Как сделать мигающий светодиод — РАДИОСХЕМЫ
Всем привет, сегодня мы рассмотрим мигалку на одном транзисторе. Можно сказать это первые шаги в радиоэлектронике, ведь первое, что я решил собрать, была мигалка на транзисторе. Схема очень простая и состоит из четырёх деталей: транзистор n-p-n проводимости (не знаете — поищите в гугле, почитайте что за штука) в моем случае им был bc547, конденсатор электролитический на 470 мкФ (микрофарад), резистор 1,8 килоом и светодиод зеленого свечения.
Собрать не так просто — нужна знать, где у светодиода и конденсатора плюс и минус. У светодиода проверяется полярность подключивши его к источнику питания 5-10 вольт через резистор на 100 Ом.
У конденсатора проще, так как на корпусе есть линия белая, жёлтая, синяя — с той стороны у него минус, а с обратной плюс.
Распиновку транзистора используемого вами, лучше посмотреть в интернете, в моем случае такая:
О радиодеталях кое-что узнали, теперь рассмотрим схему. Ничего сложного в ней нет. Начинаем паять. Зачищаем жало паяльника от грязи и окисла.
Теперь рассмотрим детали, которые я выпаял из плат. Чтоб опознать номинал сопротивления используйте декодер цветовой маркировки резисторов.
Припаиваем светодиод до транзистора.
Потом припаиваем конденсатор, внимательно смотрим на распиновку транзистора и полярность светодиода, конденсатора. Резистор не имеет полярности — его можно запаять любой стороной.
Наше устройство в сборе. Подпаиваем проводки и тестируем, рабочее напряжение 8-18 вольт.
radioskot.ru
Как сделать мигающий светодиод: обзор различных схем
Мигающие светодиоды применяются в различных сигнальных схемах, в рекламных щитах и вывесках, электронных игрушках. Сфера их применения достаточно широка. Простая мигалка на светодиоде может быть также использована для создания автосигнализации. Надо сказать, что моргать этот полупроводниковый прибор заставляет встроенная микросхема (ЧИП). Основные достоинства готовых МСД: компактность и разнообразие расцветок, позволяющее красочно оформлять электронные устройства, например, рекламное табло с целью привлечения внимания покупателей.
Но можно изготовить мигающий светодиод самостоятельно. Используя простые схемы, это сделать несложно. Как сделать мигалку, имея небольшие навыки работы с полупроводниковыми элементами, описано в этой статье.
Мигалки на транзисторах
Самый простой вариант – светодиодная мигалка на одном транзисторе. Из схемы видно, что база транзистора висит в воздухе. Такое нестандартное включение позволяет ему работать как динистор.
Светодиодная мигалка на одном транзисторе
При достижении порогового значения возникает пробой структуры, открытие транзистора и разрядка конденсатора на светодиод. Такая простая мигалка на транзисторе может найти применение в быту, например, в небольшой елочной гирлянде. Для ее изготовления понадобятся вполне доступные и недорогие радиоэлементы. Светодиодная мигалка, сделанная своими руками, придаст немного шарма пушистой новогодней красавице.
Можно собрать похожее устройство уже на двух транзисторах, взяв детали из любой радиоаппаратуры, отслужившей свой срок. Схема мигалки приведена на рисунке.
Схема мультивибратора на двух транзисторах для простой мигалки
Для сборки понадобятся:
- резистор R = 6,8–15 кОм – 2 штуки;
- резистор R = 470–680 Ом – 2 штуки;
- транзистор n-p-n-типа КТ315 Б – 2 штуки;
- конденсатор C = 47–100 мкФ – 2 штуки;
- маломощный светодиод или светодиодная лента.
Диапазон рабочего напряжения 3–12 вольт. Подойдет любой источник питания с такими параметрами. Эффект мигания в данной схеме достигается поочередным зарядом и разрядом конденсаторов, влекущим за собой открытие транзисторов, в результате чего появляется и исчезает ток в цепи светодиода.
Светодиоды с миганием можно получить, подключив выводы к нескольким разноцветным элементам. Встроенный генератор выдает поочередно импульсы на каждый цвет. Частота моргающего импульса зависит от заданной программы. Таким веселым миганием можно порадовать ребенка, если установить устройство в детскую игрушку, например, машинку.
Неплохой вариант получится, если взять трехцветный мигающий светодиод, имеющий четыре вывода (один общий анод или катод и три вывода управления цветом).
Еще один простой вариант, для сборки которого понадобятся батарейки типа CR2032 и резистор сопротивлением от 150 до 240 Ом. Мигающий светодиод получится, если последовательно соединить все элементы в одной схеме, соблюдая полярность.
Мигающий светодиод
Если получается собрать веселые огоньки по простейшей схеме, можно перейти к более сложной конструкции.
Схема мигалки на светодиодах
Данная схема мигалки на светодиодах работает следующим образом: при подаче напряжения на R1 и заряжении конденсатора С1, на нем растет напряжение. После того как оно достигнет 12 В, происходит пробой p-n-перехода транзистора, что увеличивает проводимость и вызывает свечение светодиода. При падении напряжения транзистор закрывается, и процесс идет сначала. Все блоки работают примерно на одной частоте, если не учитывать небольшую погрешность. Схему мигалки на светодиодах с пятью блоками можно собрать на макетной плате.
Макет мигалки на транзисторах
lampagid.ru
Как сделать мигающий светодиод: принцип действия, тесты, схема
Лишены возможности купить готовый мигающий светодиод, где внутрь колбы встроены необходимые элементы для осуществления нужной функции (осталось подключить батарейку) — попробуйте собрать авторскую схему. Понадобится немногое: рассчитать резистор светодиода, задающий совместно с конденсатором период колебаний в цепи, ограничить ток, выбрать тип ключа. По некоторым причинам экономика страны работает на добывающую отрасль, электроника закопана глубоко в землю. С элементной базой напряг.
Принцип действия светодиода
Работа светодиода
Подключая светодиод, узнайте минимум теории — портал ВашТехник готов помочь. Район p-n перехода за счет существования дырочной и электронной проводимости образует зону несвойственных толще основного кристалла энергетических уровней. Рекомбинируя, носители заряда высвобождают энергию, если величина равна кванту света, спай двух материалов начинает лучиться. Оттенок определен некоторыми величинами, соотношение выглядит так:
E = h c / λ; h = 6,6 х 10-34 – постоянная Планка, с = 3 х 108 – скорость света, греческой буквой лямбда обозначается длина волны (м).
Из утверждения следует: может быть создан диод, где разница энергетических уровней присутствует. Так изготавливаются светодиоды. В зависимости от разницы уровней, цвет синий, красный, зелёный. Редкие светодиоды обладают одинаковым КПД. Слабыми считают синие, которые исторически появились последними. КПД светодиодов сравнительно мал (для полупроводниковой техники), редко достигает 45%. Удельное превращение электрической энергии в полезную световую просто потрясающее. Каждый Вт энергии дает фотонов в 6-7 раз больше, нежели спираль накала в эквивалентных условиях потребления. Объясняет, почему светодиоды сегодня занимают прочную позицию в осветительной технике.
Создание мигалки на основе полупроводниковых элементов несравненно проще. Хватит сравнительно малых напряжений, схема начнет работать. Остальное сводится к правильному подбору ключевых и пассивных элементов для создания пилообразного или импульсного напряжения нужной конфигурации:
- Амплитуда.
- Скважность.
- Частота следования.
Очевидно, подключение светодиода к сети 230 вольт выглядит негодной идеей. Присутствуют подобные схемы, но заставить мигать сложно, элементная база отсутствует. Светодиоды работают от гораздо более низких питающих напряжений. Самыми доступными считаются:
Простой светодиод
- Напряжение +5 В присутствует в устройствах заряда телефонных аккумуляторов, iPad и других гаджетов. Правда, выходной ток невелик, и не нужно. Вдобавок, +5 В нетрудно найти на шине блока питания персонального компьютера. С ограничением тока проблемы устраним. Провод красного цвета, землю ищите на черном.
- Напряжение +7…+9 Встречается на зарядных устройствах ручных радиостанций, в обиходе называемых рациями. Великое множество фирм, у каждой стандарты. Здесь бессильные дать конкретные рекомендации. Рации чаще выходят из строя в силу особенностей использования, лишние зарядные устройства обычно можно достать сравнительно дешево.
- Схема подключения светодиода будет лучше работать от +12 вольт. Стандартное напряжение микроэлектроники, встретим во многих местах. Компьютерный блок содержит вольтаж -12 вольт. Изоляция жилы синяя, сам провод оставлен для совместимости со старыми приводами. В нашем случае может понадобиться, не окажись под рукой элементной базы питания +12 вольт. Комплементарные транзисторы найти, включить вместо исходных сложно. Номиналы пассивных элементов остаются. Светодиод включается обратной стороной.
- Номинал -3,3 вольт на первый взгляд кажется невостребованным. Посчастливится достать на aliexpress RGB светодиоды SMD0603 4 рубля штука. Однако! Падение напряжения в прямом направлении не превышает 3 вольта (обратное включение не понадобится, но в случае неправильной полярности максимальный вольтаж составляет 5).
Устройство светодиода понятно, условия горения известны, приступим к реализации задумки. Заставим элемент мигать.
Тестирование мигающих RGB светодиодов
Компьютерный блок питания выступает идеальным вариантом тестирования светодиодов SMD0603. Нужно просто поставить резистивный делитель. Согласно схеме технической документации оценивают сопротивления p-n переходов в прямом направлении, заручившись помощью тестера. Прямое измерение здесь невозможно. Соберем схему, показанную ниже:
Схема оценки сопротивления p-n переходов
- Микросхема дана вместе с номерами ножек согласно техническим характеристикам.
- Питание подается на катод, полярность напряжения отрицательная. 3,3 вольта хватит открыть p-n переходы.
- Переменный резистор нужен небольшого номинала. На рисунке установлен с максимальным пределом 680 Ом. В таком положении должен находиться изначально.
- Сопротивление открытого p-n перехода невелико, нужен значительный запас, чтобы диоды не погорели (помним, что максимальное прямое напряжение составляет 3 В). Принимается во внимание факт: при низком вольтаже сопротивление каждого светодиода составит 700 Ом. При параллельном включении суммарное сопротивление вычисляется формулой, показанной на рисунке. Подставляя в качестве трех входных параметров 700, получаем 233 Ом. Сопротивление светодиодов, когда только-только начнут открываться (по крайней мере, так полагаем).
Формула расчета суммарного сопротивления
- Понадобится контролировать режим тестером (см. рисунок). Постоянно измеряем напряжение на светодиодной микросхеме, одновременно уменьшая значение сопротивления, пока разница потенциалов поднимется до 2,5 В. Дальше повышать вольтаж попросту опасно, быть может, многие остановятся на 2,2 В.
- Затем из пропорции найдем искомое сопротивление светодиодной микросхемы: (3,3 – 2,5)/2,5 = R пер / Rобщ, R пер – сопротивление переменного резистора, когда напряжение на дисплее тестера достигает 2,5 В. R общ = 3,125 R пер.
Провод +3,3 В блока питания компьютера оранжевой изоляции, схемную землю берем с черного. Обратите внимание: опасно включать модуль без нагрузки. Идеально подключить DVD-привод или другое устройство. Допускается при наличии умения обращения с приборами под током снять боковую крышку, извлечь оттуда нужные контакты, не снимать блок питания. Подключение светодиодов иллюстрирует схема. Измерили сопротивление на параллельном подключении светодиодов и остановились?
Поясняем: в рабочем состоянии светодиодов понадобится включить несколько, проделаем аналогичную настройку. Напряжение питания на микросхеме составит 2,5 вольта. Обратите внимание, светодиоды мигающие, показания неточные. Максимальное не превыше 2,5 вольта. Индикация успешной работы схемы выражается миганием светодиодов. Чтобы часть мерцала, уберем питание с ненужных. Допускается собрать отладочную схему с тремя переменными резисторами – по одному в ветвь каждого цвета.
Теперь знаем, как сделать мигающую светодиодную подсветку своими руками. Можно ли варьировать время срабатывания. Полагаем, внутри должны использоваться емкости. Возможно, собственные паразитные элементы p-n переходов светодиодов. Подключая переменный конденсатор параллельно схеме на вход, можно попробовать что-либо изменить. Номинал очень мал, измеряется пФ. Маленькая микросхема лишена больших емкостей. Допускаем, резистор, подключенный параллельно микросхеме (см. пунктир на рисунке), усаженный на землю, будет образовывать точный делитель. Стабильность возрастет.
Номиналы нужно брать весомые, не забывать: значительно ограничим ток, идущий через светодиоды. Фактически потребуется продумать вопрос согласно ситуации.
Обычный светодиод мигает
Схема мигающего светодиода
Схема, изображенная рисунком, использует для работы лавинный пробой транзистора. КТ315Б, используемый в качестве ключа, имеет максимальное обратное напряжения между коллектором и базой 20 вольт. Опасного в таком включении мало. У модификации КТ315Ж параметр составляет 15 вольт, гораздо ближе выбранному напряжению питания +12 вольт. Транзистор использовать не стоит.
Лавинный пробой нештатный режим p-n перехода. За счет превышения обратного напряжения между коллектором и базой происходит ионизация атомов ударами разогнавшихся носителей заряда. Образуется масса свободных заряженных частиц, увлекаемых полем. Очевидцы утверждают: для пробоя транзистора КТ315 требуется обратное напряжение, приложенное между коллектором и эмиттером, амплитудой 8-9 В.
Пара слов о работе схемы. В первоначальный момент времени начинает заряжаться конденсатор. Подключен на +12 вольт, остальная часть схемы оборвана — закрыт транзисторный ключ. Постепенно разница потенциалов повышается, достигает напряжения лавинного пробоя транзистора. Напряжение конденсатора резко падает, параллельно подключены два открытых p-n перехода:
- Транзисторный находится в режиме пробоя.
- Светодиод открыт за счет прямого включения.
В сумме напряжение составит порядка 1 вольта, конденсатор начинает разряжаться через открытые p-n переходы, только напряжение падает ниже 7-8 вольт, везение кончается. Транзисторный ключ закрывается, процесс повторяется заново. Схеме присущ гистерезис. Транзистор открывается при более высоком напряжении, нежели закрывается. Обусловлено инерционностью процессов. Видим, как работает светодиод.
Номиналы резистора, ёмкости определяют период колебаний. Конденсатор можно взять значительно меньше, включив меж коллектором транзистора и светодиодом небольшое сопротивление. Например, 50 Ом. Постоянная разряда резко увеличится, проверить светодиод визуально будет проще (возрастет время горения). Понятно, ток не должен быть слишком большим, максимальные значения берутся из справочников. Не рекомендуется вести подключение светодиодных светильников из-за низкой термостабильности системы и наличия нештатного режима транзистора. Надеемся, обзор получился интересным, картинки доходчивыми, объяснения ясными.
vashtehnik.ru
Как сделать лампу в майнкрафте + мигающая лампа
Скачать Майнкрафт
Лампа это искусственно созданный источник света и тепла. Он выделяет 15 ед света и способен растопить снег и лед вокруг себя. Для работы необходим сигнал красного камня. Для его изготовления необходимы довольно специфические материалы, такие например как светящийся камень, достать который можно только в нижнем мире.
Изготовление лампы
Для создания светильника необходимы такие материалы как:
- Красная пыль — 4 шт;
- Светящийся камень — 1 шт.
Создание необходимых материалов
Красную пыль можно собрать если разбить красную руду киркойВидео инструкция
Интересные статьи — как сделать:
Мигающая лампа
game-roblox.ru
как сделать чтобы гирлянда не мигала а постоянно горела???
Ну вапще улет!! ! Опять мы пОяем!!!! по яйцам этих пОятелей! С лампочкой «прерывателем» уже лет 15 не делают даже китаёзы, в коробке с кнопкой стоит контроллер, который отвечает за «моргание», тактовый генератор для контроллера сама сеть, резюк там один, его выковырнуть нужно и бедет тебе один цвет, дерганием вилки можно получить разные цвета. Для вас только такой вариант, ибо с управлением цветами в ручную, да еще и что бы включать тот что нужен, нада уметь пАять, а вы не умеете.
Не лампочка а диод!!!
Если гирлянда новогодняя, там есть такая «коробочка»перед вилкой. «Мигалка» собственно в ней:) Изыми её из цепи и все.
она обычно в конце или в середине гирлянды
После вилки на проводе есть коробочка какая? Или сразу лампочки?
не диод а реле!
лампочка с биметаллическими контактами В обычной просто спираль как в обычных лампочках, а пусковой видны ещё контакты, различить сложно, но можно.
Так в той коробочке кнопочка должна быть для переключения режима.
touch.otvet.mail.ru
как сделать чтобы лампочка мигала от 1,5 вольт без схем и мигающих светодиодов электрика
надо последовательно замыкать и размыкать контакт
Подключенная к электроцепи лампочка — это уже схема. А что бы мигала, да еще и без схемы, это уже из области фантастики. Может ты имеешь ввиду простейшую схему, это другое дело. В дешевых китайских гирляндах кроме обычных ставили в каждом из каналов одну лампочку с размыкателем на основе из биметалла. При включении лампочка загорается, своим теплом разогревает биметаллическую пластинку, та коробится разрывая контакт. Остыв, пластина принимает свою первоначальную форму замыкая контакт. Процесс повторяется и так далее. Но 1,5 Вольт, боюсь, для нее может не хватить. Хотя может быть.
Вилку в розетку вставлять-вынимать. Проще некуда)
без участия транзисторов никак!!
Ответ на этот вопрос не оправдает ваших ожиданий и чудес ждать не стоит. Без пайки и схем тут никуда не денешься. От 1,5 вольта можно собрать вполне работающую схему с мигающим светодиодом (который совсем не лампочка) , но тут смысл есть приобрести готовый моргающий светодиод (со схемой внутри) . Если нужна именно лампочка, тогда надо исходить из рабочего напряжения этой лампочки и тока, а уж потом думать, по какой схеме выполнить эту задачу. Всего есть 4 варианта. 1. Можно собрать по классической схеме мультивибратора (больше всего элементов. Зато у вас будут две моргающие лампочки) . 2. По схеме мультивибратора на транзисторах разной проводимости (чуть меньше элементов) 3. Вариант на ключевых элементах логической микросхемы типа к561ла7 к155ла3 и т. д. (меньше всего элементов) 4. Схема блокинг-генератора — можно обойтись схемой на 1 транзисторе, но в этом случае транзистор должен быть с хорошим коэффицентом передачи тока и без намотки автотрансформаторной катушки тут не обойтись. Если что-то пропустил, меня поправят
touch.otvet.mail.ru
Как сделать чтобы светодиодная лампочка не моргала. Почему моргает энергосберегающая лампочка при выключенном выключателе – три основные причины и способы их устранения
«Энергосберегающая лампа мигает после выключения, что делать» — с таким вопросом часто обращаются к электромонтажникам и знакомым, разбирающимся в электрике. Рост популярности этого типа осветительных приборов в потребительской среде, как оказалось, значительно опередил традиции электромонтажа и темп расширения знаний. По этой причине мерцание светодиодных ламп и энергосберегающих аналогов, в особенности – под управление выключателей с подсветкой, стало частой, хоть и легко решаемой, проблемой.
Принцип работы ламп и как это влияет на освещение
Неполадки с неправильным или скорее несвоевременным мерцанием энергосберегающей лампочки редко бывают связаны с сетевыми параметрами или качеством проводки. Здесь причина всегда кроется в том, как устройство работает, а точнее – в принципе его питания. Для большего понимания следует рассмотреть конструкцию лампы.
Может показаться, что светодиодные и люминесцентные лампы имеют сходство с традиционными лампами накаливания, однако разница колоссальна. Дело в том, что эти два типа светильников работают под постоянным током или током очень высокой частоты после выпрямления сетевого напряжения и преобразования. Почему же это происходит, можете спросить вы, если по бытовой сети пускают переменный ток с напряжением в 220 В? Очень просто – внутри каждой лампочки находится миниатюрный выпрямитель.
Более того, на входе каждого такого устройства располагается простая микросхема с пусковым конденсатором, диодным мостом и другими элементами. Эту плату в широком профессиональном кругу именуют балластом. Если говорить упрощенно, то переменное напряжение становится выпрямленным постоянным после того, как проходит через диодный мост. За сглаживание пульсаций в цепи отвечает сглаживающий конденсатор. Примечательно, что именно он является причиной того, почему лампочки моргают, когда находятся в выключенном состоянии.
У ламп производства известных авторитетных компаний данная проблема встречается реже. Вероятно, это связано с более высоким качеством сборки и исходных материалов. О характеристиках ламп и их выборе можно узнать из статьи про лучших производителей энергосберегающих лампочек (для перекрестной ссылки).
Энергосберегающие лампочки, к слову, моргают не только при выключенном выключателе. Встречаются ситуации, когда они «грешат» этим и при включенном свете или сразу после включения, причем временно или постоянно. Тем не менее, чаще всего эта проблема наблюдается при отключенном питании.
Выключатель с подсветкой, как причина мигания
По заверению электриков, в большинстве случаев причина того, почему мерцает лампочка энергосберегающего типа, кроется в выключателе с подсветкой, а именно – в его конструкции и принципе работы.
Выключатель с подсветкой отличается от обычного тем, что в его внутренней цепи присутствует светодиод, через который проходит ток. Во включенном положении цепь этого элемента размыкается и он гаснет, а когда клавиша находится в выключенном состоянии, он загорается обратно. Простая параллельная схема, казалось бы, работает без сюрпризов, но нет. Дело в том, что в положении «выкл» через прибор все равно проходят небольшие токи. Галогеновым и лампам накаливания их недостаточно для загорания, а вот конденсаторы из электронных плат светодиодных и энергосберегающих устройств постепенно заряжаются. И после накопления энергии лампа на миг загорается.
Как решить проблему
Устранить мерцание светодиодных ламп и их люминесцентных аналогов можно несколькими способами:
- Можно заменить выключатель с подсветкой на обыкновенный, без сигнального светодиода.
- Если подменять имеющийся выключатель с подсветкой новым устройством не хочется, можно слегка изменить его конструкцию, выведя светодиод из цепи. В этом процессе важно понимать, какие провода в схеме за что отвечают, чтобы случайно не перерезать фазную или нулевую жилу.
- На многих форумах в темах «Почему мигает лампочка при выключателе с подсветкой» пользователи находили очень просто решение – включали в цепь между выключателем и источником света лампу накаливания, подавляющее минимальный ток от конденсатора. Способ, надо сказать, не самый разумный, однако, судя по тем же форумам, довольно популярный для быстрого устранения неполадки.
- В распределительной коробке или патроне лампы нужно включить в цепь резистор на 2 Вт и 50 кОм. Ток, пропускаемый подсветкой, будет полностью потребляться им. При этом обязательно нужно соединять провода в клеммной коробке и изолировать термоусадочной трубкой. Чтобы увидеть данный процесс что называется «вживую», можно просмотреть обучающее видео.
- Еще один простой, но не идеальный способ – подключение подсветки в выключателе отдельно. В таком состоянии она будет работать беспрерывно, но все равно много не «намотает», а главная проблема устранена – лампочка не моргает.
Проводка
Если попытки «вылечить» выключатель с подсветкой от постоянного моргания лампочек описанными выше способами не увенчались успехом, причиной этого может быть плохая электропроводка в доме. Изношенная изоляция кабелей и обилие некачественных скруток в старых здания могут приводить к утечкам, из-за которых люминесцентные и светодиодные лампы моргают как во включенном, так и в отключенном состоянии.
При уверенности в том, что проводка полностью соответствует необходимым требованиям, нужно проверять светильник и выключатель на предмет качества подключения жил. Плохой их контакт тоже может провоцировать мерцание.
Причиной неполадки может быть разрыв нулевого проводник
elec-master.ru