Закрыть

Монтаж защитного заземления: Монтаж заземления

Содержание

заземление и молниезащита для частного дома, дачи, коттеджа

Уважаемые читатели! Инструкция объёмная, поэтому специально для вашего удобства мы сделали навигацию по её разделам (см. ниже).

Дом только что построен или куплен — перед вами именно то заветное жилище, которое вы ещё недавно видели на эскизе или фотографии в объявлении. А может быть вы живёте в собственном доме уже не первый год, и каждый уголок в нём стал родным. Обладать своим личным домом замечательно, но вместе с ощущением свободы, в довесок вы получаете и ряд обязанностей. И сейчас мы не будем говорить о домашних хлопотах, речь пойдёт о такой необходимости, как заземление для частного дома. Любой частный дом включает в себя следующие системы: электрическую сеть, водопровод и канализацию, газовую или электрическую систему обогрева. Дополнительно устанавливаются система охраны и сигнализации, вентиляции, система «умный дом» и др.

Благодаря этим элементам, частный дом становится комфортной средой жизни современного человека. Но по-настоящему он оживает благодаря электрической энергии, которая приводит в работу оборудование всех указанных выше систем.

К сожалению, электричество имеет и обратную сторону. У всего оборудования есть срок службы, в каждый прибор заложена определенная надёжность, поэтому работать они будут не вечно. Кроме того, при проектировании или монтаже самого дома, электрики, коммуникаций или оборудования также могут быть допущены ошибки, которые способны сказаться на электробезопасности. В силу этих причин часть электрической сети может оказаться повреждённой. Характер аварий бывает разный: могут произойти короткие замыкания, которые отключаются автоматическими выключатели, а могут случиться пробои на корпус. Сложность в том, что проблема пробоя носит скрытый характер. Произошло повреждение проводки, поэтому корпус электрической плиты оказался под напряжением. При неправильных мерах заземления, повреждение никак себя не проявит, пока человек не прикоснется к плите и не получит удар током.

Поражение электричеством случится из-за того, что ток ищет путь в землю, а единственным подходящим проводником послужит тело человека. Допускать этого нельзя.

Такие повреждения представляют наибольшую угрозу для безопасности людей, потому что для их раннего обнаружения, а, следовательно, чтобы защититься от них, обязательно нужно иметь заземление. В рамках данной статьи рассматривается, какие действия нужно предпринять по организации заземления для частного дома или дачи.

Необходимость установки заземления в частном доме определяется системой заземления, т.е. режимом нейтрали источника питания и способом прокладки нулевого защитного (PE) и нулевого рабочего (N) проводников. Также может быть важен тип питающей сети — воздушная линия или кабельная. Конструктивные различия систем заземления позволяют выделить три варианта электроснабжения частного дома:

Система TN-S

Основная система уравнивания потенциалов (ОСУП) объединяет все крупные токопроводящие части здания, в обычном состоянии не имеющие электрического потенциала, в единый контур с главной заземляющей шиной. Рассмотрим графический пример выполнения СУП в электроустановке жилого дома.

Вначале рассмотрим самый прогрессивный подход к электрическому питанию дома – систему TN-S. В этой системе PE и N проводники разделены на всем протяжении, и необходимости в установке заземления у потребителя нет. Нужно только завести PE-проводник на главную шину заземления, и далее развести с нее проводники заземления к электроприборам. Реализуется такая система как кабельной, так воздушной линией, в случае последней прокладывается ВЛИ (воздушная линия изолированная) с помощью самонесущих проводов (СИП).

Но такое счастье выпадает далеко не всем потому, что старые воздушные линии передачи используют старую систему заземления – TN-C. В чём же её особенность? В данном случае PE и N на всём протяжении линии прокладываются одним проводником, в котором совмещены функции и нулевого защитного и нулевого рабочего проводников — так называемый PEN-проводник. Если раньше использовать такую систему разрешалось, то с введением в 2002 году ПУЭ 7 изд. , а именно пункта 1.7.80 применение УЗО в системе TN-C оказалось под запретом. Без использования УЗО ни о какой электробезопасности не может быть речи. Именно УЗО отключает питание при повреждении изоляции, как только оно произошло, а не в тот момент, когда человек прикоснется к аварийному прибору. Чтобы соблюсти все необходимые требования, систему TN-C необходимо модернизировать до TN-C-S.

 

Система TN-C-S

В системе TN-C-S по линии так же прокладывается PEN-проводник. Но, теперь уже, пункт 1.7.102 ПУЭ 7 изд. говорит, что на вводах ВЛ к электроустановкам должны быть выполнены повторные заземления PEN-проводника. Выполняются они, как правило, у электрического столба, с которого выполняется ввод. При повторном заземлении производится разделение PEN-проводника на отдельные PE и N, которые и заводятся в дом. Норма повторного заземления содержится в пункте 1.7.103 ПУЭ 7 изд. и составляет 30 Ом, либо 10 Ом (при наличии в доме газового котла). Если заземление у столба не выполнено, необходимо обратиться в Энергосбыт, в чьём ведомстве находится электрический столб, распределительный щит и ввод в дом потребителя, и указать на нарушение, которое должно быть исправлено. Если распределительный щит находится в доме, разделение PEN нужно выполнить в этом щите, а повторное заземление сделать возле дома.

 

В таком виде TN-C-S успешно эксплуатируется, но с некоторыми оговорками:

  • если состояние ВЛ вызывает серьезные опасения: старые провода находятся не в лучшем состоянии, из-за чего возникает риск обрыва или перегорания PEN-проводника. Это чревато тем, что на заземленных корпусах электроприборов окажется повышенное напряжение, т.к. путь тока в линию через рабочий ноль прервется, и ток вернется с шины, на которой выполнялось разделение, через нулевой защитный проводник на корпус прибора;
  • если на линии не выполнены повторные заземления, то есть опасность, что ток повреждения перетечёт в единственное повторное заземление, что также приведёт к повышению напряжения на корпусе.

В обоих случаях электробезопасность оставляет желать лучшего. Решением этих проблем является система ТТ.

Система ТТ

В системе ТТ PEN-проводник линии используется в качестве рабочего нуля, а отдельно выполняется индивидуальное заземление, которое можно установить возле дома. Пункт 1.7.59 ПУЭ 7 изд. оговаривает такой случай, когда невозможно обеспечить электробезопасность, и разрешает использовать систему ТТ. Обязательно должно быть установлено УЗО, а его правильная работа должна обеспечиваться условием Rа*Iа<=50 В (где Iа — ток срабатывания защитного устройства; Ra — суммарное сопротивление заземлителя). «Инструкция по устройству защитного заземления» 1.03-08 уточняет, что для соблюдения этого условия сопротивление заземляющего устройства должно быть не более 30 Ом, а в грунтах с высоким удельным сопротивлением – не более 300 Ом.

 

Цель заземления для частного дома состоит в том, чтобы получить необходимое сопротивление заземления.

Для этого используются вертикальные и горизонтальные электроды, которые в совокупности должны обеспечить необходимое растекание тока. Вертикальные заземлители подходят для монтажа в мягком грунте, тогда как в каменистом их заглубление связано с большими трудностями. В таком грунте подойдут горизонтальные электроды.

Защитное заземление и заземление молниезащиты выполняются общими, один заземлитель будет универсальным и выполнять оба назначения, об этом говорится в пункте 1.7.55 ПУЭ 7 изд. Поэтому полезно будет узнать, как унифицировать молниезащиту и заземление. Чтобы наглядно увидеть процесс монтажа этих систем, описание процесса заземления для частного дома будет разделено на этапы.

Этап 1. Установка защитного заземления

Отдельным пунктом следует выделить защитное заземление в системе TN-S. Исходной точкой для установки заземления будет тип системы питания. Различия систем питания были рассмотрены в предыдущем пункте, поэтому мы знаем, что для системы TN-S заземление монтировать не нужно, нулевой защитный (заземляющий) проводник приходит с линии – требуется только присоединить его к главной заземляющей шине, и в доме будет заземление.

Но нельзя говорить, что дому не нужна молниезащита. Значит это лишь то, что мы, не обращая внимание на этапы 1 и 2, сразу можем перейти к этапам 3-5, см. ниже
Системы TN-C и TT всегда требуют установку заземления, поэтому перейдём к самому главному.

Защитное заземление устанавливается у столба, либо у стены дома, в зависимости от того в каком месте выполняется разделение PEN-проводника. Желательно располагать заземлитель в непосредственной близости от главной заземляющей шины. Отличия TN-C от TT лишь в том, что в TN-C место заземления привязано к месту разделения PEN. Сопротивление заземления в обоих случаях должно быть не более 30 Ом в грунте с удельным сопротивлением 100 Ом*м, например суглинке, и 300 Ом в грунте с удельным сопротивлением более 1000 Ом*м. Значения одинаковые, хоть и опираемся мы на разные нормативы: для системы TN-C 1.7.103 ПУЭ 7 изд., а для системы ТТ — на пункт 1.7.59 ПУЭ и 3.4.8. Инструкции И 1.03-08. Так как отличий в необходимых мероприятиях нет, будем рассматривать общие решения для этих двух систем.

Для заземления достаточно забить шестиметровый вертикальный электрод.

Такое заземление получается очень компактным, установить его можно даже в подвале, никакие нормативные документы этому не противоречат. Необходимые действия для заземления описаны для мягкого грунта с удельным сопротивлением 100 Ом*м. Если грунт имеет сопротивление выше, требуются дополнительные расчёты, обратитесь к техническим специалистам ZANDZ.ru за помощью в расчётах и подборе материалов.

Этап 2. Заземление для газового котла

Если в доме установлен газовый котел, тогда, газовая служба может потребовать заземление с сопротивлением не более 10 Ом, руководствуясь пунктом 1.7.103 ПУЭ 7 изд. Данное требование должно быть отражено в проекте газификации.

Тогда для достижения нормы необходимо установить 15-ти метровый вертикальный заземлитель, который устанавливается в одну точку.

Установить можно и в несколько точек, например, в две или три, соединив затем горизонтальным электродом в виде полосы вдоль стены дома на расстоянии 1 м и на глубине 0,5-0,7 м. Установка заземлителя в несколько точек послужит также для цели молниезащиты, чтобы понять каким образом, перейдём к её рассмотрению.

Этап 3. Заземление для молниезащиты

Перед тем как монтировать заземление, нужно сразу решить, будет ли выполняться защита дома от молнии. Так, если конфигурация заземлителя для защитного заземления может быть любой, то заземление для молниезащиты должно быть определенного типа. Устанавливаются минимум 2 вертикальных электрода длиной 3 метра, объединённые горизонтальным электродом такой длины, чтобы между штырями было не менее 5 метров. Данное требование содержится в пункте 2.26 РД 34.21.122-87. Монтироваться такое заземление должно вдоль одной из стен дома, оно будет являться своего рода соединением в земле двух спущенных с крыши токоотводов. Если токоотводов несколько, правильным решением выглядит прокладка контура заземления для дома на расстоянии 1 м от стен на глубине 0,5-0,7 м, а в месте соединения с токоотводом установка вертикального электрода длиной 3 м.

Теперь настало время узнать, как сделать молниезащиту частного дома. Состоит она из двух частей: внешней и внутренней.

Этап 4. Внешняя молниезащита

Выполняется в соответствии СО 153-34.21.122-2003 «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (далее СО) и РД 34.21.122-87 «Инструкция по устройству молниезащиты зданий и сооружений» (далее РД).

Защита зданий от разрядов молнии осуществляется с помощью молниеотводов. Молниеотвод представляет собой возвышающееся над защищаемым объектом устройство, через которое ток молнии, минуя защищаемый объект, отводится в землю. Оно состоит из молниеприёмника, непосредственно воспринимающего на себя разряд молнии, токоотвода и заземлителя.

Молниеотводы устанавливаются на кровлю таким образом, чтобы обеспечивалась надёжность защиты более 0,9 по СО, т.е. вероятность прорыва через молниеприёмную систему должна быть не более 10%. Более подробно о том, что такое надёжность защиты читайте в статье «Молниезащита частного дома». Как правило, они устанавливаются по краям конька кровли, если крыша двускатная. Когда крыша мансардная, четырёхскатная или ещё боле сложной формы, молниеприёмники могут быть закреплены на дымовых трубах.
Все молниеприёмники соединяются между собой токоотводами, спуски токоотводов выполняются к заземляющему устройству, которое у нас уже имеется.

Установка всех этих элементов обеспечит защиту дома от молнии, а точнее от опасности, которую несёт её прямой удар.

Этап 5. Внутренняя молниезащита

Защита дома от перенапряжений выполняется с помощью УЗИП. Для их установки необходимо заземление, потому что ток отводится в землю с помощью нулевых защитных проводников, присоединяемых к контактам этих устройств. Варианты установки зависят от наличия или отсутствия внешней молниезащиты.

  1. Имеется внешняя молниезащита
    В таком случае устанавливается классический защитный каскад из расположенных последовательно устройств классов 1, 2 и 3. УЗИП класса 1 монтируется на вводе и ограничивает ток прямого удара молнии. УЗИП класса 2 устанавливается либо также в вводном щитке, либо в распределительном, если дом большой, и расстояние между щитами больше 10 м. Предназначен он для защиты от наведенных перенапряжений, их он ограничивает до уровня 2500 В. Если в доме есть чувствительная электроника, то желательно установить и УЗИП класса 3, ограничивающий перенапряжения до уровня 1500 В, такое напряжение может выдержать большинство устройств. Устанавливается УЗИП класса 3 непосредственно у таких приборов.
  2. Внешняя молниезащита отсутствует
    Прямое попадание молнии в дом не берётся в расчёт, поэтому необходимости в УЗИП класса 1 нет. Остальные УЗИП устанавливаются так же, как описано в пункте 1. Выбор УЗИП также зависит от системы заземления.

На рисунке показан дом с установленными защитным заземлением, системой внешней молниезащиты и и комбинированным УЗИП класса 1+2+3, предназначенным для установки в системе ТТ.

Перечень оборудования для заземления и молниезащиты:

В таблице учтено устройство защиты от импульсного перенапряжения (УЗИП) комбинированного типа класса 1+2+3 для системы ТТ. Выбор подходящей модели УЗИП зависит от системы заземления и других факторов, которые были учтены в приведённом примере.

Этап 6. Измерение сопротивления заземления

После установки системы заземления необходимо произвести замеры и получить протокол измерения сопротивления. Право оформлять и выдавать протокол имеют специалисты зарегистрированной в Ростехнадзоре электротехнической лаборатории. Найти уполномоченных специалистов можно в нашем Клубе Экспертов, который работает на всей территории России.

Протокол нужен для приёма газового оборудования в эксплуатацию, для газовой службы это будет подтверждением, что заземление соответствует норме 10 Ом. Понадобится протокол и для того, чтобы быть уверенным, что обеспечивается электробезопасность частного дома. Соблюдение требований нормативов будет гарантией безопасной эксплуатации электрической системы.

Рассмотрев поэтапно необходимые мероприятия, вы уже знаете, что нужно делать, чтобы обеспечить частный дом надёжными заземлением и молниезащитой.

 


Смотрите также:

  • Заземление. Что это такое и как его сдел

Как сделать заземление

Как оперативно сделать заземление с сопротивлением 4 Ома на ряде объектов (кроссовое оборудование), находящихся в городской черте в условиях плотной застройки? Грунт – суглинок/глина с удельным сопротивлением 80 Ом*м.
В виду требуемой компактности и нежелательности произведения земляных работ за пределами объекта — строительство требуемого защитного заземления решено провести в непосредственной близости от здания, в том числе непосредственно под шкафом, где размещается аппаратура.

Исходя из сопротивления грунта, одиночное защитное заземление состояло из одного 30-ти метрового электрода модульного заземления в виде готового комплекта заземления
ZZ-000-030.

Расчётное сопротивление защитного заземления составляло 3,8 Ома (расчёт заземления).

После монтажа пробного электрода защитного заземления замеренное сопротивление заземления оказалось равным 1,4 Ома, что можно связать с отличным от расчетного удельным сопротивлением грунта (около 30 Ом*м).

Следующие защитные заземлители были смонтированы исходя из первоначально полученных данных — их глубина составила 9 метров. Их среднее сопротивление заземления составило 3,5 Ома (от 3 до 4 Ом).

На монтаж одного защитного заземления тратилось 5 часов и ресурсы двух человек (10 человеко-часов).

Для соединения защитного заземления с объектом использовался медный кабель сечением 16 мм2. Соединение защитного заземлителя и кабеля выполнялось зажимами, входящими в комплект заземления.

Как сделать многоэлектродное заземление
на объекте мобильной связи

Как сделать заземление для аппаратуры связи сопротивлением заземления 2 Ома? Грунт — смесь глины с песком с удельным сопротивлением равным 130 Ом*м. В виду нежелательности произведения земляных работ за пределами здания — строительство защитного заземления решено сделать в подвале здания.

Исходя из общих требований и сопротивления грунта, защитное заземление состояло из шести 15-ти метровых электродов модульного заземления в виде готовых комплектов заземления ZZ-000-015, находящихся на расстоянии 15 метров друг от друга.

Расчётное сопротивление защитного заземления составляло 1,9 Ома
(расчёт заземления).

После монтажа защитного заземления замеренное сопротивление заземления оказалось равным 1,1 Ома, что можно связать с отличным от расчетного удельным сопротивлением грунта (около 75 Ом*м).

На монтаж электродов защитного заземления (без прокладки заземляющего проводника и его подключения) было потрачено 16 часов и ресурсы двух человек (32 человеко-часа).

Для соединения электродов защитного заземления использовалась стальная полоса 4*40мм (сечением 160 мм2). Соединение электрода защитного заземления и стальной полосы выполнялось зажимами, входящими в комплект заземления.

какие элементы нужно заземлять и как правильно это сделать

Вы когда-нибудь испытывали удары током, прикасаясь к металлическим корпусам домашней техники? Одной из причин угрозы поражения электрическим зарядом является отсутствие или неправильное заземление системы вентиляции в частном доме. Его устройство требуется для безопасного использования электрооборудования.

Согласитесь, что даже слабые импульсы не вызывают позитивных эмоций. А у людей с кардиостимуляторами последствия таких прикосновений могут быть особенно печальными.

Проверить правильность и целостность заземления не представляет особого труда. Не стоит ради этого очень часто приглашать электриков. Мы поможем вам достаточно глубоко разобраться во всех тонкостях контроля электробезопасности системы домашней вентиляции.

Содержание статьи:

Физическая суть процесса заземления

Красиво смонтированная и убранная в стены или каналы электропроводка, как и полное отсутствие электрических устройств в системе вентиляции, не гарантируют от травмы при контакте с ее металлическими частями. Только надежное соединение токопроводящих внешних конструкций вентиляционного оборудования с заземлением обеспечит вам уверенность в безопасности.

Части воздуховодов, корпуса вентиляторов из металла и других электропроводящих материалов, не находящихся в рабочем режиме под напряжением, положено заземлять. Такие требования прописаны в Правилах устройства электроустановок (ПУЭ).

Электрический заряд на доступных для прикосновения элементах может появиться от повреждения изоляции близлежащих проводов, приборов или при накоплении статического электричества. Заземление означает, что при возникновении случайного электричество заряда, он будет утекать с воздуховода в землю.

Прикосновение человека к заземленному воздуховоду становится травмобезопасным. Но только в том случае, когда величина электрического сопротивления вашего тела (приблизительно 1 кОм) выше, чем у металлического заземляющего проводника

Из школьного курса физики нам всем известно, что электроток идет по пути наименьшего сопротивления. Если сравнить, например, со свободным потоком случайно пролитой воды, то аналогия такая – вода не потечет вверх или вбок, а согласно силе земного притяжения устремится вниз. Так и с электрическим зарядом, случайно попав на заземленный воздуховод он утечет глубоко в землю к заземлителям контура дома.

Электропроводимость человека можно уменьшить за счет дополнительной изоляции от земли и других электропроводников. Для этого используют специальную защитную одежду, обувь. А можно и увеличить, за счет влажного незащищенного участка кожи.

Большему риску подвергается человек со встроенным металлическим медицинским прибором. Или увешанный различными металлическими украшениями. Еще сопротивление току снижается у людей в состоянии алкогольного опьянения.

Из чего состоит заземление?

Контур заземления представляет собой простую схему из двух элементов – проводников и заземлителей.

На всем протяжении воздуховодов, расположенных внутри помещений и снаружи дома, их внешние электропроводящие части, в нормальном рабочем режиме не находящиеся под напряжением, должны быть соединены в единую электрическую цепь. Не менее чем в двух точках эта связка прочно присоединяется к контуру заземления.

Для эффективности должен быть хороший контакт между отдельными элементами контура. Присоединение деталей корпуса воздуховода проводниками к системе заземления нужно производить не реже чем через каждые 40-50 метров

Выполнять заземление воздуховодов вентиляции необходимо в соответствии с нормами ПУЭ. Правила предписывают применять стальные полосы, медные провода или непосредственное соединение с заземленными трубопроводами, другими элементами конструкций. Обычно принято объединять заземление воздуховодов с общей системой заземления дома.

Классификация и типы заземлителей

Эти элементы любого типа находятся непосредственно в грунте. Заземление обеспечивает стекание электрического заряда в землю от корпусов и прочих нерабочих токопроводящих частей вентиляционного оборудования.

Заземлители бывают двух видов – естественные и искусственные. По нормам ПУЭ предпочтительно использовать естественные заземлители.

В частном доме к ним относятся:

  • металлические трубопроводы, броня силовых кабелей;
  • заглубленные железобетонные колонны, фундаменты;
  • металлические уличные конструкции, например, забор.

Запрещено использовать в качестве естественных заземлителей водопроводные и канализационные трубы.

Прежде чем присоединяться к разрешенным видам естественных заземлителей, следует определить их проводимость. Положения ПУЭ регламентируют максимальное значение сопротивления растеканию заземлителей. Для источников трехфазного/однофазного тока напряжением 380/220В его величина должна быть не более 4 Ом.

Искусственные заземлители применяют после определения сопротивления растеканию естественных заземлителей. В том случае, когда измеренные специальным прибором значения превышают нормы ПУЭ

Чтобы заказать измерения, нужно обратиться в любую сертифицированную электролабораторию. Вам должны выдать протокол с результатом замеров и копии заверенных документов, удостоверяющих допуск специалистов, соответствие приборов метрологическим требованиям.

Отличия защитной и рабочей системы

Заземляющие проводники от воздуховодов могут присоединяться к главной заземляющей шине (ГЗШ) или к шине защитного заземления в электрощитах. При условии, что данное оборудование имеется в доме, где уже смонтирован, при необходимости, контур заземления.

Обычно ГЗШ располагают в технических помещениях, гаражах, мастерских. Их можно легко использовать и в схеме заземления системы вентиляции

Если вы уже определились с тем, какие воздуховоды в доме по правилам нужно обязательно заземлять, то не перепутайте места присоединения. Дело в том, что в электрощитах имеется рабочая заземляющая шина. Она предназначена для рабочей функции, а не для защитной.

Рабочий нулевой проводник (N) является четвертой жилой питающего силового кабеля, где присутствуют три фазных провода (L). Он связан с нейтралью источника питания. В электрощите этот нулевой проводник соединяется с корпусом щита и шиной рабочего заземления.

Бывают кабели со специальной изолированной токопроводящей оплеткой, броней, которая может служить естественным заземлителем. Или с защитной заземляющей жилой (PE).

Она также соединяется с корпусом щитка и с другой заземляющей шиной, но уже не рабочей, а защитной. Не факт, что в вашем доме такой усиленный дорогой кабель использован в силовой схеме электропитания.

Заземляющие проводники от вентиляционного оборудования нужно присоединять к шине защитного нуля PE. Не перепутайте с шиной рабочего нуля N

С помощью рабочего нулевого проводника подключаются к электропитанию все приборы напряжением 220 В. То есть в розетке есть два контакта «фаза» и «ноль». Об этом осведомлены все домашние умельцы.

В евро образцах розеток присутствует еще заземляющий контакт. Никогда нельзя путать эти два совершенно разных понятия – заземление и зануление. Последствия могут быть печальными и для пострадавшего, и для собственника частного дома. Ведь именно домовладелец несет ответственность за безопасную работу всего оборудования.

Как сделать заземление воздуховодов?

Между фланцами необходимо смонтировать гибкие медные шунтирующие перемычки, если на воздуховодах отсутствуют заводские. Болтовое соединение, даже выполненное без изолирующих прокладок, вряд ли будет соответствовать правилам.

Так как переходное сопротивление контакта должно быть менее 0,1 Ома. Допускается соединение стыков металлоконструкций с помощью сварки стальных скоб.

Заземляющие проводники присоединяются:

  • через переходные шинки к болтам фланцев или других разъемных соединений;
  • обжимным хомутом, зачищенным и обработанным токопроводящей смазкой;
  • с помощью сварки или надежных разъемных соединений к несущему каркасу.

Выполнить видимое заземление нужно в начале и в конце воздуховода. В качестве переходных шинок можно использовать медные наконечники.

Правила требуют обязательного заземления воздуховодов, не зависимо от других принятых мер защиты, в том числе от статического электричества

Сечение стальных заземляющих проводников должно быть не менее 75 мм2. У медного проводника толщина сечения допускается от 10 мм2.

Заземлять проводящие ток части корпусов вентиляторов с контуром следует отдельными проводниками. Последовательное соединение вентиляторов с заземлением воздуховодов не допускается, должна быть только параллельная схема.

Монтаж заземлителей защитного контура

При реконструкции или строительстве частного дома отсутствующее заземляющее устройство тоже можно выполнить своими руками. Эффективность контура зависит от выбранной схемы соединения, типа и удельного сопротивления грунта.

Расположение и количество электродов можно осуществить по любой из предлагаемых схем. Необходимого сопротивления добиваются за счет увеличения или длины электрода, или количества заземлителей

Сопротивление заземляющего устройства, используемого исключительно только для защиты человека от поражения статическим электричеством воздуховода, может быть увеличено до 100 Ом. Со способами измерения сопротивления ознакомит , прочесть которую мы рекомендуем.

Все этапы скрытых работ при монтаже заземляющего контура желательно сфотографировать. Распечатанные бумажные фотографии, нарисованные от руки схемы с точными размерами и указанными материалами, храните вместе с протоколами испытаний.

Это серьезные документы, которые называются паспортом заземляющего устройства. С их помощью можно контролировать изменения контура, планировать ремонты и даже снижать тарифы страховой компании при оформлении полиса на дом.

Типичные ошибки домашних мастеров

Самостоятельное заземление может быть выполнено безупречно. Но иногда невнимательность, спешка, невысокие практические навыки приводят к погрешностям в монтаже.

Наиболее распространенные распространенные недочеты и огрехи:

  • Слабый контакт из-за защитного покрытия разъемных соединений;
  • Несоответствие нормам размеров заземляющих проводников;
  • Быстро разрушающийся материал элементов системы заземления;
  • Соединение нулевого рабочего и защитного проводников.

Почему-то многие советуют располагать заземлители вдали от дома, выбирая цифры расстояния из глубины своего сознания. Все данные установки носят рекомендательный, но необязательный характер. Никакой опасности для человека контур не представляет, никаких ограничений в правилах по расстоянию нет.

Соединение заземления воздуховодов с контуром заземления молниеотводов не допускается. Огромный ток, протекающий по заземлению при попадании молнии, может вывести из строя всю вентиляционную систему

Некоторые «знатоки» советуют для лучшей проводимости насыпать в грунт к заземлителям соль. Не нужно слушать дилетантов, советуйтесь с профессионалами.

Действительно, в начале за счет повышения влажности возможно незначительное снижение сопротивления растеканию контура заземления. Но металлические элементы в такой среде быстро разрушатся за счет ускорения процессов коррозии заземлителей.

Проверка системы техническими службами

Осматривать заземление домашнего вентиляционного оборудования рекомендуется 2 раза в год весной и осенью. Обнаруженные обрывы, коррозию, прочие дефекты видимых наружных соединений нужно устранять как можно быстрее.

Проверка работоспособности защитного устройства с выборочным вскрытием грунта проводится не реже, чем раз в 12 лет. Одновременно измеряются сопротивления контактов воздуховода с заземлением, сопротивление растеканию контура заземления

Проводить измерения с привлечением электриков лучше в летнюю сухую погоду или в зимние заморозки. В этих условиях повышается удельное сопротивление грунта. А это значит, что величина сопротивления растеканию заземляющего контура будет максимальной. Что обеспечит его надежность, соответствие норме во все прочие сезоны.

Зачем нужно заземлять воздуховоды?

Игнорирование грамотного проектирования и монтажа заземления владельцы частных домов объясняют чаще всего нежеланием тратить лишние деньги. Почему-то люди, не имеющие специальных знаний в данной области, считают, что электробезопасностью можно здесь пренебречь.

Прежде чем думать о ложной экономии средств, нужно познакомиться с возможными трагическими последствиями из-за отсутствия заземления. Не позаботиться об обязательной защите вентиляционного оборудования может только самый безответственный домовладелец

В России электротравмы являются причиной смерти в 2,7% несчастных случаев. За этими сухими цифрами скрываются конкретные человеческие жертвы. Суть в том, что электрический ток настигает неожиданно. Он не имеет запаха, цвета, его не увидишь и не почувствуешь, пока не прикоснешься или не определишь с помощью приборов.

Процесс присоединения металлических частей вентиляционного оборудования к заземляющим устройствам требует особой осторожности. Соблюдайте меры безопасности при работе на высоте, со сварочным оборудованием, с электроприборами.

Выводы и полезное видео по теме

Монтаж контура заземления в частном доме:

Состав вытяжной системы вентиляции здания:

Корпус вентилятора, воздуховоды и прочие элементы, на которых может оказаться электрический заряд, должны быть безопасны для случайного прикосновения человека.

Все заземляющие проводники, электроды, естественные заземлители имеют нормированные правилами электрические характеристики. Грамотно рассчитанная схема и правильно смонтированные защитные элементы прослужат вам много лет. Важно только периодически проводить техобслуживание и замерять электрические параметры частей заземления.

А как вы считаете – стоит ли делать заземление своими силами или лучше пригласить специалистов? В расположенной ниже форме для комментариев поделитесь вашим мнением, задайте вопросы нашему эксперту, оставьте отзыв.

Подключение и выбор провода защитного заземления

Защитные (PE) проводники обеспечивают соединение между всеми открытыми и внешними проводящими частями установки, создавая основную систему уравнивания потенциалов. Эти проводники проводят ток короткого замыкания из-за нарушения изоляции (между фазным проводом и открытой проводящей частью) к заземленной нейтрали источника. PE-провода подключаются к главному заземляющему зажиму установки.

Главный зажим заземления соединен с заземляющим электродом (см. Главу E) заземляющим проводом (провод заземляющего электрода в США).

PE-провода должны быть:

  • Изолированный и окрашенный в желтый и зеленый (полосы)
  • Защита от механических и химических повреждений

В схемах с заземлением IT и TN настоятельно рекомендуется, чтобы проводники PE располагались в непосредственной близости (т. Е. В тех же кабелепроводах, на одном кабельном лотке и т. Д.) С кабелями под напряжением. соответствующей схемы. Такое расположение обеспечивает минимально возможное индуктивное сопротивление в токоведущих цепях замыкания на землю.

Следует отметить, что такое расположение предусмотрено конструкцией шинопроводов (шинопроводов).

Подключение

PE-проводники должны:

  • Не включать какие-либо средства нарушения целостности цепи (например, переключатель, съемные перемычки и т. Д.).
  • Подключайте открытые проводящие части по отдельности к основному проводнику защитного заземления, т. Е. Параллельно, а не последовательно, как показано на Рисунок G55
  • Иметь индивидуальную клемму на общих шинах заземления в распределительных щитах.

Рис. G55 — Плохое соединение в последовательном соединении оставит все последующие устройства незащищенными

Схема ТТ

PE-провод не обязательно должен быть установлен в непосредственной близости от токоведущих проводов соответствующей цепи, поскольку для срабатывания защиты типа УЗО, используемой в установках TT, не требуются высокие значения тока замыкания на землю.

Схемы IT и TN

PE или PEN провод, как отмечалось ранее, должен быть проложен как можно ближе к соответствующим токоведущим проводам цепи, и между ними не должно быть никаких ферромагнитных материалов.PEN-провод всегда должен быть подсоединен непосредственно к клемме заземления устройства, с петлевым соединением от клеммы заземления к клемме нейтрали устройства (см. рис. G56).

  • Схема TN-C (нейтраль и заземляющий проводник — одно и то же, называемое проводником PEN)
Защитная функция проводника PEN имеет приоритет, поэтому все правила, регулирующие проводники PE, применяются строго к PEN проводники
PE-проводник для установки подключается к PEN-клемме или шине (см. Рисунок G56), как правило, в исходной точке установки.После точки разъединения нельзя подключать PE-провод к нейтральному проводу.

Рис. G56 — Прямое подключение PEN-проводника к заземляющей клемме прибора

Рис. G57 — Схема TN-C-S

Виды материалов

Материалы типов, упомянутых ниже в Рис. G58, могут использоваться для PE-проводников при условии, что выполняются условия, указанные в последней колонке.

Рис. G58 — Выбор защитных проводников (PE)

Схема
Тип провода защитного заземления (РЕ) IT схема TN схема ТТ Условия, которые необходимо соблюдать
Дополнительный проводник В том же кабеле, что и фазы, или в одной кабельной трассе Настоятельно рекомендуется Настоятельно рекомендуется Правильно PE-проводник должен быть изолирован на том же уровне, что и фазы.
Независимо от фазных проводников Возможно [a] Возможно [a] [b] Правильно
  • PE-проводник может быть неизолированным или изолированным [b]
  • Электрическая непрерывность должна быть обеспечена защитой от механических, химических и электрохимических опасностей
  • Их проводимость должна быть адекватной
Металлический корпус шинопровода или других сборных сборных каналов [c] Возможно [d] PE возможно [d]
PEN возможно [e]
Правильно
Наружная оболочка экструдированных проводников с минеральной изоляцией (например,грамм. Системы типа «пиротенакс») Возможно [d] PE возможно [d]
PEN не рекомендуется [b] [d]
Возможно
Некоторые посторонние проводящие элементы [f] , такие как:
  • Металлоконструкция здания
  • Станины машин
  • Водопроводные трубы [г]
Возможно [в] PE возможно [h]

PEN запрещено

Возможно
Металлические кабельные каналы, такие как трубопроводы [i] каналы, желоба, лотки, лестницы и т. Д. Возможно [в] PE возможно [h]
PEN не рекомендуется [b] [h]
Возможно
Запрещается использовать в качестве проводников PE: металлические трубы [i] , газовые трубы, трубы для горячей воды, ленты для армирования кабелей [i] или провода [i]
  1. ^ 1 2 В схемах TN и IT устранение повреждения обычно достигается с помощью устройств максимального тока (предохранителей или автоматических выключателей), так что полное сопротивление петли тока повреждения должно быть достаточно низким, чтобы гарантировать положительное срабатывание защитного устройства. 1 2 3 4 5 Возможно, но не рекомендуется, поскольку полное сопротивление контура замыкания на землю не может быть известно на этапе проектирования. Измерения на комп

% PDF-1.6 % 9640 0 объект > endobj xref 9640 366 0000000016 00000 н. 0000032151 00000 п. 0000032290 00000 н. 0000032456 00000 п. 0000032879 00000 п. 0000032918 00000 п. 0000033095 00000 п. 0000033210 00000 п. 0000034209 00000 п. 0000034618 00000 п. 0000034809 00000 п. 0000034922 00000 п. 0000035203 00000 п. 0000035483 00000 п. 0000528154 00000 н. 0000543798 00000 н. 0000547428 00000 н. 0000547843 00000 н. 0000548140 00000 н. 0000550589 00000 н. 0000557150 00000 н. 0000557225 00000 н. 0000557307 00000 н. 0000557421 00000 н. 0000557467 00000 н. 0000557554 00000 н. 0000557640 00000 н. 0000557772 00000 н. 0000557818 00000 п. 0000557985 00000 н. 0000558031 00000 н. 0000558191 00000 п. 0000558237 00000 п. 0000558375 00000 н. 0000558421 00000 н. 0000558599 00000 н. 0000558645 00000 н. 0000558780 00000 н. 0000558826 00000 н. 0000558974 00000 н. 0000559020 00000 н. 0000559166 00000 п. 0000559212 00000 н. 0000559329 00000 н. 0000559375 00000 п. 0000559500 00000 н. 0000559546 00000 н. 0000559667 00000 н. 0000559713 00000 н. 0000559851 00000 н. 0000559897 00000 п. 0000560047 00000 н. 0000560093 00000 н. 0000560220 00000 н. 0000560266 00000 н. 0000560411 00000 н. 0000560457 00000 н. 0000560609 00000 н. 0000560655 00000 н. 0000560812 00000 н. 0000560858 00000 п. 0000560985 00000 п. 0000561031 00000 н. 0000561173 00000 н. 0000561219 00000 н. 0000561346 00000 н. 0000561392 00000 н. 0000561535 00000 н. 0000561581 00000 н. 0000561717 00000 н. 0000561763 00000 н. 0000561884 00000 н. 0000561930 00000 н. 0000562079 00000 н. 0000562125 00000 н. 0000562248 00000 н. 0000562294 00000 н. 0000562430 00000 н. 0000562476 00000 н. 0000562611 00000 п. 0000562657 00000 н. 0000562783 00000 н. 0000562829 00000 н. 0000562963 00000 н. 0000563009 00000 н. 0000563196 00000 п. 0000563242 00000 н. 0000563405 00000 н. 0000563451 00000 н. 0000563592 00000 п. 0000563638 00000 п. 0000563790 00000 н. 0000563836 00000 н. 0000563968 00000 н. 0000564014 00000 н. 0000564215 00000 н. 0000564261 00000 п. 0000564487 00000 н. 0000564632 00000 н. 0000564821 00000 н. 0000564867 00000 н. 0000564976 00000 н. 0000565159 00000 н. 0000565319 00000 п. 0000565365 00000 н. 0000565486 00000 н. 0000565618 00000 н. 0000565775 00000 н. 0000565820 00000 н. 0000565960 00000 н. 0000566102 00000 п. 0000566219 00000 н. 0000566264 00000 н. 0000566431 00000 н. 0000566476 00000 н. 0000566614 00000 н. 0000566755 00000 н. 0000566918 00000 н. 0000566962 00000 н. 0000567086 00000 п. 0000567225 00000 н. 0000567422 00000 н. 0000567466 00000 н. 0000567565 00000 н. 0000567658 00000 н. 0000567751 00000 п. 0000567795 00000 н. 0000567839 00000 н. 0000567945 00000 н. 0000567989 00000 н. 0000568033 00000 п. 0000568078 00000 п. 0000568242 00000 н. 0000568287 00000 н. 0000568406 00000 н. 0000568451 00000 п. 0000568557 00000 н. 0000568602 00000 н. 0000568723 00000 н. 0000568768 00000 н. 0000568898 00000 н. 0000568943 00000 н. 0000569068 00000 н. 0000569112 00000 н. 0000569156 00000 п. 0000569201 00000 н. 0000569331 00000 п. 0000569421 00000 п. 0000569586 00000 н. 0000569631 00000 н. 0000569777 00000 п. 0000569969 00000 н. 0000570172 00000 н. 0000570217 00000 н. 0000570348 00000 п. 0000570489 00000 н. 0000570534 00000 п. 0000570669 00000 н. 0000570714 00000 н. 0000570840 00000 н. 0000570885 00000 н. 0000571044 00000 н. 0000571089 00000 н. 0000571185 00000 н. 0000571230 00000 н. 0000571345 00000 н. 0000571390 00000 н. 0000571512 00000 н. 0000571557 00000 н. 0000571678 00000 н. 0000571723 00000 н. 0000571768 00000 н. 0000571813 00000 н. 0000572008 00000 н. 0000572053 00000 н. 0000572278 00000 н. 0000572323 00000 н. 0000572417 00000 н. 0000572536 00000 н. 0000572581 00000 н. 0000572626 00000 н. 0000572671 00000 н. 0000572716 00000 н. 0000572823 00000 н. 0000572868 00000 н. 0000572979 00000 п. 0000573024 00000 н. 0000573069 00000 н. 0000573114 00000 н. 0000573160 00000 н. 0000573305 00000 н. 0000573351 00000 п. 0000573501 00000 н. 0000573547 00000 н. 0000573706 00000 н. 0000573864 00000 н. 0000574040 00000 н. 0000574086 00000 н. 0000574240 00000 н. 0000574286 00000 н. 0000574435 00000 н. 0000574565 00000 н. 0000574760 00000 н. 0000574806 00000 н. 0000574917 00000 н. 0000575044 00000 н. 0000575206 00000 н. 0000575252 00000 н. 0000575395 00000 н. 0000575441 00000 н. 0000575567 00000 н. 0000575709 00000 н. 0000575755 00000 н. 0000575915 00000 н. 0000575961 00000 н. 0000576153 00000 н. 0000576199 00000 н. 0000576310 00000 н. 0000576401 00000 н. 0000576447 00000 н. 0000576566 00000 н. 0000576612 00000 н. 0000576717 00000 н. 0000576763 00000 н. 0000576896 00000 н. 0000576942 00000 н. 0000576988 00000 н. 0000577034 00000 н. 0000577080 00000 н. 0000577254 00000 н. 0000577300 00000 н. 0000577346 00000 п. 0000577392 00000 н. 0000577552 00000 н. 0000577598 00000 п. 0000577738 00000 п. 0000577878 00000 н. 0000578003 00000 н. 0000578049 00000 н. 0000578175 00000 н. 0000578221 00000 н. 0000578351 00000 н. 0000578397 00000 н. 0000578537 00000 н. 0000578583 00000 н. 0000578796 00000 н. 0000578842 00000 н. 0000578888 00000 н. 0000579023 00000 н. 0000579069 00000 н. 0000579201 00000 н. 0000579247 00000 н. 0000579293 00000 н. 0000579339 00000 н. 0000579385 00000 н. 0000579431 00000 н. 0000579476 00000 н. 0000579606 00000 н. 0000579725 00000 н. 0000579771 00000 н. 0000579908 00000 н. 0000579954 00000 н. 0000580089 00000 н. 0000580135 00000 н. 0000580276 00000 н. 0000580322 00000 н. 0000580448 00000 н. 0000580494 00000 п. 0000580633 00000 н. 0000580679 00000 н. 0000580787 00000 н. 0000580833 00000 н. 0000580980 00000 н. 0000581025 00000 н. 0000581155 00000 н. 0000581200 00000 н. 0000581347 00000 н. 0000581392 00000 н. 0000581539 00000 н. 0000581584 00000 н. 0000581629 00000 н. 0000581675 00000 н. 0000581813 00000 н. 0000581859 00000 н. 0000581905 00000 н. 0000581951 00000 н. 0000582051 00000 н. 0000582160 00000 н. 0000582357 00000 н. 0000582403 00000 н. 0000582527 00000 н. 0000582665 00000 н. 0000582852 00000 н. 0000582898 00000 н. 0000583022 00000 н. 0000583156 00000 н. 0000583343 00000 п. 0000583389 00000 н. 0000583513 00000 н. 0000583647 00000 н. 0000583767 00000 н. 0000583813 00000 н. 0000584015 00000 н. 0000584061 00000 н. 0000584140 00000 н. 0000584244 00000 н. 0000584290 00000 н. 0000584336 00000 н. 0000584382 00000 п. 0000584521 00000 н. 0000584567 00000 н. 0000584613 00000 н. 0000584659 00000 н. 0000584798 00000 н. 0000584844 00000 н. 0000584890 00000 н. 0000584936 00000 н. 0000585075 00000 н. 0000585121 00000 н. 0000585167 00000 н. 0000585213 00000 н. 0000585259 00000 н. 0000585305 00000 н. 0000585351 00000 п. 0000585458 00000 п. 0000585616 00000 н. 0000585662 00000 н. 0000585806 00000 н. 0000585852 00000 н. 0000585983 00000 п. 0000586029 00000 н. 0000586192 00000 н. 0000586238 00000 п. 0000586358 00000 п. 0000586404 00000 п. 0000586450 00000 н. 0000586496 00000 н. 0000586598 00000 н. 0000586718 00000 н. 0000586764 00000 н. 0000586946 00000 н. 0000586992 00000 н. 0000587148 00000 н. 0000587194 00000 н. 0000587311 00000 н. 0000587357 00000 н. 0000587475 00000 н. 0000587521 00000 н. 0000587638 00000 п. 0000587684 00000 н. 0000587806 00000 н. 0000587852 00000 н. 0000587898 00000 н. 0000587944 00000 н. 0000588039 00000 н. 0000588085 00000 н. 0000588191 00000 н. 0000588237 00000 н. 0000588339 00000 н. 0000588385 00000 н. 0000588498 00000 п. 0000588545 00000 н. 0000588654 00000 н. 0000588701 00000 н. 0000588748 00000 н. 0000007774 00000 н. трейлер ] / Назад 15851437 >> startxref 0 %% EOF 10005 0 объект > поток ; AZLv

г. ) ӥ \ `փ X | ׃ b.o € gX5w-ujS% ~ ؛ xT% 8K3 «a @ Ju @ Ay08D s7a͚fUlglNa * V]? o (Bbi .- ‘/ «| Ca» 4: IXtȲUS ߓ’ izis B] N9FƝ | {]% l> 45 ڵ m * 4r + n7j`Bv52 (K & ‘4Uǵbs;) 9O | O8̉r + ьl? KAZ = ux | vu («s,? k_V6iW3ļx

MACROTESTG1, Установочные тестеры, Заземление

  • Товары
    • Новые продукты
    • Инфракрасные камеры
    • Сети LAN
    • Экологические измерения
    • Бороскопы
    • Калибраторы процессов
    • Детекторы напряжения и др.
    • Лазерные дальномеры
    • Медицинские товары
    • Светодиодные лампы
    • Тестеры установки
    • Фотоэлектрические тестеры
    • Анализаторы качества электроэнергии
    • Цифровые мультиметры
    • Токоизмерительные клещи
    • Ножницы
  • Аксессуары
  • Каталоги
  • Где купить
  • Новости / Выставка
  • Клиентская зона
  • Языки
    • Бразилия / португальский
    • Франция / французский
    • Германия / Deutsch
    • Международный / английский
    • Италия / итальянский
    • Испания / Espanol
    • Великобритания / английский
    • США / английский
  • Поиск товаров

Система электроснабжения с помощью устройств защиты от перенапряжения УЗИ

Базовая система электроснабжения, используемая в электроснабжении для строительных проектов, представляет собой трехфазную трехпроводную и трехфазную четырехпроводную систему и т. Д., Но смысл этих терминов не очень строгий.Международная электротехническая комиссия (МЭК) разработала единые положения для этого, и это называется системой TT, системой TN и системой IT. Какая система TN делится на систему TN-C, TN-S, TN-C-S. Ниже приводится краткое введение в различные системы электропитания.

система электропитания

В соответствии с различными методами защиты и терминологиями, определенными IEC, низковольтные системы распределения электроэнергии делятся на три типа в соответствии с различными методами заземления, а именно системы TT, TN и IT, и описываются как следует.



Система электропитания TN-C

Система электропитания в режиме TN-C использует рабочую нейтральную линию в качестве линии защиты от перехода через нуль, которую можно назвать защитной нейтральной линией и обозначить как PEN.

Система электропитания TN-CS

Для временного электропитания системы TN-CS, если передняя часть питается по методу TN-C, а строительный кодекс указывает, что строительная площадка должна использовать TN-S система электропитания, общая распределительная коробка может быть разделена в задней части системы.Помимо линии PE, система TN-CS имеет следующие особенности.

1) Рабочая нулевая линия N подключена к специальной защитной линии PE. Когда несимметричный ток линии велик, на защиту нуля электрооборудования влияет нулевой потенциал линии. Система TN-C-S может снизить напряжение корпуса двигателя на землю, но не может полностью устранить это напряжение. Величина этого напряжения зависит от дисбаланса нагрузки проводки и длины этой линии.Чем больше несимметрична нагрузка и чем длиннее проводка, тем больше смещение напряжения корпуса устройства относительно земли. Следовательно, требуется, чтобы ток неуравновешенности нагрузки не был слишком большим, и чтобы линия защитного заземления заземлялась повторно.

2) Линия PE не может войти в устройство защиты от утечки ни при каких обстоятельствах, поскольку устройство защиты от утечки на конце линии вызовет срабатывание переднего устройства защиты от утечки и вызовет крупномасштабный сбой питания.

3) В дополнение к линии PE необходимо подключать к линии N в общей коробке, линия N и линия PE не должны подключаться в других отсеках.На линии защитного заземления нельзя устанавливать переключатели и предохранители, и в качестве заземления нельзя использовать заземление. линия.

В результате проведенного выше анализа система электропитания TN-C-S была временно изменена в системе TN-C. Когда трехфазный силовой трансформатор находится в хорошем рабочем состоянии заземления и трехфазная нагрузка относительно сбалансирована, влияние системы TN-C-S на использование электроэнергии в строительстве все еще возможно. Однако в случае несбалансированной трехфазной нагрузки и специального силового трансформатора на строительной площадке необходимо использовать систему электропитания TN-S.

Система электропитания TN-S

Система электропитания режима TN-S представляет собой систему электропитания, которая строго отделяет рабочую нейтраль N от выделенной защитной линии PE. Она называется системой питания TN-S. Характеристики системы питания TN-S следующие.

1) Когда система работает нормально, на выделенной линии защиты нет тока, но есть несимметричный ток на рабочей нулевой линии. На линии PE относительно земли нет напряжения, поэтому нулевая защита металлического корпуса электрооборудования подключена к специальной линии защиты PE, которая является безопасной и надежной.

2) Рабочая нейтральная линия используется только как цепь однофазной осветительной нагрузки.

3) Специальная защитная линия PE не может ни разрывать линию, ни входить в реле утечки.

4) Если устройство защиты от утечки на землю используется на линии L, рабочая нулевая линия не должна повторно заземляться, а линия PE имеет повторное заземление, но она не проходит через устройство защиты от утечки на землю, поэтому устройство защиты от утечки также может быть установлен на линии L источника питания системы TN-S.

5) Система электроснабжения TN-S безопасна и надежна, подходит для систем электроснабжения низкого напряжения, таких как промышленные и гражданские здания. Перед началом строительных работ необходимо использовать систему электроснабжения TN-S.

Система электропитания TT ​​

Метод TT относится к системе защиты, которая напрямую заземляет металлический корпус электрического устройства, которая называется системой защитного заземления, также называемой системой TT. Первый символ T означает, что нейтральная точка энергосистемы напрямую заземлена; второй символ T указывает на то, что проводящая часть нагрузочного устройства, не контактирующая с токоведущим телом, напрямую связана с землей, независимо от того, как заземлена система.Все заземления нагрузки в системе TT называется защитным заземлением. Характеристики этой системы питания следующие.

1) Когда металлический корпус электрического оборудования заряжен (фазовая линия касается корпуса или изоляция оборудования повреждена и протекает), защита от заземления может значительно снизить риск поражения электрическим током. Однако низковольтные автоматические выключатели (автоматические выключатели) не обязательно срабатывают, в результате чего напряжение утечки на землю устройства утечки превышает безопасное напряжение, которое является опасным.

2) Когда ток утечки относительно невелик, даже предохранитель может не перегореть. Следовательно, для защиты также требуется устройство защиты от утечки. Поэтому популяризировать систему TT сложно.

3) Заземляющее устройство системы TT потребляет много стали, и его трудно утилизировать, время и материалы.

В настоящее время некоторые строительные единицы используют систему ТТ. Когда строительная единица заимствует свой источник питания для временного использования электроэнергии, используется специальная линия защиты, чтобы уменьшить количество стали, используемой для заземляющего устройства.

Отделите линию PE новой добавленной специальной защитной линии от рабочей нулевой линии N, которая характеризуется:

1 Отсутствует электрическое соединение между общей линией заземления и рабочей нейтральной линией;

2 При нормальной работе рабочая нулевая линия может иметь ток, а линия специальной защиты не имеет тока;

3 Система TT подходит для мест с очень разрозненной защитой земли.

Система электропитания TN

Система электропитания режима TN Этот тип системы электропитания представляет собой систему защиты, которая соединяет металлический корпус электрического оборудования с рабочим нулевым проводом.Она называется системой нулевой защиты и представлена ​​TN. Его особенности заключаются в следующем.

1) Когда устройство находится под напряжением, система защиты от перехода через нуль может увеличить ток утечки до тока короткого замыкания. Этот ток в 5,3 раза больше, чем у системы ТТ. На самом деле это однофазное короткое замыкание и перегорает предохранитель. Расцепитель низковольтного выключателя немедленно отключится и отключится, что сделает неисправное устройство более безопасным.

2) Система TN экономит материалы и человеко-часы и широко используется во многих странах и странах Китая. Это показывает, что система TT имеет много преимуществ. В системе электропитания с режимом TN она делится на TN-C и TN-S в зависимости от того, отделена ли линия защитного нуля от рабочей нулевой линии.

Принцип работы:

В системе TN открытые проводящие части всего электрооборудования подключены к защитной линии и подключены к точке заземления источника питания.Эта точка заземления обычно является нейтральной точкой системы распределения электроэнергии. Система питания системы TN имеет одну точку, которая напрямую заземлена. Открытая электропроводящая часть электрического устройства подключена к этой точке через защитный провод. Система TN обычно представляет собой трехфазную сетевую систему с заземленной нейтралью. Его особенностью является то, что открытая проводящая часть электрооборудования напрямую подключена к точке заземления системы. Когда происходит короткое замыкание, ток короткого замыкания представляет собой замкнутый контур, образованный металлической проволокой.Образуется металлическое однофазное короткое замыкание, в результате чего возникает достаточно большой ток короткого замыкания, чтобы защитное устройство могло надежно срабатывать и устранять повреждение. Если рабочая нейтральная линия (N) повторно заземляется, при коротком замыкании корпуса часть тока может быть отведена в точку повторного заземления, что может привести к сбою надежной работы защитного устройства или во избежание отказа, тем самым расширяя неисправность. В системе TN, то есть трехфазной пятипроводной системе, линия N и линия PE прокладываются отдельно и изолированы друг от друга, а линия PE подключается к корпусу электрического устройства вместо N-линия.Поэтому самое важное, о чем мы заботимся, — это потенциал провода PE, а не потенциал провода N, поэтому повторное заземление в системе TN-S не является повторным заземлением провода N. Если линия PE и линия N заземлены вместе, поскольку линия PE и линия N подключены в повторяющейся точке заземления, линия между повторяющейся точкой заземления и рабочей точкой заземления распределительного трансформатора не имеет разницы между линией PE и линия N. Исходная линия — это линия N.Предполагаемый ток нейтрали делится между линией N и линией PE, а часть тока шунтируется через повторяющуюся точку заземления. Поскольку можно считать, что на передней стороне повторяющейся точки заземления нет линии PE, только линия PEN, состоящая из исходной линии PE и линии N, включенных параллельно, преимущества исходной системы TN-S будут потеряны, поэтому линия PE и линия N не могут быть общим заземлением. По указанным выше причинам в соответствующих правилах четко указано, что нейтральная линия (т.е. линия N) не должна заземляться повторно, за исключением нейтральной точки источника питания.

IT-система

IT-система питания I показывает, что сторона источника питания не имеет рабочего заземления или заземлена с высоким импедансом. Вторая буква T указывает на то, что электрическое оборудование на стороне нагрузки заземлено.

Система электропитания в режиме IT отличается высокой надежностью и хорошей безопасностью, когда расстояние до источника питания невелико. Обычно он используется в местах, где отключение электроэнергии не разрешено, или в местах, где требуется строгое постоянное электроснабжение, например, в сталеплавильном производстве, в операционных в крупных больницах и в подземных шахтах.Условия электроснабжения в подземных выработках относительно плохие, а кабели подвержены воздействию влаги. При использовании системы с питанием от IT, даже если нейтральная точка источника питания не заземлена, после утечки в устройстве относительный ток утечки на землю остается небольшим и не нарушит баланс напряжения источника питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *