Закрыть

Ток напряжение мощность – , , : » :

Содержание

формулы расчета на 220в и 380в

Содержание:
  1. Для чего нужен расчет тока
  2. Расчет тока для однофазной сети
  3. Расчет тока для трехфазной сети
  4. Как определить мощность тока

Включение потребителей в бытовые или промышленные электрические сети с использованием кабеля меньшей мощности, чем это необходимо, может вызвать серьезные негативные последствия. В первую очередь это приведет к постоянному срабатыванию автоматических выключателей или перегоранию плавких предохранителей. При отсутствии защиты питающий провод или кабель может перегореть. В результате перегрева изоляция оплавляется, а между проводами возникает короткое замыкание. Чтобы избежать подобных ситуаций, необходимо заранее выполнить расчет тока по мощности и напряжению, в зависимости от имеющейся однофазной или трехфазной электрической сети.


Для чего нужен расчет тока

Расчет величины тока по мощности и напряжению выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы тока используется значение напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы тока выбирается сечение жил кабелей и проводов.

Если все потребители в доме или квартире известны заранее, то выполнение расчетов не представляет особой сложности. В дальнейшем проведение электромонтажных работ значительно упрощается. Таким же образом проводятся расчеты для кабелей, питающих промышленное оборудование, преимущественно электрические двигатели и другие механизмы.


Расчет тока для однофазной сети

Измерение силы тока производится в амперах. Для расчета мощности и напряжения используется формула I = P/U, в которой P является мощностью или полной электрической нагрузкой, измеряемой в ваттах. Данный параметр обязательно заносится в технический паспорт устройства. U – представляет собой напряжение рассчитываемой сети, измеряемое в вольтах.

Взаимосвязь силы тока и напряжения хорошо просматривается в таблице:

Электрические приборы и оборудование

Потребляемая мощность (кВт)

Сила тока (А)

Стиральные машины

2,0 – 2,5

9,0 – 11,4

Электрические плиты стационарные

4,5 – 8,5

20,5 – 38,6

Микроволновые печи

0,9 – 1,3

4,1 – 5,9

Посудомоечные машины

2,0 – 2,5

9,0 – 11,4

Холодильники, морозильные камеры

0,14 – 0,3

0,6 – 1,4

Электрический подогрев полов

0,8 – 1,4

3,6 – 6,4

Мясорубка электрическая

1,1 – 1,2

5,0 – 5,5

Чайник электрический

1,8 – 2,0

8,4 – 9,0

Таким образом, взаимосвязь мощности и силы тока дает возможность выполнить предварительные расчеты нагрузок в однофазной сети. Таблица расчета поможет подобрать необходимое сечение провода, в зависимости от параметров.

Диаметры жил проводников (мм)

Сечение жил проводников (мм2)

Медные жилы

Алюминиевые жилы

Сила тока (А)

Мощность (кВт)

Сила (А)

Мощность (кВт)

0,8

0,5

6

1,3

 

 

0,98

0,75

10

2,2

 

 

1,13

1,0

14

3,1

 

 

1,38

1,5

15

3,3

10

2,2

1,6

2,0

19

4,2

14

3,1

1,78

2,5

21

4.6

16

3,5

2,26

4,0

27

5,9

21

4,6

2,76

6,0

34

7,5

26

5,7

3,57

10,0

50

11,0

38

8,4

4,51

16,0

80

17,6

55

12,1

5,64

25,0

100

22,0

65

14,3


Расчет тока для трехфазной сети

В случае использования трехфазного электроснабжения вычисление силы тока производится по формуле: I = P/1,73U, в которой P означает потребляемую мощность, а U – напряжение в трехфазной сети. 1,73 является специальным коэффициентом, применяемым для трехфазных сетей.

Так как напряжение в этом случае составляет 380 вольт, то вся формула будет иметь вид: I = P/657,4.

Точно так же, как и в однофазной сети, диаметр и сечение проводников можно определить с помощью таблицы, отражающей зависимости этих параметров от различных нагрузок.

Диаметры жил проводников (мм)

Сечение жил проводников (мм2)

Медные жилы

Алюминиевые жилы

Сила тока (А)

Мощность (кВт)

Сила (А)

Мощность (кВт)

0,8

0,5

6

2,25

 

 

0,98

0,75

10

3,8

 

 

1,13

1,0

14

5,3

 

 

1,38

1,5

15

5,7

10

3,8

1,6

2,0

19

7,2

14

5,3

1,78

2,5

21

7,9

16

6,0

2,26

4,0

27

10,0

21

7,9

2,76

6,0

34

12,0

26

9,8

3,57

10,0

50

19,0

38

14,0

4,51

16,0

80

30,0

55

20,0

5,64

25,0

100

38,0

65

24,0

В некоторых случаях расчет тока по напряжению и мощности следует проводить с учетом полной реактивной мощности, присутствующей в электродвигателях, сварочном и другом оборудовании. Для таких устройств коэффициент мощности будет равен 0,8.


Как рассчитать мощность тока

electric-220.ru

Электрический ток и его мощность

Электрическая энергия является наиболее распространенным видом энергии и по праву может считаться основой современной цивилизации. Она нашла широкое применение в быту и во всех отраслях народного хозяйства. Трудно перечислить все наименования электробытовых приборов: холодильники, стиральные машины, кондиционеры, вентиляторы, телевизоры, магнитофоны, осветительные приборы и т.д. Нельзя представить промышленность без электрической энергии. В сельском хозяйстве применение электричества непрерывно расширяется: кормление и поение животных, уход за ними, отопление и вентиляция, инкубаторы, калориферы, сушилки и т.д.

Электрический ток и его мощность

Современная наука еще не может до конца объяснить природу электричества. Нам, впрочем, вполне достаточно представления о том, что электрический ток — это направленное движение электронов в проводнике. И что этот самый ток может совершать работу, например, вращать электродвигатель, нагревать электроплитку, давать свет. Эта работа является следствием того, что под действием электрического поля происходит перенос, перемещение электронов в проводнике, что тоже означает совершение некоторой работы.

Как вы помните, электрический ток характеризуется двумя основными параметрами: напряжением и силой тока.

Напряжение есть разность потенциалов между двумя полюсами источника тока при замкнутой электрической цепи.

Сила тока — это количество электричества, проходящего через поперечное сечение цепи в течение одной секунды.

Легко заметить, что оба термина «напряжение» и «сила тока» не являются первичными, они определяются через другие понятия, в данном случае — «потенциал» и «количество электричества». Но мы снова не будем углубляться в физические теории, ограничившись приведенными определениями, приняв их за первичные. В конце концов, нам важно только научиться применять эти понятия на практике.

Вы, конечно, знаете еще со школы, напряжение принято обозначать буквой U и единицей измерения напряжения является вольт (В). Сила тока измеряется в амперах (А) и обозначается латинской буквой I.

Как уже было сказано в предыдущей статье, способность производить работу характеризуется величиной, которая называется энергией. А отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени называется мощностью. Поскольку ток тоже может совершать работу, понятие мощности применимо и в этом случае.

Мощность постоянного электрического тока обозначается буквой P и вычисляется по формуле P=U*I, то есть является произведением напряжения на силу тока. То есть чем больше напряжение и сила тока, тем больше совершается работы в единицу времени, то есть больше мощность электрического тока. Мы не будем заниматься выяснением того, почему это именно так, примем это утверждение на веру (оно обосновано в физике и вы можете при желании найти это обоснование).

Единицей электрической мощности является ватт (Вт).

Один ватт — это мощность, которую развивает электрический ток величиной в один ампер при напряжении в один вольт.

Более крупными единицами мощности являются:

  • 1 киловатт (кВт) = 1000 Вт.
  • 1 мега ватт (МВт) = 1000 кВт.

Более мелкие единицы:

  • 1 милливатт (мвт) = 10-3 Вт;
  • 1 микроватт (мквт) = 10-6 Вт.

Мощность будет нам встречаться при оценке солнечных батарей, ветро-генераторов и других устройств, способных производить электрический ток.

Электрическая цепь

Электрическая цепь — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение.

Электрические цепи подразделяют на линейные и нелинейные. Линейные цепи — это такие, которые состоят только из линейных элементов — проводников, сопротивлений, конденсаторов, катушек индуктивности без ферромагнитных сердечников. У линейных элементов электрическое сопротивление постоянно и ток находится в прямо пропорциональной зависимости по отношению к напряжению, что выражается известным законом Ома:

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи,

I=U/R.

Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника. Величину R принято называть электрическим сопротивлением. В СИ единицей электрического сопротивления проводников служит ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А. Проводники, подчиняющиеся закону Ома, называются линейными.

Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры. То есть большинство реальных электрических цепей являются нелинейными.

Нелинейные цепи содержат элементы, электрическое сопротивление которых существенно зависит от тока или напряжения, в результате чего ток не находится в прямо пропорциональной зависимости по отношению к напряжению. Зависимость тока от напряжения в нелинейных цепях выражается так называемой вольт-амперной характеристикой, получаемой экспериментально и изображаемой некоторым графиком в системе координат «ток-напряжение».

Нелинейные элементы (усилители, генераторы и т.п.) придают электрическим цепям свойства, недостижимые в линейных цепях (стабилизация напряжения или тока, усиление постоянного тока и др.).

Мощность переменного тока

Закон Ома в той форме, как он был сформулирован ваше (I=U/R), справедлив только для цепей постоянного тока. Следовательно и формула мощности тока P=I*U, тоже действует только для цепей постоянного тока. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Мощность в цепи переменного тока выражается комплексным числом вида P+i*Q. При этом его действительная часть называется активной мощностью, мнимая часть реактивной мощностью.

Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока

Единицей измерения активной мощности является по прежнему ватт, а единицей измерения реактивной мощности — вольт-ампер реактивный (VAr, ВАр, вар).

Но практическое значение имеет полная мощность, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии.

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S=U*I; связана с активной и реактивной мощностями соотношением: S = sqrt [P2 + Q2], где P — активная мощность, Q — реактивная мощность, sqrt — символ квадратного корня.

Единица полной электрической мощности — вольт-ампер (V·A, В·А).

altenergiya.ru

Ток и напряжение. Виды и правила. Работа и характеристики

Ток и напряжение являются количественными параметрами, применяемыми в электрических схемах. Чаще всего эти величины меняются с течением времени, иначе не было бы смысла в действии электрической схемы.

Напряжение

Условно напряжение обозначается буквой «U». Работа, затраченная на перемещение единицы заряда из точки, имеющей малый потенциал в точку с большим потенциалом, является напряжением между этими двумя точками. Другими словами, это энергия, освобождаемая после перехода единицы заряда от высокого потенциала к малому.

Напряжение еще могут называть разностью потенциалов, а также электродвижущей силой. Этот параметр измеряется в вольтах. Чтобы переместить 1 кулон заряда между двумя точками, которые имеют напряжение 1 вольт, нужно выполнить работу в 1 джоуль. Кулонами измеряются электрические заряды. 1 кулон равен заряду 6х1018 электронов.

Напряжение разделяется на несколько видов, в зависимости от видов тока.

  • Постоянное напряжение. Оно присутствует в электростатических цепях и цепях постоянного тока.
  • Переменное напряжение. Этот вид напряжения имеется в цепях с синусоидальными и переменными токами. В случае синусоидального тока рассматриваются такие характеристики напряжения, как:
    • амплитуда колебаний напряжения – это максимальное его отклонение от оси абсцисс;
    • мгновенное напряжение, которое выражается в определенный момент времени;
    • действующее напряжение, определяется по выполняемой активной работе 1-го полупериода;
    • средневыпрямленное напряжение, определяемое по модулю величины выпрямленного напряжения за один гармонический период.

При передаче электроэнергии по воздушным линиям устройство опор и их размеры зависят от величины применяемого напряжения. Величина напряжения между фазами называется линейным напряжением, а напряжение между землей и каждой из фаз – фазным напряжением. Такое правило применимо для всех типов воздушных линий. В России в электрических бытовых сетях, стандартным является трехфазное напряжение с линейным напряжением 380 вольт, и фазным значением напряжения 220 вольт.

Электрический ток

Ток в электрической цепи является скоростью движения электронов в определенной точке, измеряется в амперах, и обозначается на схемах буквой «I». Также используются и производные единицы ампера с соответствующими приставками милли-, микро-, нано и т.д. Ток размером в 1 ампер образуется передвижением единицы заряда в 1 кулон за 1 секунду.

Условно считается, что ток в электрической цепи течет по направлению от положительного потенциала к отрицательному. Однако, из курса физики известно, что электрон движется в противоположном направлении.

Необходимо знать, что напряжение измеряется между 2-мя точками на схеме, а ток течет через одну конкретную точку схемы, либо через ее элемент. Поэтому, если кто-то употребляет выражение «напряжение в сопротивлении», то это неверно и неграмотно. Но часто идет речь о напряжении в определенной точке схемы. При этом имеется ввиду напряжение между землей и этой точкой.

Напряжение образуется от воздействия на электрические заряды в генераторах, батареях, солнечных элементах и других устройствах. Ток возникает путем приложения напряжения к двум точкам на схеме.

Чтобы понять, что такое ток и напряжение, правильнее будет воспользоваться осциллографом. На нем можно увидеть ток и напряжение, которые меняют свои значения во времени. На практике элементы электрической цепи соединены проводниками. В определенных точках элементы цепи имеют свое значение напряжения.

Ток и напряжение подчиняются правилам:
  • Сумма токов, входящих в точку, равняется сумме токов, выходящих из точки (правило сохранения заряда). Такое правило является законом Кирхгофа для тока. Точка входа и выхода тока в этом случае называется узлом. Следствием из этого закона является следующее утверждение: в последовательной электрической цепи группы элементов величина тока для всех точек одинакова.
  • В параллельной схеме элементов напряжение на всех элементах одинаково. Иначе говоря, сумма падений напряжений в замкнутом контуре равна нулю. Этот закон Кирхгофа применяется для напряжений.
  • Работа, выполненная в единицу времени схемой (мощность), выражается следующим образом: Р = U*I. Мощность измеряется в ваттах. Работа величиной 1 джоуль, выполненная за 1 секунду, равна 1 ватту. Мощность распространяется в виде теплоты, расходуется на совершение механической работы (в электродвигателях), преобразуется в излучение различного вида, накапливается в емкостях или батареях. При проектировании сложных электрических систем, одной из проблем является тепловая нагрузка системы.
Характеристика электрического тока

Обязательным условием существования тока в электрической цепи является замкнутый контур. Если контур цепи разрывается, то ток прекращается.

По такому принципу действуют все защиты и выключатели в электротехнике. Они разрывают электрическую цепь подвижными механическими контактами, и этим прекращают течение тока, выключая устройство.

В энергетической промышленности электрический ток возникает внутри проводников тока, которые выполнены в виде шин, кабелей, проводов и других частей, проводящих ток.

Также существуют другие способы создания внутреннего тока в:

  • Жидкостях и газах за счет передвижения заряженных ионов.
  • Вакууме, газе и воздухе с помощью термоэлектронной эмиссии.
  • Полупроводниках, вследствие движения носителей заряда.
Условия возникновения электрического тока
  • Нагревание проводников (не сверхпроводников).
  • Приложение к носителям заряда разности потенциалов.
  • Химическая реакция с выделением новых веществ.
  • Воздействие магнитного поля на проводник.
Формы сигнала тока
  • Прямая линия.
  • Переменная синусоида гармоники.
  • Меандром, похожий на синусоиду, но имеющий острые углы (иногда углы могут сглаживаться).
  • Пульсирующая форма одного направления, с амплитудой, колеблющейся от нуля до наибольшей величины по определенному закону.

Виды работы электрического тока
  • Световое излучение, создающееся приборами освещения.
  • Создание тепла с помощью нагревательных элементов.
  • Механическая работа (вращение электродвигателей, действие других электрических устройств).
  • Создание электромагнитного излучения.
Отрицательные явления, вызываемые электрическим током
  • Перегрев контактов и токоведущих частей.
  • Возникновение вихревых токов в сердечниках электрических устройств.
  • Электромагнитные излучения во внешнюю среду.

Создатели электрических устройств и различных схем при проектировании должны учитывать вышеперечисленные свойства электрического тока в своих разработках. Например, вредное влияние вихревых токов в электродвигателях, трансформаторах и генераторах снижается путем шихтовки сердечников, применяемых для пропускания магнитных потоков. Шихтовка сердечника – это его изготовление не из цельного куска металла, а из набора отдельных тонких пластин специальной электротехнической стали.

Но, с другой стороны, вихревые токи используют для работы микроволновых печей, духовок, действующих по принципу магнитной индукции. Поэтому, можно сказать, что вихревые токи оказывают не только вред, но и пользу.

Переменный ток с сигналом в форме синусоиды может различаться частотой колебаний за единицу времени. В нашей стране промышленная частота тока электрических устройств стандартная, и равна 50 герцам. В некоторых странах используется частота тока 60 герц.

Для различных целей в электротехнике и радиотехнике используют другие значения частоты:

  • Низкочастотные сигналы с меньшей величиной частоты тока.
  • Высокочастотные сигналы, которые намного выше частоты тока промышленного использования.

Считается, что электрический ток возникает при движении электронов внутри проводника, поэтому он называется током проводимости. Но существует и другой вид электрического тока, который получил название конвекционного. Он возникает при движении заряженных макротел, например, капель дождя.

Электрический ток в металлах

Движение электронов при воздействии на них постоянной силы сравнивают с парашютистом, который снижается на землю. В этих двух случаях происходит равномерное движение. На парашютиста действует сила тяжести, а противостоит ей сила сопротивления воздуха. На движение электронов действует сила электрического поля, а сопротивляются этому движению ионы решеток кристаллов. Средняя скорость электронов достигает постоянного значения, так же как и скорость парашютиста.

В металлическом проводнике скорость движения одного электрона равна 0,1 мм в секунду, а скорость электрического тока около 300 тысяч км в секунду. Это объясняется тем, что электрический ток течет только там, где к заряженным частицам приложено напряжение. Поэтому достигается большая скорость протекания тока.

При перемещении электронов в кристаллической решетке существует следующая закономерность. Электроны сталкиваются не со всеми встречными ионами, а только с каждым десятым из них. Это объясняется законами квантовой механики, которые можно упрощенно объяснить следующим образом.

Движению электронов мешают большие ионы, которые оказывают сопротивление. Это особенно заметно при нагревании металлов, когда тяжелые ионы «качаются», увеличиваются в размерах и уменьшают электропроводность решеток кристаллов проводника. Поэтому при нагревании металлов всегда увеличивается их сопротивление. При снижении температуры повышается электрическая проводимость. При снижении температуры металла до абсолютного нуля можно добиться эффекта сверхпроводимости.

Похожие темы:

electrosam.ru

Напряжение и ток [Амперка / Вики]

Для того, чтобы электронный компонент совершал полезную работу: лампа — горела, двигатель — вращался, через него должен протекать электрический ток.

Ток создаётся электрическим потенциалом. Если сравнивать течение тока и течение жидкости, то электрический потенциал — это напор, а ток — это струя воды. Наличие потенциала самого по себе не достаточно для создания тока.

Во-первых, необходим проводник по которому ток будет течь. Например: медный провод. Если проводника нет, потенциал «утыкается» в воздух, а воздух очень хорошо препятствует течению электричества. Это аналогично тому, что вода не будет течь пока закрыт кран: давление есть — течения нет. Материалы, не позволяющие току течь называются диэлектриками. Позволяющие течь — проводниками. Позволяющие при одних условиях и не позволяющие при других — полупроводниками.

Во-вторых, необходима разность потенциалов. Ведь если с двух концов водопроводной трубы будет одинаковый напор, каким бы сильным он не был — течения внутри не будет. То же самое и с электричеством. Разность потенциалов называют напряжением.

Потенциал и напряжение (обозначаются буквой U или V) мерятся в вольтах; сила тока (обозначается буквой I) или просто ток — в амперах. В микроэлектронике обычно используются напряжения от долей вольт до десятков вольт и силы тока от долей миллиампер (мА) до сотен миллиампер.

По договорённости считается, что ток течёт в направлении от плюса к минусу. По аналогии как вода течёт из области высокого давления к пустому концу трубы. На самом деле, какое направление положительное, а какое отрицательное — условность. Исторически так сложилось, что открытие отрицательно заряженных электронов, которые и формируют ток, было сделано уже после того, как все договорились, что считать положительным течением тока. Поэтому в силу той ошибки на практике ситуация такова: говорят, что ток течёт из точки А в точку Б, хотя на физическом уровне электроны мчатся от точки Б к точке А. Чтобы не путаться, нужно запомнить: в схемотехнике никто не вспоминает куда перемещаются электроны, положительное течение тока — это течение из точки с большим потенциалом в точку с меньшим; в направлении тока перемещаются положительные заряды. Да, они виртуальные, их не бывает на самом деле, но так удобнее.

Точку цепи, предоставляющую неограниченную возможность возврата/слива отработавших зарядов называют землёй (Ground, GND). Не нужно понимать «землю» в буквальном смысле. Ей может быть и отрицательный полюс батарейки, и корпус автомобиля, и, действительно, планета Земля. Для удобства считают, что земля — это потенциал в 0 В. Все остальные потенциалы считают относительно неё. Кроме того, в схемотехнике практически не пользуются понятием электрического потенциала: говорят, что напряжение в определённой точке составляет 12 В, на самом деле имеют в виду, что разность потенциалов между ней и землёй составляет 12 В.

Источники питания

Проходя по цепи, электрическая энергия расходуется: часть её идёт на совершение полезной работы, часть теряется, превращаясь в тепло. Чтобы устройство работало постоянно, требуется сила, которая бы удерживала напряжение в цепи. Её называют ЭДС (электродвижущая сила, electromotive force, EMF), а создают её источники питания. Примером компонента с ЭДС являются: обычные батарейки, солнечные батареи, трансформатор в блоке питания, моторчик вращаемый хомяком в колесе.

На схемах источник питания может указываться как в явном виде, собственным символом, так и в неявном: обозначается ноль контакт входного напряжения и земля без акцента на то, откуда энергия возьмётся. Таким образом, следующие схемы эквивалентны:

Мощность

Мощность — это количество переносимой энергии за единицу времени. Переносимая электрическая энергия обычно трансформируется конечными устройствами в другие формы: тепло, свет, звук и т.д. Единица измерения мощности — Ватт. Мощность P рассчитывается по формуле:

Различные компоненты расчитаны на разную мощность. Обычно в документации на компонент указывается при каком напряжении он работает и какой ток при этом потребляет. Есть компоненты, которые «возьмут» только то количество тока, которое им необходимо; есть те, которые будут гореть и плавиться, но заберут всё, что дают.

Предоставить нужное количество энергии в нужный момент в определённое место цепи — одна из главных задач разработчика схемы. Реализуется это с помощью соединения базовых компонентов (таких как, например, резисторы и транзисторы) в типовые, шаблонные схемы.

wiki.amperka.ru

Что такое сила тока и напряжение

Что такое напряжение, и сила тока?

Сегодня речь пойдет о самых базовых понятиях силы тока, напряжения, без общего понимания которых невозможно построение любого электротехнического устройства.

Итак, что же такое напряжение?

Попросту говоря напряжение — разница потенциала между двумя точками электрической цепи, измеряется в Вольтах. Стоит заметить что, напряжение всегда измеряется между двумя точками! То есть, когда говорят что напряжение на ножке контроллера 3 Вольта, подразумевается что разница потенциалов между ножкой контроллера и землей те самые 3 Вольта.

Земля(Масса, Ноль) — это точка электрической схемы с потенциалом 0 Вольт. Однако стоит заметить, что напряжение не всегда измеряется относительно земли. Например, замерив напряжение между двумя выводами контроллера, мы получим разницу электрических потенциалов данных точек схемы. То есть если на одной ножке 3 Вольта(То есть данная точка обладает потенциалом 3 Вольта относительно земли), а на второй 5Вольт(Опять же потенциал относительно земли), мы получим значение напряжения равное 2 вольтам, что равняется разнице потенциалов между точками 5 и 3 Вольта.

Из понятия напряжение вытекает следующее понятие — электрический ток. Из курса общей физики мы помним, что электрический ток есть направленное движение заряженных частиц по проводнику, измеряется в Амперах. Заряженные частицы движутся благодаря разнице потенциалов между точками. Принято считать, что ток происходит из точки с большим зарядом, в точку, обладающую меньшим зарядом. То есть, именно напряжение (разность потенциалов) создает условия протекания тока. При отсутствии напряжения — невозможен ток, то есть между точками с равным потенциалом ток отсутствует.

На своем пути, ток встречает препятствие в виде сопротивления, что препятствует его протеканию. Сопротивление измеряется в Омах. Подробнее о нем мы поговорим в следующем уроке. Однако, между током, напряжением и сопротивлением уже давно выведена следующая зависимость:

Где I — Сила тока в Амперах,U — Напряжение в Вольтах,R — Сопротивление в Омах.

Данное соотношение называется законом Ома. Так же справедливы следующие выводы из закона Ома:

Если у Вас ещё остались вопросы, задавайте их в комментариях. Лишь благодаря Вашим вопросам Мы сможем улучшить материал представленный на данном сайте!

На этом всё, в следующем уроке поговорим о сопротивлении.

Любое копирование, воспроизведение, цитирование материала, или его частей разрешено только с письменного согласия администрации MKPROG.RU. Незаконное копирование, цитирование, воспроизведение преследуется по закону!

mkprog.ru

Напряжение, ток, мощность | Основы электроакустики

Электричество в физике характеризуется большим числом различных параметров и характеристик. В электронике и электротехнике основных, первичных понятий только два – электрические ток и напряжение. Электрический ток протекает в электрической цепи, напряжение возникает на элементах электрической цепи.

Электрической цепью называют совокупность связанных между собой электрических элементов, по которым протекает электрический ток. Ток и напряжение полностью характеризуют состояние электрической цепи. В электронных устройствах и компьютерах ток и напряжение выполняют, в основном, функцию передачи информации.

Напряжение (условное обозначение U, Е). Напряжение между двумя точками – это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Иначе говоря, это энергия, которая высвобождается, когда единичный заряд перемещается от высокого потенциала к низкому. Напряжение называют также разностью потенциалов или электродвижущей силой (э. д. с). Единицей измерения напряжения служит вольт. Обычно напряжение измеряют в вольтах (В), киловольтах (1 kB = 103 В), милливольтах (1 мВ = 10-3 В) или микровольтах (1 мкВ=10-6 В). Для того чтобы переместить заряд величиной 1 кулон между точками, имеющими разность потенциалов величиной 1 вольт, необходимо совершить работу в 1 джоуль.

Ток(условное обозначение I). Ток – это скорость перемещения электрического заряда в точке. Единицей измерения тока служит ампер. Обычно ток измеряют в амперах (А), миллиамперах (1 мА = 10-3 А), микроамперах (1 мкА=10-6А),  наноамперах (1 нА=10-9 А) и иногда в пикоамперах (1 пА=10-12 А). Ток величиной 1 ампер создается перемещением заряда величиной 1 кулон за время, равное 1 с. Условились считать, что ток в цепи протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, хотя электрон перемещается в противоположном направлении.

Напряжение всегда измеряется между двумя точками схемы, ток всегда протекает через точку в схеме или через какой-либо элемент схемы.

Говорить «напряжение в резисторе» – неграмотно. Однако часто говорят о напряжении в какой-либо точке схемы. При этом всегда подразумевают напряжение между этой точкой и «землей», то есть такой точкой схемы, потенциал которой известен.

Напряжение создается путем воздействия на электрические заряды в таких устройствах, как батареи (электрохимические реакции), генераторы (взаимодействие магнитных сил), солнечные батареи (фотогальванический эффект энергии фотонов) и т. п. Ток получается прикладыванием напряжения между точками схемы.

Мощность (работа, совершенная за единицу времени), потребляемая схемой, определяется следующим образом: Р=UI. Вспомнив, как определяется напряжение и ток, получим, что мощность равна: (работа/заряд)•(заряд/ед. времени). Если напряжение U измерено в вольтах, а ток I – в амперах, то мощность Р будет выражена в ваттах. Мощность величиной 1 ватт – это работа в 1 джоуль, совершенная за 1 с (1 Вт=1 Дж/с).

Мощность рассеивается в виде тепла (как правило) или иногда затрачивается на механическую работу (моторы), переходит в энергию излучения (лампы, передатчики) или накапливается (батареи, конденсаторы). При разработке сложной системы одним из основных является вопрос определения ее тепловой нагрузки (возьмем, например, вычислительную машину, в которой побочным продуктом вычисления результатов решения задачи становятся многие киловатты электрической энергии, рассеиваемой в пространство в виде тепла).

Выражение P=UI в таком виде справедливо для определения мгновенного значения мощности.

audioakustika.ru

Мощность электрического тока: особенности и измерения

Мощность электрического тока – скорость выполняемой цепью работы. Простое определение, морока с пониманием. Мощность подразделяется на активную, реактивную. И начинается…

Работа электрического тока, мощность

При движении заряда по проводнику поле выполняет над ним работу. Величина характеризуется напряжением, в отличие от напряженности в свободном пространстве. Заряды двигаются в сторону убывания потенциалов, для поддержания процесса требуется источник энергии. Напряжение численно равно работе поля при перемещении на участке единичного заряда (1 Кл). В ходе взаимодействий электрическая энергия переходит в другие виды. Поэтому необходим ввод универсальной единицы, физической свободно конвертируемой валюты. В организме мерой выступает АТФ, электричестве — работа поля.

Электрическая дуга

На схеме момент превращения энергии отображается в виде источников ЭДС. Если у генераторов направлены в одну сторону, у потребителя – обязательно в другую. Наглядным фактом отражается процесс расхода мощности, отбора у источников энергии. ЭДС несет обратный знак, часто называется противо-ЭДС. Избегайте путать понятие с явлением, возникающим в индуктивностях при выключении питания. Противо-ЭДС означает переход электрической энергии в химическую, механическую, световую.

Потребитель хочет выполнить работу за некоторую единицу времени. Очевидно, газонокосильщик не намерен ждать зимы, надеется управиться к обеду. Мощность источника должна обеспечить заданную скорость выполнения. Работу осуществляет  электрический ток, следовательно, понятие также относится. Мощность бывает активной, реактивной, полезной и мощностью потерь. Участки, обозначаемые физическими схемами сопротивлениями, на практике вредны, являются издержками. На резисторах проводников выделяется тепло, эффект Джоуля-Ленца ведет к лишнему расходу мощности. Исключением назовем нагревательные приборы, где явление желательно.

Полезная работа на физических схемах обозначается противо-ЭДС (обычный источник с обратным генератору направлением). Для мощности имеется несколько аналитических выражений. Иногда удобно использовать одно, в других случаях – иное (см. рис.):

Выражения мощности тока

  1. Мощность – скорость выполнения работы.
  2. Мощность равна произведению напряжения на ток.
  3. Мощность, затрачиваемая на тепловое действие, равна произведению сопротивления на квадрат тока.
  4. Мощность, затрачиваемая на тепловое действие, равна отношению квадрата напряжения к сопротивлению.

Запасшемуся токовыми клещами проще использовать вторую формулу. Вне зависимости от характера нагрузки посчитаем мощность. Только активную. Мощность определена многими факторами, включая температуру. Под номинальным для прибора значением понимаем, развиваемое в установившемся режиме. Для нагревателей следует применять третью, четвертую формулу. Мощность зависит целиком и полностью от параметров питающей сети. Предназначенные для работы со 110 вольт переменного тока в европейских условиях быстро сгорят.

Трехфазные цепи

Новичкам трехфазные цепи представляются сложными, на деле это более элегантное техническое решение. Даже электричество домом поставляют тремя линиями. Внутри подъезда делят по квартирам. Больше смущает то, что некоторые приборы на три фазы лишены заземления, нулевого провода. Схемы с изолированной нейтралью. Нулевой провод не нужен, ток возвращается источнику по фазным линиям. Разумеется, нагрузка здесь на каждую жилу повышенная. Требования ПУЭ отдельно оговаривают род сети. Для трехфазных схем вводятся следующие понятия, о которых нужно иметь представление, чтобы правильно посчитать мощность:

Трехфазная цепь с изолированной нейтралью

  • Фазным напряжением, током называют, соответственно, разницу потенциалов и скорость передвижения заряда меж фазой и нейтралью. Понятно, в оговоренном выше случае с полной изоляцией формулы будут недействительны. Поскольку нейтрали нет.
  • Линейным напряжением, током называют, соответственно, разницу потенциалов или скорость перемещения заряда меж любыми двумя фазами. Номера понятны из контекста. Когда говорят о сетях 400 вольт, подразумевают три провода, разница потенциалов с нейтралью равна 230 вольт. Линейное напряжение выше фазного.

Меж напряжением и током существует сдвиг фаз. О чем умалчивает школьная физика. Фазы совпадают, если нагрузка 100% активная (простые резисторы). Иначе появляется сдвиг. В индуктивности ток отстает от напряжения на 90 градусов, в емкости — опережает. Простая истина легко запоминается следующим образом (плавно подходим к реактивной мощности). Мнимая часть сопротивления индуктивности составляет jωL, где ω – круговая частота, равная обычной (в Гц), помноженной на 2 числа Пи; j – оператор, обозначающий направление вектора. Теперь пишем закон Ома: U = I R = I  jωL.

Из равенства видно: напряжение нужно отложить вверх на 90 градусов при построении диаграммы, ток останется на оси абсцисс (горизонтальная ось Х). Вращение по правилам радиотехники происходит против часовой стрелки. Теперь очевиден факт: ток отстает на 90 градусов. По аналогии проведем сравнение для конденсатора. Сопротивление переменному току в мнимой форме выглядит так: -j/ωL, знак указывает: откладывать напряжение нужно будет вниз, перпендикулярно оси абсцисс. Следовательно, ток опережает по фазе на 90 градусов.

В реальности параллельно с мнимой частью присутствует действительная – называют активным сопротивлением. Проволока катушки представлена резистором, будучи свитой, приобретает индуктивные свойства. Поэтому реальный угол фаз будет не 90 градусов, немного меньше.

А теперь можно переходить к формулам мощности тока трехфазных цепей. Здесь линия формирует сдвиг фаз. Меж напряжением и током, и относительно другой линии. Согласитесь, без заботливо изложенных авторами знания факт нельзя осознать. Меж линиями промышленной трехфазной сети сдвиг 120 градусов (полный оборот – 360 градусов). Обеспечит равномерность вращения поля в двигателях, для рядовых потребителей безразличен. Так удобнее генераторам ГЭС – нагрузка сбалансированная. Сдвиг идет меж линиями, в каждой ток опережает напряжение или отстает:

  1. Если линия симметричная, сдвиги меж любыми фазами по току составляют 120 градусов, формула получается предельно простой. Но! Если нагрузка симметрична. Посмотрим изображение: фаза ф не 120 градусов, характеризует сдвиг меж напряжением и током каждой линии. Предполагается, включили двигатель с тремя равноценными обмотками, получается такой результат. Если нагрузка несимметрична, потрудитесь провести вычисления для каждой линии отдельно, затем сложить результаты воедино для получения общей мощности тока.
  2. Вторая группа формул приведена для трехфазных цепей с изолированной нейтралью. Предполагается, ток одной линии утекает по другой. Нейтраль отсутствует за ненадобностью. Поэтому напряжения берутся не фазные (не от чего отсчитывать), как предыдущей формулой, а линейные. Соответственно, цифры показывают, какой параметр следует взять. Повремените пугаться греческих букв – фазы меж двумя перемножаемыми параметрами. Цифры меняются местами (1,2 или 2,1), чтобы правильно учесть знак.
  3. В асимметричной цепи вновь появляются фазные напряжение, ток. Здесь расчет ведется отдельно для каждой линии. Никаких вариантов нет.

Формулы мощности тока

На практике измерить мощность тока

Намекнули, можно воспользоваться токовыми клещами. Прибор позволит определить крейсерские параметры дрели. Разгон можно засечь только при многократных опытах, процесс чрезвычайно быстрый, частота смены индикации не выше 3-х раз в секунду. Токовые клещи демонстрируют погрешность. Практика показывает: достичь погрешности, указанной в паспорте, сложно.

Чаще для оценки мощности используют счетчики (для выплат компаниям-поставщикам), ваттметры (для личных и рабочих целей). Стрелочный прибор содержит пару неподвижных катушек, по которым течет ток цепи, подвижную рамку, для заведения напряжения путем параллельного включения нагрузки. Конструкция рассчитана сразу реализовать формулу полной мощности (см. рис.). Ток умножается на напряжение и некий коэффициент, учитывающий градуировку шкалы, также на косинус сдвига фаз между параметрами. Как говорили выше, сдвиг умещается в пределах 90 — минус 90 градусов, следовательно, косинус положителен, крутящий момент стрелки направлен в одну сторону.

Отсутствует возможность сказать индуктивная ли нагрузка или емкостная. Зато при неправильном включении в цепь показания будут отрицательными (завал набок). Произойдет аналогичное событие, если потребитель вдруг станет отдавать мощность обратно нагрузке (бывает такое). В современных приборах происходит нечто подобное же, вычисления ведет электронный модуль, интегрирующий расход энергии, либо считывающий показания мощности. Вместо стрелки присутствует электронный индикатор и множество других полезных опций.

Особые проблемы вызывают измерения в асимметричных цепях с изолированной нейтралью, где нельзя прямо складывать мощности каждой линии. Ваттметры делятся принципом действия:

  1. Электродинамические. Описаны разделом. Состоят из одной подвижной, двух неподвижных катушек.
  2. Ферродинамические. Напоминает двигатель с расщепленным полюсом (shaded-pole motor).
  3. С квадратором. Используется амплитудно-частотная характеристика нелинейного элемента (например, диода), напоминающая параболу, для возведения электрической величины в квадрат (используется в вычислениях).
  4. С датчиком Холла. Если индукцию сделать при помощи катушки пропорциональной напряжению магнитного поля в сенсоре, подать ток, ЭДС будет результатом умножения двух величин. Искомая величина.
  5. Компараторы. Постепенно повышает опорный сигнал, пока не будет достигнуто равенство. Цифровые приборы достигают высокой точности.

В цепях с сильным сдвигом фаз для оценки потерь применяется синусный ваттметр. Конструкция схожа с рассмотренной, пространственное положение таково, что вычисляется реактивная мощность (см. рис.). В этом случае произведение тока и напряжения домножим на синус угла сдвига фаз. Реактивную мощность измерим обычным (активным) ваттметром. Имеется несколько методик. Например, в трехфазной симметричной цепи нужно последовательную обмотку включить в одну линию, параллельную – в две другие. Затем производятся вычисления: показания прибора умножаются на корень из трех (с учетом, что на индикаторе произведение тока, напряжения и синуса угла между ними).

Методика двух ваттметров

Для трехфазной цепи с простой асимметрией задача усложняется. На рисунке показана методика двух ваттметров (ферродинамических или электродинамических). Начала обмоток указаны звездочками. Ток проходит через последовательные, напряжение с двух фаз подается на параллельную (одно через резистор). Алгебраическая сумма показаний обоих ваттметров складывается, умножается на корень из трех для получения значения реактивной мощности.

vashtehnik.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *