Меры защиты от прямого прикосновения
1.7.67. Основная изоляция токоведущих частей должна покрывать токоведущие части и выдерживать все возможные воздействия, которым она может подвергаться в процессе ее эксплуатации. Удаление изоляции должно быть возможно только путем ее разрушения. Лакокрасочные покрытия не являются изоляцией, защищающей от поражения электрическим током, за исключением случаев, специально оговоренных техническими условиями на конкретные изделия. При выполнении изоляции во время монтажа она должна быть испытана в соответствии с требованиями гл. 1.8.
В случаях, когда основная изоляция обеспечивается воздушным промежутком, защита от прямого прикосновения к токоведущим частям или приближения к ним на опасное расстояние, в том числе в электроустановках напряжением выше 1 кВ, должна быть выполнена посредством оболочек, ограждений, барьеров или размещением вне зоны досягаемости.
1.7.68. Ограждения и оболочки в электроустановках напряжением до 1 кВ должны иметь степень защиты не менее IP 2X, за исключением случаев, когда большие зазоры необходимы для нормальной работы электрооборудования.
Ограждения и оболочки должны быть надежно закреплены и иметь достаточную механическую прочность.
Вход за ограждение или вскрытие оболочки должны быть возможны только при помощи специального ключа или инструмента либо после снятия напряжения с токоведущих частей. При невозможности соблюдения этих условий должны быть установлены промежуточные ограждения со степенью защиты не менее IP 2Х, удаление которых также должно быть возможно только при помощи специального ключа или инструмента.
1.7.69. Барьеры предназначены для защиты от случайного прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ, но не исключают преднамеренного прикосновения и приближения к токоведущим частям при обходе барьера. Для удаления барьеров не требуется применения ключа или инструмента, однако они должны быть закреплены так, чтобы их нельзя было снять непреднамеренно. Барьеры должны быть из изолирующего материала.
1.7.70. Размещение вне зоны досягаемости для защиты от прямого прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ может быть применено при невозможности выполнения мер, указанных в 1.7.68 — 1.7.69, или их недостаточности. При этом расстояние между доступными одновременному прикосновению проводящими частями в электроустановках напряжением до 1 кВ должно быть не менее 2,5 м. Внутри зоны досягаемости не должно быть частей, имеющих разные потенциалы и доступных одновременному прикосновению.
В вертикальном направлении зона досягаемости в электроустановках напряжением до 1 кВ должна составлять 2,5 м от поверхности, на которой находятся люди (рис. 1.7.6).
Указанные размеры даны без учета применения вспомогательных средств (например, инструмента, лестниц, длинных предметов).
S — поверхность, на которой может находиться человек;
В — основание поверхности S;
— граница зоны досягаемости токоведущих частей рукой человека, находящегося на поверхности S;
0,75; 1,25; 2,50 м — расстояния от края поверхности S до границы зоны досягаемости
Рис. 1.7.6. Зона досягаемости в электроустановках до 1 кВ:
1.7.71. Установка барьеров и размещение вне зоны досягаемости допускается только в помещениях, доступных квалифицированному персоналу.
1.7.72. В электропомещениях электроустановок напряжением до 1 кВ не требуется защита от прямого прикосновения при одновременном выполнении следующих условий:
эти помещения отчетливо обозначены, и доступ в них возможен только с помощью ключа;
обеспечена возможность свободного выхода из помещения без ключа, даже если оно заперто на ключ снаружи;
минимальные размеры проходов обслуживания соответствуют гл. 4.1.
Защита при косвенном прикосновении
Содержание
Меры защиты от прямого прикосновения
1.7.67. Основная изоляция токоведущих частей должна покрывать токоведущие части и выдерживать все возможные воздействия, которым она может подвергаться в процессе ее эксплуатации. Удаление изоляции должно быть возможно только путем ее разрушения. Лакокрасочные покрытия не являются изоляцией, защищающей от поражения электрическим током, за исключением случаев, специально оговоренных техническими условиями на конкретные изделия. При выполнении изоляции во время монтажа она должна быть испытана в соответствии с требованиями гл.1.8.
В случаях, когда основная изоляция обеспечивается воздушным промежутком, защита от прямого прикосновения к токоведущим частям или приближения к ним на опасное расстояние, в том числе в электроустановках напряжением выше 1 кВ, должна быть выполнена посредством оболочек, ограждений, барьеров или размещением вне зоны досягаемости.
1.7.68. Ограждения и оболочки в электроустановках напряжением до 1 кВ должны иметь степень защиты не менее IP 2X, за исключением случаев, когда большие зазоры необходимы для нормальной работы электрооборудования.
Ограждения и оболочки должны быть надежно закреплены и иметь достаточную механическую прочность.
Вход за ограждение или вскрытие оболочки должны быть возможны только при помощи специального ключа или инструмента либо после снятия напряжения с токоведущих частей. При невозможности соблюдения этих условий должны быть установлены промежуточные ограждения со степенью защиты не менее IP 2X, удаление которых также должно быть возможно только при помощи специального ключа или инструмента.
1.7.69. Барьеры предназначены для защиты от случайного прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ, но не исключают преднамеренного прикосновения и приближения к токоведущим частям при обходе барьера. Для удаления барьеров не требуется применения ключа или инструмента, однако они должны быть закреплены так, чтобы их нельзя было снять непреднамеренно. Барьеры должны быть из изолирующего материала.
1.7.70. Размещение вне зоны досягаемости для защиты от прямого прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ может быть применено при невозможности выполнения мер, указанных в 1.7.68-1.7.69, или их недостаточности. При этом расстояние между доступными одновременному прикосновению проводящими частями в электроустановках напряжением до 1 кВ должно быть не менее 2,5 м. Внутри зоны досягаемости не должно быть частей, имеющих разные потенциалы и доступных одновременному прикосновению.
В вертикальном направлении зона досягаемости в электроустановках напряжением до 1 кВ должна составлять 2,5 м от поверхности, на которой находятся люди (рис.1.7.6).
Рис.1.7.6. Зона досягаемости в электроустановках до 1 кВ: S — поверхность, на которой может находиться человек; B — основание поверхности S;
— граница зоны досягаемости токоведущих частей рукой человека, находящегося на поверхности S; 0,75; 1,25; 2,50 м — расстояния от края поверхности S до границы зоны досягаемости.
Указанные размеры даны без учета применения вспомогательных средств (например, инструмента, лестниц, длинных предметов).
1.7.71. Установка барьеров и размещение вне зоны досягаемости допускается только в помещениях, доступных квалифицированному персоналу.
1.7.72. В электропомещениях электроустановок напряжением до 1 кВ не требуется защита от прямого прикосновения при одновременном выполнении следующих условий:
- эти помещения отчетливо обозначены, и доступ в них возможен только с помощью ключа;
- обеспечена возможность свободного выхода из помещения без ключа, даже если оно заперто на ключ снаружи;
- минимальные размеры проходов обслуживания соответствуют гл. 4.1.
1.7.78
При выполнении автоматического отключения питания в
электроустановках напряжением до 1 кВ все открытые проводящие части должны быть
присоединены к глухозаземленной нейтрали источника питания, если применена
система TN, и
заземлены, если применены системы IT или TT. При этом характеристики защитных аппаратов
и параметры защитных проводников должны быть согласованы, чтобы обеспечивалось
нормированное время отключения поврежденной цепи защитно-коммутационным
аппаратом в соответствии с номинальным фазным напряжением питающей сети.
В электроустановках, в которых в качестве защитной меры
применено автоматическое отключение питания, должно быть выполнено уравнивание
потенциалов.
Для автоматического отключения питания могут быть применены
защитно-коммутационные аппараты, реагирующие на сверхтоки или на
дифференциальный ток.
Защита от косвенного прикосновения: основные меры защиты с пояснениями
В прошлой статье мы говорили о понятии косвенное прикосновение. Напомню, косвенным называют прикосновение к частям электроустановки, которые не должны быть под напряжением в рабочем режиме, но оказались под напряжением в результате аварийной ситуации.
Примером из быта, может послужить, так называемый, пробой изоляции проводки холодильника на корпус. Касаясь такого корпуса, человек попадает под напряжение с протеканием тока через руку-ногу в пол.
При малых токах, результатом такой аварийной ситуации может стать проблема «холодильник бьет током», а при больших токах, если не выполнена защита от косвенного прикосновения, может быть серьезное поражение электрическим током.
Защита от косвенного прикосновения
Защита от косвенного прикосновения должна применяться во всех электроустановках напряжением 50В (переменное напряжение) и 120В (постоянное напряжение).
Основная задача защиты от косвенного прикосновения это выполнения основного правила зашиты от поражений элеткротоком, вовремя отключить питание опасной цепи, чтобы избежать поражения.
По нормативам ПУЭ изд.7 (раздел1 ,глава 1.7.) и МЭК 60 364_4_41(раздел 413), защитой от косвенного прикосновения являются следующие меры:
1. Автоматическое отключение электрического питания за безопасное время. Это значит, что в цепи, должны быть предусмотрены все меры, чтобы электропитание цепи отключилось автоматически при аварии или опасной ситуации. На практике это установка устройств автоматического отключения (автоматов защиты) и устройств защитного отключения (УЗО).2. Создание систем уравнивания и выравнивания электрических потенциалов токопроводящих приборов и устройств. Иначе, физическое соединение всех частей, которые могут проводить ток, с заземляющей шиной. 3. Использование кабелей и шнуров с двойной или усиленной изоляцией;4. Применение малых (сверх низких) напряжений. Данная мера направлена на намеренное снижение напряжения цепи в целях безопасности. Например, использование понижающих трансформаторов 220/40В на стройплощадках. Изделия из нержавейки
Следующие меры
5. Защитное разделение электроцепей. Эта мера предполагает, установку разделяющих трансформаторов для цепей в опасных зонах. Например, установка разделяющего трансформатора на электрическую цепь в ванной (мокрой) комнате.
Важная мера защиты
6. Электроустановка и её части должны быть заземлены. Иначе, соединение частей установки, проводящих ток, с потенциалом земли. В качестве заземлителей могут использоваться и применяться искусственные и естественные заземлители.
Схемы заземления выбираются по типу электропитания и обозначаются, как системы заземления:
TN (TN-C, TN-S, TN-C-S) – питание от источника с глухозаземленной нейтралью и с заземлителями присоединенными к нейтрали.
Данные системы заземления исторически наиболее применяемые в России и СНГ. Более подробно обсудим их в следующих статьях. Здесь кратко, система TN предполагает, что электропитание осуществляется от трансформатора, общая точка обмоток которого заземлена.
Заземление частей самой электроустановки (дома, подъезда, квартиры, производства) осуществляется подсоединением провода заземления к нейтрали трансформатора. В зависимости от фактической точки подсоединения к нейтрали разделяют схемы TN-C, TN-S, TN-C-S.
TT – питание от источника с глухозаземленной нейтралью и с заземлителями не присоединенными к нейтрали;
Данная система не характерна для нашей страны. Однако, находит применение в загородном строительстве индивидуального домостроения.
IT – система заземления питание от источника с изолированной нейтралью.
Данная система заземления, по своей автономности, стоит рядом с системой TT. Во всех документах они так и описываются в паре, отдельно от системы TN.
Стоит отметить, что системы TT и IT более широко распространены на западе, именно по этому, им больше внимание уделяется в МЭК, чем в ПУЭ
Похожие посты:
- Шкафы распределительные электрические ШР и ШРС, Рубрика Электрощиток
- Техническое обслуживание высоковольтного оборудования, Рубрика Ремонт электрики
- Что влияет на стоимость электромонтажных работ, Рубрика Ремонт электрики
- Какие бывают бензиновые генераторы, Рубрика Строительство
- Внутренние электросети: устройство и правила монтажа, Рубрика Монтаж электрики
- Техническое обслуживание силовых трансформаторов, Рубрика Справочник электрика
- Светодиодные светильники уличного освещения, Рубрика Строительство
Помогла ли вам статья?
Задать вопрос
Пишите ваши рекомендации и задавайте вопросы в комментариях
Защита от непрямого прикосновения — основные меры
По нормам прикосновение может быть двух видов: косвенное и прямое. В этой статье мы расскажем, как должна выполняться защита при косвенном прикосновении к корпусу электроустановки или другой конструкции, находящейся под напряжением. Косвенное прикосновение — прикосновение человека к открытой токопроводящей части оборудования, обесточенной при нормальной работе электроустановки, но оказавшейся под напряжением в силу определенной ситуации (например, повреждена изоляция). И если в этот момент человек случайно коснется опасного элемента конструкции, то по его телу пройдет ток.
Для защиты от такого явления существуют определенные меры безопасности. А если нужна защита, то эти меры применяются либо по отдельности и отдельно, либо сразу несколько:
- уравнивание потенциалов;
- защитное заземление;
- защита разделением электрических цепей;
- маленькое (очень низкое) напряжение; двойная изоляция
- ;
- автоматическое отключение питания;
- разделительные площадки и зоны.
Выравнивание потенциалов. Если к одной электрической сети подключаются электроустановки в количестве двух и более, то они должны быть надлежащим образом заземлены. Например, неправильным считается подключение, когда определенное количество корпусов установки заземляется без объединения заземлителя с заземляющим проводником, а остальные электрические корпуса с заземляющим проводом. Это считается серьезным нарушением, так как в результате замыкания фазы на корпус, который заземлен индивидуальным заземлителем, нулевые корпуса будут находиться под напряжением относительно земли.
Такая защита будет под напряжением, а это очень опасно. Во избежание этого существует выравнивание потенциалов. Для его реализации необходимо соединить токопроводящие части электрооборудования. Так происходит защита, и потенциалы будут те же и непрямое прикосновение не будет опасным.
В электроустановках до 1000 В в соответствии с ПУЭ совмещение нулевого PEN-проводника с заземляющим происходит с вторичным заземляющим устройством на вводе в помещение. К этому механизму подключаются металлические коммуникационные трубы, которые проводят части каркаса здания, системы вентиляции и кондиционирования, а также оболочки телекоммуникационных кабелей. Проводники от всего этого подключаются к основной заземляющей шине. О том, как сделать систему уравнивания потенциалов, мы рассказали в отдельной статье!
Выравнивание потенциалов также помогает защититься от этого явления. Благодаря защитным проводникам снижает ступенчатое напряжение на поверхности. Такие проводники укладываются на поверхность и подключаются к заземляющему устройству.
Еще одной мерой защиты от косвенного контакта является защитное заземление. Это соединение токопроводящей части установки или оборудования с заземляющим устройством. Из-за таких действий в заземленных частях напряжение снизится до безопасного уровня. Такие меры предосторожности позволяют человеку избежать такого явления, как непрямое прикосновение.
Следующий способ — защита разделением электрических цепей. Такое действие обычно применяется в электроустановках до 1000 В (например, в разделительном трансформаторе). В этом случае части оборудования, проводящие ток, вытягиваются отдельно из других цепей. Если все же случайное прикосновение произойдет, то пострадавший сможет защитить себя, так как через его тело на землю пройдет небольшой ток.
Защита от непрямого прикосновения также возможна при низком напряжении. Меры по применению этого метода позволяют отказаться от защитного заземления, помимо принудительного объединения высоковольтных устройств. Защита происходит следующим образом: цепи низкого напряжения отключаются от цепей высокого напряжения.
Непрямого контакта в мобильных электроустановках до 1000 В можно избежать с помощью двойной изоляции. Защита происходит следующим образом: основная изоляция защищена дополнительной независимой изоляцией, и при повреждении этой дополнительной изоляции основная остается защищенной.
Другим вариантом защиты является отключение питания с помощью устройства защитного отключения. Меры предосторожности при таком отключении позволят обесточить оборудование. Это действие может быть применено в жилых домах. УЗО срабатывает при изменении электрических параметров в цепи при прикосновении человека к токоведущей части.
Ну и последнее, что нужно использовать, это разделение платформ и зон. Косвенного прикосновения можно избежать с помощью изолирующих прокладок и ограждений внутренних поверхностей. Этот вариант используется, когда в электроустановках до 1000 В отсутствует заземление.
Итак, мы рассмотрели основные меры защиты при косвенном контакте. Для более детального изучения вопроса рекомендуем ознакомиться с главой 1.7 ПУЭ (п.п. 1.7.76 -1.7.87.).
Полезно будет прочитать:
- Правила оказания первой помощи при поражении электрическим током
- Как защитить кабель от механических повреждений
- Как выбрать УЗО для дома
Опубликовано: Обновлено: 21.10.2017 Пока без коментариев
Прямой и непрямой контакт – защита от поражения электрическим током
Прямой контакт — это любой контакт с системой, находящейся под напряжением, который, как нам известно, опасен. Косвенный контакт относится к контакту с корпусом устройства или, иногда, даже с другим соседним устройством, которое должно быть безопасным, но перестает быть таковым в результате неисправности. Контакт может привести к поражению электрическим током, но что именно?
Характер поражения электрическим током
Нервная система человека контролирует все движения мышц, как произвольные, так и непроизвольные. Нервная система передает электрические сигналы между мозгом и мышцами, которые, таким образом, стимулируются к сокращению. Сигналы электрохимические по своей природе, с величиной напряжения всего в несколько милливольт. Таким образом, когда человеческое тело подключено к гораздо более мощной внешней цепи, его нормальные функции подавляются этими внешними сигналами. Принудительный ток, протекающий через нервную систему организма, называется «электрическим ударом», который может представлять смертельную опасность.
Все мышцы получают гораздо более сильные сигналы, чем они обычно получают в физиологических условиях, и в результате сокращаются гораздо сильнее. Это вызывает неконтролируемые движения и боль. Даже реакции человека, находящегося в сознании, обычно недостаточно для предотвращения последствий шока. Это потому, что сигналы от мозга, пытающегося уравновесить ударные токи, теряются в силе наложенных сигналов.
Хорошим примером является шоковый эффект «не отпускай». Когда человек прикасается к проводнику, который посылает ударные токи через его руку, мышцы реагируют, смыкая пальцы на проводнике таким образом, что он в конечном итоге крепко сжимается. В этой ситуации человек не может отпустить провод и разорвать цепь.
Последствия поражения электрическим током сильно различаются в зависимости от силы тока, протекающего через нервную систему, и пути, пройденного через тело. Тема очень сложная, но мы знаем, что вред для организма зависит от двух факторов:
- величина тока протекающего через тело, и
- время экспозиции.
Человеческое тело состоит в основном из воды и имеет очень низкое сопротивление. Однако кожа обладает очень высоким сопротивлением, которое зависит от многих факторов — от возможного присутствия воды (или пота) до ожогов кожи. Таким образом, наибольшее сопротивление оказывается в местах входа и выхода тока из организма через кожу. Человек с жесткой и сухой от природы кожей обладает гораздо большей устойчивостью к ударному току, чем человек с мягкой и влажной кожей. Сопротивление кожи резко снижается, если она была обожжена из-за присутствия электропроводящих углеродных частиц.
На самом деле ток ограничен импедансом человеческого тела, т. е. его емкостью и сопротивлением. Импеданс трудно предсказать, так как он зависит от многих факторов, в том числе от приложенного напряжения, уровня тока и времени воздействия, площади контакта с цепью под напряжением, силы прижатия кожи к проводнику, состояния кожа, температура окружающей среды и тела и т.д.
Обратите внимание, что схема очень приблизительная. Поток тока через тело, например, вызывает потоотделение жертвы, что быстро снижает сопротивление кожи после начала удара током. К счастью, люди, пользующиеся электроустановками, редко ходят босиком, поэтому электрическое сопротивление обуви и напольных покрытий часто увеличивает общее сопротивление пути удара и снижает ударный ток до более безопасного уровня.
Имеется очень мало достоверных данных о воздействии ударных токов, поскольку они варьируются от человека к человеку и даже для конкретного человека с течением времени. Однако мы знаем, что ток силой более одного миллиампера в организме вызывает ощущение удара. Сто миллиампер, вероятно, быстро станут смертельными, особенно если такой ток протекает через сердце.
Если шок продолжится, его последствия могут оказаться еще более опасными. Например, импульсный ток 500 мА может не иметь долговременных последствий, если он длится менее 20 мс, но 50 мА в течение 10 с может привести к летальному исходу. Последствия шока могут быть разными, но наиболее опасным исходом является фибрилляция желудочков (нарушение последовательности сердечных сокращений) и сужение грудной клетки, приводящее к остановке дыхания.
Первым условием для поражения электрическим током является контакт с проводником, находящимся под напряжением. Контакт подразделяется на два типа.
Прямой контакт
Поражение электрическим током происходит в результате контакта с проводником, т.е. с проводником под напряжением, являющимся частью цепи. Пример: кто-то снимает крышку с электрического выключателя и касается проводов внутри. Также это может произойти в результате повреждения изоляции проводов. В этом случае системы защиты от перенапряжения не обеспечивают никакой защиты, но ее может обеспечить УЗО с током срабатывания до 30 мА.
Шнуры питания в TME
Защита от прямого прикосновения
Средства защиты от прямого прикосновения в основном предназначены для сведения к минимуму возможности прикосновения к проводам под напряжением. К этим мерам безопасности относятся:
- Изоляция частей под напряжением – это стандартная процедура. Провода часто имеют двойную изоляцию, а изоляцию дополнительно усиливают для повышения устойчивости к перепадам температуры или изгибам.
- Обеспечение физических барьеров или кожухов, защищающих от прикосновения (IP2X) – при наличии горизонтальных поверхностей применяется защита IP4X (за исключением твердых тел шириной более 1 мм).
- Размещение провода вне досягаемости или установка барьеров, препятствующих доступу людей к частям, находящимся под напряжением (находящимся под напряжением). Для этого используются различные виды ограждений, шкафов или страховочных сеток. УЗО
- обеспечивают дополнительную защиту, но только при контакте токоведущей (находящейся под напряжением) части с заземленной частью.
Что такое непрямой контакт – электротехника
Поражение электрическим током от непрямого контакта происходит, когда объект, который не должен находиться под напряжением, становится таким, например, как из-за неисправности (повреждения изоляции) или неисправности электропроводки. Таким образом, контакт с внешними корпусами, монтажными/фиксирующими деталями или переключателями может представлять опасность. Люди, подвергающиеся наибольшему риску такого удара, — электротехники и инженеры.
Защита от непрямого прикосновения
Существуют три меры безопасности, обеспечивающие защиту от поражения электрическим током при контакте с проводником или компонентом, который не должен находиться под напряжением в нормальных условиях:
- Обеспечение того, что сбой, приводящий к включению частей под напряжение, вызовет отключение питания -отключение в течение безопасного времени. На практике это включает уменьшение импеданса контура замыкания на землю.
- Использование УЗО, отключающего электропитание в случае остаточного тока (утечки).
УЗО на TME
3.Использование локального дополнительного эквипотенциального соединения для обеспечения того, чтобы сопротивление между частями, к которым можно прикасаться одновременно, было настолько низким, что между ними не может возникнуть опасная разность потенциалов. Обратите внимание, что хотя такие меры предосторожности устраняют опасность непрямого контакта, все же необходимо убедиться, что источник питания отключен, чтобы обеспечить защиту от других неисправностей, таких как перегрев.
- Иногда опасное напряжение можно поддерживать, если использовать источник бесперебойного питания (ИБП) или резервный генератор с автоматическим запуском.
Одновременная защита от прямого и непрямого контакта
Чаще всего для всех установок используются меры защиты как от прямого, так и от прямого контакта.