Закрыть

Защита от перенапряжения сети: как защитить бытовую технику от перенапряжения в сети 220 В

Содержание

Защита сети 220 вольт от перенапряжения

Хотя подача электричества в квартиры и дома регулируется законодательством, жильцам не стоит полностью рассчитывать на то, что соответствующие службы обеспечат подачу электроэнергии нужного качества. Если из-за бросков сетевого напряжения дорогостоящие электроприборы выйдут из строя, получить компенсацию будет практически невозможно. А поскольку неполадки на электролиниях – не редкость, то стоит самостоятельно принять меры, которые помогут уберечь бытовую технику от поломки. Для этого нужна защита от перенапряжения, обеспечить которую можно, установив в сети соответствующий прибор – защитное реле, датчик с УЗО или стабилизатор напряжения.

Содержание

  • Допустимые параметры электроэнергии
  • Разновидности перенапряжений
  • Перенапряжение в результате коммутации
  • Опасность перенапряжения
  • Какими устройствами обеспечивается защита сети от перенапряжения?
  • Принцип работы защитных устройств
  • Длительные перенапряжения
  • Недостаток напряжения (провал)
  • Заключение

Допустимые параметры электроэнергии

Номинал напряжения, обозначенный на всей бытовой электротехнике, составляет 220В, однако в реальной жизни это значение стабильно далеко не всегда. Это учитывается при изготовлении современных приборов, и они могут устойчиво работать при колебании напряжения от 209 до 231В, а также переносить разброс от 198 до 242В. Если бы небольшие перепады разности потенциалов не были предусмотрены конструкцией бытовой техники, она ломалась бы постоянно. Более значительные отклонения приводят к перегрузке сети, и это снижает эксплуатационный ресурс аппаратуры.

Чтобы сгладить колебания напряжения и обеспечить безопасность приборов, достаточно установить стабилизатор. Гораздо опаснее для электротехники перенапряжение (так называется резкий скачок разности потенциалов).

Разновидности перенапряжений

Перенапряжение может длиться как короткое, так и достаточно продолжительное время. Оно может быть вызвано ударом молнии во время грозы или коммутацией, возникшей из-за неполадок подстанции. Для защиты от них в сеть 220 или 380 Вольт (бытовую или промышленную) включается УЗИП (устройство защиты от импульсных перенапряжений).

Его автоматическое срабатывание помогает обезопасить линию при воздействии, например, мощного грозового разряда, от которого не сможет спасти стабилизатор напряжения.

Наглядно про УЗИП на видео:

Удар молнии приводит к появлению мощного электромагнитного импульса, под влиянием которого в расположенных рядом с местом разряда проводниках возникают электрические потенциалы, и происходит резкий скачок напряжения. Длится он всего около 0,1 с, но величина разности потенциалов при этом составляет тысячи вольт.

Понятно, что при поступлении такого напряжения в домашние и производственные сети последствия могут быть очень тяжелыми.

Перенапряжение в результате коммутации

Такое явление может произойти при включении в линию или выключении приборов, дающих высокую индуктивную нагрузку. К ним относятся блоки питания, электромоторы, а также мощные инструменты, запитывающиеся от сети.

Этот эффект обусловлен законами коммутации. Моментальное изменение величины тока в соленоиде, а также разности потенциалов на конденсаторе произойти не может. Когда цепь с такой нагрузкой соединяется или размыкается, то в месте контакта отмечается появление вызванного самоиндукцией и коммутационными процессами электрического потенциала.

Течение переходного процесса всегда сопровождается выбросом напряжения, которое обладает полярностью, обратной входному. Небольшая емкость проводников в сети вызывает резонанс, длящийся короткое время и вызывающий высокочастотные колебания. По завершении переходного процесса они затухают.

Сколько продлится перенапряжение и какова будет его величина, зависит от следующих показателей:

  • Индуктивность нагрузки.
  • Моментальное значение разности потенциалов при коммутации.

  • Емкость подключающих электрических кабелей.
  • Реактивная мощность.

Опасность перенапряжения

Поскольку изоляция проводов рассчитана на величину напряжения, значительно превышающую номинал, пробоя чаще всего не случается. Если электроимпульс действует в течение незначительного времени, то напряжение на выходе блоков питания со стабилизатором не успевает возрасти до критического показателя. Это же касается и обычных лампочек – если резко возросшее напряжение быстро нормализуется, то спираль не успевает не только перегореть, но даже перегреться.

Если же изоляционный слой не выдерживает увеличившегося напряжения и происходит его пробой, то появляется электрическая дуга. В этом случае поток электронов проникает сквозь микротрещины, возникшие в изоляции, и идет через газы, которыми наполнены образовавшиеся мельчайшие пустоты. А большое количество тепла, выделяемое дугой, способствует расширению токопроводящего канала. В итоге нарастание тока происходит постепенно, и автомат защиты срабатывает с некоторым опозданием. И хотя оно занимает всего несколько мгновений, их оказывается вполне достаточно для выхода электропроводки из строя.

Какими устройствами обеспечивается защита сети от перенапряжения?

Схема защиты электрической линии от скачков напряжения может включать в себя:

  • Систему молниезащиты.
  • Стабилизатор напряжения.
  • Датчик повышенного напряжения (устанавливается вместе с УЗО).
  • Реле перенапряжения.

Отдельно нужно сказать о блоках бесперебойного питания, через которые в домашних сетях чаще всего подключают компьютеры. Этот прибор не предназначен для защиты от перенапряжения в сети. Его функция заключается в другом: при внезапном отключении света он работает как аккумулятор, позволяя пользователю сохранить информацию и спокойно выключить ПК. Поэтому путать его со стабилизатором напряжения не следует.

Принцип работы защитных устройств

Для защиты от электроимпульсов, возникающих под действием молнии, устанавливается грозозащитный разрядник вместе с УЗИП. А обезопасить линию от потока электронов, параметры которого не соответствуют рабочим характеристикам сети, можно с помощью специальных датчиков, а также реле перенапряжения.

Следует сказать, что как ДПН, так и реле по принципу действия и назначению отличаются от стабилизатора.

Задача этих элементов состоит в том, чтобы прекратить подачу электроэнергии в случае превышения величиной перепада максимального порога, указанного в техническом паспорте средства защиты или выставленного регулятором.

После нормализации параметров электрической линии происходит самостоятельное включение реле. ДПН для защиты линии следует устанавливать только в паре с устройством защитного отключения. Его задача заключается в том, чтобы при обнаружении неполадок вызвать утечку тока, под воздействием которой сработает УЗО.

Наглядно про реле напряжения на видео:

Недостаток такой схемы заключается в необходимости ее ручного включения после того, как напряжение придет в норму. В этом плане выгодно отличается стабилизатор напряжения. Это устройство предусматривает регулируемую временную задержку токоподачи, если происходит его срабатывание под воздействием чрезмерного напряжения.

Стабилизатор часто используют для подключения кондиционеров и холодильных аппаратов.

Длительные перенапряжения

Продолжительные перенапряжения очень часто происходят из-за обрыва нулевого проводника. Неравномерность нагрузки на фазных жилах становится причиной перекоса фаз – смещения разности потенциалов к проводнику с самой большой нагрузкой.

Иначе говоря, под воздействием неравномерного трехфазного электротока на нулевом кабеле, не имеющем заземления, начинает скапливаться напряжение. Ситуация не нормализуется до тех пор, пока повторная авария окончательно не выведет линию из строя или специалист не устранит неисправность.

При обрыве нулевого провода в электророзетке будет происходить изменение напряжения в соответствии с нагрузкой, которую пользователи, не знающие о неполадках, будут подключать на различные фазы. Пользоваться неисправной цепью практически невозможно, даже если в линию питания включен хороший стабилизатор. Дело в том, что сетевые параметры, регулярно выходящие за пределы стабилизации, приведут к тому, что прибор будет постоянно выключаться.

Наглядно про обрыв ноля и что нужно при этом делать – на видео:

Недостаток напряжения (провал)

Это явление особенно хорошо знакомо людям, проживающим в деревнях и селах. Провалом (проседанием) называется падение величины напряжения ниже допустимого предела.

Опасность проседаний заключается в том, что в конструкцию многих бытовых приборов входит несколько блоков электропитания, и недостаток напряжения приведет к тому, что один из них кратковременно выключится. Аппарат среагирует на это выдачей ошибки на дисплее и остановкой работы.

Если речь идет об отопительном котле, а неисправность произошла в зимнее время, то дом останется без отопления. Избежать такой ситуации поможет подключение стабилизатора. Этот прибор, зафиксировав проседание, повысит величину напряжения до номинала. Стабилизатор может спасти ситуацию, даже если напряжение в сети упало по вине трансформаторной подстанции.

Заключение

В этой статье мы рассказали, для чего нужна защита от перенапряжения в сети, какими устройствами она обеспечивается и как правильно ими пользоваться. Приведенные рекомендации помогут читателям разобраться в причинах сбоя сетевого напряжения, а также выбрать и установить устройство для защиты электросети.

Методы защита сети от перенапряжения, видеоинструкция

Содержание

  • 1 Опасность перенапряжения
  • 2 Причины возникновения перенапряжения
  • 3 Способы защиты от перенапряжения
  • 4 Стабилизаторы напряжения
  • 5 Реле напряжения
  • 6 Датчик повышенного напряжения (ДПН) + устройство защитного отключения (УЗО)
  • 7 Устройство защиты от импульсных перенапряжений (УЗИП)
  • 8 Видео

Перенапряжение – это превышение предельно допустимого уровня напряжения в сети на 10 и более процентов.

В зависимости от типа сети допустимые по нормативам значения варьируются в диапазоне:

  • однофазная электросеть – от 198 до 242 вольт;
  • трехфазная электросеть – от 342 до 418 вольт.

Если напряжения превышает данные показатели, то речь уже идет о перенапряжении сети и нужно принимать защитные меры.

Опасность перенапряжения

Опасность перенапряжение состоит в том, что оно может вызвать в сбои в работе электрического оборудования и привести к частичной или полной его поломке. Оно может стать причиной сгорания холодильников, стиральных машин, телевизоров, компьютеров и других бытовых приборов.

Стоит отметить, что поломка бытовой техники – это не самое страшное последствие перенапряжения. Оно может стать причиной возгорания помещения и человеческих смертей, поэтому важно использовать средства защиты и обезопасить домашнюю электросеть.

Причины возникновения перенапряжения

Наиболее распространенная причина перенапряжения – это отгорание или обрыв нулевого провода, что приводит к тому, что ток циркулирует между фазами и часть потребителей получает пониженное напряжение, а часть – повышенное.

Также часто причиной перенапряжения становится ошибка при подключении кабеля в распределительном щитке – нулевой провод включается на место фазного и в квартиру вместо положенных 220 вольт поступает 380.

Значительную опасность для сети представляет разряд молнии в линии электропередач. В результате ударе возникает импульсное перенапряжение, достигающее нескольких тысяч вольт. Бывают случаи перенапряжения из-за сбоев на электрических подстанциях.

Способы защиты от перенапряжения

Для защиты от повышенного напряжения используются следующие устройства:

  • стабилизаторы напряжения;
  • реле напряжения;
  • ДПН+УЗО;
  • УЗИП.

Остановимся на каждом устройстве подробнее.

Стабилизаторы напряжения

Стабилизаторы обеспечивают надежную защиту сети от перенапряжения. Если напряжение выходит за предельно допустимый диапазон, то стабилизатор отключает подключенную группу от сети. Когда напряжения нормализируется, то регулятор включает питание снова. Современные стабилизаторы комплектуются дисплеями, отображающими текущее напряжение и показывающими график его скачков.

В продаже можно встретить различные типы этих устройств:

  • релейные;
  • феррорезонансные;
  • электромеханические;
  • симисторные.

Существуют различные схемы монтажа регуляторов. Оптимальный вариант – это установка устройства на каждый электроприбор, который необходимо защитить. Эта схема хороша тем, что для каждого потребителя можно подобрать подходящий по точности и мощности стабилизатор. Конечно, этот вариант и самый дорогой, поэтому чаще всего один стабилизатор устанавливается на группу или на всю квартиру. Его мощность рассчитывается путем суммирования мощности всех приборов.

Реле напряжения

Установка реле – это тоже довольно эффективный способ обезопасить домашнюю сеть. При больших перепадах напряжения, реле автоматически отключает потребителя, а при стабилизации – включает. Современные защитные реле выпускаются с микропроцессорами, которые позволяют проводить более тонкую настройку устройства.

Реле, как и стабилизаторы, можно устанавливать на отдельные приборы, на группы и на всю домашнюю сеть. При защите отдельного прибора, он подключается к реле, а оно уже к сети питания. При защите всего дома или группы приборов, реле устанавливается на распределительном щитке.

Датчик повышенного напряжения (ДПН) + устройство защитного отключения (УЗО)

ДНП – это датчик повышенного напряжения, а УЗО – устройство защитного отключения. ДНП проводит мониторинг работы сети и если значения напряжения превышают норму, то УЗО размыкает сеть.

Устройство защиты от импульсных перенапряжений (УЗИП)

УЗИП – это устройство защиты от импульсных напряжений. УЗИП применяется для защиты сети от импульсного перенапряжения, в особенности, от попадания молнии в ЛЭП. Устройство можно устанавливать, как на часть, так и на всю сеть.

В последнем случае УЗИП устанавливается возле каждого электрического потребителя и на вводе в электрический щит.

Видео

Устройство защиты от перенапряжения Ethernet

– Ubiquiti Inc.

${значение}

    Защита от электростатического разряда для наружных высокоскоростных сетей.

    Представляем устройство защиты от перенапряжений Ethernet следующего поколения, модель ETH-SP-G2, от Ubiquiti. ETH-SP-G2 — это экономичное решение для защиты наружных устройств Ethernet от повреждающих электростатических разрядов и скачков напряжения. Поскольку все устройства Ubiquiti® airMAX® уже имеют надежную встроенную защиту от электростатических разрядов, добавление ETH-SP-G2 к установке обеспечивает дополнительный уровень защиты сети.

    ETH-SP-G2 разработан для защиты устройств Power-over-Ethernet (PoE) или устройств без PoE со скоростью соединения до 1 Гбит/с. Два пассивных разъема RJ45 с защитой от перенапряжения обеспечивают максимальную совместимость оборудования.

    • Недорогая защита и быстрая установка
    • Защищает наружные Ethernet-устройства
    • Совместимость с сетями 10/100/1000 Мбит/с

Устройство защиты от перенапряжения Ethernet по-прежнему может Функционируют и обеспечивают прямые трансляции с камер без установленных жестких дисков, но не будут записывать кадры.

Если вы поставляете собственные жесткие диски, убедитесь, что они соответствуют Общие рекомендации Ubiquiti и не входят в наш список несовместимых моделей.

    Защита от электростатического разряда для наружных высокоскоростных сетей.

    Представляем устройство защиты от перенапряжений Ethernet следующего поколения, модель ETH-SP-G2, от Ubiquiti. ETH-SP-G2 — это экономичное решение для защиты наружных устройств Ethernet от повреждающих электростатических разрядов и скачков напряжения. Поскольку все устройства Ubiquiti® airMAX® уже имеют надежную встроенную защиту от электростатических разрядов, добавление ETH-SP-G2 к установке обеспечивает дополнительный уровень защиты сети.

    ETH-SP-G2 разработан для защиты устройств Power-over-Ethernet (PoE) или устройств без PoE со скоростью соединения до 1 Гбит/с. Два пассивных разъема RJ45 с защитой от перенапряжения обеспечивают максимальную совместимость оборудования.

    • Недорогая защита и быстрая установка
    • Защищает наружные Ethernet-устройства
    • Совместимость с сетями 10/100/1000 Мбит/с
Войдите, чтобы подписаться на уведомления о продукте доступность

купить этот товар

  • ${название}
  • ${элемент}
  • Примечание: ${примечание}

  • Скоро: ${comingSoonNote}

  • И многое другое

Это устройство в настоящее время распродано

Вот несколько сопоставимых альтернатив, которые обеспечат развертыванию UniFi необходимую вам функциональность.

${text.productView}

Бестселлер

ЕА

${altProduct.title}

${altProduct.sku}

${altProduct.lead}

${bottomTag(altProduct)}

Обзор продукта

Инструкции и руководства

Недавно просмотренные

Посмотреть

${recentlyViewedProduct.title}

${recentViewedProduct.variantTitle}

Скоро

Доступно в этом месяце

Продано


Интернет/Видео | Überspannungsschutzvorrichtungen | Tripp Lite

Функции высокой доступности

Функции высокой доступности включают следующее:
Автоматический байпас, автоматическая регулировка напряжения (AVR), резервный аккумулятор, батареи с возможностью горячей замены, силовые модули с возможностью горячей замены, резервирование N+N, вкл. Линия (VFI) Операция

TAA-Compliance

TAA-совместимый продукт соответствует Закону о торговых соглашениях (19 U.S.C. § 2501–2581), который требует, чтобы правительство США закупало продукты, которые были произведены в США или других уполномоченных странах. Продукты, соответствующие требованиям TAA, требуются в контрактах на федеральные закупки, таких как GSA, IDIQ и DOD.

ИБП Тип

Резервный ИБП

Резервный ИБП обеспечивает базовую резервную батарею и защиту от скачков напряжения.

Линейно-интерактивные системы ИБП

Системы линейно-интерактивных ИБП обеспечивают как резервное питание от батарей, так и автоматическое регулирование напряжения переменного тока (увеличение/отключение), что обеспечивает большую степень защиты электропитания, чем резервные ИБП.

>Системы ИБП On-Line

В системах ИБП On-Line используется система двойного преобразования мощности для получения чистой синусоидальной волны на выходе и нулевого времени переключения на батарею, что обеспечивает высочайший уровень защиты электропитания.

Семейство ИБП

Семейство ИБП — это торговая марка Tripp Lite для определенного типа ИБП.

Семейства резервных ИБП

Семейства резервных систем ИБП: Internet Office, BC Pro® и BC Personal®.

Семейства линейно-интерактивных ИБП

Для систем линейно-интерактивных ИБП имеются семейства SmartPro, OmniSmart™, серии VS, SmartPro® USB, ИБП с ЖК-дисплеем и серии AVR.

Семейства ИБП On-Line

Для систем ИБП On-Line семейством является ИБП SmartOnline™.

Вольт-ампер на выходе (ВА)

Вольт-ампер на выходе (ВА) — это единица измерения электрической мощности, которая используется для расчета системы ИБП для оборудования, которое будет к ней подключено.

Высота стойки

Высота стойки (U) — это мера вертикального пространства или высоты оборудования, установленного в корпусе стойки. 1U равен 1,75 дюйма, 2U равен 3,5 дюйма и так далее.

Максимальная глубина

Максимальная глубина оборудования, которое может быть установлено в напольной или настенной стойке
.

Обозначения глубины напольной стойки
Мелкая 27 дюймов
Средняя глубина 31 inches
Standard 37 inches
Deep 42 inches
Wall-Mount Rack Depth Designations
Patch-Depth < 16 inches
Switch- Depth 16 to 23.99 inches
UPS-Depth 24 to 31.99 inches
Server-Depth > 32 inches

PC/Server Connection

Подключение к ПК/серверу определяет правильные комплекты кабелей (например, PS/2, USB, VGA, DVI или Cat5) для KVM-переключателя в зависимости от того, как он будет подключен к ПК или серверу в сети.

Удаленный доступ по IP

Удаленный доступ по IP — это функция KVM-переключателя, которая позволяет пользователю контролировать и управлять ПК, серверами и другими сетевыми устройствами удаленно через IP (Интернет-протокол).

Шаблон VESA

Шаблон VESA (мм) — это стандартные размеры монтажного приспособления с 4 отверстиями для дисплеев, мониторов или плоскопанельных телевизоров, основанные на стандартах Ассоциации стандартов видеоэлектроники (VESA). Существуют варианты шаблона VESA в зависимости от расположения, размера и веса дисплея.

Тип охлаждения

Активное охлаждение использует энергию для передачи или отвода тепла из одной области и передачи его в другую. Пассивное охлаждение не использует энергию для охлаждения помещения; скорее, в нем используются рекомендации по проектированию естественного охлаждения или добавление тепловых барьеров, панелей или изоляции для предотвращения проникновения тепла в помещение.

Фаза

Фаза используется для описания двух основных типов электроэнергии переменного тока (AC), вырабатываемой коммунальным предприятием, генератором или системой ИБП. Однофазное питание включает в себя одиночную форму волны переменного тока, что делает однофазное оборудование идеальным для приложений с низкой плотностью мощности с уровнями энергопотребления на стойку примерно до 2,8 кВА (120 В), 5 кВА (208 В) или 7,4 кВА (230 В). Трехфазное питание включает в себя 3 формы волны переменного тока, что делает трехфазное оборудование более подходящим для приложений средней и высокой емкости с уровнями энергопотребления на стойку, которые превосходят практические пределы энергии однофазного оборудования.

Номинальная мощность в джоулях

Номинальная мощность в джоулях — это единица энергии, основанная на Международной системе единиц, с помощью которой устройства защиты от перенапряжения оцениваются по их способности поглощать энергию перенапряжения для защиты подключенного оборудования. Более высокое число указывает на большую защиту и более длительный срок службы.

Шарнирный настенный кронштейн

Шарнирный настенный кронштейн — это монтажное устройство, прикрепляющее настенную стойку к стене. Он имеет регулируемые шарниры, которые позволяют фиксировать стойку в закрытом или открытом (90-градусное перпендикулярное положение. Он сводит к минимуму изгиб кабеля и упрощает установку и доступ.

Вилка GFCI

Вилка GFCI — это предохранительная розетка, защищающая от распространенного типа поражения электрическим током — замыкания на землю. Он содержит прерыватель цепи замыкания на землю (GFCI), который быстро отключает подключенное устройство от источника питания в случае замыкания на землю.

Сейсмостойкая стойка

Сейсмостойкая стойка представляет собой корпус с прочной сварной конструкцией, которая прошла испытания на соответствие стандартам сейсмостойкости 4. Сейсмостойкие стойки обеспечивают дополнительную безопасность для мест, расположенных в сейсмоопасных районах или подверженных регулярным вибрациям в таких местах, как аэропорты или промышленные предприятия.

Индивидуальное переключение розеток

Индивидуальное переключение розеток — это возможность PDU, позволяющая удаленно включать и выключать отдельные розетки для перезагрузки не отвечающего оборудования, блокировки неиспользуемых розеток PDU для предотвращения несанкционированного использования или включения настраиваемых программных последовательностей включения/выключения питания. обеспечить правильный запуск оборудования.

NIAP-Certified Secure

NIAP-Certified Secure идентифицирует KVM, который соответствует строгим требованиям, установленным Национальным партнерством по обеспечению информации (NIAP) в отношении безопасности KVM для защиты данных от случайной передачи или несанкционированного доступа.

Чистый синусоидальный сигнал

Чистый синусоидальный сигнал практически идентичен плавной дуге, обычно связанной с синусоидальным сигналом коммунального предприятия. Это позволяет оборудованию работать с меньшим нагревом, служить дольше и работать без сбоев и снижения производительности. Он также обеспечивает максимальную совместимость с чувствительной электроникой.

Многопользовательский режим

Многопользовательский режим — это возможность KVM-переключателя, которая позволяет более чем одному пользователю управлять различными сетевыми устройствами одновременно, но не одновременно.

Шнуры с двумя входами

Шнуры с двумя входами обеспечивают подключение к отдельным первичным и вторичным источникам питания для блоков распределения питания с функцией автоматического включения резерва (АВР). В случае потери основного источника питания АВР переключится на дополнительный источник питания, чтобы поддерживать питание подключенного оборудования до тех пор, пока не вернется основной источник питания.

Цифровой измеритель нагрузки

Цифровой измеритель нагрузки — это локальный дисплей на измеряемых, контролируемых, коммутируемых и распределительных блоках питания (PDU), который показывает потребление выходной мощности в амперах для облегчения балансировки нагрузки и предотвращения перегрузок.

KVM-переключатель Cat5

KVM-переключатель Cat5 — это устройство, позволяющее пользователям управлять несколькими компьютерами или сетевым оборудованием, подключенным через кабель Cat5.

Тип PDU

Базовые блоки распределения питания

Все блоки распределения питания, включая базовые блоки распределения питания, обеспечивают надежное распределение питания в стойках для центров обработки данных, серверных помещений и сетевых коммутационных шкафов.

Блоки распределения питания с расходомером

Блоки распределения питания с расходомером контролируют уровни нагрузки во избежание возможных перегрузок с помощью ЖК-дисплея.

Контролируемые PDU

Контролируемые PDU дистанционно контролируют напряжение, частоту и уровни нагрузки через встроенное сетевое соединение.

Коммутируемые PDU

Коммутируемые PDU могут безопасно управлять отдельными розетками удаленно, позволяя перезагружать не отвечающее оборудование, чтобы минимизировать время простоя.

Блоки распределения питания с автоматическим переключением (ATS)

Блоки распределения питания ATS обеспечивают резервное питание подключенного оборудования с отдельными первичными и вторичными источниками питания.

Блоки распределения питания с возможностью «горячей» замены

Блоки распределения питания с возможностью «горячей» замены имеют кабели питания с двумя входами, что позволяет производить замену отдельных систем ИБП без отключения питания подключенного оборудования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *