Закрыть

Контакт теплового реле – Тепловое реле для электродвигателя схема подключения

Содержание

Тепловое реле для электродвигателя схема подключения

 

Одним из защитных аппаратов, применяемых в электроустановках, является тепловое реле, которое используется для защиты электродвигателя от перегрузки. На сегодняшний день существуют различные виды и типы данных изделий, однако все они имеют схожую область применения.

Блок: 1/4 | Кол-во символов: 389
Источник: https://samelectrik.ru/chto-takoe-teplovoe-rele.html

Разделы статьи

Конструктивные особенности

В основе устройства и принципа действия теплового реле (ТР) лежит закон Джоуля-Ленца — выделяемое на участке электроцепи количество тепла пропорционально сопротивлению этого участка и квадрату силы тока. Это физическое явление сегодня активно применяется в тепловых разъединителях. Небольшой участок электрической цепи, выступающий в роли излучателя, наматывается на изолятор спиралью.

Проходящий через электрооборудование ток протекает и в этом участке. Рядом со спиралью расположена пластина, изготовленная из биметаллического сплава. При достижении определенной температуры

она изгибается и воздействует на группу контактов.

Особенность пластины заключается в том, что она изготовлена из двух металлов, обладающих разными показателями коэффициента теплового расширения, которые составляют один элемент.

Конструкция прибора показана на рисунке.

К проводникам подсоединены три фазы питания электромотора. Обмотка нагрева находится над биметаллической пластиной, что позволяет уменьшить число ложных срабатываний прибора. Пластины упираются в подвижный элемент конструкции, который воздействует на механизм разъединителя. В верхней части прибора расположены две группы контактов (закрытые NC и открытые NO), а также регулятор токовой нагрузки пружинного типа.

Блок: 2/6 | Кол-во символов: 1302
Источник: https://220v.guru/elementy-elektriki/princip-raboty-i-podklyuchenie-teplovogo-rele-dlya-elektrodvigatelya.html

Особенности теплового реле

Но, в отличие от автоматического защитного выключателя, ТР не размыкает силовые цепи питания, а разрывает цепь самоподхвата магнитного пускателя. Нормально замкнутый контакт защитного устройства действует аналогично кнопке «Стоп», и подключается последовательно с ней.

Тандем контактора и теплового реле

Поскольку тепловое реле подключается сразу же после магнитного пускателя, то нет нужды дублировать функции контактора при аварийном размыкании цепей. При таком выборе реализации защиты достигается ощутимая экономия материала для контактных силовых групп – значительно проще коммутировать небольшой ток в одной цепи управления, чем разрывать три контакта под большой токовой нагрузкой.

Тепловое реле не разрывает силовые цепи напрямую, а лишь выдает сигнал управления в случае превышения нагрузки – данную особенность следует помнить при подключении устройства.

Как правило, в тепловом реле присутствует два контакта – нормально замкнутый и нормально разомкнутый. При срабатывании устройства данные контакты одновременно меняют свое состояние.

Нормально разомкнутые и нормально замкнутые контакты

Характеристики теплового реле

Выбор ТР следует производить, сопоставляя типичные характеристики данного защитного устройства соответственно имеющейся нагрузке и условиям эксплуатации электродвигателя:

  • Номинальный ток защиты;
  • Предел регулировки уставки тока срабатывания;
  • Напряжение силовой цепи;
  • Количество и тип вспомогательных контактов управления;
  • Мощность коммутации контактов управления;
  • Порог срабатывания (коэффициент отношения к номинальному току)
  • Чувствительность к асимметричности фаз;
  • Класс отключения;

Схема подключения

В большинстве схем при подключениях теплового реле к магнитному пускателю используется нормально замкнутый контакт, который подключается последовательно с кнопкой «Стоп» пульта управления. Обозначением данного контакта является сочетание букв NC (normal connected) или НЗ (нормально замкнутый).

Схема подключения ТР к контактору в магнитном пускателе

Нормально разомкнутый контакт (NO) при данной схеме подключения может использоваться для сигнализации о срабатывании тепловой защиты электродвигателя. В более сложных автоматических схемах управления он может использоваться для инициализации аварийного алгоритма останова конвейерной цепи оборудования.

Для самостоятельного подключения теплового реле для защиты электродвигателя, не имея опыта работы с подобным оборудованием, будет правильно сначала ознакомиться с принципом работы и подключением магнитного пускателя на данном сайте.

В независимости от типа подключения электродвигателя и количества контакторов магнитного пускателя (прямой и реверсивный запуск), внедрение теплового реле в схему является достаточно простым. Оно устанавливается после контакторов перед электродвигателем, а размыкающийся (нормально замкнутый) контакт подключается последовательно с кнопкой «Стоп».

Тепловое реле в схеме реверсивного подключения контакторов

Элементы подключения, управления и настройки ТР

По ГОСТ клеммы контактов управления имеют обозначение 95-96 (нормально замкнутый) и 97-98 (нормально разомкнутый).

На данном рисунке показана схема теплового реле с обозначением выводов и элементов управления. Кнопка «Тестирование служит для проверки работоспособности механизма.

Кнопка «Стоп» служит для ручного выключения устройства защиты.

Функция «Повторный взвод» позволяет заново запустить электродвигатель после срабатывания защиты. Многие ТР поддерживают два варианта – автоматический (возвращение в исходное состояние происходит после остывания биметаллических пластин) и ручной взвод, требующий непосредственного действия оператора для нажатия соответствующей кнопки.

Управление повторным взводом

Уставка тока срабатывания позволяет сделать выбор значения перегрузки, при котором реле отключит катушку контактора, который обесточит электродвигатель.

Регулировка уставки срабатывания относительно метки

При выборе устройства защиты нужно помнить, что по аналогии с автоматическим выключателем у тепловых реле также имеется времятоковая характеристика. То есть, при превышении уставленного тока на некоторое значение, отключение произойдет не сразу, а по истечению некоего времени. Быстрота срабатывания будет зависеть от кратности превышения тока уставки.

Графики времятоковой характеристики

Разные графики соответствуют характеру нагрузки, количеству фаз и температурному режиму.

Как видно из графиков, при двукратном превышении нагрузки может пройти больше минуты времени, прежде, чем защита сработает. Если же выбрать ТР недостаточно мощным, то двигатель может не успеть разогнаться при многократном стартовом превышении уставки тока перегрузки.

Также у некоторых тепловых реле имеется флажок срабатывания защиты.

Защитное закрывающееся стекло служит одновременно для нанесения маркировки и защиты настроек при помощи пломбирования,

Защита настроек и маркировка

Блок: 2/3 | Кол-во символов: 4872

Источник: http://infoelectrik.ru/elektrotexnicheskie-ustrojstva/podklyuchenie-teplovogo-rele.html

Основные характеристики

Каждое ТР имеет индивидуальные технические характеристики (ТХ). Реле нужно выбирать согласно характеристикам по нагрузке и условиям применения при работе электродвигателя или другого потребителя электроэнергии:

  1. Значение Iн.
  2. Диапазон регулировки I срабатывания.
  3. Напряжение.
  4. Дополнительное управление работой ТР.
  5. Мощность.
  6. Граница срабатывания.
  7. Чувствительность к фазному перекосу.
  8. Класс отключения.

Номинальное значение тока – значение I, на которое рассчитано ТР. Выбирается по значению Iн потребителя, к которому непосредственно подключается. Кроме того, нужно выбирать с запасом по Iн и руководствоваться следующей формулой: Iнр = 1.5 * Iнд, где Iнр – Iн ТР, который должен быть больше номинального тока двигателя (Iнд) в 1.5 раза.

Граница регулировки I срабатывания является одним из важных параметров устройства термозащиты. Обозначение этого параметра является диапазоном регулировки значения Iн. Напряжение – значение силового напряжения, на которое рассчитаны контакты реле; при превышении допустимой величины произойдет выход из строя устройства.

Некоторые виды реле снабжены отдельными контактами для управления работой устройства и потребителя. Мощность – это один из основных параметров ТР, которое определяет выходную мощность подключенного потребителя или группы потребителей.

Граница срабатывания или порог срабатывания является коэффициентом, зависящим от номинального тока. В основном его значение находится в диапазоне от 1,1 до 1,5.

Чувствительность к фазному перекосу (асимметрии фаз) показывает процентное соотношение фазы с перекосом к фазе, по которой протекает номинальный ток необходимой величины.

Класс отключения – параметр, представляющий среднее время срабатывания ТР в зависимости от кратности тока уставки.

Основной характеристикой, по которой нужно выбирать ТР, является зависимость времени срабатывания от тока нагрузки.

Блок: 3/6 | Кол-во символов: 1878
Источник: https://odinelectric.ru/equipment/printsip-raboty-i-shema-podklyucheniya-teplovogo-rele

Подключение и установка ТР

Как правило, современные тепловые реле имеют защиту по всем трем фазам, в отличие от распространенных в советское время тепловых реле, имеющих обозначения ТРН, где контроль тока производился только в двух проводах, идущих к электродвигателю.

Тепловое реле ТРН с контролем тока только в двух фазах

По типу подключения тепловые реле можно разделить на две разновидности:

  • Устанавливаемые рядом с магнитным пускателем, и подключаемые при помощи перемычек (ТРН, РТТ).Реле РТТ, подключенное при помощи жестких пластинчатых перемычек
  • Монтируемые непосредственно на контактор магнитного пускателя (современные модели).Реле устанавливается непосредственно на контакторе

Входные токопроводящие выводы в современных моделях одновременно служат частью крепежа теплового реле к контактору магнитного пускателя. Они вставляются в выходные клеммы контактора.

Подключение теплового реле к контактору

Как видно из фото внизу, в некоторых пределах можно изменять расстояние между выводами, чтобы подстраиваться под различные виды контакторов.

Подстройка выводов под клеммы контактора

Для дополнительной фиксации ТР предусмотрены соответствующие выступы на самом устройстве и на контакторе.

Элемент крепежа на корпусе теплового релеСпециальный паз крепления на контакторе

Механика теплового реле

Существует много разновидностей ТР, но принцип действия у них одинаков – при протекании увеличенного тока через биметаллические пластины они искривляются и воздействуют через систему рычагов на спусковой механизм контактных групп.

Рассмотрим для примера устройство теплового реле LR2 D1314 фирмы «Schneider Electric».

ТР в разобранном виде

Условно данное устройство можно разделить на две части: блок биметаллических пластин и система рычагов с контактными группами. Биметаллические пластины состоят из двух полос различных сплавов, соединенных в одну конструкцию, имеющих разный тепловой коэффициент расширения.

Изгибающаяся биметаллическая пластина

Благодаря неравномерному расширению при больших значениях тока данная конструкция расширяется неравномерно, что заставляет ее изгибаться. При этом один конец пластины зафиксирован неподвижно, а подвижная часть воздействует на систему рычагов.

Система рычагов

Если убрать рычаги, то будут видны контактные группы теплового реле.

Коммутационный узел ТР

Не рекомендуется сразу же включать тепловое реле после срабатывания и заново запускать электродвигатель – пластинам нужно время, чтобы остыть и вернуться в первоначальное состояние. К тому же, будет благоразумней сначала найти причину срабатывания защиты.

 

Блок: 3/3 | Кол-во символов: 2561
Источник: http://infoelectrik.ru/elektrotexnicheskie-ustrojstva/podklyuchenie-teplovogo-rele.html

Назначение

Сразу же хотелось бы сказать о том, что существуют различные виды и типы тепловых реле и соответственно область применения каждой классификации своя собственная. Вкратце поговорим о назначении основных разновидностей устройств.

РТЛ — трехфазное, предназначено для защиты электродвигателя от перегрузок, перекоса фаз, затянутого пуска или заклинивания ротора. Крепятся на контакты пускатели ПМЛ или как самостоятельное устройство с клеммами КРЛ.

РТТ — на три фазы, предназначены для защиты короткозамкнутых двигателей от токов перегрузки, перекоса фаз, заклинивания ротора двигателя, затянутого запуска механизма. Может крепиться на ПМА и ПМЕ пускатели, а также самостоятельно устанавливаться на панели.

РТИ — защищают электромотор от перегрузки, асимметрии фаз, длинного пуска и заклинивания машины. Трехфазное тепловое реле, крепится на пускатели серии КМТ и КМИ.

ТРН — двухфазное реле, контролирует режим работы и пуска, имеет только ручной возврат контактов, работа устройства мало зависит от температуры окружающей среды.

Твердотельные трехфазное реле, не имеют подвижных деталей, не зависят от состояния окружающей среды, применяют во взрывоопасных местах. Следит за током нагрузки, разгоном, обрывом фаз, заклиниванием механизма.

РТК — контроль температуры происходит щупом, расположенным в корпусе электроустановки. Представляет собой термо реле, и контролирует только один параметр.

РТЭ — реле плавления сплава, электропроводящий проводник выполнен из сплава металла, при определенной температуре плавится и механически разрывает цепь. Данное тепловое реле встраивается непосредственно в контролируемое устройство.

Как видно из нашей статьи, существует большое разнообразие контроля за состоянием электроустановок, отличающихся типом и внешним видом, но одинаково выполняющих защиту электрооборудования.

Блок: 4/4 | Кол-во символов: 2016
Источник: https://samelectrik.ru/chto-takoe-teplovoe-rele.html

Процесс подключения

Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель.

Блок: 4/5 | Кол-во символов: 2751
Источник: https://2proraba.com/elektrika/teplovoe-rele-dlya-elektrodvigatelya-sxema-podklyucheniya.html

Резюме

Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя. С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты. Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.

Блок: 5/5 | Кол-во символов: 711
Источник: https://2proraba.com/elektrika/teplovoe-rele-dlya-elektrodvigatelya-sxema-podklyucheniya.html

Рекомендации по выбору

При выборе прибора необходимо ориентироваться на область его использования, а также имеющийся функционал. Проблем с поиском нужного защитного устройства практически никогда не возникает. Особое внимание в это время нужно уделить следующим моментам:

  • Однофазные ТР с автоматическим сбросом возвращаются в исходное состояние по истечении определенного отрезка времени. Если электродвигатель в этот момент еще перегружен, прибор сработает повторно.
  • Реле, имеющие систему компенсации температуры окружающей среды, способны работать в широком температурном диапазоне.
  • Некоторые модели приборов обладают способностью контролировать состояние фаз. Они сработают не только при перегреве мотора, но также, если был обнаружен обрыв фаз, их разворот либо дисбаланс.
  • Существуют ТР, способные срабатывать при недогрузке электрооборудования. Такая ситуация возможна, например, когда насос начал функционировать всухую.

Стоимость реле находится в широком ценовом диапазоне. Во время выбора прибора нужно внимательно изучить его технические характеристики. В паспорте можно также найти и рекомендации по подключению ТР. Впрочем, этот процесс не является сложным, и проблемы возникают крайне редко.

Блок: 6/6 | Кол-во символов: 1216
Источник: https://220v.guru/elementy-elektriki/princip-raboty-i-podklyuchenie-teplovogo-rele-dlya-elektrodvigatelya.html

Кол-во блоков: 10 | Общее кол-во символов: 17696
Количество использованных доноров: 5

kachestvolife.club

Подключение теплового реле. Основная функция и принцип работы

Для защиты электродвигателя от недопустимых длительных токовых перегрузок, которые могут возникнуть при увеличении нагрузки на вал или потери одной из фаз применяется тепловое защитное реле. Также защитное реле защитит обмотки от дальнейшего разрушения при возникшем междувитковом замыкании.

Тепловым данное реле (сокращенно ТР) называют из-за принципа действия, который схож с работой автоматического выключателя, в котором изгибающиеся при нагреве электрическим током биметаллические пластины разрывают электрическую цепь, надавливая на спусковой механизм.

Особенности теплового реле

Но, в отличие от автоматического защитного выключателя, ТР не размыкает силовые цепи питания, а разрывает цепь самоподхвата магнитного пускателя. Нормально замкнутый контакт защитного устройства действует аналогично кнопке «Стоп», и подключается последовательно с ней.

Тандем контактора и теплового реле

Поскольку тепловое реле подключается сразу же после магнитного пускателя, то нет нужды дублировать функции контактора при аварийном размыкании цепей. При таком выборе реализации защиты достигается ощутимая экономия материала для контактных силовых групп – значительно проще коммутировать небольшой ток в одной цепи управления, чем разрывать три контакта под большой токовой нагрузкой.

Тепловое реле не разрывает силовые цепи напрямую, а лишь выдает сигнал управления в случае превышения нагрузки – данную особенность следует помнить при подключении устройства.

Как правило, в тепловом реле присутствует два контакта – нормально замкнутый и нормально разомкнутый. При срабатывании устройства данные контакты одновременно меняют свое состояние.

Нормально разомкнутые и нормально замкнутые контакты

Характеристики теплового реле

Выбор ТР следует производить, сопоставляя типичные характеристики данного защитного устройства соответственно имеющейся нагрузке и условиям эксплуатации электродвигателя:

  • Номинальный ток защиты;
  • Предел регулировки уставки тока срабатывания;
  • Напряжение силовой цепи;
  • Количество и тип вспомогательных контактов управления;
  • Мощность коммутации контактов управления;
  • Порог срабатывания (коэффициент отношения к номинальному току)
  • Чувствительность к асимметричности фаз;
  • Класс отключения;

Схема подключения

В большинстве схем при подключениях теплового реле к магнитному пускателю используется нормально замкнутый контакт, который подключается последовательно с кнопкой «Стоп» пульта управления. Обозначением данного контакта является сочетание букв NC (normal connected) или НЗ (нормально замкнутый).

Схема подключения ТР к контактору в магнитном пускателе

Нормально разомкнутый контакт (NO) при данной схеме подключения может использоваться для сигнализации о срабатывании тепловой защиты электродвигателя. В более сложных автоматических схемах управления он может использоваться для инициализации аварийного алгоритма останова конвейерной цепи оборудования.

Для самостоятельного подключения теплового реле для защиты электродвигателя, не имея опыта работы с подобным оборудованием, будет правильно сначала ознакомиться с принципом работы и подключением магнитного пускателя на данном сайте.

В независимости от типа подключения электродвигателя и количества контакторов магнитного пускателя (прямой и реверсивный запуск), внедрение теплового реле в схему является достаточно простым. Оно устанавливается после контакторов перед электродвигателем, а размыкающийся (нормально замкнутый) контакт подключается последовательно с кнопкой «Стоп».

Тепловое реле в схеме реверсивного подключения контакторов
Элементы подключения, управления и настройки ТР

По ГОСТ клеммы контактов управления имеют обозначение 95-96 (нормально замкнутый) и 97-98 (нормально разомкнутый).

На данном рисунке показана схема теплового реле с обозначением выводов и элементов управления. Кнопка «Тестирование служит для проверки работоспособности механизма.

Кнопка «Стоп» служит для ручного выключения устройства защиты.

Функция «Повторный взвод» позволяет заново запустить электродвигатель после срабатывания защиты. Многие ТР поддерживают два варианта – автоматический (возвращение в исходное состояние происходит после остывания биметаллических пластин) и ручной взвод, требующий непосредственного действия оператора для нажатия соответствующей кнопки.

Управление повторным взводом

Уставка тока срабатывания позволяет сделать выбор значения перегрузки, при котором реле отключит катушку контактора, который обесточит электродвигатель.

Регулировка уставки срабатывания относительно метки

При выборе устройства защиты нужно помнить, что по аналогии с автоматическим выключателем у тепловых реле также имеется времятоковая характеристика. То есть, при превышении уставленного тока на некоторое значение, отключение произойдет не сразу, а по истечению некоего времени. Быстрота срабатывания будет зависеть от кратности превышения тока уставки.

Графики времятоковой характеристики

Разные графики соответствуют характеру нагрузки, количеству фаз и температурному режиму.

Как видно из графиков, при двукратном превышении нагрузки может пройти больше минуты времени, прежде, чем защита сработает. Если же выбрать ТР недостаточно мощным, то двигатель может не успеть разогнаться при многократном стартовом превышении уставки тока перегрузки.

Также у некоторых тепловых реле имеется флажок срабатывания защиты.

Защитное закрывающееся стекло служит одновременно для нанесения маркировки и защиты настроек при помощи пломбирования,

Защита настроек и маркировка

Подключение и установка ТР

Как правило, современные тепловые реле имеют защиту по всем трем фазам, в отличие от распространенных в советское время тепловых реле, имеющих обозначения ТРН, где контроль тока производился только в двух проводах, идущих к электродвигателю.

Тепловое реле ТРН с контролем тока только в двух фазах

По типу подключения тепловые реле можно разделить на две разновидности:

  • Устанавливаемые рядом с магнитным пускателем, и подключаемые при помощи перемычек (ТРН, РТТ).

    Реле РТТ, подключенное при помощи жестких пластинчатых перемычек

  • Монтируемые непосредственно на контактор магнитного пускателя (современные модели).

    Реле устанавливается непосредственно на контакторе

Входные токопроводящие выводы в современных моделях одновременно служат частью крепежа теплового реле к контактору магнитного пускателя. Они вставляются в выходные клеммы контактора.

Подключение теплового реле к контактору

Как видно из фото внизу, в некоторых пределах можно изменять расстояние между выводами, чтобы подстраиваться под различные виды контакторов.

Подстройка выводов под клеммы контактора

Для дополнительной фиксации ТР предусмотрены соответствующие выступы на самом устройстве и на контакторе.

Элемент крепежа на корпусе теплового релеСпециальный паз крепления на контакторе

Механика теплового реле

Существует много разновидностей ТР, но принцип действия у них одинаков – при протекании увеличенного тока через биметаллические пластины они искривляются и воздействуют через систему рычагов на спусковой механизм контактных групп.

Рассмотрим для примера устройство теплового реле LR2 D1314 фирмы «Schneider Electric».

ТР в разобранном виде

Условно данное устройство можно разделить на две части: блок биметаллических пластин и система рычагов с контактными группами. Биметаллические пластины состоят из двух полос различных сплавов, соединенных в одну конструкцию, имеющих разный тепловой коэффициент расширения.

Изгибающаяся биметаллическая пластина

Благодаря неравномерному расширению при больших значениях тока данная конструкция расширяется неравномерно, что заставляет ее изгибаться. При этом один конец пластины зафиксирован неподвижно, а подвижная часть воздействует на систему рычагов.

Система рычагов

Если убрать рычаги, то будут видны контактные группы теплового реле.

Коммутационный узел ТР

Не рекомендуется сразу же включать тепловое реле после срабатывания и заново запускать электродвигатель – пластинам нужно время, чтобы остыть и вернуться в первоначальное состояние. К тому же, будет благоразумней сначала найти причину срабатывания защиты.


infoelectrik.ru

Тепловое реле для электродвигателя

Содержание:
  1. Как работает тепловое реле защиты электродвигателя
  2. Причины срабатывания
  3. Схема подключения
  4. Как подобрать тепловое реле для электродвигателя

В течение длительного рабочего процесса у любых электродвигателей перегреваются обмотки, портится изоляционное покрытие. Подобные ситуации нередко приводят к межвитковым замыканиям, выгоранию полюсов и другим негативным последствиям, требующим срочного дорогостоящего ремонта. Избежать этого помогает тепловое реле для электродвигателя, установленное в цепь питания и обеспечивающее надежную защиту от перегрева. Данный прибор осуществляет контроль над величиной тока, и в случае длительного отклонения от номинала установки производит размыкание контактов. Таким образом, цепь управления остается без питания, а пусковое устройство размыкается. Тепловое реле надежно защищает агрегат от механических перегрузок, заклинивания ротора, перекоса фаз и других аварийных ситуаций.

Как работает тепловое реле защиты электродвигателя

Общее устройство всех тепловых реле включает в себя одни и те же детали, отличающиеся лишь небольшими конструктивными особенностями. Основной элемент представляет собой чувствительную биметаллическую пластину, состоящую из двух металлических сплавов – железа с никелем и железа с латунью. Они соединяются друг с другом с помощью пайки и обладают различными коэффициентами теплового расширения.

Данный коэффициент указывает на степень удлинения металлической пластины при ее нагреве. Этот показатель составляет для латуни 18,7, а для сплава железа с никелем – 1,5. В результате, длина латуни во время нагревания увеличивается значительно быстрее, давая тем самым толчок для изгиба биметаллической пластины в свою сторону. Данное свойство лежит в основе работы всех тепловых реле.

Внутри корпуса прибора находятся биметаллическая пластина с нагревательным элементом, толкатель, исполнительная пластина и пружина замыкающего контакта. Температурный компенсатор состоит из пластины и регулировочного винта. Кроме того, тепловое реле оборудуется контактами, эксцентриком с движком уставки тока срабатывания и кнопкой возврата прибора в рабочее состояние.

Причины срабатывания теплового реле электродвигателя

Под действием электрического тока, протекающего по проводнику, происходит его нагревание. С возрастанием силы тока в проводнике с одним и тем же поперечным сечением, увеличивается и его нагрев, то есть происходит рост нагрузки. В связи с этим, причины срабатывания заключаются преимущественно в повышении температуры.

Эта же тепловая энергия нагревает и биметаллическую пластину, которая под влиянием температуры изгибается и соприкасается с исполнительной пластиной температурного компенсатора через толкатель. В свою очередь, эта пластина расцепляет замкнутые контакты в магнитном пускателе и приводит в рабочее состояние кнопку включения реле. Сам температурный компенсатор является своеобразным противовесом, снижающим влияние дополнительного нагрева под действием температуры окружающей среды. Изгиб пластины происходит в противоположную сторону, а для его регулировки используется специальный винт.

Эксцентрик или регулятор тока срабатывания оборудован шкалой на 5 делений влево и 5 делений вправо, для соответствующего уменьшения и увеличения тока относительно центральной риски. Чтобы отрегулировать ток срабатывания, необходимо изменить зазор между исполнительной пластиной и толкателем. Изменение зазора выполняется движком эксцентрика, воздействующим на пластину температурного компенсатора. После срабатывания теплового реле специалисты рекомендуют выдержать временную паузу, чтобы тепловой расцепитель мог остыть. Следует тщательно осмотреть электродвигатель и найти причину срабатывания прибора.

Тепловое реле для электродвигателя схема подключения

Непосредственное подключение тепловых реле к контакторы осуществляется напрямую с помощью штыревых контактов. После подключения, в зависимости от величины тока, протекающего в цепи, необходимо отрегулировать уставки срабатывания колесиком поворотного регулятора. Нужный ток уставки обозначен на шкале специальными рисками, нанесенными на корпус прибора.

Панель управления реле оборудована кнопкой TEST, с помощью которой проверяется работоспособность устройства путем имитации срабатывания защиты. Кнопка STOP красного цвета позволяет принудительно разомкнуть нормально замкнутый контакт. При этом отключается питание, поступающее на катушку контактора, что в свою очередь приводит к отключению нагрузки. Примерно по такой схеме подключаются и работают все тепловые реле для защиты электродвигателей и их модификации.

Для работы теплового реле предусмотрен ручной или автоматический режим, задаваемый при помощи поворотного переключателя RESET. Автоматический режим предполагает утопленный выключатель и автоматическое включение реле после срабатывания, когда остынет биметаллическая пластина. Перевод прибора в ручной режим осуществляется поворотом переключателя против часовой стрелки.

Схема подключения с нормально замкнутыми контактами используется для управления электродвигателем с помощью магнитного пускателя. К силовым контактам теплового реле выполняется подключение лишь двух фаз, а третья фаза подключается напрямую к двигателю. В работе современных устройств принимают участие все три фазы совместно с дополнительным нормально замкнутым контактом реле. При возникновении перегрузок он размыкается и разрывает цепь питания контактора.

Выбор теплового реле для электродвигателя

В условиях разнообразия конструкций и моделей электрических двигателей и соответствующих тепловых реле, выбор наиболее подходящего сочетания может вызвать определенные затруднения, особенно у неспециалистов. Для того чтобы выбрать наиболее оптимальное устройство, отвечающее всем требованиям, необходимо придерживаться определенных рекомендаций.

Основным требованием ко всем тепловым реле является соответствие их номинала току оборудования, которое требуется защитить. Сами устройства тоже должны быть защищены от коротких замыканий, поэтому в схемах подключения используются предохранители.

Необходимо заранее установить условия эксплуатации тепловых реле, и в каких пределах они могут применяться. Если в системе защиты велика вероятность работы электродвигателя в аварийных режимах, не связанных с ростом потребления электроэнергии, в этих случаях тепловое реле будет бесполезным и не обеспечит надежную защиту. Для этого в обмотку статора электродвигателя включаются элементы специальной тепловой защиты.

Если же тепловая защита двигателя не связана с какими-либо специальными требованиями, решение вопроса как подобрать тепловое реле для электродвигателя, таблица поможет выбрать наиболее подходящее устройство с оптимальными техническими характеристиками.

Защитное устройство выбирается с учетом максимального рабочего тока реле, который не должен быть меньше, чем номинальный ток защищаемого электродвигателя. Тем не менее, рекомендуется, чтобы установочный ток реле незначительно превышал номинал агрегата.

Следует обращать внимание и на возможность регулировок тока с большим запасом в обе стороны – увеличения и уменьшения. В этом случае обеспечивается более надежная и управляемая защита.

electric-220.ru

Подключение теплового реле: схема, видео, фото

У каждого мастера на все руки имеется пара задумок соорудить какой-либо станок, точильный, токарный или подъемник. Сегодня поговорим о важном элементе электропривода — тепловом реле, которое еще называют токовым или теплушкой. Данное устройство реагирует на величину тока через него проходящее и в случае превышения установленного значения производит переключение контактов, отключая привод или сигнализируя о внештатной ситуации. В одной из наших статей мы уже рассматривали типы теплушек и принцип их работы, а также по каким параметрам происходит выбор теплового реле. В этой статье мы рассмотрим, как производится установка и подключение теплового реле своими руками. Инструкция будет предоставлена со схемами, фото и видео примерами, чтобы вам были понятны все нюансы монтажа.

Что важно знать?

Чтобы не повторятся, и не нагромождать лишний текст, кратко изложу смысл. Токовое реле является обязательным атрибутом системы управления электроприводом. Данное устройство реагирует на ток, который проходит через него на двигатель. Оно не защищает электродвигатель от короткого замыкания, а только оберегает от работы с повышенным током, возникающим при перегрузке или нештатной работе механизма (например, клин, заедание, затирание и прочие непредвиденные моменты).

При выборе теплового реле руководствуются паспортными данными электродвигателя, которые можно взять с таблички на его корпусе, как на фото ниже:


Как видно на бирке, номинальный ток электродвигателя 13.6 / 7.8 Ампера, для напряжений 220 и 380 Вольт. Согласно правилам эксплуатации, тепловое реле необходимо выбирать на 10-20 % больше номинального параметра. От правильного выбора данного критерия зависит способность теплушки вовремя сработать и не допустить порчу электропривода. При расчете тока установки для приведенного на бирке номинала на 7.8 А, у нас получился результат 9.4 Ампера для токовой уставки аппарата.

При выборе в каталоге продукции нужно учесть, что данный номинал не был крайним на шкале регулировки уставки, поэтому желательно подобрать значение ближе к центру регулируемых параметров.К примеру, как на реле РТИ-1314:

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Реле снабжены двумя группами контактов нормально замкнутой и нормально открытой группой, которые подписаны на корпусе 96-95, 97-98. На картинке ниже структурная схема обозначения по ГОСТу:Давайте разберемся каким образом собрать схему управления которая бы отключала двигатель от сети при возникновении аварийной ситуации перегрузки или обрыва фазы. Из нашей статьи про подключение двигателя через магнитный пускатель, вы уже узнали некоторые нюансы. Если еще не успели ознакомится то просто перейдите по ссылке.

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

samelectrik.ru

устройство, принцип работы, виды и схема подключения

Защита электродвигателей, магнитных пускателей и прочей аппаратуры от нагрузок, вызывающих перегрев, осуществляется при помощи специальных устройств тепловой защиты. Для того чтобы осуществить правильный выбор модели тепловой защиты, нужно знать ее принцип работы, устройство, а также основные критерии выбора.

Устройство и принцип работы

Термореле (ТР) предназначено для обеспечения защиты электродвигателей от перегрева и преждевременного выхода из строя. При долговременном запуске электродвигатель подвержен токовым перегрузкам, т.к. во время пуска происходит потребление семикратного значения тока, приводящего к нагреву обмоток. Номинальный ток (Iн) – сила тока, потребляемая двигателем при работе. Кроме того, ТР увеличивают срок эксплуатации электрооборудования.

Тепловое реле, устройство которого составляют простейшие элементы:

  1. Термочувствительный элемент.
  2. Контакт с самовозвратом.
  3. Контакты.
  4. Пружина.
  5. Биметаллический проводник в виде пластины.
  6. Кнопка.
  7. Регулятор тока уставки.

Термочувствительный элемент является датчиком температуры, служащий для передачи тепла на биметаллическую пластину или другой элемент тепловой защиты. Контакт с самовозвратом позволяет при нагреве мгновенно разомкнуть цепь питания электрического потребителя для избежания его перегрева.

Пластина состоит из двух видов металла (биметалл), причем один из них обладает высоким температурным коэффициентом расширения (Kр). Они скреплены между собой при помощи сварки или проката при высоких значениях температуры. При нагреве изгибается пластина тепловой защиты в сторону материала с меньшим Kр, а после остывания пластина принимает исходное положение. В основном пластины изготавливаются из инвара (меньшее значение Kр) и немагнитной или хромоникелевой стали (больший Kр).

Кнопка включает ТР, регулятор тока уставки необходим для установки оптимального значения I для потребителя, причем его превышение приведет к срабатыванию ТР.

Принцип действия ТР основан на законе Джоуля-Ленца. Ток представляет собой направленное движение заряженных частиц, которые сталкиваются с атомами кристаллической решетки проводника (эта величина является сопротивление и обозначается R). Это взаимодействие вызывает появление тепловой энергии, получаемой из электрической. Зависимость длительности протекания от температуры проводника определяется по закону Джоуля-Ленца.

Формулировка этого закона следующая: при прохождении I по проводнику количество теплоты Q, выделяемой током, при взаимодействии с атомами кристаллической решетки проводника прямо пропорционально квадрату I, величине R проводника и времени воздействия тока на проводник. Математически можно записать следующим образом: Q = a * I * I * R * t, где a – коэффициент преобразования, I – ток, протекающий через искомый проводник, R – величина сопротивления и t – время протекания I.

При коэффициенте a = 1 результат расчета измеряется в джоулях, а при условии, что a = 0.24, результат измеряется в калориях.

Нагрев биметаллического материала происходит двумя способами. При первом случае I проходит через биметалл, а во втором – через обмотку. Изоляция обмотки замедляет поток тепловой энергии. Термореле нагревается сильнее при высоких значениях I, чем при контакте с термочувствительным элементом. Происходит задержка сигнала срабатывания контактов. В современных моделях ТР используются оба принципа.

Нагрев биметаллической пластины теплового устройства защиты производится при подключенной нагрузке. Комбинированный нагрев позволяет получить устройство с оптимальными характеристиками. Пластина нагревается при помощи тепла, выделяемого I при прохождении через нее, и специальным нагревателем при I нагрузки. Во время нагрева биметаллическая пластина деформируется и воздействует на контакт с самовозвратом.

Основные характеристики

Каждое ТР имеет индивидуальные технические характеристики (ТХ). Реле нужно выбирать согласно характеристикам по нагрузке и условиям применения при работе электродвигателя или другого потребителя электроэнергии:

  1. Значение Iн.
  2. Диапазон регулировки I срабатывания.
  3. Напряжение.
  4. Дополнительное управление работой ТР.
  5. Мощность.
  6. Граница срабатывания.
  7. Чувствительность к фазному перекосу.
  8. Класс отключения.

Номинальное значение тока – значение I, на которое рассчитано ТР. Выбирается по значению Iн потребителя, к которому непосредственно подключается. Кроме того, нужно выбирать с запасом по Iн и руководствоваться следующей формулой: Iнр = 1.5 * Iнд, где Iнр – Iн ТР, который должен быть больше номинального тока двигателя (Iнд) в 1.5 раза.

Граница регулировки I срабатывания является одним из важных параметров устройства термозащиты. Обозначение этого параметра является диапазоном регулировки значения Iн. Напряжение – значение силового напряжения, на которое рассчитаны контакты реле; при превышении допустимой величины произойдет выход из строя устройства.

Некоторые виды реле снабжены отдельными контактами для управления работой устройства и потребителя. Мощность – это один из основных параметров ТР, которое определяет выходную мощность подключенного потребителя или группы потребителей.

Граница срабатывания или порог срабатывания является коэффициентом, зависящим от номинального тока. В основном его значение находится в диапазоне от 1,1 до 1,5.

Чувствительность к фазному перекосу (асимметрии фаз) показывает процентное соотношение фазы с перекосом к фазе, по которой протекает номинальный ток необходимой величины.

Класс отключения – параметр, представляющий среднее время срабатывания ТР в зависимости от кратности тока уставки.

Основной характеристикой, по которой нужно выбирать ТР, является зависимость времени срабатывания от тока нагрузки.

Схема подключения

Схемы подключения теплового реле в цепь могут существенно отличаться в зависимости от устройства. Однако ТР подключаются последовательным соединением с обмоткой двигателя или катушкой магнитного пускателя к нормально разомкнутому контакту, т.к. подключение такого рода позволяет защитить устройство от перегрузок. При превышении показателей потребления тока ТР отключает устройство от питания электросети.

В большинстве схем при подключении применяется постоянно разомкнутый контакт, который работает при последовательном соединении со стоповой кнопкой на управляющем пульте. В основном этот контакт маркируется буквами NC или Н3.

Нормально замкнутый контакт может применяться при подключении сигнализации о срабатывании защиты. Кроме того, в более сложных схемах этот контакт применяется для осуществления программного управления аварийной остановкой устройства с использованием микропроцессоров и микроконтроллеров.

Термореле подключить достаточно просто. Для этого нужно руководствоваться следующим принципом: ТР размещается после контакторов пускателя, но перед электродвигателем, а постоянно замкнутый контакт включается последовательным соединением со стоповой кнопкой.

Виды тепловых реле

Существует множество видов, на которые делятся тепловые реле:

  1. Биметаллические – РТЛ (ksd, lrf, lrd, lr, iek и ptlr).
  2. Твердотельные.
  3. Реле для осуществления контроля температурного режима устройства. Основные обозначения являются следующими: РТК, NR, TF, ERB и DU.
  4. Реле плавления сплава.

Биметаллические ТР обладают примитивной конструкцией и являются простыми устройствами.

Принцип действия теплового реле твердотельного типа существенно отличается от биметаллического типа. Твердотельное реле – электронное устройство, которое еще называется шнайдером и выполнено на радиоэлементах без механических контактов.

К ним относятся РТР и РТИ ИЭК, которые вычисляют средние температуры электродвигателя путем мониторинга его пускового и Iн. Основной особенностью этих реле является способность противостоять искрам, т.е. они могут использоваться во взрывоопасных средах. Этот тип реле быстрее по времени срабатывания и легче регулируется.

РТК предназначены для контроля температурного режима электродвигателя или другого устройства при помощи термистора или теплового сопротивления (зонда). При возрастании температуры до критического режима его сопротивление резко возрастает. Согласно закону Ома, при росте R уменьшается ток и потребитель отключается, т.к. его величины недостаточно для нормальной работы потребителя. Этот тип реле применяется в холодильниках и морозильных камерах.

Конструкция теплового реле плавления сплава существенно отличается от остальных моделей и состоит из следующих элементов:

  1. Обмотка нагревателя.
  2. Сплав, обладающий низкой температурой плавления (эвтектический).
  3. Механизм разрыва цепи.

Эвтектический сплав плавится при низкой температуре и защищает цепь питания потребителя, разрывая контакт. Это реле встраивается в устройство и применяется в стиральных машинах и автомобильной технике.

Подбор теплового реле производится при анализе ТХ и условий эксплуатации устройства, которое необходимо защитить от перегрева.

Как выбрать тепловое реле

Без сложных расчетов можно подобрать подходящий номинал электротеплового реле для двигателя по мощности (таблица технических характеристик устройств тепловой защиты).

Основная формула для расчета номинального тока ТР:

Iнтр = 1.5 * Iнд.

Например, нужно рассчитать Iн ТР для асинхронного электродвигателя мощностью 1,5 кВт, запитанного от трехфазной сети переменного напряжения со значением 380 В.

Это сделать достаточно просто. Для вычисления значения номинального тока двигателя необходимо воспользоваться формулой мощности:

P = I * U.

Отсюда, Iнд = P / U = 1500 / 380 ≈ 3.95 А. Значение номинального тока ТР вычисляется следующим образом: Iнтр = 1.5 * 3.95 ≈ 6 А.

Исходя из расчетов, выбирается ТР типа РТЛ-1014-2 с регулируемым диапазоном тока уставки от 7 до 10 А.

При повышенном значении температуры окружающей среды следует устанавливать значение уставки на минимальное. При пониженной температуре окружающей среды следует учитывать о возрастании нагрузки на обмотки статора двигателя и по возможности не включать. Если обстоятельства требуют использования электродвигателя при неблагоприятных условиях, то необходимо начинать настройку с низкого тока уставки, а после этого увеличивать его до необходимого значения.

odinelectric.ru

Тепловое реле РТИ 1312 — назначение, подключение

2016-07-01 Статьи  

Тепловое реле, или как его еще называют реле перегрузки — это коммутационное устройство, предназначенное для защиты электродвигателей от токовой перегрузки и в случае обрыва фазы. При превышении потребляемого двигателем тока нагрузки тепловое реле разомкнет цепь, отключит магнитный пускатель, тем самым защитив двигатель.

Тепловое реле не предназначено для защиты от короткого замыкания, поэтому в цепь питания перед магнитным пускателем устанавливают автоматический выключатель.

Принцип действия тепловых реле основан на тепловом действии тока, нагревающего биметаллическую пластину, состоящую из двух пластин, которые сварены из металлов с разными коэффициентами теплового расширения. При воздействии высокой температуры биметаллическая пластина изгибается в сторону металла с меньшим коэффициентом расширения. Достигнув определённой температуры, пластина давит на защёлку расцепителя и под действием пружины происходит размыкание подвижных контактов реле и следовательно размыкание всей электрической цепи.

Если реле находится в режиме автоматического включения, то после остывания биметаллического элемента исполнительный механизм и подвижные контакты реле вернутся в исходное положение. При этом электрическая цепь восстановится и контактор будет готов к работе. Если же реле находится в ручном режиме, то после каждого срабатывания перевод реле в исходное положение должен осуществляться ручным воздействием.

Выбирая тепловое реле, надо исходить из номинального тока нагрузки плюс небольшой запас. Рекомендуемое превышение тока срабатывания защиты составляет 5% — 20% от номинального тока. Например, если на шильде электродвигателя указан ток 16А, то выбираем тепловое реле с запасом примерно на 18-20А.

Таблица по выбору тепловых реле РТИ

На примере РТИ 1312 покажу устройство теплового реле.

РТИ1312 подключается к контактору непосредственно своими штыревыми контактами.

В зависимости от величины и типа пускателей первый и второй контакты теплового реле могут регулироваться вправо-влево. Сбоку на наклейке указано, какой тип контакторов подходит для данного реле.

В зависимости от величины протекающего тока в реле предусмотрена регулировка уставки срабатывания по току с помощью поворотного регулятора, расположенного на передней панели реле. Необходимый ток уставки выставляется вращением регулятора до совмещения нужного значения тока на шкале с риской на корпусе.

Рис.1 Передняя панель РТИ 1312

Также на панели управления расположена кнопка «TEST»,имитирующая срабатывание защиты реле и проверки его работоспособности. Выступающая красная кнопка «STOP»предназначена для принудительного размыкания нормально-замкнутого контакта NC. При этом питание на катушке контактора пропадает и нагрузка отключается.

Электротепловое реле может работать в ручном или автоматическом режиме. Режим работы реле задается поворотным переключателем «RESET». При автоматическом режиме переключатель утоплен и при срабатывании теплового реле оно автоматически включится после остывания биметаллической пластины. Для перевода реле в ручной режим необходимо повернуть переключатель против часовой стрелки.

Рис.2 Автоматический режим работы

Рис.3 Ручной режим работы

После того, как тепловое реле настроено, его можно закрыть прозрачной защитной крышкой и при необходимости опломбировать. Для этого на передней панели и крышке имеются специальные проушины.

Рис.4 Электрическая схема реле РТИ 1312

Входное напряжение подходит на контакты 1,3,5, а выходное напряжение на нагрузку поступает с контактов 2, 4, 6. Кнопки «TEST» и «RESET» меняют положение подвижных контактов реле, а кнопкой «STOP» меняется положение только нормально-замкнутого контакта (95 — 96).

Нормально-замкнутые контакты применяются в схемах управления электродвигателями через магнитный пускатель, а нормально-разомкнутые контакты — в основном в цепях сигнализации, например для вывода световой индикации на панель оператора.

Типичная схема подключения нереверсивного пускателя с тепловым реле выглядит так:

Подробнее о работе данной схемы вы можете прочитать в статье Магнитный пускатель, здесь же я хочу остановиться только на подключении теплового реле. Как видно из схемы на силовые контакты теплового реле подключаются только две фазы, а третья идет напрямую на двигатель. В современных тепловых реле задействованы все три фазы. Также используется дополнительный нормально-замкнутый контакт реле. При перегрузки двигателя он разомкнется и разорвет цепь питания катушки контактора.

При срабатывании теплового реле не стоит сразу же пытаться включать его снова, необходимо выждать время пока биметаллические пластины не остынут. Кроме того стоит определить причину срабатывания — проверить всю схему подключения, подтянуть контакты, проверить температуру двигателя, потребление тока по каждой фазе двигателя.

electric-blogger.ru

РЕЛЕ

   В этой статье мы поговорим о Реле. Реле это устройство, созданное для коммутации электрических цепей, которое может осуществляться в устройствах автоматики даже без помощи человека. Рассмотрим поподробнее, какие существуют типы, и для каких целей служат реле. Самое распространенное электромагнитное реле может быть в двух положениях: включено и отключено. Состоит реле из контактов, катушки, подвижного якоря, толкателя контактной системы, выводов реле. Фото катушки магнитного пускателя (реле), изображено на нижеприведенном рисунке, все катушки сделаны по одному принципу:

Катушка магнитного пускателя

   Катушка представляет собой медный провод, намотанный на оправке, и представляет собой, в простейшем случае цилиндр, внутри которого находиться сердечник электромагнита. При подаче напряжения на выводы катушки, она втягивает в себя сердечник по принципу электромагнита, при этом толкатель двигает (толкает) подвижную систему контактов, часть из которых при этом замыкается, а часть размыкается.

Рисунок строение реле

   Далее изображено схематическое обозначение основных деталей, из которых состоит реле и которые необходимы нам для понимания его работы:

Схематические обозначения деталей реле

 — Под цифрой один изображена катушка электромагнитного реле, так она обозначается на принципиальных схемах.
 — Под цифрой два изображен свободно разомкнутый контакт.
 — Под цифрой три изображен свободно замкнутый контакт. 

   А здесь изображены катушка и группы контактов вместе:

Схематическое обозначение катушки и контактов

   Контакты реле могут быть, как свободно замкнутыми, так и свободно разомкнутыми. Свободно замкнутые, это те контакты, которые в отсутствие напряжения на катушке реле находятся в замкнутом состоянии. Свободно разомкнутые контакты соответственно в отсутствие напряжения находятся в разомкнутом состоянии. Реле бывают рассчитанные на работу, как от переменного, так и от постоянного тока. На фотографии можно видеть маломощное электромагнитное реле:

Фотография электромагнитного реле

   Электромагнитные реле выпускаются на разную мощность, начиная от низковольтных малогабаритных реле, магнитных пускателей осуществляющих управление двигателями и цепями управления станков, до мощных контакторов (сделанных тоже по типу реле) осуществляющих коммутацию значительных токов и позволяющих управлять работой больших двигателей в насосных станциях, котельных и других объектах электроустановок. На рисунке ниже изображен магнитный пускатель серии ПМЕ:

Магнитный пускатель ПМЕ

   Подобные магнитные пускатели имеют катушку, рассчитанную на напряжение питания от 110 до 380 вольт для работы от сети переменного тока. Магнитные пускатели помимо силовых контактов, рассчитанных на большую нагрузку, имеют вспомогательные свободно замкнутые и свободно разомкнутые контакты. Вспомогательные контакты используются в цепях управления устройством, например токарным или сверлильным станком. Ниже на рисунке схема нереверсивного пуска электродвигателя.

Схема нереверсивного пуска электродвигателя

   В левой части, как нам известно, из приведенных выше схематических изображений, изображены под обозначением КМ три спаренных для одновременного включения силовых контактов включения электродвигателя. Прямоугольник, обозначенный КМ, это как мы знаем, обозначение катушки пускателя. Свободно разомкнутый контакт, находящийся под обозначением кнопки SBC (которая, кстати, является кнопкой включения электродвигателя) служит контактом так называемого «самоподхвата питания”. Рассмотрим вкратце эту схему, являющуюся типичной схемой нереверсивного включения двигателя (по такой схеме устроены приводы наждаков на производстве”:

Наждачная бабка фото

   После нажатия кнопки SBC питание подается на катушку пускателя (реле) КМ. Замыкаются силовые и вспомогательный контакт магнитного пускателя. При этом включается двигатель. Для какой цели нам служит вспомогательный контакт «самоподхвата питания” ? Если бы его не было и мы отпустили кнопку включения SBC, то катушка была бы у нас обесточена и двигатель остановился. Контакт «самоподхвата питания”, замыкаясь враз с силовыми контактами, шунтирует кнопку включения своими контактами и после её отпускания питание с катушки не пропадает, до тех пор, пока не будет нажата кнопка остановки двигателя SBT. Либо не будет обесточен станок или иное устройство, в котором будут установлены этот двигатель и схемы управления. Дальше изображен мощный контактор, устройство которого как уже писалось выше также основано на принципе действия электромагнитного реле:

Реле контактор

Тепловые реле

   Второй тип реле, также широко используемый в электротехнике, это тепловые реле. Фото теплового реле приводится на следующем рисунке:

Фото тепловое реле

   Эти реле очень часто используются в паре с электромагнитными реле (пускателями и контакторами) для защиты электрических цепей с электродвигателями от перегрузок. Если кто-нибудь обратил внимание, на рисунке, где была приведена схема нереверсивного пуска электродвигателя, присутствует и такое схематическое изображение:

Изображение на схеме тепловое реле

   Ниже на рисунке показано устройство теплового реле:

Рисунок устройство теплового реле

   Как устроено тепловое реле: в его состав входит биметаллическая пластина, сделанная из двух металлов имеющих различный коэффициент расширения. При нагреве биметаллическая пластина изгибается и освобождает пружину, которая размыкает силовые контакты теплового реле. Происходит это мгновенно, в целях быстрого гашения дуги. Так обозначается, на схемах (выделено красным) тепловое реле.

Обозначение на схема теплового реле

   На рисунке под цифрой 2 изображены контакты теплового реле, которые размыкаются при срабатывании теплового реле и обесточивают двигатель. Под цифрой 1 показаны контакты теплового реле, которые входят в цепь с биметаллической пластиной. После срабатывания реле можно включить заново, после остывания пластины нажав на толкатель, размещенный на тепловом реле.

Реле времени

   В радиоэлектронике и электротехнике часто используются так называемые реле времени:

Реле времени фото

   Такие реле предназначены для выдержки времени, по истечении которого включается другое устройство, подключенное к реле времени. Существуют и находят применение в электронике также герконовые реле. Герконы — это герметичные устройства управляемые магнитным воздействием. Фото герконового реле и его устройство приведено на картинках расположенных ниже:

Герконовое реле фото

   Современным трендом является использование твердотельных реле — где полностью отсутствуют подвижные части, а функцию коммутатора берут на себя силовые тиристоры или транзисторы, но об этом вы можете почитать здесь. Обзор подготовлен специально для сайта Радиосхемы, с вами был AKV.

   Форум по автоматике и реле 

   Обсудить статью РЕЛЕ




radioskot.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *