Закрыть

Triac что это – Что такое симистор (триак), характеристики, схемы: принцип работы, схемы, характеристики

Содержание

Что такое симистор (триак), характеристики, схемы: принцип работы, схемы, характеристики

В данной статье мы подробно разберем что такое симистор (триак), рассмотрим его схему и символ на схеме, кривые характеристики триака, а так же фазовый контроль симистора.

Введение

Будучи твердотельным устройством, тиристоры могут использоваться для управления лампами, двигателями или нагревателями и т.д. Однако одна из проблем использования тиристора для управления такими цепями заключается в том, что, подобно диоду, «тиристор» является однонаправленным устройством, что означает, что он пропускает ток только в одном направлении, от анода к катоду .

Для цепей переключения постоянного тока эта «однонаправленная» характеристика переключения может быть приемлемой, поскольку после запуска вся мощность постоянного тока подается прямо на нагрузку. Но в синусоидальных цепях переключения переменного тока это однонаправленное переключение может быть проблемой, поскольку оно проводит только в течение одной половины цикла (например, полуволнового выпрямителя), когда анод является положительным, независимо от того, что делает сигнал затвора. Затем для работы от переменного тока тиристором подается нагрузка только на половину мощности.

Чтобы получить двухволновое управление мощностью, мы могли бы подключить один тиристор внутри двухполупериодного мостового выпрямителя, который срабатывает на каждой положительной полуволне, или соединить два тиристора вместе в обратной параллели (спина к спине), как показано ниже. но это увеличивает как сложность, так и количество компонентов, используемых в схеме переключения.

Тиристорные конфигурации

Существует, однако, другой тип полупроводникового устройства, называемый «Триодный выключатель переменного тока» или «Триак» для краткости. Триаки также являются членами семейства тиристоров, и, как и кремниевые выпрямители, управляемые кремнием, они могут использоваться в качестве полупроводниковых переключателей питания, но что более важно, триаки являются «двунаправленными» устройствами. Другими словами, симистор может быть запущен в проводимость как положительными, так и отрицательными напряжениями, приложенными к его аноду, и положительными и отрицательными импульсами запуска, приложенными к его клемме затвора, что делает его двухквадрантным коммутирующим устройством, управляемым затвором.

Симистор ведет себя так же, как два обычных тиристоров, соединенных вместе в обратной параллельно (спина к спине) по отношению друг к другу и из — за этой конструкции два тиристоры имеют общий терминал Gate все в пределах одного трехтерминальной пакета.

Поскольку триак проводит в обоих направлениях синусоидальной формы волны, концепция анодной клеммы и катодной клеммы, используемая для идентификации главных силовых клемм тиристора, заменена обозначениями: MT 1 для главной клеммы 1 и MT 2 для главной клеммы 2.

В большинстве устройств переключения переменного тока клемма симисторного затвора связана с клеммой MT 1, аналогично взаимосвязи затвор-катод тиристора или взаимосвязи база-эмиттер транзистора. Конструкция, легирование PN и условные обозначения, используемые для обозначения триака, приведены ниже.

Схема и символ симистора

Теперь мы знаем, что «триак» — это четырехслойное PNPN в положительном направлении и NPNP в отрицательном направлении, трехполюсное двунаправленное устройство, которое блокирует ток в своем состоянии «ВЫКЛ», действующее как выключатель разомкнутой цепи, но в отличие от обычного тиристора, симистор может проводить ток в любом направлении при срабатывании одним импульсом затвора. Тогда симистор имеет четыре возможных режима срабатывания следующим образом.

  • Mode + Mode = положительный ток MT 2 (+ ve), положительный ток затвора (+ ve)
  • Mode — Mode = положительный ток MT 2 (+ ve), отрицательный ток затвора (-ve)
  • Mode + Mode = MT 2 отрицательный ток (-ve), положительный ток затвора (+ ve)
  • Mode — Mode = отрицательный ток MT 2 (-ve), отрицательный ток затвора (-ve)

И эти четыре режима, в которых может работать триак, показаны с использованием кривых характеристик триака IV.

Кривые характеристики триака IV

В квадранте tri триак обычно запускается в проводимость положительным током затвора, обозначенным выше как режим Ι +. Но это также может быть вызвано отрицательным током затвора, режим Ι–. Аналогичным образом, в квадранте <ΙΙΙ, срабатывание с отрицательным током затвора, –Ι 

G также является обычным режимом mode– вместе с режимом ΙΙΙ +. Однако режимы Ι– и ΙΙΙ + являются менее чувствительными конфигурациями, требующими большего тока затвора, чтобы вызвать запуск, чем более распространенные режимы запуска триаков Ι + и ΙΙΙ–.

Также, как и кремниевые управляемые выпрямители (SCR), триаки также требуют минимального удерживающего тока H для поддержания проводимости в точке пересечения сигналов. Затем, несмотря на то, что два тиристора объединены в одно устройство симистора, они по-прежнему демонстрируют индивидуальные электрические характеристики, такие как различные напряжения пробоя, токи удержания и уровни напряжения запуска, точно такие же, как мы ожидаем от одного устройства SCR.

Использование симистора

Симистор наиболее часто используется в полупроводниковых устройствах для коммутации и управления мощностью систем переменного тока, как симистор может быть включен «ON» либо положительным или отрицательным импульсом Gate, независимо от полярности питания переменного тока в то время. Это делает триак идеальным для управления лампой или нагрузкой двигателя переменного тока с помощью базовой схемы переключения триака, приведенной ниже.

Схема переключения симистора

Приведенная выше схема показывает простую схему переключения симистора с триггером постоянного тока. При разомкнутом переключателе SW1 ток не поступает в затвор симистора, и поэтому лампа выключена. Когда SW1 замкнут, ток затвора подается на триак от батареи V G через резистор R, и триак приводится в полную проводимость, действуя как замкнутый переключатель, и полная мощность потребляется лампой от синусоидального источника питания.

Поскольку батарея подает положительный ток затвора на триак всякий раз, когда переключатель SW1 замкнут, триак постоянно находится в режимах g + и ΙΙΙ + независимо от полярности клеммы MT 2 .

Конечно, проблема с этой простой схемой переключения симистора состоит в том, что нам потребовался бы дополнительный положительный или отрицательный источник питания затвора, чтобы запустить триак в проводимость. Но мы также можем активировать триак, используя фактическое напряжение питания переменного тока в качестве напряжения срабатывания затвора. Рассмотрим схему ниже.

Схема показывает триак, используемый как простой статический выключатель питания переменного тока, обеспечивающий функцию «ВКЛ» — «ВЫКЛ», аналогичную в работе предыдущей схеме постоянного тока. Когда переключатель SW1 разомкнут, триак действует как разомкнутый переключатель, и лампа пропускает нулевой ток. Когда SW1 замкнут, триак отключается от «ВКЛ» через токоограничивающий резистор R и самоблокируется вскоре после начала каждого полупериода, таким образом переключая полную мощность на нагрузку лампы.

Поскольку источник питания является синусоидальным переменным током, триак автоматически отключается в конце каждого полупериода переменного тока в качестве мгновенного напряжения питания, и, таким образом, ток нагрузки кратковременно падает до нуля, но повторно фиксируется снова, используя противоположную половину тиристора в следующем полупериоде, пока выключатель остается замкнутым. Этот тип управления переключением обычно называется

двухполупериодным управлением, поскольку контролируются обе половины синусоидальной волны.

Поскольку симистор фактически представляет собой две SCR, подключенные друг к другу, мы можем продолжить эту схему переключения симистора, изменив способ срабатывания затвора, как показано ниже.

Модифицированная цепь переключения симистора

Как и выше, если переключатель SW1 разомкнут в положении A, то ток затвора отсутствует, а лампа выключена. Если переключатель находится в положении B, то ток затвора протекает в каждом полупериоде так же, как и раньше, и лампа получает полную мощность, когда триак работает в режимах Ι + и ΙΙΙ–.

Однако на этот раз, когда переключатель подключен к положению C, диод предотвратит срабатывание затвора, когда MT 2 будет отрицательным, так как диод имеет обратное смещение. Таким образом, симистор работает только в положительных полупериодах, работающих только в режиме I +, и лампа загорается при половине мощности. Затем, в зависимости от положения переключателя, нагрузка 

выключена при половине мощности или полностью включена .

Фазовый контроль симистора

Другой распространенный тип схемы симистической коммутации использует управление фазой для изменения величины напряжения и, следовательно, мощности, подаваемой на нагрузку, в данном случае на двигатель, как для положительной, так и для отрицательной половин входного сигнала. Этот тип управления скоростью двигателя переменного тока обеспечивает полностью переменное и линейное управление, поскольку напряжение можно регулировать от нуля до полного приложенного напряжения, как показано на рисунке.

Эта базовая схема запуска фазы использует триак последовательно с двигателем через синусоидальный источник переменного тока. Переменный резистор VR1 используется для управления величиной фазового сдвига на затворе симистора, который, в свою очередь, управляет величиной напряжения, подаваемого на двигатель, путем его включения в разное время в течение цикла переменного тока.

Вызывание напряжение симистора является производным от VR1 — C1 комбинации через Диак (Диак является двунаправленным полупроводниковым устройством , которое помогает обеспечить резкий триггер импульс тока, чтобы полностью включение симистора).

В начале каждого цикла C1 заряжается через переменный резистор VR1. Это продолжается до тех пор, пока напряжение на С1 не станет достаточным для запуска диака в проводимость, что, в свою очередь, позволяет конденсатору С1 разрядиться в затвор симистора, включив его.

Как только триак запускается в проводимость и насыщается, он эффективно замыкает цепь управления фазой затвора, подключенную параллельно ему, и триак берет на себя управление оставшейся частью полупериода.

Как мы видели выше, триак автоматически отключается в конце полупериода, и процесс запуска VR1-C1 снова запускается в следующем полупериоде.

Однако, поскольку для триака требуются разные величины тока затвора в каждом режиме переключения, например, Ι + и ΙΙΙ–, поэтому

триак является асимметричным, что означает, что он не может запускаться в одной и той же точке для каждого положительного и отрицательного полупериода.

Эта простая схема управления скоростью симистора подходит не только для управления скоростью двигателя переменного тока, но и для диммеров ламп и управления электронагревателем, и на самом деле очень похожа на регулятор симистора, используемый во многих домах. Однако коммерческий симисторный диммер не должен использоваться в качестве регулятора скорости двигателя, так как, как правило, симисторные диммеры предназначены для использования только с резистивными нагрузками, такими как лампы накаливания.

Мы можем закончить эту про симистор, суммировав его основные пункты следующим образом:

  • «Триак» — это еще одно 4-слойное 3-контактное тиристорное устройство, аналогичное SCR.
  • Симистор может быть запущен в любом направлении.
  • Есть четыре возможных режима запуска для симистора, из которых 2 являются предпочтительными.

Управление электрическим переменным током с использованием

симисторачрезвычайно эффективно при правильном использовании для управления нагрузками резистивного типа, такими как лампы накаливания, нагреватели или небольшие универсальные двигатели, обычно используемые в переносных электроинструментах и ​​небольших приборах.

Но помните, что эти устройства можно использовать и подключать непосредственно к источнику переменного тока, поэтому проверка цепи должна выполняться, когда устройство управления питанием отключено от источника питания. Пожалуйста, помните о безопасности!

meanders.ru

Симметричный тринистор (TRIAC, триак)

Добавлено 13 октября 2018 в 21:04

Сохранить или поделиться

SCR тиристоры являются однонаправленными (односторонними) относительно тока устройствами, что делает их полезными для управления только постоянным током. Если объединить два SCR тиристора параллельно друг другу, но в противоположных направлениях, как были объединены два динистора (диода Шокли), чтобы сформировать симметричный динистор (DIAC), мы получим новое устройство, известное как симметричный тринистор, TRIAC (триак) (рисунок ниже).

Симметричный тринистор (TRIAC, триак)Эквивалентная схема на базе SCR тиристоров и условное обозначение симметричного тринистора (TRIAC тиристора)

Поскольку отдельные SCR тиристоры более гибки для использования в современных системах управления, они чаще встречаются в схемах, таких как драйверы двигателей; симметричные тринисторы (TRIAC) обычно встречаются в простых, маломощных приложениях, таких как бытовые диммерные коммутаторы. На рисунке ниже показана простая схема регулировки яркости лампы вместе с фазосдвигающей резисторно-конденсаторной цепью, необходимой для срабатывания после пика.

Управление питанием с использованием фазы на основе симметричного тринистора (TRIAC)

Симметричные тринисторы (TRIAC) известны тем, что они отпираются несимметрично. Это означает, что они обычно не срабатывают при одном и том же уровне напряжения управляющего электрода как для одной полярности, так и для другой. Вообще говоря, это нежелательно, так как несимметричное срабатывание приводит к формированию формы сигнала тока с множеством гармонических частот. Формы сигналов, симметричные выше и ниже их средних осевых линий, состоят только из гармоник с нечетными номерами. С другой стороны, несимметричные формы сигналов содержат четные гармоники (которые могут сопровождаться или нет гармониками с нечетными номерами).

В интересах уменьшения общего содержания гармоник в системах питания, чем меньше и менее разнообразны гармоники, тем лучше, – еще одна причина, почему для сложных, высокомощных схемах управления предпочитают отдельные SCR тиристоры, а не симметричные тринисторы (TRIAC). Одним из способов получения симметричной формы сигнала тока через TRIAC является использование устройства, внешнего по отношению к симметричному тринистору, для выбора момента выдачи переключающего импульса. Симметричный динистор, помещенный последовательно с управляющим электродом, прекрасно справляется с этой задачей (рисунок ниже).

Симметричный динистор (DIAC) улучшает симметричность управления

Напряжения переключения симметричного динистора (DIAC) имеют тенденцию быть гораздо более симметричными (для одной полярности такое же, как для другой), чем пороги напряжения переключения симметричного тринистора (TRIAC). Поскольку симметричный динистор (DIAC) предотвращает любой ток управляющего электрода до тех пор, пока переключающее напряжение не достигнет определенного, повторяемого уровня в любом направлении, точка отпирания симметричного тринистора (TRIAC) в одном полупериоде и в следующем имеет тенденцию быть более постоянной, а форма сигнала – более симметричной выше и ниже относительно его осевой линии.

Практически все характеристики и параметры SCR тиристоров одинаково применимы и симметричным тринисторам (TRIAC), за исключением того, что TRIAC, конечно, является двунаправленным (может проводить ток в обоих направлениях). Об этом устройстве больше нечего рассказывать, кроме важной оговорки относительно обозначений его выводов.

Из эквивалентной схемы, показанной ранее, можно подумать, что основные выводы 1 и 2 являются взаимозаменяемыми. Это не так! Хотя полезно представлять, что симметричный тринистор TRIAC состоит из двух тринисторов (SCR тиристоров), соединенных вместе, он фактически построен из одного куска полупроводникового материала, легированного и разделенного на слои соответствующим образом. Фактические рабочие характеристики могут несколько отличаться от характеристик эквивалентной модели.

Это становится наиболее очевидным, противопоставляя две простые схемы, из которых одна работает, а другая – нет. Следующие две схемы представляют собой варианты схемы диммера лампы, показанной ранее, в которой для упрощения удалены фазосдвигающий конденсатор и симметричный динистор (DIAC). Хотя в результирующей схеме отсутствует возможность тонкой настройки управления ее более сложной версии (с конденсатором и DIAC), она работает (рисунок ниже).

Схема с соединенными управляющим электродом и основным выводом 2 работает

Предположим, мы должны были поменять местами два основных вывода симметричного тринистора (TRIAC). Согласно эквивалентной принципиальной схеме, показанной в этой статье ранее, обмен местами не должен иметь никакого значения. Эта схема должна работать (рисунок ниже).

Схема с соединенными управляющим электродом и основным выводом 1 не работает

Однако если эта схема будет собрана, выяснится, что она не работает! На нагрузку не будет подаваться питание, симметричный тринистор TRIAC не будет отпираться вообще, независимо от того, насколько низкое или высокое значение сопротивления установлено на резисторе управления. Ключом к успешному запуску симметричного тринистора TRIAC является то, что управляющий электрод получает свой переключающий ток со стороны основного вывода 2 (основной вывод на противоположной стороне условного обозначения TRIAC от вывода управляющего электрода) в схеме. Идентификация выводов ОВ1 и ОВ2 должна выполняться по модели детали через техническое описание или справочник.

Резюме

  • Симметричный тринистор TRIAC действует так же, как два SCR тиристора, подключенных друг к другу в противоположных направлениях для двунаправленной работы (с переменным током).
  • Управление на симметричном тринисторе TRIAC чаще встречается в простых схемах с малой мощностью, а не в сложных схемах высокой мощности. В больших схемах управления питанием, как правило, предпочитают несколько SCR тиристоров.
  • При использовании для управления питанием нагрузки переменным током симметричные тринисторы TRIAC часто сопровождаются симметричными динисторами DIAC, подключенными последовательно с их управляющими электродами. Симметричный динистор DIAC помогает симметричному тринистору TRIAC отпираться более симметрично (более одинаково в обеих полярностях).
  • Основные выводы 1 и 2 у симметричного тринистора TRIAC не являются взаимозаменяемыми.
  • Для успешного запуска симметричного тринистора TRIAC ток управляющего электрода должен поступать со стороны основного вывода 2 (ОВ2) в схеме!

Оригинал статьи:

Сохранить или поделиться

radioprog.ru

Тиристоры и Триаки (симисторы) - Десять Золотых Правил

 В этой статье мы рассмотрим 10 основных правил применения тиристоров и триаков (симисторов) при проектировании устройств управления мощностью.

Тиристор
Тиристор - управляемый диод, в котором управление током от анода к катоду происходит за счет малого тока управляющего электрода (затвора).

Вольтамперная характеристика тиристора показана на Рис. 2.

Открытое состояние тиристора.
Тиристор переходит в открытое состояние при подаче положительного смещения на затвор относительно катода. При достижении порогового значения напряжения затвора VGT (ток через затвор имеет значение IGT), тиристор переходит в открытое состояние. Для стабильного перехода в открытое состояние при коротком управляющем импульсе (менее 1 мкс), пиковое значение порогового напряжения необходимо увеличить.
После достижения тока нагрузки значения IL, тиристор будет оставаться в открытом состоянии, при отсутствии тока затвора.
Необходимо отметить, что значения параметров VGT, IGT и IL указаны в спецификации для температуры перехода 25°C. Эти значения возрастают при понижении температуры. Поэтому внешние цепи тиристора должны рассчитываться для поддержания необходимых амплитуд VGT, IGT и IL при минимальной ожидаемой рабочей температуре.


Правило 1. Для того чтобы тиристор (триак) перевести в открытое состояние: ток затвора Е IGT необходимо подавать до достижения тока нагрузки Е IL. Эти условия должны выполняться при минимальной ожидаемой рабочей температуре перехода.


Чувствительный затвор тиристоров, таких как BT150, при увеличении температуры перехода выше Tjmax может вызывать ложное срабатывание за счёт тока утечки от анода к катоду.
Во избежание ложных срабатываний можно посоветовать следующие рекомендации:

  1. Рабочая температура перехода должна быть меньше значения Tjmax.
  2. Использовать тиристоры с меньшей чувствительностью, такие как BT151, или уменьшить чувствительность имеющегося тиристора включением резистора номиналом 1КОм или менее между затвором и катодом.
  3. При невозможности использования менее чувствительного тиристора, необходимо приложить небольшое обратное смещение к затвору в фазе закрытого состояния тиристора для увеличения IL. В фазе отрицательного тока затвора необходимо уделить внимание уменьшению мощности рассеивания затвора.

Коммутация тиристора.
Для перехода тиристора в закрытое состояние ток нагрузки должен снизится ниже значения тока удержания IHна время, позволяющее всем свободным носителям заряда освободить переход. В цепях постоянного тока это достигается тем, что цепь нагрузки уменьшает ток до нуля, чтобы дать возможность тиристору выключиться. В цепях переменного тока цепь нагрузки уменьшает ток в конце каждой полуволны. В этой точке тиристор переходит в закрытое состояние.
Тиристор может перейти в состояние проводимости, если ток нагрузки не будет удерживаться ниже IHдостаточное время.
Обратите внимание, что значение IH указывается для температуры перехода 25°C и, подобно IL, оно уменьшается при повышении температуры. Поэтому, для успешной коммутации, цепь должна позволять уменьшаться току нагрузки ниже IH достаточное время при максимальной ожидаемой рабочей температуре перехода.


Правило 2. Для переключения тиристора (или триака), ток нагрузки должен быть < IH в течение достаточного времени позволяющего вернуться к состоянию отсутствия проводимости. Это условие должно быть выполнено при самой высокой ожидаемой рабочей температуре перехода.


Триак (симистор)
Триак представляет собой "двунаправленный тиристор". Особенностью триака является способностью проводить ток как от анода к катоду, так и в обратном направлении.

Состояние проводимости.
В отличие от тиристоров, триак может управляться как положительным, так и отрицательным током между затвором и T1. (Правила для VGT, IGT и IL те же, что для тиристоров См. Правило 1.) Это свойство позволяет триаку работать во всех четырёх секторах, как показано в рис. 4.

Когда затвор управляется постоянным током или однополярными импульсами с нулевым значением тока нагрузки, в квадрантах (3+,3-) предпочтителен отрицательный ток затвора по нижеследующим причинам.
(Внутреннему строению переходов триака характерно то, что затвор наиболее отдален от области основной проводимости в квадранте 3+ )

  1. При более высоком значении IGT требуется более высокий пиковый IG.
  2. При более длинной задержке между IG и током нагрузки требуется большая продолжительность IG.
  3. Низкое значение dIT/dt может вызывать перегорание затвора при управлении нагрузками, создающими высокий dI/dt (включение холодной лампы накаливания, ёмкостные нагрузки),
  4. Чем выше IL (это относится и к квадранту 1-), тем большая продолжительность IG будет необходима для малых нагрузок, что позволит току нагрузки с начала полупериода достичь значения выше IL.

В стандартных цепях управления фазой переменного тока, таких как регуляторы яркости и регуляторы скорости вращения, полярность затвора и T2 всегда одинаковы. Это означает, что управление производится всегда в 1+ и 3- квадрантах, в которых коммутирующие параметры триака одинаковы, а затвор наиболее чувствителен.
Примечание: 1+, 1-, 3- и 3+ это система обозначений четырех квадрантов, использующаяся для краткости: вместо того, чтобы записать "MT2+, G+" пишется 1+, и т.д. Эти данные получены из графика вольтамперной характеристики триака. Положительному напряжению T2 соответствует положительное значение тока через T2, и наоборот (см. Рис. 5).

Следовательно, управление осуществляется только в квадрантах 1 и 3. А указатели (+) и (-) относятся к направлению тока затвора.


Правило 3. При проектировании необходимо избегать включения триака в 3+ квадранте (MT2-, G +).


Ложные срабатывания триака.
В ряде случаев возможны нежелательные случаи включения триаков. Некоторые из них не приведут к серьёзным последствиям, в то время как другие потенциально разрушительны.

(а) Уменьшение шумовых сигналов затвора.
В электрически шумных окружающих средах ложное срабатывание может происходить, если шумовое напряжение на затворе превышает VGT ,поэтому тока затвора достаточно для включения триака. Первый способ защиты - минимизировать возникающий шум. Лучше всего это может быть достигнуто уменьшением длины проводников ведущих к затвору и соединением цепи управления затвором непосредственно с выводом T1 (или катодом для тиристора). В случае если это невозможно следует использовать витую пару или экранированный кабель.
Дополнительную шумовую устойчивость можно обеспечить, уменьшив чувствительность затвора с помощью включения резистора до 1Ком между затвором и T1. Если в качестве высокочастотного шунта используется конденсатор, желательно включить последовательно резистор между ним и затвором, чтобы уменьшить пик тока конденсатора через затвор и минимизировать возможность повреждения затвора от перегрузки.
В качестве решения этих проблем можно использовать триаки ряда "H" (например BT139-600H). Этот нечувствительный ряд (IGT min =10mA) специально разработан для обеспечения высокой шумовой устойчивости.


Правило 4. Для минимизации шумового срабатывания следует свести к минимуму длину проводников к затвору. Подключить общий провод непосредственно к T1 (или катоду). Желательно использовать витую пару или экранированный кабель. Можно поставить резистор до 1Ком между затвором и T1, или шунтировать затвор конденсатором и соединённым с ним последовательно резистором.
Один из вариантов - использование нечувствительных триаков ряда "H".


(b) Превышение максимального значения скорости нарастания напряжения коммутации dVCOM/dt.
Этот эффект может возникнуть при питании реактивных нагрузок, где есть существенный сдвиг фазы между напряжением и током нагрузки. При выключении триака в то время, когда фаза тока нагрузки проходит через ноль, напряжение не будет нулевым из-за сдвига по фазе (см. рис.6).

Если при этом скорость изменения напряжения превысит допустимое значение dVCOM/dt, триак может остаться в состоянии проводимости. Это происходит из-за того, что носителям заряда не хватает времени, чтобы освободить переход.
На параметр dVCOM/dt влияют два условия:

  1. Скорость спадания тока нагрузки при переключении, dICOM/dt. Высокое значение dICOM/dt снижает значение dVCOM/dt.
  2. Температура перехода Tj. Чем выше Tj, тем ниже значение dVCOM/dt.

Если возможно превышение значения dVCOM/dt триака, то ложного срабатывания можно избежать использованием RC демпфера между T1-T2. Это ограничит скорость изменения напряжения. Обычно выбирается углеродный резистор 100 Ом, и конденсатор 100nF.
В качестве альтернативы можно предложить использование Hi-Com триаков (более подробно об этих триаках можно прочесть в номере 7 журнала "Компоненты и Технологии" за 2002 год).
Обратите внимание, что резистор не может быть удалён из демпфера, так как он используется в качестве ограничителя тока, во избежание возникновения высокого значения dIT/dt в моменты коммутации.

(c) Превышение максимального значения скорости нарастания тока коммутации dICOM/dt.
Высокое значение dICOM/dt может быть вызвано повышенным током нагрузки, повышенной рабочей частотой (синусоидального тока) или несинусоидальным током нагрузки.
Известный пример такого - выпрямитель питания для индуктивных нагрузок, где применение стандартных триаков невозможно из-за того, что напряжение питания оказывается ниже напряжения обратной электромагнитной индукции нагрузки и ток триака резко стремиться к нулю. Этот эффект проиллюстрирован на (рис. 7).

При нулевом токе триака, ток нагрузки будет спадать через мостовой выпрямитель. При индуктивных нагрузках возможно такое высокое значение dICOM/dt, при котором триак не может поддерживать даже небольшого значения dV/dt 50Hz синусоиды при прохождении нуля. В этом случае не будет эффекта от добавления демпфера. Решение проблемы в том, что значение dICOM/dt может быть ограничено добавлением дросселя, последовательно с нагрузкой.

Альтернативное решение - использование Hi-Com триаков.

(d) Превышение максимального значения скорости нарастания напряжения в закрытом состоянии dVD/dt
Высокая скорость изменения напряжения на силовых электродах непроводящего триака (или тиристора с чувствительным затвором) без превышения его VDRM (см. рис. 8), вызывает внутренние ёмкостные токи. При этом внутреннего тока затвора может быть достаточно, чтобы перевести триак (тиристор) в состояние проводимости. Чувствительность к этому параметру увеличивается с ростом температуры.

Там где возникает эта проблема, значение dVD/dt должно быть ограничено RC демпфером между T1 и T2 для триака (или Анодом и Катодом для тиристора).
Использование Hi-Com триаков в таких случаях может снять эти проблемы.


Правило 5. Если есть вероятность превышения значения dVD/dt или dVCOM/dt, необходимо включить RC демпфер между T1 и T2. Если есть вероятность превышения значения dICOM/dt, необходимо включить последовательно с нагрузкой катушку индуктивности в несколько mH.
Альтернатива - использование HI-Com триаков


(e) Превышение повторяющегося пикового напряжения в закрытом состоянии VDRM
Если напряжение на T2 превышает VDRM (это может происходить во время переходных процессов), то ток утечки T2-T1 достигнет значения, при котором триак может спонтанно перейти в состояние проводимости (см. рис. 9)
При нагрузке, допускающей выбросы тока, ток чрезвычайно высокой плотности может проходить через узкую открытую область перехода. Это может привести к выгоранию перехода и разрушению кристалла. Это может происходить в схемах управления лампами накаливания, емкостных нагрузках и схемах защиты мощных электронных ключей.

Превышение VDRM или dVD/dt не всегда приводит к потере работоспособности триака, а вот создаваемая dIT/dt скорость нарастания тока It может привести к выходу из строя прибора. Из-за того, что требуется некоторое время для распространения проводимости по всему переходу, допустимое значение dIT/dt ниже чем, если бы триак был включен сигналом затвора. Если значение dIT/dt не будет превышать минимального значения, которое даётся в его характеристиках, то, скорее всего, триак не выйдет из строя. Эта проблема может быть решена, подключением не насыщающейся индуктивности (без сердечника), последовательно с нагрузкой. Если это решение неприемлемо, то альтернативное решение может быть в том, чтобы обеспечить дополнительную фильтрацию и ограничение выбросов. Это повлечёт использование, параллельно питанию, Метал-Оксидного Варистора (МОВ) для ограничения напряжения и последовательное подключение LС цепочки перед варистором.
Некоторые изготовители выражают сомнения в надежности схем с использованием MOB, так как они при высоких температурах окружающей среды входят в тепловой пробой и выходят из строя. Это является следствием того, что рабочее напряжение МОВ обладает обратным температурным коэффициентом. Однако, при применении МОВ на 275В (среднеквадратичное значение) для 230В цепей, риск перегорания МОВ минимален. Такие проблемы вероятны, если варистор на 250В используется при высокой температуре окружающей среды в цепях со среднеквадратичным значением 230В.


Правило 6. Если есть вероятность превышения VDRM триака во время переходных процессов, необходимо принять следующие меры:
Ограничить высокое значение dIT/dt ненасыщаемой катушкой индуктивности на единицы mH последовательно с нагрузкой; Использовать MOB параллельно питанию в комбинации с фильтром к источнику питания.


Состояние проводимости, dIT/dt
Когда триак(тиристор) находятся в состоянии проводимости под действием сигнала затвора, проводимость начинается в участке кристалла смежным к затвору, и затем быстро распространяясь на активную область. Эта задержка накладывает ограничение на значение допустимой скорости нарастания тока нагрузки. Высокое значение dIT/dt может быть причиной выгорания прибора, в результате чего произойдёт короткое замыкание между T1 и T2.
При работе в 3+ квадранте, ещё больше снижается разрешенное значение dIT/dt из-за структуры перехода. Это может привести к мгновенному лавинному процессу в затворе и перегоранию во время быстрого нарастания тока. Разрушение триака может произойти не сразу, а при постепенном выгорании перехода Затвор-T1, что приведёт к короткому замыканию после нескольких включений. Чувствительные триаки наиболее подвержены этому. Эти проблемы не относятся к Hi-Com триакам, так как они не работают в 3+ квадранте.
Значение dIT/dt связано со скоростью нарастания тока затвора(dIG/dt) и максимальным значением IG. Высокие значения dIG/dt и пикового IG (без превышения номинальные мощности затвора) дают более высокое значение dIT/dt.


Правило 7. Продуманная схема управления затвором и отказ от работы в квадранте 3+ увеличивает значение dIT/dt.


Самый простой пример нагрузки создающей высокий начальный бросок тока - лампа накаливания, которая имеет низкое сопротивление в холодном состоянии. Для резистивных нагрузок этого типа значение dIT/dt достигнет максимального значение при начале перехода в состояние проводимости в пике напряжения сети. Если есть вероятность превышения номинального значение dIT/dt триака, необходимо ограничить это включением катушки индуктивности mH или терморезистором с обратным температурным коэффициентом последовательно с нагрузкой.
Дроссель не должен насыщаться в течение максимума пика тока. Для ограничения значения dIT/dt необходимо использовать катушку индуктивности без сердечника.
Есть более правильное решение, с помощью которого можно избежать необходимости включения последовательно с нагрузкой токоограничивающих приборов. Оно состоит в том, чтобы использовать режим включения при нулевой разности потенциалов. Это дало бы плавный рост тока с начала полуволны.
Примечание: Важно помнить, что режим включения при нулевой разности потенциалов применим только к резистивным нагрузкам. Использование того же метода для реактивных нагрузок, где есть сдвиг фазы между напряжением и током, может вызвать однополярную проводимость, ведущую к возможному режиму насыщения индуктивных нагрузок, разрушительно высокому току и перегреву. В этом случае требуется более совершенный способ переключения при нулевом токе и/или схема управления фазой включения.


Правило 8. Если есть вероятность превышения значения dIT/dt необходимо установить последовательно с нагрузкой индуктивность в несколько mH или терморезистор с обратным температурным коэффициентом.
Для резистивных нагрузок можно использовать режим включения при нулевой разности потенциалов.


Отключение Триаки использующиеся в цепях переменного тока коммутируются в конце каждого полупериода тока нагрузки, если не приложен сигнал затвора, чтобы поддержать проводимость с начала следующего полупериода. Правила для IH те же что для тиристора. См. Правило 2.

Некоторые особенности Hi-Com триаков
Hi-Com триаки имеют отличную от обычных триаков внутреннюю. Одно из отличий состоит в том, что две половины тиристора лучше изолированы друг от друга, что уменьшает их взаимное влияние. Это дает следующие преимущества:

  1. Увеличение допустимого значения dVCOM/dt. Это позволяет управлять реактивными нагрузками (в большинстве случаев) без необходимости в демпфирующем устройстве, без сбоев в коммутации. Это сокращает количество элементов, размер печатной платы, стоимость, и устраняет потери на рассеивание энергии демпфирующим устройством.
  2. Увеличение допустимого значения dICOM/dt. Это значительно улучшает работу на более высоких частотах и для несинусоидальных напряжений без необходимости в ограничении dICOM/dt при помощи индуктивности последовательно с нагрузкой.
  3. Увеличение допустимого значения dVD/dt. Триаки очень чувствительны при высоких рабочих температурах. Высокое значение dVD/dt уменьшает тенденцию к самопроизвольному включению из состояния отсутствия проводимости за счёт dV/dt при высоких температурах. Это позволяет применять их при высоких температурах для управления резистивными нагрузками в кухонных или нагревательных приборах, где обычные триаки не могут использоваться.

Из-за различной внутренней структуры работа Hi-Com триаков в квадранте 3+ невозможна. В большинстве случаев это не является проблемой, так как это наименее желательный и наименее используемый квадрант. Поэтому замена обычного триака на Hi-Com почти всегда возможна.
Более подробную информацию по Hi-Com триакам можно найти в специальной литературе:
Factsheet 013 - Understanding Hi-Com Triacs, and
Factsheet 014 - Using Hi-Com Triacs.

Способы монтажа триаков.
При малых нагрузках или коротких импульсных токах нагрузки (меньше чем 1 секунда), можно использовать триак без теплоотводящего радиатора. Во всех остальных случаях его применение необходимо.
Существует три основных метода фиксации триака к теплоотводу - крепление зажимом, крепление винтом и клёпка. Наиболее распространены первые два способа. Клёпка - в большинстве случаев не рекомендуется, так как может вызвать повреждение или деформацию кристалла , что приведёт к выходу прибора из строя.

Фиксация к теплоотводу зажимом.
Это - предпочтительный метод с минимальным тепловым сопротивлением, так как зажим достаточно плотно прижимает корпус прибора к радиатору. Это одинаково подходит как для неизолированных (SOT82 и SOT78), так и для изолированных корпусов (SOT186 F-корпус и более ранних SOT186A X-корпус).
Примечание: SOT78 известен как TO220AB.

Фиксация к теплоотводу при помощи винта

  1. Набор для монтажа корпуса SOT78 включает прямоугольную шайбу, которая должна быть установлена между головкой винта и контактом, без усилий на пластиковый корпус прибора.
  2. Во время установки наконечник отвертки не должен воздействовать на пластиковый корпус триака (тиристора).
  3. Поверхность теплоотвода в месте контакта с электродом должна быть обработана с чистотой до 0.02mm.
  4. Крутящий момент (с установкой шайбы) должен быть между 0.55Nm- 0.8Nm.
  5. По возможности следует избегать использования винтов-саморезов, так как это снижает термоконтакт между теплоотводом и прибором.
  6. Прибор должен быть механически зафиксирован перед пайкой выводов. Это минимизирует чрезмерную нагрузку на выводы.

Правило 9. При монтаже триака (тиристора) необходимо избегать приложения чрезмерных механических усилий. Перед пайкой необходимо закрепить прибор одним из трёх выше перечисленных способов. Особое внимание необходимо уделить плотности прилегания корпуса прибора к радиатору.


Тепловое сопротивление
Тепловое сопротивление Rth - это сопротивление между корпусом прибора и радиатором. Этот параметр аналогичен электрическому сопротивлению R = V/I, поэтому тепловое сопротивление Rth = T(K)/P(W), где T - температура в Кельвинах, и P-рассеяние энергии в ваттах.

Для прибора, установленного вертикально без радиатора, тепловое сопротивление задаётся тепловым сопротивлением переход-окружающая среда Rth =Rth j-a.
-Для корпуса SOT82 значение равно 100 K/W;
-Для корпуса SOT78 значение равно 60K/W; -Для корпусов F и X значение равно 55K/W .

Для не изолированных приборов, установленных на теплоотвод, тепловое сопротивление является суммой сопротивлений переход-корпус, корпус-теплоотвод и теплоотвод-окружающая среда.

Rth j-a = Rth j-mb + Rth mb-h + Rth h-a
(не изолированный корпус).

Для изолированных корпусов нет ссылки на термосопротивление Rth j-mb ,так как Rth mb-h принят постоянным и дан с учётом использования термопасты. Поэтому, тепловое сопротивление для изолированного корпуса является суммой тепловых сопротивлений переход-теплоотвод и теплоотвод-окружающая среда.

Rth j-a = Rth j-h + Rth h-a
(изолированный корпус).

Rth j-mb или Rth j-h фиксированы и даны в документации к каждому прибору.
Rth mb-h также даются в инструкциях по установке для некоторых вариантов изолированного и неизолированного монтажа, с использованием или без использования термопасты.
Rth h-a регулируется размером теплоотвода и степенью воздушного потока через него.
Для улучшения теплоотдачи всегда рекомендуется использование термопасты.

Расчет теплового сопротивления
Для вычисления теплового сопротивления теплоотвода для данного триака (тиристора) и данного тока нагрузки, мы должны сначала вычислить рассеяние энергии в триаке (тиристоре), используя следующее уравнение:

P = Vo * IT (AV) + Rs * IT(RMS)2

Vo и Rs получены из "on-state" характеристики триака (тиристора). Если значения не указанны, то они могут быть получены из графика путём вычерчивания касательной к VT max. Точка на оси VT, где её пересекает касательная, даёт Vo, в то время как тангенс угла наклона касательной дает Rs. Используя уравнение теплового сопротивления, данное выше, получаем: Rth j-a = T/P. Максимально допустимая температура перехода будет, когда Tj достигает Tj max при самой высокой температуре окружающей среды. Это дает нам T.

Полное тепловое сопротивление
Все расчёты по вычислению теплового сопротивления имеет смысл проводить для уже установившегося режима продолжительностью больше чем 1 секунда. Для импульсных токов или длительных переходных процессов меньше чем 1 секунда эффект отвода тепла уменьшается. Температура просто рассеивается в объеме прибора с очень небольшим достижением теплоотвода. В таких условиях, нагрев перехода зависит от полного теплового сопротивления переход-корпус прибора Zth j-mb.
Поэтому Zth j-mb уменьшается при уменьшении продолжительности импульса тока благодаря меньшему нагреву кристалла. При увеличении продолжительности до 1 секунды, Zth j-mb увеличивается до значения соответствующего установившемуся режиму Rth j-mb.
Характеристика Zth j-mb приводится в документации для двунаправленного и однонаправленного электрического тока импульсами продолжительностью до 10 секунд.


Правило 10. Для надёжной работы прибора, необходимое значение Rth j-a должно быть достаточно низко, чтобы держать температуру перехода в пределах Tj max при самой высокой ожидаемой температуре окружающей среды.


Номенклатура и корпуса
Промышленный ряд тиристоров Philips начинается с 0.8A в SOT54 (TO92) и заканчивается 25A в SOT78 (TO220AB).
Промышленный ряд триаков (симисторов) Philips начинается с 0.8A в SOT223 и заканчивается 25A в SOT78.
Самый маленький корпус триака (тиристора) для поверхностного монтажа SOT223 (рис. 11). Мощность рассеивания зависит от степени рассеивания тепла печатной платой, на которую устанавливается прибор.
Тот же кристалл устанавливается в неизолированный корпус SOT82 (рис. 13). Улучшенная теплоотдача этого корпуса, позволяет использовать его при более высоких номинальных токах и большей мощности.
На (рис. 12) показан наименьший корпус для обычного монтажа SOT54. В этот корпус ставиться кристалл, которым оснащаются SOT223.
SOT78 самый широко распространенный неизолированный корпус, большинство устройств для бытовой техники производится с использованием этого корпуса (рис. 14).
На (рис. 15) показан SOT186 (F-корпус). Этот корпус допускает в обычных условиях разность потенциалов 1,500V между прибором и теплоотводом.
Один из последних - корпус SOT186A (X-корпус), показанный на рис. 16. Он обладает несколькими преимуществами перед предыдущими типам:

  1. Корпус имеет те же размеры, как корпус SOT78 в зазорах выводов и монтажной поверхности, поэтому он может непосредственно заменять SOT78, без изменений в монтаже.
  2. Корпус допускает в обычных условиях разность потенциалов 2,500V между прибором и теплоотводом.

10 ПРАВИЛ

Правило 1. Для того чтобы тиристор (триак) перевести в открытое состояние: ток затвора Е IGT необходимо подавать до достижения тока нагрузки Е IL. Эти условия должны выполняться при минимальной ожидаемой рабочей температуре перехода.

Правило 2. Для переключения тиристора (или триака), ток нагрузки должен быть < IH в течение достаточного времени позволяющего вернуться к состоянию отсутствия проводимости. Это условие должно быть выполнено при самой высокой ожидаемой рабочей температуре перехода.

Правило 3. При проектировании необходимо избегать включения триака в 3+ квадранте (MT2-, G +).

Правило 4. Для минимизации шумового срабатывания следует свести к минимуму длину проводников к затвору. Подключить общий провод непосредственно к T1 (или катоду). Желательно использовать витую пару или экранированный кабель. Можно поставить резистор до 1Ком между затвором и T1, или шунтировать затвор конденсатором и соединённым с ним последовательно резистором.
Один из вариантов - использование нечувствительных триаков ряда "H".

Правило 5. Если есть вероятность превышения значения dVD/dt или dVCOM/dt, необходимо включить RC демпфер между T1 и T2. Если есть вероятность превышения значения dICOM/dt, необходимо включить последовательно с нагрузкой катушку индуктивности в несколько mH.
Альтернатива - использование HI-Com триаков.

Правило 6. Если есть вероятность превышения VDRM триака во время переходных процессов, необходимо принять следующие меры:
Ограничить высокий dIT/dt не насыщаемой катушкой индуктивности на несколько mH последовательно с нагрузкой;
Использовать MOB параллельно питанию в комбинации с фильтром к источнику питания.

Правило 7. Продуманная схема управления затвором и отказ от работы в квадранте 3+ увеличивает значение dIT/dt.

Правило 8. Если есть вероятность превышения значения dIT/dt необходимо установить последовательно с нагрузкой индуктивность в несколько mH или терморезистор с обратным температурным коэффициентом.
Для резистивных нагрузок можно использовать режим включения при нулевой разности потенциалов.

Правило 9. При монтаже триака (тиристора) необходимо избегать приложения чрезмерных механических усилий. Перед пайкой необходимо закрепить прибор одним из трёх выше перечисленных способов. Особое внимание необходимо уделить плотности прилегания корпуса прибора к радиатору.

Правило 10. Для надёжной работы прибора, необходимое значение Rth j-a должно быть достаточно низко, чтобы держать температуру перехода в пределах Tj max при самой высокой ожидаемой температуре окружающей среды.

 

shemu.ru

Что такое симистор? Описание структуры, принципа работы

Симисторы – это приборы, которые являются полупроводниковыми компонентами (по терминологии США, они называются триаки), выполняющие ключевую роль по проведению тока в оба направления.

Прежде всего, симистор – это ключ-регулятор, используемый для цепей постоянного тока, он также выполняет функцию двунаправленного транзистора. Элемент состоит из двух основных силовых электродов – это электрод, находящийся со стороны управляющего электрода и СЭ –электрод со стороны основания элемента. Свое название симистор получил в результате использования двух встречно-параллельных включаемых тиристоров с одним управляющим электродом.

Рис.№1. Условное схематичное обозначение симистора и его внешний вид с обозначением позиций: 1 – анод; 2 – силовой электрод; 3 – управляющий электрод или катодный выход; 4 управляющий выход. Управляющий электрод выводится на туже сторону, что и катод. Анод служит основанием устройства и изготовлен в виде шестигранника и крепежной шпильки, на которой нарезана резьба для установки на охлаждающем радиаторе. Катод и управляющий выход отделены от основания изоляцией.

Благодаря способности проводить электроток в обе стороны симистор может выполнять функцию трехэлектродного полупроводникового прибора.

Он может переходить из закрытого положения в состояние открытости и работать в обратную сторону при обеих полярностях напряжения, присутствующего на основных электродах.

Рис. №2. ВАХ симистора. В соответствии с устройством полупроводниковой структуры, включенный в основную цепь он переходит в состояние проводимости при поступлении на управляющий электрод напряжения положительного значения относительно СЭУ напряжения, либо U обеих полярностей.

Полупроводниковая структура симистора

Структура симистора состоит из пластины, состоящей из чередующихся слоев с электропроводностями p- и n- типа и из контактов электродов основного и управляющего действия.

.           Всего в структуре полупроводника содержится пять слоев p- и n-типа. Область между слоями называется p-n-переходом, который обладает нелинейной ВАХ с небольшим сопротивлением в обратном направлении, где минус – это n-слой, а плюс – p-слой и высокое значение сопротивления в обратном направлении. Пробой p-n-перехода происходит при напряжении равном несколько тысяч вольт.

Во время включения симистора в прямом направлении в работу вступает правая половина структуры. Левая область структуры выключена, она считается для тока, с обладанием очень высоким сопротивлением. Характеристики симистора динамического и статического плана при его действии в прямом направлении, при поступлении положительного управляющего сигнала соответствуют аналогичным характеристикам тиристора, работающего в прямом направлении.

Рис. №4. Структура симистора, включенного в обратном направлении. По этой схеме к СЭУ прилагается напряжение со знаком плюс, относительно СЭ, а pn-переходы j2  и j4  подключаются в прямом, а pn-переходы j1  и j3 – в обратную сторону. Благодаря этому структура может рассматриваться, как структура тиристора, подключенная в обратном направлении, не принимающая участие в работе по пропусканию тока. В этом случае действие прибора определяется при помощи левой части структуры и представляет собой обратно ориентированную pnpn структуру с добавочным пятым слоем n0 , который граничит со слоем p1.

Использование симистора

Симистор представляется настолько гибким и универсальным устройством, что благодаря его свойству переключения в проводящее состояние запускаемым импульсом с положительным или отрицательным знаком, который не зависит от источника  проявляющего свойства мгновенной полярности. По сути названия анод и катод для прибора не имеют большой актуальности.

  1. Одно из популярных и простейших сфер использования симистора может считаться его применение в качестве твердотельного реле. Для него характерно малое значение пускового тока достаточного для нагрузки с большими токами. Функцию ключа в таком устройстве может играть геркон, или обладающее большой чувствительностью термореле и прочие контактные пары с током до 50мА, при этом величина тока нагрузки может ограничиваться исключительно показателями, на которые рассчитан симистор.

Рис.№5. Схема твердотельного реле с использованием симистора.

  1. Не менее широко использование симистора в качестве регулятора интенсивности освещения и управления скоростью вращения электромотора. Схема построена на использовании запускающих элементов, которые устанавливаются RC-фазовращателем, такой элемент, как потенциометр регулирует интенсивность освещения, а резистор служит для ограничения тока нагрузки. Формирование импульсов выполняется с помощью динистора. После пробоя в динисторе, который происходит в результате разности потенциалов на конденсаторе, импульс разряда конденсатора, возникающий мгновенно включает симистор.

Рис. №6. Схема регулирования света с использованием симистора с фазовым управлением.

  1. Управление мощностью в нагрузке с использованием в схеме добавочной RC-цепочки, что дает большой фазовый сдвиг, который облегчает задачу по управлению мощности.

Преимущества использования симисторов

  • Увеличение разрешенной критической величины напряжения коммутации, что разрешает управления большими реактивными нагрузками без существенных сбоев в коммутации. Это позволяет уменьшить число компонентов, размеры печатной платы, снизить цену и убрать потери на рассеивание энергии демпфером.
  • Повышение критической величины изменения тока коммутации, что повышает качество работы на высокой частоте для несинусоидального напряжения.
  • Большая чувствительность к высокой температуре рабочего процесса.
  • Высокое значение допустимого напряжения снижает стремление к самовключению из состояния отсутствия проводимости при большой температуре, что разрешает их использование для резистивных нагрузок по управлению бытовой и нагревательной техникой.
  • Долговечность симистора, обусловленная рабочими температурными перепадами, отличается практически неограниченным ресурсом.
  • Отсутствие искрообразования и возможность управления в момент нулевого тока в сети, что снижает электромагнитные помехи.

Основные достоинства семистора:

  1. большая частота срабатывания для высокой точности управления;
  2. высокий ресурс по сравнению с релейными электромеханическими устройствами;
  3. возможность добиться небольших размеров приборов;
  4. отсутствие шума при включении и отключении электроцепей.

 

Силовая электроника, с использованием  симисторов, разработанная отечественными производителями благодаря своим качественным показателям может составить западным фирмам высокую конкуренцию.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

Что такое симистор и как он работает – triac – что это

Симистор

Симметричный тиристор

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – "затвор"). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах.

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов.

По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе.

Симисторы: принцип работы, проверка и включение, схемы

К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.


Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

  • Невысокая стоимость.

  • По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

  • Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

  • Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

  • Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

  • Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка.

Величина резистораR1 от 50 до 470 ом, величина конденсатораC1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

  • Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

  • В импульсном режиме напряжение точно такое же.

  • Максимальный ток в открытом состоянии – 5А.

  • Максимальный ток в импульсном режиме – 10А.

  • Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

  • Наименьший импульсный ток – 160 мА.

  • Открывающее напряжение при токе 300 мА – 2,5 V.

  • Открывающее напряжение при токе 160 мА – 5 V.

  • Время включения – 10 мкс.

  • Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.


Оптосимистор MOC3023


Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как "не подключается".

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

stroyvolga.ru

Тиристоры и Триаки (симисторы) - Десять Золотых Правил

 В этой статье мы рассмотрим 10 основных правил применения тиристоров и триаков (симисторов) при проектировании устройств управления мощностью.

Тиристор
Тиристор - управляемый диод, в котором управление током от анода к катоду происходит за счет малого тока управляющего электрода (затвора).

Вольтамперная характеристика тиристора показана на Рис. 2.

Открытое состояние тиристора.
Тиристор переходит в открытое состояние при подаче положительного смещения на затвор относительно катода. При достижении порогового значения напряжения затвора VGT (ток через затвор имеет значение IGT), тиристор переходит в открытое состояние. Для стабильного перехода в открытое состояние при коротком управляющем импульсе (менее 1 мкс), пиковое значение порогового напряжения необходимо увеличить.
После достижения тока нагрузки значения IL, тиристор будет оставаться в открытом состоянии, при отсутствии тока затвора.
Необходимо отметить, что значения параметров VGT, IGT и IL указаны в спецификации для температуры перехода 25°C. Эти значения возрастают при понижении температуры. Поэтому внешние цепи тиристора должны рассчитываться для поддержания необходимых амплитуд VGT, IGT и IL при минимальной ожидаемой рабочей температуре.


Правило 1. Для того чтобы тиристор (триак) перевести в открытое состояние: ток затвора Е IGT необходимо подавать до достижения тока нагрузки Е IL. Эти условия должны выполняться при минимальной ожидаемой рабочей температуре перехода.


Чувствительный затвор тиристоров, таких как BT150, при увеличении температуры перехода выше Tjmax может вызывать ложное срабатывание за счёт тока утечки от анода к катоду.
Во избежание ложных срабатываний можно посоветовать следующие рекомендации:

  1. Рабочая температура перехода должна быть меньше значения Tjmax.
  2. Использовать тиристоры с меньшей чувствительностью, такие как BT151, или уменьшить чувствительность имеющегося тиристора включением резистора номиналом 1КОм или менее между затвором и катодом.
  3. При невозможности использования менее чувствительного тиристора, необходимо приложить небольшое обратное смещение к затвору в фазе закрытого состояния тиристора для увеличения IL. В фазе отрицательного тока затвора необходимо уделить внимание уменьшению мощности рассеивания затвора.

Коммутация тиристора.
Для перехода тиристора в закрытое состояние ток нагрузки должен снизится ниже значения тока удержания IHна время, позволяющее всем свободным носителям заряда освободить переход. В цепях постоянного тока это достигается тем, что цепь нагрузки уменьшает ток до нуля, чтобы дать возможность тиристору выключиться. В цепях переменного тока цепь нагрузки уменьшает ток в конце каждой полуволны. В этой точке тиристор переходит в закрытое состояние.
Тиристор может перейти в состояние проводимости, если ток нагрузки не будет удерживаться ниже IHдостаточное время.
Обратите внимание, что значение IH указывается для температуры перехода 25°C и, подобно IL, оно уменьшается при повышении температуры. Поэтому, для успешной коммутации, цепь должна позволять уменьшаться току нагрузки ниже IH достаточное время при максимальной ожидаемой рабочей температуре перехода.


Правило 2. Для переключения тиристора (или триака), ток нагрузки должен быть < IH в течение достаточного времени позволяющего вернуться к состоянию отсутствия проводимости. Это условие должно быть выполнено при самой высокой ожидаемой рабочей температуре перехода.


Триак (симистор)
Триак представляет собой "двунаправленный тиристор". Особенностью триака является способностью проводить ток как от анода к катоду, так и в обратном направлении.

Состояние проводимости.
В отличие от тиристоров, триак может управляться как положительным, так и отрицательным током между затвором и T1. (Правила для VGT, IGT и IL те же, что для тиристоров См. Правило 1.) Это свойство позволяет триаку работать во всех четырёх секторах, как показано в рис. 4.

Когда затвор управляется постоянным током или однополярными импульсами с нулевым значением тока нагрузки, в квадрантах (3+,3-) предпочтителен отрицательный ток затвора по нижеследующим причинам.
(Внутреннему строению переходов триака характерно то, что затвор наиболее отдален от области основной проводимости в квадранте 3+ )

  1. При более высоком значении IGT требуется более высокий пиковый IG.
  2. При более длинной задержке между IG и током нагрузки требуется большая продолжительность IG.
  3. Низкое значение dIT/dt может вызывать перегорание затвора при управлении нагрузками, создающими высокий dI/dt (включение холодной лампы накаливания, ёмкостные нагрузки),
  4. Чем выше IL (это относится и к квадранту 1-), тем большая продолжительность IG будет необходима для малых нагрузок, что позволит току нагрузки с начала полупериода достичь значения выше IL.

В стандартных цепях управления фазой переменного тока, таких как регуляторы яркости и регуляторы скорости вращения, полярность затвора и T2 всегда одинаковы. Это означает, что управление производится всегда в 1+ и 3- квадрантах, в которых коммутирующие параметры триака одинаковы, а затвор наиболее чувствителен.
Примечание: 1+, 1-, 3- и 3+ это система обозначений четырех квадрантов, использующаяся для краткости: вместо того, чтобы записать "MT2+, G+" пишется 1+, и т.д. Эти данные получены из графика вольтамперной характеристики триака. Положительному напряжению T2 соответствует положительное значение тока через T2, и наоборот (см. Рис. 5).

Следовательно, управление осуществляется только в квадрантах 1 и 3. А указатели (+) и (-) относятся к направлению тока затвора.


Правило 3. При проектировании необходимо избегать включения триака в 3+ квадранте (MT2-, G +).


Ложные срабатывания триака.
В ряде случаев возможны нежелательные случаи включения триаков. Некоторые из них не приведут к серьёзным последствиям, в то время как другие потенциально разрушительны.

(а) Уменьшение шумовых сигналов затвора.
В электрически шумных окружающих средах ложное срабатывание может происходить, если шумовое напряжение на затворе превышает VGT ,поэтому тока затвора достаточно для включения триака. Первый способ защиты - минимизировать возникающий шум. Лучше всего это может быть достигнуто уменьшением длины проводников ведущих к затвору и соединением цепи управления затвором непосредственно с выводом T1 (или катодом для тиристора). В случае если это невозможно следует использовать витую пару или экранированный кабель.
Дополнительную шумовую устойчивость можно обеспечить, уменьшив чувствительность затвора с помощью включения резистора до 1Ком между затвором и T1. Если в качестве высокочастотного шунта используется конденсатор, желательно включить последовательно резистор между ним и затвором, чтобы уменьшить пик тока конденсатора через затвор и минимизировать возможность повреждения затвора от перегрузки.
В качестве решения этих проблем можно использовать триаки ряда "H" (например BT139-600H). Этот нечувствительный ряд (IGT min =10mA) специально разработан для обеспечения высокой шумовой устойчивости.


Правило 4. Для минимизации шумового срабатывания следует свести к минимуму длину проводников к затвору. Подключить общий провод непосредственно к T1 (или катоду). Желательно использовать витую пару или экранированный кабель. Можно поставить резистор до 1Ком между затвором и T1, или шунтировать затвор конденсатором и соединённым с ним последовательно резистором.
Один из вариантов - использование нечувствительных триаков ряда "H".


(b) Превышение максимального значения скорости нарастания напряжения коммутации dVCOM/dt.
Этот эффект может возникнуть при питании реактивных нагрузок, где есть существенный сдвиг фазы между напряжением и током нагрузки. При выключении триака в то время, когда фаза тока нагрузки проходит через ноль, напряжение не будет нулевым из-за сдвига по фазе (см. рис.6).

Если при этом скорость изменения напряжения превысит допустимое значение dVCOM/dt, триак может остаться в состоянии проводимости. Это происходит из-за того, что носителям заряда не хватает времени, чтобы освободить переход.
На параметр dVCOM/dt влияют два условия:

  1. Скорость спадания тока нагрузки при переключении, dICOM/dt. Высокое значение dICOM/dt снижает значение dVCOM/dt.
  2. Температура перехода Tj. Чем выше Tj, тем ниже значение dVCOM/dt.

Если возможно превышение значения dVCOM/dt триака, то ложного срабатывания можно избежать использованием RC демпфера между T1-T2. Это ограничит скорость изменения напряжения. Обычно выбирается углеродный резистор 100 Ом, и конденсатор 100nF.
В качестве альтернативы можно предложить использование Hi-Com триаков (более подробно об этих триаках можно прочесть в номере 7 журнала "Компоненты и Технологии" за 2002 год).
Обратите внимание, что резистор не может быть удалён из демпфера, так как он используется в качестве ограничителя тока, во избежание возникновения высокого значения dIT/dt в моменты коммутации.

(c) Превышение максимального значения скорости нарастания тока коммутации dICOM/dt.
Высокое значение dICOM/dt может быть вызвано повышенным током нагрузки, повышенной рабочей частотой (синусоидального тока) или несинусоидальным током нагрузки.
Известный пример такого - выпрямитель питания для индуктивных нагрузок, где применение стандартных триаков невозможно из-за того, что напряжение питания оказывается ниже напряжения обратной электромагнитной индукции нагрузки и ток триака резко стремиться к нулю. Этот эффект проиллюстрирован на (рис. 7).

При нулевом токе триака, ток нагрузки будет спадать через мостовой выпрямитель. При индуктивных нагрузках возможно такое высокое значение dICOM/dt, при котором триак не может поддерживать даже небольшого значения dV/dt 50Hz синусоиды при прохождении нуля. В этом случае не будет эффекта от добавления демпфера. Решение проблемы в том, что значение dICOM/dt может быть ограничено добавлением дросселя, последовательно с нагрузкой.

Альтернативное решение - использование Hi-Com триаков.

(d) Превышение максимального значения скорости нарастания напряжения в закрытом состоянии dVD/dt
Высокая скорость изменения напряжения на силовых электродах непроводящего триака (или тиристора с чувствительным затвором) без превышения его VDRM (см. рис. 8), вызывает внутренние ёмкостные токи. При этом внутреннего тока затвора может быть достаточно, чтобы перевести триак (тиристор) в состояние проводимости. Чувствительность к этому параметру увеличивается с ростом температуры.

Там где возникает эта проблема, значение dVD/dt должно быть ограничено RC демпфером между T1 и T2 для триака (или Анодом и Катодом для тиристора).
Использование Hi-Com триаков в таких случаях может снять эти проблемы.


Правило 5. Если есть вероятность превышения значения dVD/dt или dVCOM/dt, необходимо включить RC демпфер между T1 и T2. Если есть вероятность превышения значения dICOM/dt, необходимо включить последовательно с нагрузкой катушку индуктивности в несколько mH.
Альтернатива - использование HI-Com триаков


(e) Превышение повторяющегося пикового напряжения в закрытом состоянии VDRM
Если напряжение на T2 превышает VDRM (это может происходить во время переходных процессов), то ток утечки T2-T1 достигнет значения, при котором триак может спонтанно перейти в состояние проводимости (см. рис. 9)
При нагрузке, допускающей выбросы тока, ток чрезвычайно высокой плотности может проходить через узкую открытую область перехода. Это может привести к выгоранию перехода и разрушению кристалла. Это может происходить в схемах управления лампами накаливания, емкостных нагрузках и схемах защиты мощных электронных ключей.

Превышение VDRM или dVD/dt не всегда приводит к потере работоспособности триака, а вот создаваемая dIT/dt скорость нарастания тока It может привести к выходу из строя прибора. Из-за того, что требуется некоторое время для распространения проводимости по всему переходу, допустимое значение dIT/dt ниже чем, если бы триак был включен сигналом затвора. Если значение dIT/dt не будет превышать минимального значения, которое даётся в его характеристиках, то, скорее всего, триак не выйдет из строя. Эта проблема может быть решена, подключением не насыщающейся индуктивности (без сердечника), последовательно с нагрузкой. Если это решение неприемлемо, то альтернативное решение может быть в том, чтобы обеспечить дополнительную фильтрацию и ограничение выбросов. Это повлечёт использование, параллельно питанию, Метал-Оксидного Варистора (МОВ) для ограничения напряжения и последовательное подключение LС цепочки перед варистором.
Некоторые изготовители выражают сомнения в надежности схем с использованием MOB, так как они при высоких температурах окружающей среды входят в тепловой пробой и выходят из строя. Это является следствием того, что рабочее напряжение МОВ обладает обратным температурным коэффициентом. Однако, при применении МОВ на 275В (среднеквадратичное значение) для 230В цепей, риск перегорания МОВ минимален. Такие проблемы вероятны, если варистор на 250В используется при высокой температуре окружающей среды в цепях со среднеквадратичным значением 230В.


Правило 6. Если есть вероятность превышения VDRM триака во время переходных процессов, необходимо принять следующие меры:
Ограничить высокое значение dIT/dt ненасыщаемой катушкой индуктивности на единицы mH последовательно с нагрузкой; Использовать MOB параллельно питанию в комбинации с фильтром к источнику питания.


Состояние проводимости, dIT/dt
Когда триак(тиристор) находятся в состоянии проводимости под действием сигнала затвора, проводимость начинается в участке кристалла смежным к затвору, и затем быстро распространяясь на активную область. Эта задержка накладывает ограничение на значение допустимой скорости нарастания тока нагрузки. Высокое значение dIT/dt может быть причиной выгорания прибора, в результате чего произойдёт короткое замыкание между T1 и T2.
При работе в 3+ квадранте, ещё больше снижается разрешенное значение dIT/dt из-за структуры перехода. Это может привести к мгновенному лавинному процессу в затворе и перегоранию во время быстрого нарастания тока. Разрушение триака может произойти не сразу, а при постепенном выгорании перехода Затвор-T1, что приведёт к короткому замыканию после нескольких включений. Чувствительные триаки наиболее подвержены этому. Эти проблемы не относятся к Hi-Com триакам, так как они не работают в 3+ квадранте.
Значение dIT/dt связано со скоростью нарастания тока затвора(dIG/dt) и максимальным значением IG. Высокие значения dIG/dt и пикового IG (без превышения номинальные мощности затвора) дают более высокое значение dIT/dt.


Правило 7. Продуманная схема управления затвором и отказ от работы в квадранте 3+ увеличивает значение dIT/dt.


Самый простой пример нагрузки создающей высокий начальный бросок тока - лампа накаливания, которая имеет низкое сопротивление в холодном состоянии. Для резистивных нагрузок этого типа значение dIT/dt достигнет максимального значение при начале перехода в состояние проводимости в пике напряжения сети. Если есть вероятность превышения номинального значение dIT/dt триака, необходимо ограничить это включением катушки индуктивности mH или терморезистором с обратным температурным коэффициентом последовательно с нагрузкой.
Дроссель не должен насыщаться в течение максимума пика тока. Для ограничения значения dIT/dt необходимо использовать катушку индуктивности без сердечника.
Есть более правильное решение, с помощью которого можно избежать необходимости включения последовательно с нагрузкой токоограничивающих приборов. Оно состоит в том, чтобы использовать режим включения при нулевой разности потенциалов. Это дало бы плавный рост тока с начала полуволны.
Примечание: Важно помнить, что режим включения при нулевой разности потенциалов применим только к резистивным нагрузкам. Использование того же метода для реактивных нагрузок, где есть сдвиг фазы между напряжением и током, может вызвать однополярную проводимость, ведущую к возможному режиму насыщения индуктивных нагрузок, разрушительно высокому току и перегреву. В этом случае требуется более совершенный способ переключения при нулевом токе и/или схема управления фазой включения.


Правило 8. Если есть вероятность превышения значения dIT/dt необходимо установить последовательно с нагрузкой индуктивность в несколько mH или терморезистор с обратным температурным коэффициентом.
Для резистивных нагрузок можно использовать режим включения при нулевой разности потенциалов.


Отключение Триаки использующиеся в цепях переменного тока коммутируются в конце каждого полупериода тока нагрузки, если не приложен сигнал затвора, чтобы поддержать проводимость с начала следующего полупериода. Правила для IH те же что для тиристора. См. Правило 2.

Некоторые особенности Hi-Com триаков
Hi-Com триаки имеют отличную от обычных триаков внутреннюю. Одно из отличий состоит в том, что две половины тиристора лучше изолированы друг от друга, что уменьшает их взаимное влияние. Это дает следующие преимущества:

  1. Увеличение допустимого значения dVCOM/dt. Это позволяет управлять реактивными нагрузками (в большинстве случаев) без необходимости в демпфирующем устройстве, без сбоев в коммутации. Это сокращает количество элементов, размер печатной платы, стоимость, и устраняет потери на рассеивание энергии демпфирующим устройством.
  2. Увеличение допустимого значения dICOM/dt. Это значительно улучшает работу на более высоких частотах и для несинусоидальных напряжений без необходимости в ограничении dICOM/dt при помощи индуктивности последовательно с нагрузкой.
  3. Увеличение допустимого значения dVD/dt. Триаки очень чувствительны при высоких рабочих температурах. Высокое значение dVD/dt уменьшает тенденцию к самопроизвольному включению из состояния отсутствия проводимости за счёт dV/dt при высоких температурах. Это позволяет применять их при высоких температурах для управления резистивными нагрузками в кухонных или нагревательных приборах, где обычные триаки не могут использоваться.

Из-за различной внутренней структуры работа Hi-Com триаков в квадранте 3+ невозможна. В большинстве случаев это не является проблемой, так как это наименее желательный и наименее используемый квадрант. Поэтому замена обычного триака на Hi-Com почти всегда возможна.
Более подробную информацию по Hi-Com триакам можно найти в специальной литературе:
Factsheet 013 - Understanding Hi-Com Triacs, and
Factsheet 014 - Using Hi-Com Triacs.

Способы монтажа триаков.
При малых нагрузках или коротких импульсных токах нагрузки (меньше чем 1 секунда), можно использовать триак без теплоотводящего радиатора. Во всех остальных случаях его применение необходимо.
Существует три основных метода фиксации триака к теплоотводу - крепление зажимом, крепление винтом и клёпка. Наиболее распространены первые два способа. Клёпка - в большинстве случаев не рекомендуется, так как может вызвать повреждение или деформацию кристалла , что приведёт к выходу прибора из строя.

Фиксация к теплоотводу зажимом.
Это - предпочтительный метод с минимальным тепловым сопротивлением, так как зажим достаточно плотно прижимает корпус прибора к радиатору. Это одинаково подходит как для неизолированных (SOT82 и SOT78), так и для изолированных корпусов (SOT186 F-корпус и более ранних SOT186A X-корпус).
Примечание: SOT78 известен как TO220AB.

Фиксация к теплоотводу при помощи винта

  1. Набор для монтажа корпуса SOT78 включает прямоугольную шайбу, которая должна быть установлена между головкой винта и контактом, без усилий на пластиковый корпус прибора.
  2. Во время установки наконечник отвертки не должен воздействовать на пластиковый корпус триака (тиристора).
  3. Поверхность теплоотвода в месте контакта с электродом должна быть обработана с чистотой до 0.02mm.
  4. Крутящий момент (с установкой шайбы) должен быть между 0.55Nm- 0.8Nm.
  5. По возможности следует избегать использования винтов-саморезов, так как это снижает термоконтакт между теплоотводом и прибором.
  6. Прибор должен быть механически зафиксирован перед пайкой выводов. Это минимизирует чрезмерную нагрузку на выводы.

Правило 9. При монтаже триака (тиристора) необходимо избегать приложения чрезмерных механических усилий. Перед пайкой необходимо закрепить прибор одним из трёх выше перечисленных способов. Особое внимание необходимо уделить плотности прилегания корпуса прибора к радиатору.


Тепловое сопротивление
Тепловое сопротивление Rth - это сопротивление между корпусом прибора и радиатором. Этот параметр аналогичен электрическому сопротивлению R = V/I, поэтому тепловое сопротивление Rth = T(K)/P(W), где T - температура в Кельвинах, и P-рассеяние энергии в ваттах.

Для прибора, установленного вертикально без радиатора, тепловое сопротивление задаётся тепловым сопротивлением переход-окружающая среда Rth =Rth j-a.
-Для корпуса SOT82 значение равно 100 K/W;
-Для корпуса SOT78 значение равно 60K/W; -Для корпусов F и X значение равно 55K/W .

Для не изолированных приборов, установленных на теплоотвод, тепловое сопротивление является суммой сопротивлений переход-корпус, корпус-теплоотвод и теплоотвод-окружающая среда.

Rth j-a = Rth j-mb + Rth mb-h + Rth h-a
(не изолированный корпус).

Для изолированных корпусов нет ссылки на термосопротивление Rth j-mb ,так как Rth mb-h принят постоянным и дан с учётом использования термопасты. Поэтому, тепловое сопротивление для изолированного корпуса является суммой тепловых сопротивлений переход-теплоотвод и теплоотвод-окружающая среда.

Rth j-a = Rth j-h + Rth h-a
(изолированный корпус).

Rth j-mb или Rth j-h фиксированы и даны в документации к каждому прибору.
Rth mb-h также даются в инструкциях по установке для некоторых вариантов изолированного и неизолированного монтажа, с использованием или без использования термопасты.
Rth h-a регулируется размером теплоотвода и степенью воздушного потока через него.
Для улучшения теплоотдачи всегда рекомендуется использование термопасты.

Расчет теплового сопротивления
Для вычисления теплового сопротивления теплоотвода для данного триака (тиристора) и данного тока нагрузки, мы должны сначала вычислить рассеяние энергии в триаке (тиристоре), используя следующее уравнение:

P = Vo * IT (AV) + Rs * IT(RMS)2

Vo и Rs получены из "on-state" характеристики триака (тиристора). Если значения не указанны, то они могут быть получены из графика путём вычерчивания касательной к VT max. Точка на оси VT, где её пересекает касательная, даёт Vo, в то время как тангенс угла наклона касательной дает Rs. Используя уравнение теплового сопротивления, данное выше, получаем: Rth j-a = T/P. Максимально допустимая температура перехода будет, когда Tj достигает Tj max при самой высокой температуре окружающей среды. Это дает нам T.

Полное тепловое сопротивление
Все расчёты по вычислению теплового сопротивления имеет смысл проводить для уже установившегося режима продолжительностью больше чем 1 секунда. Для импульсных токов или длительных переходных процессов меньше чем 1 секунда эффект отвода тепла уменьшается. Температура просто рассеивается в объеме прибора с очень небольшим достижением теплоотвода. В таких условиях, нагрев перехода зависит от полного теплового сопротивления переход-корпус прибора Zth j-mb.
Поэтому Zth j-mb уменьшается при уменьшении продолжительности импульса тока благодаря меньшему нагреву кристалла. При увеличении продолжительности до 1 секунды, Zth j-mb увеличивается до значения соответствующего установившемуся режиму Rth j-mb.
Характеристика Zth j-mb приводится в документации для двунаправленного и однонаправленного электрического тока импульсами продолжительностью до 10 секунд.


Правило 10. Для надёжной работы прибора, необходимое значение Rth j-a должно быть достаточно низко, чтобы держать температуру перехода в пределах Tj max при самой высокой ожидаемой температуре окружающей среды.


Номенклатура и корпуса
Промышленный ряд тиристоров Philips начинается с 0.8A в SOT54 (TO92) и заканчивается 25A в SOT78 (TO220AB).
Промышленный ряд триаков (симисторов) Philips начинается с 0.8A в SOT223 и заканчивается 25A в SOT78.
Самый маленький корпус триака (тиристора) для поверхностного монтажа SOT223 (рис. 11). Мощность рассеивания зависит от степени рассеивания тепла печатной платой, на которую устанавливается прибор.
Тот же кристалл устанавливается в неизолированный корпус SOT82 (рис. 13). Улучшенная теплоотдача этого корпуса, позволяет использовать его при более высоких номинальных токах и большей мощности.
На (рис. 12) показан наименьший корпус для обычного монтажа SOT54. В этот корпус ставиться кристалл, которым оснащаются SOT223.
SOT78 самый широко распространенный неизолированный корпус, большинство устройств для бытовой техники производится с использованием этого корпуса (рис. 14).
На (рис. 15) показан SOT186 (F-корпус). Этот корпус допускает в обычных условиях разность потенциалов 1,500V между прибором и теплоотводом.
Один из последних - корпус SOT186A (X-корпус), показанный на рис. 16. Он обладает несколькими преимуществами перед предыдущими типам:

  1. Корпус имеет те же размеры, как корпус SOT78 в зазорах выводов и монтажной поверхности, поэтому он может непосредственно заменять SOT78, без изменений в монтаже.
  2. Корпус допускает в обычных условиях разность потенциалов 2,500V между прибором и теплоотводом.

10 ПРАВИЛ

Правило 1. Для того чтобы тиристор (триак) перевести в открытое состояние: ток затвора Е IGT необходимо подавать до достижения тока нагрузки Е IL. Эти условия должны выполняться при минимальной ожидаемой рабочей температуре перехода.

Правило 2. Для переключения тиристора (или триака), ток нагрузки должен быть < IH в течение достаточного времени позволяющего вернуться к состоянию отсутствия проводимости. Это условие должно быть выполнено при самой высокой ожидаемой рабочей температуре перехода.

Правило 3. При проектировании необходимо избегать включения триака в 3+ квадранте (MT2-, G +).

Правило 4. Для минимизации шумового срабатывания следует свести к минимуму длину проводников к затвору. Подключить общий провод непосредственно к T1 (или катоду). Желательно использовать витую пару или экранированный кабель. Можно поставить резистор до 1Ком между затвором и T1, или шунтировать затвор конденсатором и соединённым с ним последовательно резистором.
Один из вариантов - использование нечувствительных триаков ряда "H".

Правило 5. Если есть вероятность превышения значения dVD/dt или dVCOM/dt, необходимо включить RC демпфер между T1 и T2. Если есть вероятность превышения значения dICOM/dt, необходимо включить последовательно с нагрузкой катушку индуктивности в несколько mH.
Альтернатива - использование HI-Com триаков.

Правило 6. Если есть вероятность превышения VDRM триака во время переходных процессов, необходимо принять следующие меры:
Ограничить высокий dIT/dt не насыщаемой катушкой индуктивности на несколько mH последовательно с нагрузкой;
Использовать MOB параллельно питанию в комбинации с фильтром к источнику питания.

Правило 7. Продуманная схема управления затвором и отказ от работы в квадранте 3+ увеличивает значение dIT/dt.

Правило 8. Если есть вероятность превышения значения dIT/dt необходимо установить последовательно с нагрузкой индуктивность в несколько mH или терморезистор с обратным температурным коэффициентом.
Для резистивных нагрузок можно использовать режим включения при нулевой разности потенциалов.

Правило 9. При монтаже триака (тиристора) необходимо избегать приложения чрезмерных механических усилий. Перед пайкой необходимо закрепить прибор одним из трёх выше перечисленных способов. Особое внимание необходимо уделить плотности прилегания корпуса прибора к радиатору.

Правило 10. Для надёжной работы прибора, необходимое значение Rth j-a должно быть достаточно низко, чтобы держать температуру перехода в пределах Tj max при самой высокой ожидаемой температуре окружающей среды.

 

shemu.ru

Симистор, принцип работы и устройство

Электронные схемы основаны на полупроводниковых элементах. В 1960 годах многие конструкторские бюро проводили работы, направленные на улучшение показателей тиристоров, которые пропускают электроток в одном направлении. В результате практических опытов на заводе «Электровыпрямитель» были разработаны и запатентованы симисторы. Особо стоит отметить тот факт, что зарубежные ученые смогли добиться подобного прорыва лишь спустя 6 месяцев. В английском языке такой полупроводниковый прибор получил название TRIAC (триак).

Устройство и принцип действия

Если взять техническое определение, то симистор это симметричный триодный тиристор: именно так расшифровывается эта аббревиатура. Основное отличие симисторов: их принцип работы, а именно способность пропускать ток в обоих направлениях. Это значительно расширяет сферу применения полупроводников, давая новые возможности для создания компактных схем управления.

Симистор представляет собой полупроводниковый прибор с пятью переходами типа n-p-n. Такая конструкция позволяет задействовать устройство в электрических цепях переменного тока. Для более понятного восприятия приведем схему, которой обычно обозначается симистор.

Как видно из предложенной схемы, симистор представляет собой трехполюсное устройство на основе полупроводников. Такой прибор имеет три вывода:

  1. Выводы Т1 и Т2 являются силовыми электродами и разделяются по полярности подключения на анод и катод;
  2. Вывод G является управляющим электродом или затвором, позволяет осуществлять управление симистором.

Как уже отмечалось, принцип работы основан на прохождении электрического сигнала в обоих направлениях. Это позволяет использовать симисторы в качестве электронного реле в любых схемах, где нужно регулировать нагрузку или прохождение тока по цепи.

Кратко рассмотрим принцип работы этого универсального устройства. Нормальное положение симистора – закрытое, то ест

voltland.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *