Закрыть

Как правильно сделать контур заземления на производстве: Контур заземления, его устройство, расчет и схема

Содержание

Контур заземления

Контур заземления классически представляет собой группу соединенных горизонтальным проводником вертикальных электродов небольшой глубины, смонтированных около объекта на относительно небольшом взаимном расстоянии друг от друга.

В качестве заземляющих электродов в таком заземляющем устройстве традиционно использовали стальной уголок либо арматура длинами 3 метра, которые забивали в грунт с помощью кувалды.

В качестве соединительного проводника использовали стальную полосу 4х40 мм, которая укладывалась в заранее подготовленную канаву глубиной 0,5 — 0,7 метра. Проводник присоединялся к смонтированным заземлителям электро- или газосваркой.

Контур заземления для экономии места обычно «сворачивают» вокруг здания вдоль стен (по периметру). Если взглянуть на этот заземлитель сверху, можно сказать, что электроды смонтированы по контуру здания (отсюда и название).

Таким образом контур заземления — это заземлитель, состоящий из нескольких электродов (группы электродов), соединенных друг с другом и смонтированных вокруг здания по его контуру.

Контур заземления: классический или современный?

Классический контур заземления

Современный контур (модульное заземление)

Большая площадь установки Крайне малая площадь установки (вплоть до монтажа в подвале дома)
Необходимы сварные работы Все элементы заземлителя легко соединяются резьбовыми соединениями (не влияет на механические и электрические свойства заземлителя)
Требуется резка материала Все детали изготовлены промышленным способом с гарантировано высоким качеством
Требуется транспортировка грузовым автомобилем Полутораметровая упаковка штырей и коробка с дополнительными элементами умещается в обычный легковой автомобиль
Длительный и физически тяжелый процесс установки, требующий привлечения сварщика Быстрая установка своими силами. Для установки заземлителя требуется только один человек.
Элементы конструкции имеют вес не более 2х килограмм.

Классический контур заземления

Классический контур заземления из стального уголка и арматуры имеет один большой плюс — его цена. Использование дешевого стального проката (уголок и полоса) удешевляет стоимость деталей до минимума. Но с другой стороны у классической схемы есть масса минусов:

  • большая площадь заземлителя (часто необходимо более 10 электродов)
  • необходимость резки материала на куски нужного размера (по 2-6 метра)
  • необходимость транспортировки материала до места установки грузовым автомобилем
  • трудоемкий и длительный процесс установки, требующий забивания уголков-электродов и проведения сварочных работ, требующих квалифицированных специалистов и специального оборудования
  • недолгий срок службы такого заземления
  • необходимость получения множества разрешений при строительстве заземления в городской черте (особенно при плотной застройке)

Современный контур заземления

Преодолеть недостатки классического контура заземления помогли технологии и промышленное производство компонентов. Заложив в основу системы нового типа идею обычного «конструктора», разработчики создали набор унифицированных элементов. С помощью этих элементов / модулей можно легко и быстро самостоятельно построить контур заземления из очень глубоких (до 30 метров) электродов без необходимости применения специальной техники, оборудования и навыков.

Система нового типа получила название — «Модульное заземление ZANDZ».

Заземлитель современного контура заземления представляет собой одиночный составной электрод глубиной до 30 метров, состоящий из легко соединяемых между собой полутораметровых отрезков — стержней / штырей.

Монтаж заземления из такого электрода осуществляется обыкновенным бытовым строительным электрическим отбойным молотком.

Строительство современного контура заземления не требует специальных навыков и может осуществляться силами одного человека.

Заземление зданий, контур заземления здания, проект заземления

Цвет провода заземления — желтый с салатовой полосой. Каждый, кто самостоятельно монтировал хоть раз проводку, задавался вопросом: «А зачем, собственно, он нужен?». Так ли важно усложнять конструкцию и нести лишние расходы? С какой целью делается заземление зданий? А если оно, заземление, действительно необходимо, то как смонтировать эту систему правильно, чтобы она выполняла свои функции?

Содержание

  1. Для чего нужно заземление зданий
  2. Принцип действия системы заземления
  3. Заземление зданий. Требования
  4. Расчет системы заземления
  5. Пример расчета
  6. Советы
  7. Заземление зданий промышленных объектов
  8. Как заказать услугу?

Для чего нужно заземление зданий

Наши далекие предки сталкивались только с проявлениями атмосферного электричества. Но уже тогда люди знали, насколько опасными могут быть разряды молнии и называли их «гневом богов». Раскопки археологов показали, что уже в те далекие времена люди понимали некоторые принципы действия атмосферного электричества и пытались создавать примитивные системы защиты.  Эти находки представляли собой длинные медные прутья, возвышающиеся над зданиями, противоположным концом погруженные в грунт.

Однако с развитием человеческого общества, технологий, электричество прочно вошло в наш быт. И тут же остро встал вопрос о защите человека от поражающих факторов электрического тока, но на этот раз не атмосферного, а «домашнего», сгенерированного машинами, построенными самим же человеком. Решение оказалось лежащим на поверхности.

Действительно, заземление зданий — практически точная копия конструкции громоотвода. Из опасной зоны ток отводится в землю с помощью фидера — металлического стержня, проволоки, кабеля.

С помощью заземления защищают электрические агрегаты, домашние сети, бытовую и промышленную технику. В случаях, когда на объектах электроснабжения случается пожар, насосы пожарных автомобилей и даже ручные стволы (брандспойты), которыми пожарные бойцы тушат пожар, должны быть заземлены с помощью специальных устройств.

Принцип действия системы заземления

Принцип действия системы заземления чрезвычайно прост. В чем состоит поражающая (разрушающая) сила электрического тока? Все начинается с того, что в одном месте при создании особых условий, накапливается очень большое количество отрицательно заряженных частиц — электронов. Но так как все в природе стремится к равновесию, то этот избыток частиц устремляется туда, где их недостаточно. Звучит не очень пугающе, но когда поток электронов мчится к земле от наэлектризованных облаков, они, эти крошечные частицы, умудряются нагревать слои атмосферы до миллиона градусов по Цельсию.

Изобретатели научились пускать этот поток в мирное русло — по электрическим проводам. Проходя через проволоку, электроны заставляют её нагреваться и иногда от перегрева она, проволока, начинает ярко светиться. Поток электронов создает и электромагнитное поле, приводящее в движение роторы мощных моторов.

Но машины иногда выходят из строя и поток электронов, прокладывают свой путь через любой предмет, проводящий электрический ток, иногда подобным проводником становится и тело человека. Таким образом, заземление зданий предназначено для предоставления заряженным частицам, электронам, образно говоря, альтернативного пути — более удобной, с меньшим сопротивлением, дороги к выходу. В результате, большая часть электронов проходит по защитному контуру заземления и уменьшает силу тока, направленного на человеческое тело.

Установка и правильный расчет заземления, молниезащиты — необходимое условие безопасности проживающих в доме.

Заземление зданий. Требования

Если расчет заземления частного дома, как и решение о необходимости его монтажа, полностью лежит на совести владельца, то о производственных зданиях и помещениях, многоквартирных жилых домах этого не скажешь. Так, согласно существующим правилам устройства электроустановок, наличие и характеристики системы заземления зависят не только от напряжения, под которым работают машины, но также и от микроклимата внутри конкретных помещений здания.

Расчет заземления электрооборудования производится на стадии проектирования. Согласно ГОСТ 12.1.030-81, в помещениях, где пользуются переменным током с напряжением 380 В и выше или постоянным более 440 В, устройство заземления или зануления обязательно во всех случаях. При напряжении от 42 В до 380 В переменного тока или от 110 В до 440 В постоянного тока заземление устраивается в случае, если работа в помещении сопряжена с условиями повышенной опасности или особо опасными по ГОСТ 12.1.013-78.

Обязательному заземлению подлежат и электроустановки, расположенные под открытым небом.

Машины, работающие от электрической сети с напряжением, менее указанных величин, должны быть заземлены только в помещениях с большой влажностью или на производствах, где есть опасность образования газовоздушных или газопылевых взрывоопасных смесей.

Расчет системы заземления

Методика сводится к расчету количества стержней, необходимых для достижения заданных параметров заземления. Для того чтобы сделать подобный расчет, необходимо знать сопротивление одного стержня.

Это сопротивление можно измерить или рассчитать.

Замер производится методом, показанным на рисунке ниже.

Сопротивление стержня определяют по формуле R = U / I, где:

  • U — напряжение, измеренное вольтметром, В;
  • I — сила тока, измеренная амперметром, А.

Расчет заземления можно сделать и без замеров, для этого можно воспользоваться достаточно сложной формулой, но универсальной для любых вертикальных заземлителей.

Для расчета с помощью этой формулы необходимы следующие исходные данные:

  • ρ-экв — эквивалентное удельное сопротивление почвы, Ом×м;
  • L — длина стержня, м;
  • d — диаметр стержня, м;
  • Т — расстояние от поверхности грунта до середины заземлителя (геометрическая середина стержня), м.

Таблица 1. Эквивалентное удельное сопротивление почвы – значения, нормированные для известных видов почв.

Грунт

Эквивалентное удельное сопротивление, Ом×м

Климатический коэфициент

При влажности грунта 10-12%

Возможные границы колебания значений

Рекомендовано для расчетов

Ψ1

Ψ2

Ψ3

торф

чернозем

садовая земля

глина

суглинок

мергель, известняк

супесчаный

песчаный

20

200

40

40

100

250

300

700

9 — 53

30 — 60

8 — 70

40 — 150

200 — 300

150 — 400

400 — 2500

20

30

50

60

100

250

300

500

1,4

1,6

2,0

2,0

2,4

1,1

1,32

1,3

1,3

1,5

1,5

1,56

1,0

1,2

1,2

1,2

1,4

1,4

1,2

В таблице: Ψ1— очень влажный грунт, Ψ2 – грунт средней влажности, Ψ3 – сухой грунт.

После того, как стало известно сопротивление одного вертикального стержня, можно рассчитать их необходимое количество, без учета сопротивления горизонтального заземления:

где:

  • Rн — нормируемое сопротивление растеканию тока заземляющих устройств, Ом;
  • Ψ — сезонный климатический коэффициент сопротивления грунта, для средней полосы Российской Федерации, может приниматься как 1,7.

Таблица 2. Наибольшее допустимое значение сопротивления заземляющих устройств (согласно ПТЭЭП), в формуле выше обозначено как Rн.

Характеристика электроустановкиУдельное сопротивление грунта ρ, Ом·мСопротивление заземляющего устройства, Ом
Искусственный заземлитель к которому присоединяется нейтрали генераторов и трансформаторов, а также повторные заземлители нулевого провода (в том числе во вводах помещения) в сетях с заземленной нейтралью на напряжение, В:
 660/380до 10015
свыше 1000. 5 х ρ
 380/220до 10030
свыше 1000.3 х ρ
 220/127до 10060
свыше 1000.6 х ρ

Так как удельное сопротивление грунта зависит от его влажности, для стабильности сопротивления заземлителя и уменьшения на него влияния климатических условий, заземлитель размещают на глубине не менее 0.7 м.

Заглубление горизонтального заземлителя можно найти по формуле:

где:

  • Т – расстояние от поверхности земли до геометрической середины заземлителя, м.;
  • L – длина заземлителя, м;
  • t — минимальное заглубление заземлителя (глубина траншеи), принимается равным 0.7 м.

Сопротивление растекания тока для горизонтального заземлителя:

где:

  • Lг, b – длина и ширина заземлителя;
  • Ψ – коэффициент сезонности горизонтального заземлителя;
  • ηг – коэффициент спроса горизонтальных заземлителей (таблица 3).

Длину самого горизонтального заземлителя найдем исходя из количества заземлителей:

 — в ряд; — по контуру,

где а – расстояние между заземляющими стержнями.

Определим сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

Полное количество вертикальных заземлителей определяется по формуле:

где ηв – коэффициент спроса вертикальных заземлителей (таблица).

Таблица 3. Коэффициент использования заземлителей.

Коэффициент использования показывает как влияют друг на друга токи растекания с одиночных заземлителей при различном расположении последних. При соединении параллельно, токи растекания одиночных заземлителей оказывают взаимное влияние друг на друга, поэтому чем ближе расположены друг к другу заземляющие стержни тем общее сопротивление заземляющего контура больше.

Полученное при расчете число заземлителей округляется до ближайшего большего

Пример расчета

Расчет заземления электрооборудования. Пример — частный дом, используется однофазная электрическая сеть, требуемое сопротивление растеканию не выше 4 Ом. Место расположения — черноземье: эквивалентное удельное сопротивление грунта равно 50 Ом м. Для оборудования системы заземления используются стальные трубы длиной 160 см, диаметром 32 мм.

Расчет одного заземлителя:

Зная сопротивление растеканию, одного заземлителя, нетрудно рассчитать необходимое их количество:

Ответ: 11 заземлителей.

Советы

Сухой грунт — плохой проводник электрического тока, поэтому на песчаных почвах чем глубже забиты заземляющие стержни, тем лучше.

Находясь постоянно во влажной почве, конструкция из тонкого металла очень быстро разрушится в результате коррозии и перестанет выполнять возложенные на нее функции. Поэтому, во влажных грунтах, заземляющие стержни должны быть выполнены из достаточно толстых прокатных материалов.

На фото: заземляющий контур здания выполнен из стальной полосы.

Отличным заземлением может послужить водоносная скважина, если обсадочная труба выполнена из металла.

Если крыша дома выполнена из металлочерепицы (профнастила), ее в обязательном порядке заземляют. Подобная конструкция будет прекрасной молниезащитой здания.

Готовый молниеотвод можно получить, заземлив металлическую мачту телевизионной антенны, если таковая имеется.

Заземление зданий промышленных объектов

Расчет заземления электроподстанции просто необходим, на её территории находится большое количество оборудования, работающего с большим напряжением. Поэтому, практически все оборудование подстанции (трансформаторы, электрические щиты, железобетонные и железные опоры машин, муфты кабелей, кожухи кабельных каналов и размыкателей) заземляется в обязательном порядке.

Сопротивление растекания тока на рассматриваемых объектах не должно превышать 0,5 Ома. Для достижения заданной цифры при устройстве оборудования подстанций по максимуму пользуются естественными заземлителями, такими как трубопроводы подземных кабельных каналов, металлическими опорами электропередач и поддерживают их тросами.

Сопротивление подобных систем рассчитывается по формуле:

где:

  • R тр — сопротивление троса одной опоры ЛЭП, Ом;
  • R оп — сопротивление растеканию тока самой опоры, Ом.

Заземление зданий цехов промышленного предприятия производится в зависимости от наличия и количества установленного в нем оборудования. Сам алгоритм расчета ничем не отличается от рассмотренного выше примера. По рассматриваемой схеме производится и расчет заземления электрических кабелей.

Произвести необходимые расчеты и составить полный пакет документации по заземлению здания Вам помогут квалифицированные специалисты нашей компании.

Как заказать услугу?

Заказать услугу, рассчитать стоимость работ или уточнить дополнительную информацию вы можете:

оставив заявку на сайте, через форму обратной связи «Заказать звонок»,

позвонив нам по контактному телефону 8 (495) 669 31 74 

или же написать нам на почту: info@bta.

ru

Будем рады ответить на все интересующие вопросы!

PassDiy

Kent English

Введение

Ваш новый компонент подключен, только что из коробки, и в первый раз, когда вы включаете его, происходит звуковая катастрофа; он гудит, жужжит и вообще звучит совершенно кошмарно. Взгляд на ваше оборудование или дилера не поможет, а вращение ручек только усугубит шум; что теперь?

Из многолетнего опыта мы пришли к выводу, что подавляющее большинство чрезмерных шумов в аудиоэлектронике можно отнести непосредственно к плохим методам заземления. Хотя мы рекомендуем балансные межсоединения для ваших аудиокомпонентов, когда это возможно, следует понимать, что сбалансированные межсоединения решают только проблемы наведенного шума. Контур заземления — это совсем другая проблема, совершенно не связанная с проблемами наведенного шума.

Немного теории

Чтобы успешно бороться с контурами заземления, вы должны сначала понять, почему они возникают. Каждый компонент вашей аудиосистемы имеет в своей основе внутреннее заземление. Ключевыми моментами, которые необходимо понять, являются то, что не существует такой вещи, как идеальное заземление, и что никакие две точки заземления в любой системе никогда не могут быть полностью эквипотенциальны друг другу.

Везде, где в системе существуют два заземления с разным потенциалом, существует вероятность возникновения проблемы с шумом, связанным с контуром заземления. Когда устройства связаны между собой соединительными кабелями, они обязательно связывают сигнальные земли взаимосвязанных устройств друг с другом. Эта связь между двумя сигнальными землями является необходимым и желательным обстоятельством, проблема «заземления» возникает, когда это соединение происходит более чем в одном случае. Типичным виновником является защитное заземление, обеспечиваемое шнуром питания или направляющими в стойке, находящимися в прямом контакте с заземлением возврата сигнала.

Эти ситуации создают замкнутый контур, в котором ток течет от земли одного блока к другому блоку и обратно к первому блоку через дополнительное заземление, обеспечиваемое сетью распределения электроэнергии. Обычно полное сопротивление этих нежелательных цепей довольно низкое, порядка очень малых долей ома. Не ждите

Pass Labs: Статьи: Контуры заземления

только часть входной цепи. Заземление экрана не должно быть подключено к концу провода источника, только к концу входного компонента; назовите их и не забудьте! Это, конечно, будет означать, что на входном конце кабеля проводники сигнала экрана и заземления будут соединены вместе.

Это было бы предпочтительным подключением для всех несимметричных подключений, где производитель позаботился об изоляции земли шасси от земли сигнала, к сожалению, это пока не является универсальной практикой в ​​потребительском аудио.

Такая же логика должна применяться при изготовлении кабелей XLR. Начните с кабеля с тремя жилами в дополнение к отдельному экрану; контакт один на разъеме заземлен, контакт два — положительный вход, а контакт три — инвертированный вход. Соединение корпуса на конце входного компонента XLR становится вашим единственным соединением экрана; маркировка здесь не нужна, так как по своей конструкции это кабели с направленной поляризацией.

Если один компонент имеет защитное заземление, изолированное от сигнала, а другой нет, велика вероятность, что контуры заземления не станут проблемой. Когда возникают проблемы с контуром заземления, это чаще всего является результатом двух взаимосвязанных компонентов, каждый из которых имеет защитное и сигнальное заземления, соединенные внутри компонента. В этих обстоятельствах одну из площадок придется оставить, или вам придется сделать их все более похожими….. на ваше усмотрение.

Хорошо, предположим, что у вас есть межблочные кабели и компоненты, которые вам нравятся, и о перепроектировании или ином повреждении продукта не может быть и речи, что теперь?

Логично было бы подумать, что вы можете устранить контуры заземления, отключив заземление шнура питания на всем своем оборудовании. Некоторые люди могут попытаться разорвать заземляющее соединение, перерезав заземляющий контакт на шнуре питания, используя мошенническую вилку, перерезав заземляющий провод внутри оборудования, заклеив заземляющий разъем и т. д. Как подсказывает логика, это может привести к излечению от шума. .

Не делайте этого . Снимать заземление неправильно! Это противоречит правилам электробезопасности и потенциально очень опасно. Снятие защитного заземления может нарушить работу противопомехового фильтра или устройства защиты от шипов внутри оборудования. Если заземляющее соединение разорвано, неисправность изоляции внутри оборудования может привести к возникновению опасного напряжения на корпусе оборудования.

Pass Labs: Статьи: Контуры заземления

расположены еще ближе к сетевому щиту. У многих удлинителей есть MOV и неоновые огни; если вы ищете максимальную мощность без радиопомех, не подключайте эти устройства к вашей развлекательной системе. Оба устройства могут вводить небольшой, но измеримый уровень шума в линии электропередачи. Является ли это небольшое количество шума значительным, нет, но оно, безусловно, накапливается.

У MOV есть место в вашей домашней электрической системе, чтобы быть наиболее полезными, они должны быть как можно ближе к сетевому щиту. Лучшие устройства MOV жестко подключаются непосредственно к шинам панели выключателя. Однако MOV изнашиваются и иногда требуют замены. Они склонны к катастрофическим, а не постепенным отказам, и неисправные единицы не так уж сложно обнаружить.

Множество небольших улучшений в шумоподавлении могут оказывать и оказывают динамическое влияние на то, что вы в конечном итоге слышите в аудиосистеме высокого разрешения. Во многих случаях использование этих дополнительных преимуществ требует незначительных дополнительных затрат или усилий.

чтобы измерить это сопротивление с помощью вашего удобного мультиметра, он, вероятно, не имеет требуемого разрешения или чувствительности. Точное измерение требует использования устройства, известного как импедансный мост. К счастью, лечение шума, связанного с землей, редко требует такого уровня диагностической сложности.

В соответствии с уважаемым учением Георга Саймона Ома , эти напряжения, хотя и достаточно низкие, способны генерировать значительный ток. Именно эти «петлевые» токи создают нежелательный шум, впечатывая свою сигнатуру в сигналы низкого уровня, обычно в виде синфазного шума.

Чтобы свести к минимуму проблемы с контуром заземления, компания Pass Labs никогда не производит оборудование, в котором заземление сигнала и заземление шасси находятся рядом. Благодаря разделению сигнального заземления и защитного заземления соединение устройств вместе никогда не должно вызывать проблем с контуром заземления; однако не все производители придерживаются такого подхода.

Что теперь

Как только вы поймете, что вызывает контуры заземления, они должны с некоторой настойчивостью и усилиями перестать быть проблемой. В максимально возможной степени вам потребуется раздельное заземление, возврат сигналов и экранирование низкоуровневых кабелей.

Несимметричные кабели до сих пор остаются нормой потребительского аудио, несмотря на присущие им недостатки. В системах с очень небольшим количеством компонентов соединения типа RCA работают достаточно хорошо, но по мере того, как системы (особенно аудио/видеосистемы) становятся более сложными, их успешная реализация становится проблематичной. Если вы прокладываете несбалансированные кабели, всегда используйте двухжильный экранированный провод. Использование более распространенного одиночного проводника внутри экрана требует, чтобы вы объединили возврат сигнала и экранирование с одним и тем же проводом; тем самым нарушая предпочтительный протокол.

Экраны должны препятствовать попаданию паразитных шумов на входы компонентов; общий или обратный сигнал является частью пути сигнала, двумя противоположными задачами. Из-за этих отдельных задач ваши кабели должны быть направленными, а экраны должны быть

. перегорания предохранителя. Работа без заземления не приведет к автоматическому поражению электрическим током, но сделает это гораздо более вероятным, если что-то пойдет не так в вашей системе.

Многие известные авторитеты предлагали переполяризовать ваше оборудование, инвертировав шнур питания, таким образом, поменяв местами горячие и нейтральные соединения питания. Не делайте этого . На практике это может немного уменьшить шум, связанный с блоком питания, но есть и обратная сторона. Если перевернуть шнур питания, внутренний предохранитель и выключатель питания будут подключены к нейтральной линии электропередачи (прощай, защита). В случае аварии в результате страховые компании будут смеяться над вашими наследниками!

Если мы не можем разделить сигнальные земли и земли безопасности, наш единственный выход — сделать их как можно более похожими путем тщательной настройки сетевого питания и земли безопасности. Существует ряд методов распределения мощности, предназначенных для уменьшения или, по крайней мере, сведения к минимуму проблем с контуром заземления. Наиболее распространенный метод называется звездным распределением. В звездообразном распределении точка выбирается как произвольный потенциал земли с наименьшим потенциалом. С этого момента излучаемая в стольких направлениях мощность будет достигать всех взаимосвязанных компонентов. Тогда все заземления безопасности будут возвращаться к главному заземлению безопасности в этой общей точке. Эти заземляющие соединения по схеме «звезда» должны быть выполнены из толстого провода, и все плечи звезды должны быть одинаковой длины и одинакового сечения.

Когда все заземляющие проводники к центральной точке соединения звезды имеют одинаковую длину, то концы звезды очень близки к одному и тому же потенциалу земли. Предполагая безошибочное выполнение этого заземления; сигнальная проводка между любым оборудованием, заземленным на звезду, будет иметь нулевой потенциал, что позволит избежать контуров заземления.

Самый экономичный способ сделать это — подключить все низкоуровневые компоненты к качественному удлинителю, а не к многочисленным настенным розеткам. Настенная розетка, выбранная для подключения удлинителя, должна быть ближайшей к сетевому щиту для этой конкретной ответвленной цепи. Все, что вы делаете, чтобы уменьшить общее электрическое сопротивление цепи питания, дает преимущество в том, что «земля» становится ближе к потенциалу земли. Снижение импеданса источника питания таким образом позволяет внутренним фильтрам электромагнитных и радиопомех компонентов работать должным образом.

Любые устройства, производящие шум в той же ответвленной цепи, такие как вентиляторы или переносные люминесцентные лампы, должны быть

Что такое контур заземления и как свести к минимуму его вредные последствия | Блог Advanced PCB Design

Всякий раз, когда я нахожу нового исполнителя или альбом, который мне нравится, я склонен с одержимостью их слушать. Я зацикливаю их песни до тех пор, пока даже малейший намек на биты в их песнях не заставит меня напевать весь первый припев. К счастью, у меня есть друзья и семья, которым надоело слушать одни и те же песни снова и снова, чтобы вырвать меня из этой петли. Но что, если я не хочу, чтобы моя петля разорвалась?

Повторение и циклы могут иметь вредные последствия в зависимости от среды, в которой вы находитесь. Этот простой урок преподали мне как моя невестка, вынуждая меня либо отключить звук альбома, либо изменить его, и контуры заземления. в моих схемах неоднократно вызывали помехи от дифференциалов обратного пути и шумовые помехи. Здесь я расскажу, что такое контур заземления и как обойти некоторые уязвимости, которые он провоцирует в ваших проектах.

Итак, что такое контур заземления?

В типичной конструкции печатной платы заземляющие соединения обеспечивают обратный путь для различных сигналов на плате. Часто предполагается, что земля имеет одинаковый потенциал напряжения на каждой части печатной платы, но это часто ошибочное представление, которое обнажается, когда в конструкции есть контуры заземления.

Контур заземления определяется наличием токопроводящего пути, образованного несколькими соединениями заземления. В идеальной компоновке ваши компоненты будут правильно соединены друг с другом через заземление. Только при прямо указанных соединениях заземления компоненты будут иметь обратный путь постоянного тока, но когда промежуточное соединение заземления соединяется между несколькими компонентами, образуется контур заземления.

Как контур заземления влияет на вашу печатную плату

В идеальном мире вам не придется беспокоиться о контурах заземления, поскольку каждая точка заземления будет иметь одинаковый потенциал. К сожалению, реальный мир проектирования печатных плат далек от идеала. Когда в вашей конструкции присутствуют контуры заземления, вы обнаружите, что обратный ток начинает находить неожиданные пути на печатной плате.

Контуры заземления являются потенциальной причиной шумовых помех на печатной плате. Если один компонент в контуре является шумным, а обратный ток протекает через общие разъемы заземления, то этот компонент с шумом является источником помех для других компонентов в контуре. Это может иметь катастрофические последствия для других аналоговых или аудиокомпонентов, находящихся на одном контуре с особенно шумным компонентом.

Вы также можете подумать, что пока на печатной плате нет компонентов, создающих шум, нет и риска от контуров заземления. К сожалению, вас ждет неприятный сюрприз. Контур заземления также может образовывать индуктивный контур, который может улавливать электромагнитные помехи от внешних устройств.

 

При контурах заземления следует ожидать как внутреннего, так и внешнего шума.

 

Как свести к минимуму влияние контура заземления на вашу печатную плату

Практически ничего нельзя сделать, когда ваша печатная плата собрана и испытывает помехи из-за контуров заземления. Если есть какие-то превентивные меры, которые можно было бы принять, то это будет во время процесса маршрутизации. Работа над проектированием и анализом на начальных этапах проектирования схемы с помощью утилит SPICE может быть особенно полезной при управлении ожидаемым импедансом и шумом.

Теоретически устранение контура заземления означает, что каждый компонент имеет единственный прямой путь к земле. На практике трудно быть уверенным в отсутствии соединительных петель на наземных узлах. Но вы можете свести к минимуму вероятность возникновения контуров заземления, выполнив следующие действия:

1. Используйте одиночный заземляющий слой

Вместо нескольких заземляющих соединений вы должны залить на печатную плату один заземляющий полигон. Это сводит к минимуму вероятность наличия контуров заземления.

2. Избегайте разделения заземляющих плоскостей

При заливке заземляющей плоскости на внешние слои, где находятся сотни компонентов и трасс, существует риск разделения заземляющих плоскостей. Это также может привести к образованию контуров заземления. Вместо этого вам следует подумать о перемещении плоскости заземления во внутренние слои, чтобы иметь более согласованный обратный путь.

3. Сведите к минимуму количество соединений заземления с плоскостью

Наличие заземляющей пластины не является полной гарантией решения проблем контура заземления. Вы должны убедиться, что компоненты на печатной плате подключены к плоскости заземления с минимальной медной дорожкой. Это можно сделать, проведя заземляющее соединение через сквозное отверстие, расположенное рядом с компонентом.

4. Моделирование SPICE для уменьшения эффекта контура заземления

Моделирование может упростить процесс расчета, позволяя вашим проектам работать с точными моделями. Путем моделирования обратного проводника в эквивалентной электрической цепи с помощью его частичной индуктивности можно точно оценить связь контура заземления. Кроме того, симуляторы SPICE обеспечат проверку своих оценок контура заземления путем сравнения распределения тока заземления с тем, что можно найти в решении для полноволнового анализа методом моментов.

 

Используйте пластину заземления и переходные отверстия для предотвращения образования контуров заземления.

 

К счастью, несмотря на любые потенциальные проблемы, связанные с контуром заземления, которые могут возникнуть при проектировании схем без надлежащей проверки или соблюдения рекомендаций по проектированию, всегда будет возможность устранить их до того, как вы принесете плату в сборку.

Благодаря мощному набору инструментов проектирования и анализа Cadence вы сможете соответствующим образом планировать работу с любыми потенциальными уязвимостями проекта на этапах создания схемы, моделирования и компоновки. С интеграцией OrCAD с PSpice вы даже можете столкнуться с уязвимостями конструкции, которые вы даже не начали учитывать, моделируя свою схему.

Если вы хотите узнать больше о том, как у Cadence есть решение для вас, обратитесь к нам и нашей команде экспертов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *