Глухозаземленная нейтраль: принцип работы, схема, применение
Глухозаземленная нейтраль является частью системы электроснабжения потребителей, она направлена на безопасное использование сетей до 1000 Вольт, которые чаще всего применяются в быту и на производстве в качестве источника стандартного уровня низкого напряжения — 0,38кВ, 0,22кВ и ниже. Нейтраль — это общая точка соединения обмоток звездой у источников электроэнергии, которыми являются трансформаторы или же генераторы. Если эту точку соединить с землёй, то и получится сеть с глухозаземлённой нейтралью. В нулевой точке происходит выравнивание потенциалов, что очень удобно для обеспечения электроэнергией и однофазных, и трехфазных источников.
- Устройство и принцип действия сетей с глухозаземлённой нейтралью
- Объяснение для чайников
- Классификация сетей с глухозаземлённой нейтралью
- Важно знать
Устройство и принцип действия сетей с глухозаземлённой нейтралью
Принцип работы источников электроэнергии, в частности, понижающих трансформаторов основан на законе взаимоиндукции и передаче энергии по магнитному сердечнику.
Главной особенностью сетей с глухозаземлённой нейтралью является появление не только линейного, но и фазного напряжения. Что это такое и чем оно отличается друг от друга, рассмотрим на примере простой принципиальной схемы.
Фазное напряжение — это потенциал между одним из проводов линии и нулевой точкой, присоединенной к земле, то есть наглухо заземлённой. Линейное напряжение — разница потенциалов между двумя выводами линий, то есть L1 и L2, L1-L3, или же L2-L3, называется оно также межфазное. Такие источники электрической энергии в бытовых условиях имеют распространенное значение напряжения в виде 380 В — линейного, и 220 — фазного. Линейное напряжение больше фазного на √3, то есть на 1,72.
Но основная задача такой системы это не только транспортировка к потребителям напряжений двух значений при разном количестве фаз в одной системе электроснабжения, но и защита человека при пробое изоляции и появлении напряжения в точках, которые в нормальном состоянии не имеют опасного потенциала. В жилых зданиях это:
- корпуса всех бытовых приборов, которые проводят электрический ток, то есть сделаны из стали или другого токопроводящего металла;
- металлоконструкции щитовых и распределительных устройств;
- защитная оболочка кабелей.
Также для обеспечения безопасности все перечисленные выше элементы должны быть заземлены, именно в этом случае опасность от использования напряжения и применения бытовых приборов в сетях с глухозаземлённой нейтралью будет минимальна. При этом для таких цепей обязательна равномерность распределения однофазных нагрузок.
Объяснение для чайников
Понижающая подстанция, в которой установлен трансформатор, имеет свой контур заземления. Он соединен между собой стальными шинами и прутами, в один заземляющий контур. К потребителям в электрический щиток от подстанции прокладывается кабель, который содержит четыре жилы. Если потребителю необходимо питание от трёхфазной цепи 380 Вольт, то подключаться необходимо ко всем жилам. В однофазное сети 220 В питание будет осуществляется от нулевого провода и от одной из фаз. Защита людей в однофазных и трехфазных цепях, если нет системы заземления, должна осуществляется за счёт специальных устройств защитного отключения (УЗО), которые срабатывают при небольшой утечке на ноль, при этом отключают надёжно потребителя от сети.
Классификация сетей с глухозаземлённой нейтралью
Современная система электроснабжения имеет стандартную маркировку где помимо рабочего нулевого проводника присутствует и защитный, что и даёт определение степени защищённости.
- L — фазный проводник;
- N — рабочий ноль;
- РЕ — защитный нулевой проводник;
- РЕN — рабочий и нулевой проводник выполнены одним проводом.
Существуют несколько подсистем в цепях с источником энергии, имеющим глухозаземлённую нейтраль:
- TN-C. При данной системе нулевой и защитный проводник с подстанции организован одним проводником, возле приёмника его корпус (или другие элементы, подлежащие заземлению) соединяют с данным совмещенным проводником – это называется зануление. Это устаревшая система, применялась в старых домах при СССР, сейчас для бытовых потребителей не используется, так как небезопасная. Такая система имеет существенный недостаток, так как в случае обрыва РЕN проводника на пути от питающего трансформатора до приемника электроэнергии, на зануленных корпусах оборудования появляется опасный потенциал. Используется только для защиты промышленных потребителей (об этом говорится ниже в следующем разделе).
- TN-S. Имеет больший процент безопасности во время аварийных ситуаций. Это достигается путём разделения защитного и рабочего проводников по всей длине питающей линии, от трансформатора до распределительного электрощита (до конечного потребителя). Однако за счёт того, что приходится применять кабельную продукцию имеющую пять жил, что сильно увеличивает стоимость прокладки и бюджет на организацию электроснабжения к потребителю, применяется данная система не всегда.
- TN-C-S. Данная система заземления является наиболее распространенной в наше время. При данной системе нулевой и защитный проводник на всей длине линии объединены в один совмещенный проводник PEN. При входе в здание данный проводник разделяется на защитный PE и нулевой N, которые дальше распределяются по потребителям (квартирам). При данной системе в случае отгорания PEN проводника до точки разделения на заземленных корпусах электроприборов появится опасный потенциал. Для предотвращения этого на всей длине линии и при входе в здание делаются повторные заземления PEN проводника и предъявляются повышенные требования к механической защите данного проводника.
- ТТ. Данная система заземления практикуется в том случае, если линия системы TN-C-S находится в неудовлетворительном техническом состоянии и не обеспечивается достаточной безопасности предусмотренного в ней защитного заземления. Данная система заземления предусматривает монтаж индивидуального контура заземления у потребителя, при этом PEN проводник электрической сети используется только в качестве нулевого провода N.
Важно знать
Для электроснабжения однофазных и трёхфазных потребителей в промышленности и в бытовых условиях используют так называемое зануление, которое «якобы» является действенным методом, обеспечивающим автоматическое отключение электроустановки или части её, в которой произошло короткое замыкание. При занулении в цепях с глухозаземлённой нейтралью к нулевому проводу подключаются все металлические части и корпуса электрооборудования. Как работает данная защита? Дело в том что при любом коротком замыкании на корпус цепь переходит в режим короткого замыкания, ток в цепи автоматического выключателя сильно увеличивается и аварийный участок отключается от сети.
Преимуществом такой системы являются экономия расходов на проводку защитного заземления, а также снижение стоимости кабельной продукции, так как к одной и той же цепи можно подключить и однофазные и трёхфазные электроприёмники.
Однако недостатком глухозаземлённой нейтрали, организованной по принципу защитного зануления, можно назвать недостаточность обеспечения защиты человека при пробое изоляции на корпус электроприбора во время обрыва нулевого провода, который является и защитным. И это очень важный момент — зануление является опасной мерой защиты, поэтому оно организовываться в домашних условиях ни в коем случае не должно!
Современное электроснабжение всё-таки направлено больше на безопасность, поэтому требует установки УЗО и отдельного защитного заземляющего контура, через который даже самые незначительные токи утечки будут уходить в землю, при этом не подвергая человека опасности.
Теперь вы знаете, что такое глухозаземленная нейтраль, какой у нее принцип работы и в каких сетях она применяется. Если остались вопросы, можете задавать их в комментариях под статьей!
Материалы по теме:
- Разделение PEN-проводника на PE и N
- Чем опасен обрыв нуля в трехфазной сети
- Как выбрать УЗО по мощности и току утечки
Глухозаземленная нейтраль.
Устройство и работа. ПрименениеСхема сети с глухозаземленной нейтралью служит для защиты человека от поражения электрическим током. В аварийных случаях глухозаземленная нейтраль выравнивает потенциалы, вследствие чего касание человека к металлическим частям электрооборудования становится безопасным.
Защитное устройство также сыграет свою роль в аварийных ситуациях, отключив подачу питания, так как при коротких замыканиях сила тока в сети возрастает.
Питание потребителей электрической энергией производится с помощью силовых трансформаторов и генераторов. Чаще всего обмотки трех фаз этих устройств соединены по схеме звезды, в которой общая точка является нейтралью. Если эта нейтраль соединена с заземлением через малое сопротивление, либо напрямую, непосредственно возле источника питания, то ее называют глухозаземленная нейтраль.
Рис 1
Применяются также и другие режимы работы нейтрали с заземлением, в зависимости от режимов работы сети при замыканиях на землю, необходимых методов защиты человека от удара током, методов ограничения перенапряжений с:
- Эффективно заземленной нейтралью.
- Незаземленной нейтралью.
- Компенсированной нейтралью.
Такие режимы используются для электрических устройств на 6 киловольт и более. Изолированная нейтраль используется до 1 кВ, и не нашла широкого применения. Она делает безопасной работу только передвижных устройств, в которых невозможно выполнить контур заземления.
Монтаж на нейтрали устройств компенсации дает возможность снизить емкостный ток замыкания устройств, действующих с напряжением более 1 кВ. Компенсация производится с помощью катушек индуктивности, вследствие чего ток в точке замыкания становится нулевым. Для эффективной работы защиты применяется заземление нейтрали резистором. Он образует активную часть тока, на который действует защитное реле.
Глухозаземленная нейтраль является наиболее эффективным способом защиты людей от поражения током. Она применяется в большинстве электрических сетей питания. Напряжение между фазами называется линейным, а между фазой и нолем – фазным. Номинальное напряжение электроустановки определяется по линейному значению напряжения.
Оно может быть 220, 380, 660 вольт. В бытовых сетях питания напряжение равно 380 вольт.Однофазные потребители подключаются между фазами и нолем равномерно. Силовой трансформатор на подстанции имеет заземляющий контур. В него входят металлические детали, соединенные между собой, и углубленные в землю. Размеры контура определяют с учетом эффективного распределения тока по земле при замыкании.
Работоспособность заземления определяется величиной сопротивления растекания тока. Допустимые величины этого параметра указаны в правилах электроустановок. Для электроподстанций сопротивление заземления не должно быть выше 4 Ом при напряжении 380 вольт.
Заземляющий контур соединяется с нулевой шиной, выполненной в виде металлической полосы. К ней подключается провод нулевого вывода трансформатора. Также к ней подключаются жилы кабелей, которые отходят к потребителям. Фазы подключаются к автоматическим выключателям, рубильникам, контактам предохранителей.
Кабели, отходящие от подстанции, имеют четыре жилы. В кабелях старого образца могут быть три жилы в алюминиевой оболочке, которая выступает в качестве провода ноля. Для ввода питания существуют вводные распределительные устройства, которые содержат шину ноля. К ней присоединяют нулевые жилы отходящих и питающих кабелей. Вводное устройство может иметь контур повторного заземления, подключенного также к шине ноля.
Чтобы понять, как работает глухозаземленная нейтраль, рассмотрим аварийный режим.
Пример аварийного случаяНа некотором электрооборудовании, на котором работают люди, произошел обрыв провода фазы. При этом фазный провод прикоснулся к металлическим корпусным элементам. В результате возникло короткое замыкание, при котором резко повысилась сила тока. Плавкий предохранитель или электрический автомат сработают и отключат питание сети.
Резистор R0 (Рис. 1) будет иметь меньшее сопротивление, нежели сопротивление по пути протекания тока по телу человека, который случайно прикоснулся фазного проводника. Это исключает удар электрическим током.
В теории потенциал провода ноля относительно земли имеет нулевое значение. Повторное заземление в электроустановке потребителя упрочняет эту нулевую величину.
Возможные случаи поражения людей током:
- Ошибки при эксплуатации и ремонте, которые приводят к прикосновению к частям и элементам оборудования, находящегося под напряжением.
- Повреждение изоляции в электрооборудовании, в результате чего металлический корпус попадает под напряжение.
- Повреждение изоляции токоведущих элементов или неисправность электрооборудования, вследствие чего на поверхности пола возникает зона разности потенциалов, которая создает опасность для прохождения в ней людей. Это называется шаговым напряжением.
- Повреждение изоляции кабелей и проводников, вследствие чего металлические конструкции, по которым проходят кабели, оказываются под напряжением.
Чтобы исключить аварийные случаи, корпуса устройств соединяют с заземлением. В промышленности по периметру цехов прокладывают металлическую полосу, к которой подключают все металлические элементы. Таким образом уравниваются потенциалы с землей.
При замыкании фазы на корпус заземленного устройства, ток будет протекать к заземлению, даже при отказе защитных устройств. Сопротивление тела человека относительно земли значительно выше сопротивления между корпусом устройства и землей. Таким образом, человека спасает глухозаземленная нейтраль.
Другим принципом защиты является быстрое обесточивание сети. Этому способствует защитное устройство в виде автоматического выключателя, либо предохранителя.
Шаговое напряжение действует следующим образом. Если на влажном бетонном полу лежит неизолированный проводник, находящийся под напряжением, то подходить к нему очень опасно. Напряжение отходит от него волнами, подобно кругам на воде. При попадании ног человека в эту зону, возникает удар электрическим током.
Чтобы защитить людей от шагового напряжения, в полу помещения встраивают металлическую сетку, которая в разных местах соединяется с заземляющим контуром. Этим способом ноги человека шунтируются металлической арматурой решетки, и основная часть электрического тока пройдет мимо человека.
Требования ПУЭЗаземление должно подключаться к устройству специальным проводником. Для сокращения пути протекания электрического тока и уменьшения затрат, подбирают место непосредственно рядом с источником напряжения, например, трансформатором. Имеется ограничение, заключающееся в том, что если заземлителем является имеющийся бетонный фундамент, то к арматуре бетонного основания, выполненного из металла, подключение выполняют в двух и более местах.
Подобное число подключений выполняют к каркасам из металла, которые расположены в глубине грунта. При таких условиях система заземления способна достаточно эффективно защитить человека от неприятных ситуаций.
Если в качестве источников питания выступают трансформаторы, находящиеся на разных этажах здания, то подключение к нейтрали производится отдельным проводом, который подключают к металлическому каркасу всего строения.
В цепи подключения заземления не должно находиться предохранителей, плавких вставок и других компонентов, которые могут нарушить неразрывность этой цепи. Также принимают вспомогательные меры, которые препятствуют механическим повреждениям.
Некоторые ограничения ПУЭ- Если на рабочих, защитных или нулевых проводниках установлен токовый трансформатор, то провод заземлителя монтируется сразу за этим устройством, к нейтральному проводнику.
- Сопротивление заземляющего устройства в сети 220 вольт ограничивается наибольшей величиной 4 Ом, за исключением особых свойств земли, которые создают повышенное сопротивление более 100 Ом на метр.
- на воздушных линиях передач заземление устанавливают на конце и на вводе линии для дублирования заземления. Это дает возможность эффективной работы защитных устройств. Это правило используют в случае, когда нет надобности в монтаже большого числа устройств, которые могут устранить перенапряжения при ударах молнии.
• При выборе проводников для устройства заземления необходимо применять нормативы по наименьшим допустимым размерам и материалу проводников, применяющихся для повторного заземления, проложенного в земле.
Например, если используется стальной уголок, то толщина его стенки должна быть не менее 4 мм. Общая площадь сечения для проводов заземления, соединяющихся с основной шиной, согласно п. 1.7.117 ПУЭ, должна быть:
- 10 мм2 – медный провод.
- 16 мм2 – алюминиевый проводник.
- 75 мм2 – стальной проводник.
Электрический автомат, устанавливаемый для защиты, должен иметь скорость срабатывания при коротком замыкании более 0,4 с при 220 вольт.
В бытовой сети согласно п. 7.1.36 ПУЭ требуется прокладывать сеть к потребителям от общих щитков тремя проводниками: фаза, рабочий ноль и защитное заземление (глухозаземленная нейтраль). Однако во многих квартирах это требование нередко нарушается, что подтверждается отсутствием в розетках заземляющего контакта.
Старые нормативные требования для отечественных зданий были определены для незначительных мощностей. На сегодняшний день мощности бытовых электрических устройств значительно повысились. В квартирах появились кондиционеры, варочные панели, духовые шкафы, которые имеют повышенную мощность.
Для повышения эффективности защиты в современных квартирах обязательным условием является наличие заземления. В новых домостроениях глухозаземленная нейтраль уже заложена в стандартных проектах. В старых постройках хорошие хозяева монтируют заземление при капитальном ремонте.
Похожие темы:
- Изолированная нейтраль. Устройство и работа. Применениея
- Устройство заземления. Виды и особенности. Правила и монтаж
- Уравнивания потенциалов. Виды и применение. Установка
- Защитное зануление. Работа и устройство. Применение и особенности
Основы систем заземления
Должен ли я устанавливать незаземленную, сплошную или высокоомную систему заземления? Этим вопросом задаются многие проектировщики и монтажники. Ответ на этот вопрос зависит от многих факторов. Чтобы принять правильное решение, вы должны полностью понимать плюсы и минусы каждого типа системы. Но сначала вы также должны понимать различные типы сбоев, которые могут возникнуть в вашей системе, и с какой частотой они могут появляться.
Неисправности и отказы. Неисправности могут привести к повреждению оборудования и оборудования, увеличению затрат из-за потери производственного времени и привести к травмам сотрудников и даже к летальному исходу. К четырем типам отказов относятся:
Замыкания линии на землю, которые составляют около 98% всех отказов.
Межфазные замыкания, на долю которых приходится около 1,5 % всех отказов.
3-фазные неисправности, которые составляют менее 0,5% всех неисправностей и часто вызваны человеческим фактором. Если не удалить заземляющий выключатель, оставить заземляющие группы в системах и поднять кузов грузовика в открытую систему проводов, это может привести к неисправности этого типа.
Дуговые замыкания — это кратковременные замыкания между фазами или между фазой и землей. Это прерывистые токи, которые поочередно ударяют, гаснут и снова ударяют.
Теперь, когда мы рассмотрели различные типы неисправностей, которые могут возникнуть в электрической системе, пришло время представить обзор трех основных типов систем заземления, с которыми вы можете столкнуться в полевых условиях.
Системы заземления.
1. Без заземления. Электроэнергетические системы, которые работают без преднамеренного подключения к заземлению, описываются как незаземленные. Хотя эти системы были стандартными в 40-х и 50-х годах, они все еще используются сегодня. Основным преимуществом этого типа системы заземления является то, что она обеспечивает низкое значение тока и надежность при неисправности. К сожалению, этот тип системы также имеет некоторые большие недостатки. Одним из основных недостатков незаземленной системы является сложность обнаружения замыкания линии на землю. Поиск неисправности – процесс, требующий времени. По этой причине это часто делается по выходным, чтобы компании не приходилось останавливать свои обычные производственные процессы. Кроме того, неисправность должна быть обнаружена и устранена быстро, потому что, если возникает вторая неисправность, неисправность действует как междуфазное замыкание, что продлевает процесс ремонта.
Преимущества
Обеспечивает низкое значение тока при межфазном замыкании на землю (5 А или менее).
Не представляет опасности для персонала при случайном замыкании линии на землю.
Обеспечивает непрерывную работу процессов при первом возникновении замыкания на землю.
Низкая вероятность перерастания дугового замыкания между фазами и землей в межфазное или трехфазное замыкание.
Недостатки
- Сложно найти замыкание на землю.
Не контролирует переходные перенапряжения.
Стоимость обслуживания системы выше из-за трудозатрат на поиск замыканий на землю.
Второе замыкание на землю на другой фазе приведет к междуфазному короткому замыканию.
2. Надежно заземлен. Этот тип системы заземления чаще всего используется в промышленных и коммерческих энергосистемах, где заземляющие проводники подключаются к заземлению без преднамеренного добавления импеданса в цепи. Главный вторичный автоматический выключатель является жизненно важным компонентом, необходимым в этой системе, хотя он не имеет отношения к другим системам заземления. Этот компонент имеет большой размер, потому что он должен нести полный ток нагрузки трансформатора. Резервные генераторы часто используются в системе заземления этого типа на случай, если сбой остановит производственный процесс. Когда это происходит, генераторы надежно заземляются. Однако важно отметить, что генераторы не рассчитаны на больший ток короткого замыкания, характерный для систем с глухим заземлением.
Система с глухим заземлением имеет высокие значения тока в диапазоне от 10 кА до 20 кА. Этот ток протекает по заземляющим проводам, строительной стали, кабелепроводам и водопроводным трубам, что может привести к серьезному повреждению оборудования и остановке производственных процессов. Когда происходит замыкание линии на землю, искрение может привести к вспышкам, как правило, в клеммной коробке. В этом замкнутом пространстве вода превращается в пар, вызывая замыкающую коробку. Чтобы найти неисправность, все, что вам нужно сделать, это проследить за дымом.
Преимущества
Хороший контроль переходных перенапряжений от нейтрали к земле.
Позволяет пользователю легко находить неисправности.
Может питать нейтральные нагрузки.
Недостатки
Создает серьезную опасность вспышки дуги.
Требуется покупка и установка дорогого главного выключателя.
Незапланированное прерывание производственного процесса.
Возможность серьезного повреждения оборудования во время неисправности.
Высокие значения тока короткого замыкания.
Вероятен переход однофазной неисправности в трехфазную.
Создает проблемы в основной системе.
3. Высокоомное заземление. Системы заземления с высоким сопротивлением (HRG) обычно используются на заводах и фабриках, где в случае сбоя непрерывность процессов имеет первостепенное значение. Заземление с высоким сопротивлением обычно выполняется путем подключения стороны высокого напряжения однофазного распределительного трансформатора между нейтралью системы и землей и подключения резистора к вторичной обмотке низкого напряжения, чтобы обеспечить желаемое более низкое значение тока заземления на стороне высокого напряжения. В системе HRG обслуживание поддерживается даже в условиях замыкания на землю. В случае возникновения неисправности индикация аварийных сигналов и световые индикаторы помогают пользователю быстро найти и устранить проблему или обеспечить надлежащее завершение процесса. Система HRG ограничивает ток замыкания на землю от 1 до 10 А.
Преимущества
Ограничивает ток замыкания на землю до низкого уровня.
Снижает опасность поражения электрическим током.
Контролирует переходные перенапряжения.
Снижает механические напряжения в цепях и оборудовании.
Обеспечивает непрерывность обслуживания.
Снижает падение напряжения в сети, вызванное возникновением и устранением замыкания на землю.
Недостатки
Заземление электрической системы — это решение, с которым многие из нас сталкиваются ежедневно. Как мы видели, существует несколько методов для выполнения этой задачи, каждый из которых имеет свои преимущества и недостатки. Как проектировщик электрооборудования или специалист по установке, вы должны принять окончательное решение о том, когда лучше установить наиболее подходящую систему.
Джек Вудхэм, PE, старший инженер-электрик в Jedson Engineering, Inc.
Примечание редактора. Информация, представленная в этой статье, основана на презентации, сделанной на симпозиуме по заземлению в октябре 2002 г., организованном компанией Post Glover Resistors.
Выбор между заземленными и незаземленными системами
Опубликовано от Relectric
При проектировании и установке электрических систем подрядчики-электрики должны решить, требуется ли заземление системы или ее лучше оставить незаземленной. Хотя большинство электрических систем требуют надлежащего заземления, в некоторых случаях Национальный электрический кодекс (NEC) определил, что преимущества заземления не перевешивают связанные с ним риски. Чтобы принять это решение, подрядчики-электрики должны знать основы заземления, а также преимущества и недостатки каждой системы.
Заземление играет решающую роль во многих электрических системах, поскольку оно помогает защитить как людей, так и их электрооборудование от опасно высокого напряжения, вызванного грозами или перенапряжениями в сети. Надлежащее заземление обеспечивает току альтернативный путь в системе распределения электроэнергии, что позволяет ему течь на землю в случае возникновения проблем.
Хотя это обычная процедура в жилых, коммерческих и промышленных помещениях, возможны ошибки, и важно, чтобы инженеры-электрики строго придерживались правил NEC для безопасной установки. Убедившись, что ваши установки соответствуют требованиям NEC, вы можете избежать серьезных ошибок, таких как невозможность установки прерывателей цепи замыкания на землю там, где они требуются.
Типы неисправностейПеред тем, как выбрать систему заземления, необходимо сначала узнать о различных типах неисправностей, которые могут повлиять на вашу систему. К четырем основным типам неисправностей относятся следующие:
- Замыкания линии на землю
- Замыкания фазы на землю
- Трехфазные неисправности
- Дуговые замыкания
Хотя наиболее распространенным типом неисправности в трехфазной энергосистеме является замыкание линии на землю, подрядчики-электрики должны знать обо всех типах, чтобы снизить опасность поражения электрическим током, которая может нанести ущерб как персоналу, так и оборудованию.
Системы заземленияСуществует три основных типа систем заземления: системы с глухим заземлением, заземление с высоким сопротивлением и незаземленные системы. У каждой системы есть свои плюсы и минусы, которые следует тщательно учитывать для повышения производительности, практичности и соответствия требованиям NEC.
Системы с глухим заземлениемВ соответствии со статьей 250 NEC большинство современных электрических систем должны быть заземлены, и наиболее часто используемой системой является система с глухозаземленным заземлением. В этом типе системы заземления нейтраль подключается непосредственно к земле без преднамеренного добавления сопротивления в цепи заземления. Система с глухозаземленным заземлением, чаще всего встречающаяся в промышленных или коммерческих приложениях, может иметь два различных расположения: соединение звездой и соединение треугольником.
Преимущества
Есть много причин, по которым система с глухим заземлением может быть выгодна для электрической системы. Эта система позволяет пользователям легко обнаруживать неисправности и, следовательно, быстрее их изолировать. Кроме того, системы с глухим заземлением обеспечивают больший контроль над переходными перенапряжениями и могут поддерживать нагрузки, нейтральные к линии.
Недостатки
Самым большим недостатком системы с глухозаземленным заземлением является то, что при использовании в распределительных сетях высокого напряжения могут возникать чрезвычайно высокие токи короткого замыкания, что может привести к повреждению оборудования. Из-за этой опасности системы с глухим заземлением используются в системах низкого напряжения.
Системы заземления с высоким сопротивлениемСистемы заземления с высоким сопротивлением обычно используются в приложениях, где необходима непрерывная работа. Этот тип системы может быть достигнут путем заземления нейтрали, чтобы ограничить ток замыкания на землю до более низкого уровня значения.
Преимущества
Системы заземления с высоким сопротивлением могут быть разработаны как автономные устройства или интегрированы в распределительные устройства низкого и среднего напряжения, что помогает снизить опасность поражения электрическим током. Эта система также ограничивает повреждение оборудования и обеспечивает бесперебойную работу производственных объектов в случае замыкания на землю.
Недостатки
Проблема, с которой могут столкнуться некоторые из этих систем, заключается в том, что существует вероятность того, что в системе останется замыкание на землю на неопределенный срок и потеря нейтрального пути.
Незаземленные системыНезаземленные электрические системы работают без заземленного проводника, и только в некоторых системах NEC допускает незаземление электрической системы (например, изолированные системы питания, обычно используемые в медицинских учреждениях). Обычно от них требуется наличие оборудования для обнаружения грунта, которое также четко обозначено.
Преимущества
Основное преимущество незаземленных систем заключается в том, что они позволяют продолжать работу процессов даже при возникновении одиночного замыкания на землю.