либо через постоянную времени. Она отражает быстродействие приборов, которое обычно занимает десятки микросекунд – 10^(-5) с. Это не позволяет использовать его там, где нужно высокое быстродействие.
Фотодиод – преобразует свет в электрический заряд
Фотодиод – элемент, который преобразует свет, попадающий на чувствительную зону, в электрический заряд. Это происходит потому что при облучении в p-n переходе протекают различные процессы связанные с движением носителей заряда.
Если на фоторезисторе изменялась проводимость из-за движения носителей заряда в полупроводнике, то здесь происходит образование заряда на границе p-n перехода. Он может работать в режиме фотопреобразователя и фотогенератора.
По структуре он такой же, как и обычный диод, но на его корпусе есть окно для прохождения света. Внешне они бывают в различных исполнениях.
Фотодиоды с черным корпусом воспринимают только ИК-излучение. Черное покрытие – это что-то похожее на тонировку. Фильтрует ИК-спектр, чтобы исключить возможность срабатывания на излучения других спектров.
У фотодиодов, как и у фоторезисторов есть граничная частота, только здесь она на порядки больше и достигает 10 МГц, что позволяет обеспечить неплохое быстродействие. P-i-N фотодиоды обладают большим быстродействием – 100МГц-1ГГц, как и диоды на основании барьера Шоттки. Лавинные диоды имеют граничную частоту в порядка 1-10 ГГц.
В режиме фотопреобразователя такой диод работает как ключ управляемый светом, для этого его подключают в цепь в прямом смещении. То есть, катодом к точке с более положительным потенциалом (к плюсу), а анодом к более отрицательному (к минусу).
Когда диод не освещается светом – в цепи протекает только обратный темновой ток Iобрт (единицы и десятки мкА), а когда диод освещен к нему добавляется фототок, который зависит только от степени освещенности (десятки мА). Чем больше света – тем больше ток.
Фототок Iф равен:
Iф=Sинт*Ф,
где Sинт – интегральная чувствительность, Ф – световой поток.
Типовая схема включения фотодиода в режиме фотопреобразователя. Обратите внимание на то, как он подключен – в обратном направлении по отношению к источнику питания.
Другой режим – генератор. При попадании света на фотодиод на его выводах образуется напряжение, при этом токи короткого замыкания в таком режиме равняются десятки ампер. Это напоминает работу элементов солнечной батареи, но имеют малую мощность.
Фототранзисторы – открываются от количества падающего света
Фототранзистор – это по своей сути биполярный транзистор у которого вместо вывода базы есть в корпусе окошко для попадания туда света. Принцип работы и причины этого эффекта аналогичны с предыдущими приборами. Биполярные транзисторы управляются количеством тока протекающего через базу, а фототранзисторы по аналогии управляются количеством света.
Иногда на УГО еще дополнительно изображается вывод базы. Вообще напряжения на фототранзистор подают также как и на обычный, а второй вариант включения – с плавающей базой, когда базовый вывод остаётся незадействованным.
В схему включают фототранзисторы подобным образом.
Или меняют местами транзистор и резистор, смотря, что конкретно вам нужно. При отсутствии света через транзистор протекает темновой ток, который образуется из тока базы, который вы можете задать сами.
Задав необходимый ток базы, вы можете выставить чувствительность фототранзистора подбором его базового резистора. Таким образом, можно улавливать даже самый тусклый свет.
В советское время радиолюбители делали фототранзисторы своими руками – делали окошко для света, спилив обычному транзистору часть корпуса. Для этого отлично подходят транзисторы типа МП14-МП42.
Из вольтамперной характеристики видна зависимость фототока от освещения, при этом он практически не зависит от напряжения коллектор-эмиттер.
Кроме биполярных фототранзисторов существуют и полевые. Биполярные работают на частотах 10-100 кГц, то полевые более чувствительны. Их чувствительность достигает нескольких Ампер на Люмен, и более «быстрые» — до 100 мГц. У полевых транзисторов есть интересная особенность, при максимальных значениях светового потока напряжение на затворе почти не влияет на ток стока.
Области применения фотоэлектронных приборов
В первую очередь следует рассмотреть более привычные варианты их применения, например автоматическое включение света.
Схема, изображенная выше – это простейший прибор для включения и выключения нагрузки при определенной освещенности. Фотодиод ФД320 При попадании на него света открывается и на R1 падает определенное напряжение, когда его величина достаточна для открытия транзистора VT1 – он открывается, и открывает еще один транзистор – VT2. Эти два транзистора – это двухкаскадный усилитель тока, необходим для запитки катушки реле K1.
Диод VD2 – нужен для гашения ЭДС-самоиндукции, которое образуется при переключениях катушки. На подводящий контакт реле, верхний по схеме, подключается один из проводов от нагрузки (для переменного тока – фаза или ноль).
У нас есть нормально замкнутый и разомкнутый контакты, они нужны либо для выбора включаемой цепи, либо для выбора включить или отключить нагрузку от сети при достижении необходимой освещенности. Потенциометр R1 нужен для подстройки прибора для срабатывания при нужном количестве света. Чем больше сопротивление – тем меньше света нужно для включения схемы.
Вариации этой схемы используют в большинстве подобных приборов, при необходимости добавляя определенный набор функций.
Кроме включения нагрузки по освещенности подобные фотоприемники используются в различных системах контроля, например на турникетах метро часто используют фоторезисторы для определения несанкционированного (зайцем) пересечения турникета.
В типографии при обрыве полосы бумаги свет попадает на фотоприемник и тем самым даёт сигнал оператору об этом. Излучатель стоит по одну сторону от бумаги, а фотоприемник с обратной стороны. Когда бумага рвётся, свет от излучателя достигает фотоприемника.
В некоторых видах сигнализации используются в качестве датчиков входа в помещение излучатель и фотоприемник, при этом, чтобы излучение не были видны используют ИК-приборы.
Касаемо ИК-спектра, нельзя упомянуть о приемнике телевизора, на который поступают сигналы от ИК-светодиода в пульте дистанционного управления, когда вы переключаете каналы. Специальным образом кодируется информация и телевизор понимает, что вам нужно.
Информация таким образом ранее передавалась через ИК-порты мобильных телефонов. Скорость передачи ограничена, как последовательным способом передачи, так и принципом работы самого прибора.
В компьютерных мышках также используется технология связанная с фотоэлектронными приборами.
Применение для передачи сигналов в электронных схемах
Оптоэлектронные приборы – это приборы которые объединяют в одном корпусе излучатель и фотоприемник, типа описанных выше. Они нужны для связи двух контуров электрической цепи.
Это нужно для гальванической развязки, быстрой передачи сигнала, а также для соединения цепей постоянного и переменного тока, как в случае управления симистором в цепи 220 В 5 В сигналом с микроконтроллера.
Они имеют условно-графическое обозначение, которое содержит информацию о типе используемых внутри оптопары элементов.
Рассмотрим пару примеров использования таких приборов.
Управление симистором с помощью микроконтроллера
Если вы проектируете тиристорный или симисторный преобразователь вы столкнетесь с проблемой. Во-первых, если переход у управляющего вывода пробьет – на пин микроконтроллера попадет высокий потенциал и последний выйдет из строя. Для этого разработаны специальные драйверы, с элементом, который называется оптосимистор, например MOC3041.
Обратная связь с помощью оптопары
В импульсных стабилизированных блоках питания необходима обратная связь. Если исключить гальваническую развязку в этой цепи, тогда в случае выхода из строя каких-то компонентов в цепи ОС, на выходной цепи возникнет высокий потенциал и подключенная аппаратура выйдет из строя, я не говорю о том, что и вас может ударить током.
В конкретном примере вы видите реализацию такой ОС из выходной цепи в обмотку обратной связи (управляющую) транзистора с помощью оптопары с порядковым обозначением U1.
Выводы
Фото- и оптоэлектроника это очень важные разделы в электроники, которые значительно улучшили качество аппаратуры, её стоимость и надёжность. С помощью оптопары можно исключить использование развязывающего трансформатора в таких цепях, что уменьшает массогабаритные показатели. Кроме того некоторые устройства просто невозможно реализовать без таких элементов.
Ранее ЕлектроВести писали о фотодатчиках и их применении.
По материалам electrik.info.
elektrovesti.net
Фотодиоды. Виды и устройство. Работа и характеристики
Особое место в электротехнике занимают фотодиоды, которые применяются в различных устройствах и приборах. Фотодиодом называется полупроводниковый элемент, по своим свойствам подобный простому диоду. Его обратный ток прямо зависит от интенсивности светового потока, падающего на него. Чаще всего в качестве фотодиода применяют полупроводниковые элементы с р-n переходом.
Устройство и принцип действия
Фотодиод входит в состав многих электронных устройств. Поэтому он и приобрел широкую популярность. Обычный светодиод – это диод с р-n переходом, проводимость которого зависит от падающего на него света. В темноте фотодиод обладает характеристиками обычного диода.
1 – полупроводниковый переход.
2 – положительный полюс.
3 – светочувствительный слой.
4 – отрицательный полюс.
При действии потока света на плоскость перехода фотоны поглощаются с энергией, превышающей предельную величину, поэтому в n-области образуются пары носителей заряда — фотоносители.
При смешивании фотоносителей в глубине области «n» основная часть носителей не успевает рекомбинировать и проходит до границы р-n. На переходе фотоносители делятся электрическим полем. При этом дырки переходят в область «р», а электроны не способны пройти переход, поэтому накапливаются возле границы перехода р-n, а также области «n».
Обратный ток диода при воздействии света повышается. Значение, на которое повышается обратный ток, называют фототоком.
Фотоносители в виде дырок осуществляют положительный заряд области «р», по отношению к области «n». В свою очередь электроны производят отрицательный заряд «n» области относительно «р» области. Возникшая разность потенциалов называется фотоэлектродвижущей силой, и обозначается «Еф». Электрический ток, возникающий в фотодиоде, является обратным, и направлен от катода к аноду. При этом его величина зависит от величины освещенности.
Режимы работы
Фотодиоды способны функционировать в следующих режимах:
- Режим фотогенератора. Без подключения источника электричества.
- Режим фотопреобразователя. С подключением внешнего источника питания.
В работе фотогенератора фотодиоды используются вместо источника питания, которые преобразуют солнечный свет в электрическую энергию. Такие фотогенераторы называются солнечными элементами. Они являются основными частями солнечных батарей, применяемых в различных устройствах, в том числе и на космических кораблях.
КПД солнечных батарей на основе кремния составляет 20%, у пленочных элементов этот параметр значительно больше. Важным свойством солнечных батарей является зависимость мощности выхода к весу и площади чувствительного слоя. Эти свойства достигают величин 200 Вт / кг и 1 кВт / м2.
При функционировании фотодиода в качестве фотопреобразователя, источник напряжения Е подключается в схему обратной полярностью. При этом применяются обратные графики вольт-амперной характеристики при разных освещенностях.
Напряжение и ток на нагрузке Rн определяются на графике по пересечениям характеристики фотодиода и нагрузочной линии, которая соответствует резистору Rн. В темноте фотодиод по своему действию равнозначен обычному диоду. Ток в режиме темноты для кремниевых диодов колеблется от 1 до 3 микроампер, для германиевых от 10 до 30 микроампер.
Виды фотодиодов
Существует несколько различных видов фотодиодов, которые имеют свои достоинства.
p – i – n фотодиод
В области р-n у этого диода имеется участок с большим сопротивлением и собственной проводимостью. При воздействии на него света возникают пары дырок и электронов. Электрическое поле в этой зоне имеет постоянное значение, пространственный заряд отсутствует.
Этот вспомогательный слой значительно снижает емкость запирающего слоя, и не зависит от напряжения. Это расширяет полосу рабочих частот диодов. В результате скорость резко повышается, и частота достигает 1010 герц. Повышенное сопротивление этого слоя значительно уменьшает ток работы при отсутствии освещения. Чтобы световой поток смог проникнуть через р-слой, он не должен быть толстым.
Лавинные фотодиоды
Такой вид диодов является полупроводниками с высокой чувствительностью, которые преобразуют освещение в сигнал электрического тока с помощью фотоэффекта. Другими словами, это фотоприемники, усиливающие сигнал вследствие эффекта лавинного умножения.
1 — омические контакты 2 — антиотражающее покрытиеЛавинные фотодиоды более чувствительны, в отличие от других фотоприемников. Это дает возможность применять их для незначительных мощностей света.
В конструкции лавинных фотодиодов применяются сверхрешетки. Их суть заключается в том, что значительные различия ударной ионизации носителей приводят к падению шумов.
Другим достоинством применения аналогичных структур является локализация лавинного размножения. Это также снижает помехи. В сверхрешетке толщина слоев составляет от 100 до 500 ангстрем.
Принцип действия
При обратном напряжении, близком к величине лавинного пробоя, фототок резко усиливается за счет ударной ионизации носителей заряда. Действие заключается в том, что энергия электрона повышается от внешнего поля и может превзойти границу ионизации вещества, вследствие чего встреча этого электрона с электроном из зоны валентности приведет к появлению новой пары электрона и дырки. Носители заряда этой пары будут ускоряться полем и могут способствовать образованию новых носителей заряда.
Характеристики
Свойства таких световых диодов можно описать некоторыми зависимостями.
Вольт-амперная
Эта характеристика является зависимостью силы тока при постоянном потоке света от напряжения.
I — ток M — коэффициент умножения U — напряжениеСветовая
Это свойство является зависимостью тока диода от освещения. При возрастании потока света, фототок повышается.
Спектральная
Это свойство является зависимостью тока диода от длины световой волны, и является шириной пограничной зоны.
Постоянная времени
Это время, за которое фототок диода меняется после подачи света в сравнении с установившимся значением.
Темновое сопротивление
Это значение сопротивления диода в темноте.
Инерционность
Факторы, влияющие на эту характеристику:
- Время диффузии неравновесных носителей заряда.
- Время прохождения по р-n переходу.
- Период перезарядки емкости барьера р-n перехода.
Сфера применения
Фотодиоды являются основными элементами многих оптоэлектронных приборов.
Интегральные микросхемы (оптоэлектронные)
Фотодиод может иметь значительную скорость работы, но коэффициент усиления тока составляет не более единицы. Вследствие оптической связи микросхемы имеют существенные преимущества: идеальная гальваническая развязка цепей управления от мощных силовых цепей. При этом между ними сохраняется функциональная связь.
Фотоприемники с несколькими элементами
Эти устройства в виде фотодиодной матрицы, сканистора, являются новыми прогрессивными электронными устройствами. Их оптоэлектронный глаз с фотодиодом может создавать реакцию на пространственные и яркостные свойства объектов. Другими словами, он может видеть полный его зрительный образ.
Количество ячеек, чувствительных к свету, очень большое. Поэтому, кроме вопросов быстродействия и чувствительности, необходимо считывание информации. Все фотоприемники с множественными фотоэлементами являются сканирующими системами, то есть, приборами, которые позволяют анализировать исследуемое пространство последовательным поэлементным просмотром.
Фотодиоды также нашли широкое применение в оптоволоконных линиях, лазерных дальномерах. Недавно такие световые диоды стали использоваться в эмиссионно-позитронной томографии.
В настоящее время имеются образцы светочувствительных матриц, состоящих из лавинных фотодиодов. Их эффективность и область применения зависит он некоторых факторов.
Наиболее влияющими оказались такие факторы:
- Суммарный ток утечек, образующийся путем сложения шумов и тока при отсутствии света.
- Квантовая эффективность, определяющая долю падающих квантов, приводящих к возникновению тока и носителей заряда.
Похожие темы:
electrosam.ru