Закрыть

Сечение шины заземления по пуэ: Конструкция и монтаж заземляющей шины

Содержание

Конструкция и монтаж заземляющей шины

Важнейшим условием безопасности эксплуатации любых электрических цепей является наличие надёжной системы заземления, включающей в себя ряд специальных элементов. Одной из таких составляющих и является главная заземляющая шина (ГЗШ), монтируемая на планке вводного устройства подключаемого к линии объекта.

Назначение

Помимо ГЗШ в состав заземляющей системы входит комплект медных соединительных жил, а также специальная конструкция из металлических профилей или арматуры, называемая контуром заземления. Последний вкапывается в землю неподалёку от строения на глубину, обеспечивающую надёжный контакт металла с грунтом.

Основное назначение шины заземления – создать на вводе в сооружение особую зону, имеющую нулевой потенциал по отношению к земле. Кроме того, ГЗШ предназначается для подключения частей электрооборудования, эксплуатируемого в границах данного объекта и нуждающихся в заземлении.

В большинстве случаев заземляющая шина собирает на себе проводники, идущие от следующих конструктивных элементов:

  • основной заземляющий контур;
  • металлический корпус (корпуса) различного оборудования и трубопроводов;
  • система защиты от удара молнии (молниеотвод).

Помимо этого, к главной шине заземления подключается и так называемый «PEN проводник», входящий в состав кабельной подводки питающего напряжения и совмещающий в себе «рабочий ноль» и защитный провод.

На планке ГЗШ заземляющая шина искусственно разделяется на так называемую «нулевую рабочую» (N) и «нулевую защитную» (PE), каждая из которых имеет собственное крепление и используется по своему прямому назначению.

Благодаря такому разделению на стороне потребителя удаётся организовать «повторное» заземление, исключающее опасность поражения током при случайном обрыве PEN проводника.

Отметим также, что обустройство заземления по такой схеме возможно лишь для трансформаторных питающих линий с глухозаземлённой нейтралью.

Конструкция

Нулевая шина с заземлением может размещаться как внутри вводного устройства (ВРУ), так и отдельно от него. В первом случае в качестве ГЗШ допускается использовать искусственно организованную шину РЕ, имеющую непосредственный электрический контакт с корпусом распределительного шкафа.

При размещении вне границ вводного устройства эта сборно-распределяющая конструкция должна находиться неподалёку от него (в удобном для обслуживания и доступном для специалистов месте).

Для ограничения доступа посторонних лиц открытые шины заземления могут укрываться в запирающемся на замок ящике, дверца которого помечается специальным знаком.

Согласно действующим нормативам (ПУЭ, в частности) ГЗШ должна изготавливаться в виде медной или стальной полосы, имеющей определённые размеры. При размещении вне шкафа и в нём они выбираются с учётом того, чтобы на шине уместилось требуемое количество контактных отверстий под болтовые соединения.

Для выпускаемых промышленностью типовых изделий ГЗШ ХХ-УХЛ4 ТВС, например, эти размеры строго нормируются и выбираются из следующего ряда: 3х30, 3х40, 4х40 миллиметров. При этом подходящую рейку выбирают исходя из нормированного количества отверстий под крепление проводников (10, 15 или 20).

Перечисленные выше размеры у разных производителей могут отличаться по своей величине, однако все они должны рассматриваться в качестве параметров ГЗШ, дополняющих уже приведённые ранее характеристики.

Обращаем особое внимание на тот факт, что применение алюминия для изготовления распределительных полос не допускается. Кроме того, при выборе изделия с заданными параметрами всегда следует иметь в виду, что габариты ГЗШ не могут быть менее чем сечение РЕ-шины, организуемой в границах ВРУ.

К этому нужно добавить, что конструкцией реек должна предусматриваться возможность подключения к ним дополнительных проводников с помощью подходящего инструмента (ключа под болтовое соединение, например).

При наличии в здании нескольких вводов линии питания, шина заземления обустраивается на каждом из них. Образующееся при этом соединение шин должно быть подключено к уравнителям потенциала.

И, наконец, при организации системы заземления не следует путать ГЗШ с РЕ-шиной, организуемой с целью получения повторного заземления на приёмной стороне. Хотя они и имеют электрический контакт, но назначение у них разное.

Можно ознакомиться с рисунком, на котором приводится внешний вид и обозначение ГЗШ.

В следующих разделах на конкретных примерах будут рассмотрены возможные места монтажа шины заземления с учётом удобства организации заземления и обслуживания всей системы в целом.

Выбор места для монтажа ГЗШ

На столбе воздушной линии

Если на участке подводки питающей линии к основному ВРУ, расположенному на обслуживаемом объекте, имеется дополнительное вводное устройство (на столбе, например), то ГЗШ может монтироваться непосредственно на нём.

Требования действующих нормативов (того же ПУЭ, например), обязывают соединять смонтированную на столбе заземляющую шину с основной распределительной планкой, располагаемой во внутреннем вводном устройстве.

Также не следует забывать об организации повторного заземления PEN проводника на столбе посредством выделения из него отдельной шины заземления PE. Последнее означает, что указанный конструктивный элемент должен электрически соединяться с ещё одним заземляющим контуром, обустраиваемым непосредственно под опорой.

В шкафу ВРУ

Шкаф со смонтированной в нём главной шиной может размещаться непосредственно на фасаде дома в заранее предусмотренном для этого месте. На объектах производственного назначения и в зданиях различных организаций установка ВРУ, как правило, предполагает использование для этих целей специальной щитовой комнаты.

При наружном (уличном) расположении распределительного устройства корпус шкафа должен иметь индекс IP, соответствующий условиям его эксплуатации.

Монтаж элементов конструкции, реализующих шину функционального (рабочего) заземления, предполагает целый набор специальных операций, при проведении которых необходимо учитывать следующие моменты:

  • для удобства монтажа главная шина фиксируется болтами на стальном корпусе шкафа;
  • при монтаже шина заземления должна соединяться с «нулевой» рейкой посредством стальной (медной) перемычки;
  • её размеры должны быть сравнимы с сечением защитного и нулевого рабочих проводников;
  • их размещение относительно друг друга никак не оговаривается действующими нормативами.

Сечение заземляющей пластины РЕ должно быть не менее 10 мм2 (в том случае, когда она изготовлена из меди). Для стального проводника это значение не может быть менее75 мм2.

Установка вне шкафа

Вне шкафа планка главной шины заземления должна устанавливаться в местах, защищённых от постороннего доступа и вмешательства.

Она фиксируется в границах твёрдой плоской поверхности на изоляторах из достаточно прочного материала. В качестве примера открытого размещения ГЗШ рассмотрим монтаж типовой пластины на19 дюймов торговой марки «TLK».

Широко распространенные в электротехнике заземляющие шины TLK-ERH-CU – это сертифицированный продукт от «TLK», соответствующий всем оговоренным ранее требованиям. При их изготовлении на медную рейку с типоразмером 19 дюймов (19”) размещают от 14-ти до 18-ти крепёжных болтов для подключения подводящих проводников.

Согласно требованиям, предъявляемым к конструкциям этого класса, такую 19 дюймовую рейку с 14 (18) разъемами положено устанавливать в специальных шкафах, выпускаемых той же торговой фирмой. И лишь после этого готовая конструкция подключается к системе заземления посредством медного провод ПВЗ соответствующего сечения.

Дополнительная информация. Используемый для размещения 19-дюймовой рейки шкаф имеет соответствующее обозначение – «№19».

Ещё одним вариантом обустройства шины заземления является использование для этих целей специальных DIN реек, относящихся в категории типовых электротехнических изделий, объединяемых в одном шкафу.

Согласно действующим стандартам (ГОСТ, в частности) комплект из таких DIN реек может предназначаться и для других целей (они могут использоваться в качестве планок для подключения фазных и нулевых проводников).

Итоги

В заключении отметим, что довольно распространённым способом сопряжения отдельных элементов шины заземления является сварка.

Она полностью удовлетворяет требованиям ГОСТ на обустройство надежных контактов. Одновременно с этим применение сварочного устройства для целей сборки обеспечивает прочность соединения с гарантией высокой проводимости.

Отметим также, что качество болтовых сопряжений обеспечивается надёжной опрессовкой кабельных наконечников подводящих проводов. Подобным же образом (посредством болтового крепления) шина в наконечнике соединяется с корпусом шкафа.

требования, виды, установка и монтаж

Заземление электроустановок в производственных и жилых помещениях является обязательным условием. В совокупности с автоматическими отключающими устройствами оно снижает вероятность пожаров при коротком замыкании и травматизма людей. Расскажем в статье, что такое главная заземляющая шина, где и когда она используется.

Определение заземления и его конструктивные особенности

Конструкция заземления это совокупность металлических элементов, предназначенная для обеспечения надежного контакта корпусов электроустановок с грунтом (землей). Основными элементами заземляющего устройства являются:

  • главная заземляющая шина;
  • отводы от корпуса электроустановок;
  • заземляющий провод в электропроводке;
  • общий контур заземления.

Требования ГОСТов и ПУЭ определяют, что все элементы выполняются из стальных или медных сплавов не зависимо от разновидности конструкции заземляющего контура и типа электроустановок. Большое значение на эффективность работы защитного заземляющего устройства имеет величина его электрического сопротивления.

Классическая схема подключения к ГШЗ:

  1. Молниезащита;
  2. Контур заземления;
  3. Трубы канализации, водопровода и отопления;
  4. Главная шина заземления.

Сопротивление заземляющего контура и факторы, влияющие на его величину.

Общее сопротивление заземления складывается из нескольких составляющих, сопротивления общей шины, отдельных проводов и контура в грунте. Но всеми этими величинами можно пренебречь, металлические элементы при надежном соединении имеют хорошую проводимость и очень малое сопротивление. Читайте также статью: → «Расчет заземляющих устройств».

Основное значение имеет сопротивление грунта, по которому растекаются токи. Чем меньше сопротивление, тем лучше. Пункт 7.1.101 ПУЭ (правил устройства электроустановок) определяет: « В сооружениях с сетями 220 или 380В оно должно составлять менее 30 Ом, для генераторов и трансформаторных подстанций менее 4 Ом. Этого можно добиться различными способами.

Факторы, определяющие величину сопротивления

Величина сопротивления во многом зависит от состава грунта, наиболее подходящим считается:

  • торф;
  • суглинок;
  • глина.
Вид грунтаОм на м2
Известняк5 050
Гранитные камни2 000
Базальтовый2 000
Песчаники1 000
Гравий однородного распределения800
Песчаник прессованный влажный800
Гравий с глинистой почвой300
Чернозёмные слои200

Особенно высока проводимость грунта в условиях большой влажности, но обязательно надо учитывать:

  • количество и размеры заземляющих электродов;
  • глубину залегания контура;
  • материалы всех элементов заземления;
  • надежность электрического контакта в местах соединений.

Все элементы заземляющей системы крепятся через главную шину. От правильно выбранного материала, установки этого элемента и присоединения к нему заземляющих проводников зависит безаварийная работа электроустановок. Кроме того на главной шине заземления производятся все необходимые подключения для измерений параметров системы заземления.

Совет №1. Для повышения проводимости заземляющего контура налейте в грунт раствор медного купороса.

Методика измерения требует отдельного детального рассмотрения, используются специальные приборы, работы выполняет квалифицированный персонал. При сдаче объекта в эксплуатацию электроснабжающая организация или электротехническая лаборатория делает все измерения. Результаты оформляются протоколом, один экземпляр выдается заказчику, который эксплуатирует электроустановки. Проводить контрольные замеры надо не реже одного раза в год.

Назначение главной заземляющей шины

В системах заземления собранных по схеме TN-S или TN-С требуется выравнивание потенциалов на всех участках электрической цепи, для этой роли используется главная заземляющая шина.

TN-С – схема с 1913 года начала применятся в Германии, на данный момент остается действующей на многих старых сооружениях в Европе странах постсоветского пространства. Особенность схемы заключается в том, что нулевой провод соединяется с ГШВ, используется как заземление. В случае его обрыва на корпусе электроприборов может возникнуть напряжение в 1,7 раза больше чем на фазе. Это повышает вероятность поражения людей работающих на электроустановках.

TN-S – с 1930 года недостатки предыдущей схемы были учтены, от заземления подстанции до контура здания через ГШЗ прокладывался отдельный провод.

В комбинированных конструкциях собранных по схеме TN — С – S на отдельных участках допускается соединение нулевого нейтрального провода N c линией заземления РЕN проводником.

Электрические цепи проводов от всех электроустановок, которые подлежат заземлению, в конечном итоге сводятся на ГШЗ (главная шина заземления), на ней заземляются элементы других коммуникаций:

  • Провод или шина от контура заземления;
  • Металлические трубы водопроводов, отопления и канализации;
  • Молниезащита;
  • Корпуса системы вентиляции и кондиционирования;
  • Другие металлические конструкции, подлежащие заземлению.

ГВШ является элементом заземляющего устройства и устанавливается в распределительных устройствах. Читайте также статью: → «Системы заземлений: TN-С, TN-C-S, TN-S, ТТ, IT».

Требования ПУЭ к главной шине заземления

Правила устройства электроустановок в пункте 1.7.119 определяют основные требования по установке главной заземляющей шины, для сетей до 1 кВт. Она в большинстве случаев размещается в шкафах распределительных устройств, при большом количестве заземляющих проводников используется отдельный шкаф.

Совет №2. В отдельных случаях допускается установка ГШЗ в открытом виде возле РУ, если помещение закрывается. Допуск в такие помещения ограничен, только для квалифицированного обслуживающего персонала.

Для схем заземления типа TN-С в распределительных устройствах разрешается использовать шину РЕ как ГШЗ, сечение которой не должно быть меньше проводов заземления которые к ней подсоединяются. Для главной шины заземления применяют  медь, в крайнем случае, устанавливают сталь, грубейшей ошибкой является использование алюминиевых полос. Это категорически запрещается по причине разности сопротивления на контактах из различных металлов. Такие контакты греются, проводимость снижается, при больших токовых нагрузках болтовые соединения могут полностью выгореть.

Соединения осуществляются разборные с помощью специальных инструментов, чаще всего это болтовые крепления с шайбами и гайками. Концы проводов опрессовываются медными наконечниками с отверстиями под болты и завинчиваются на шину. На стене возле шины или выделенном для нее отдельном шкафу наносится символический знак.

Пункт 1.7.120 определяет, что для помещений имеющих два и более отдельных ввода, каждый шкаф РУ оборудуется отдельной шиной заземления. На трансформаторных подстанциях устанавливается собственная шина с заземляющим контуром, РЕN проводник от которых уходит на ГШЗ ВРУ (вводное распределительное устройство) помещений с электроустановками. Заземляющие шины на разных РУ для выравнивания потенциалов должны соединятся проводом. Сечение проводника не должно быть меньше ½ большего провода, который приходит на одну из ГШЗ в ВРУ с трансформаторной подстанции.

Для соединения нескольких шин от разных ВРУ допускается использование металлоконструкций различного назначения если они неразборные имеют непрерывный электрический контакт. При этом надо учитывать требования пункта 1.7.123, который запрещает применять в качестве РЕN проводника:

  • трубы газораспределительных систем;
  • трубопроводы с горючими материалами;
  • конструкции систем отопления, водоснабжения и канализации;
  • свинцовые и металлические оболочки бронированных кабелей;
  • трос несущий кабель для электрической проводки.

Обратите внимание на часто допускаемую ошибку, заземлять эти конструкции на главную шину заземления можно и даже нужно, пункт 1.7.20. Но делать прямые соединения шин, на разных шкафах используя перечисленные конструкции, пункт 1.7.123 запрещает. С первого взгляда заземление троса и трубопровода на ГШЗ ВРУ обеспечит их прямое соединение, но при ремонте или демонтаже этих систем цепь будет разорвана.

Поэтому используются только неразборные токопроводящие конструкции, надежнее всего провести многожильный медный провод с желто-зеленой изоляцией, соответствующей обозначению заземляющего РЕN проводника. В этом случае соединение обеспечивающее распределение потенциала растекания, будет автономное не зависящее от других систем.

Конструктивные особенности и последовательность монтажа главной заземляющей шины

Главная заземляющая шина представляет собой медную пластину с отверстиями для крепежных болтов, к которым прикручиваются наконечники проводов. Длина шины и количество отверстий зависит от размеров шкафа и количества элементов с проводами, которые необходимо заземлить. Производители делают шины различной длины, ширины с болтами, отличающимися по диаметру в зависимости от сечения провода и наконечника, который надо прикручивать.

К металлическому корпусу шкафа шина фиксируется болтами на изолированных подставках, при этом обеспечивается электрический контакт корпуса и шины. Располагается конструкция горизонтально, внутри нижней части ВРУ, так удобнее заводить и прикручивать провода для заземления. Благодаря изолирующим опорам на болтах для крепления всей конструкции, образуется расстояние между стенкой шкафа и шиной.

Таблица характеристик производимых шин для заземления:

ТипТок в АмперахГабариты в мм
ГЗШ-10 -1-10340265х310х120
ГЗШ-10 -3-10625265х310х120
ГЗШ-10 -3-20625265х310х120
ГЗШ-10 -4-10860/870265х310х120
ГЗШ-10 -5-101475/1525265х310х120
ГЗШ-10-2-10475265х310х120
ГЗШ-21 -1-20340395х310х120
ГЗШ-21 -2-20475395х310х120
ГЗШ-21 -4-20860/870395х310х120
ГЗШ-21 -5-201475/1525395х310х120

Это позволяет зафиксировать и удерживать гаечным ключом головку болта с обратной стороны шины, чтобы надежно затянуть наконечники проводов. Обратите внимание, частая ошибка по невнимательности, перед  опрессовкой наконечников все провода маркируются, потом не получится, придется обрезать наконечники и делать все заново.

Если затягивать гайки на болтах неудобно, по причине малого расстояния между планкой и стенкой, болты крепления и диэлектрические опоры можно заменить на более длинные. Это увеличит пространство между шиной и задней стенкой, но надо учитывать, чтобы оставалось расстояние для закрытия дверцы шкафа.

Подключаются провода с желто-зеленой изоляцией по всей длине или одевается кембрик, термотрубка аналогичной расцветки в местах соединения к шине. На дверцах шкафа с внутренней стороны наклеивают схему, на которой указывается, откуда и на какую клему ГЗШ приходят линии заземления.

  • В первую очередь крепится провод от контура заземления здания, потом от подстанции идущий с линии ЛЭП или подземным кабелем, в большинстве случаев сечением не менее 10 мм2. Читайте также статью: → «Контур заземления: монтаж».
  • В последнюю очередь заземляются остальные конструкции, корпуса отдельного оборудования, трубопроводы, вентиляционные системы.
  • Не надо путать шину главного заземления с РЕN шиной, на которую заводят провода заземления различных групп электропроводки, розеточной, освещения, отдельных помещений и другие. В конечном итоге через корпус шкафа они имеют электрический контакт и соединяются отдельным проводом между собой.
  • Но равномерное распределение проводов способствует оптимальному распределению потенциала, от которого зависит правильное срабатывание автоматов защиты.

Особенности подключения ГЗШ в схемах TN-С и TN-С-S

В схемах  собранных по этим стандартам заземляющий провод отсутствует или совмещается на отдельных участках проводки с нулевым N-нейтральным, допускается в качестве ГЗШ использовать РЕN шину.  В распределительном щите на эту шину заводятся все провода от контура заземления, ЛЭП и заземление от различных групп проводки здания. При этом шина заземления соединяется отдельным проводом с шиной для линий с изолированной нейтралью N.

Таким образом, можно использовать стальной корпус шкафа в качестве главной шины заземления

Подключение ГШЗ в ВРУ расположенных на столбах ЛЭП

Особенность этого варианта подключения заключается в том, что шкафы ВРУ на столбах, имеют собственный заземлитель и очень часто подключаются к дому через кабель на троссовой подвеске.

В этих случаях на ГЗШ заводится провод от заземления столба, заземляющая линия ЛЭП, отвод от металлического троса. Кроме того главные шины ВРУ столба и ВРУ дома соединяются отдельной линией. Трос заземляется с обеих сторон, на шину возле ЛЭП и на шину в ВРУ для дома.

Часто задаваемые вопросы

Вопрос №1. Что дает соединение на отдельных электроустановках нулевого провода с проводом заземления. Получится глухозаземленная нейтраль, но при обрыве напряжение в любом случае пропадет, защиты не будет?

Если фаза будет целая, на участке до обрыва напряжение не пропадет, при замыкании фазы на корпус на этом интервале электроустановки будут под защитой. Сработают автоматические выключатели.

Вопрос №2. Зачем трос подключать с обеих сторон, одной точки заземления не достаточно?

При обрыве троса и падении кабеля может быть замыкание фазы на трос с любой стороны. Заземление с обеих сторон обеспечит срабатывание защитных автоматов в любом случае.

Вопрос №3. Как поступить если приходящий кабель старый с алюминиевыми жилами и на ВРУ шина тоже алюминиевая?

Оставьте как было, для медных проводов установите медную шину, шины соедините медным и алюминиевым проводом опресованным комбинированной гильзой. (это цилиндр половина медная другая алюминиевая соединяются специальной сваркой).

Вопрос №4. Что делать если места для установки медной шины в шкафу не хватает?

Подключайте провода на алюминиевую шину через комбинированные гильзы.

Вопрос №5. Можно использовать для заземления трубы канализации и водопровода подключенные к центральным системам, ведь они уже находятся в земле?

Нет, на центральной магистрали в любое время могут, проводить реконструкцию, ремонт заземлитель будет нарушен. Трубы на основной магистрали бывают пластиковыми, они не могут выполнять роль заземлителя.

Оцените качество статьи:

Главная заземляющая шина (ГЗШ): определение, назначение, требования

Что такое главная заземляющая шина (сокращенно ГЗШ) и для чего она нужна?

Главная заземляющая шина (ГЗШ, main earthing terminal) — это шина, являющаяся частью заземляющего устройства электроустановки и предназначенная для электрического присоединения проводников к заземляющему устройству (согласно ГОСТ 30331.1-2013 [1]). Данное понятие имеет жаргонизм — «шина заземления» у некоторых людей, что некорректно.

Главная заземляющая шина на фото

Главная заземляющая шина является неотъемлемой частью заземляющего устройства электроустановки здания. К ГЗШ присоединяют следующие проводники:

  • заземляющий проводник, посредством которого ГЗШ соединяют с заземлителем;
  • защитный проводник, посредством которого к ГЗШ присоединяют защитную шину вводно-распределительного устройства (ВРУ).
  • защитные заземляющие проводники и защитные проводники уравнивания потенциалов, применяемые для осуществления защитного заземления и защитного уравнивания потенциалов;
  • функциональные заземляющие проводники и функциональные проводники уравнивания потенциалов, используемые для выполнения функционального заземления и функционального уравнивания потенциалов.

Требования к главной заземляющей шине.

Требования к ГЗШ устанавливаются в СП 437.1325800.2018 [3]. Также учтены замечания Ю.В. Харечко [4]. Сами требования приведены ниже:

  1. Главная заземляющая шина является частью заземляющего устройства электроустановки здания и ключевым элементом системы уравнивания потенциалов. Главная заземляющая шина должна соответствовать ГОСТ Р 50571.5.54–2013 [2] а также требованиям 2-13 настоящей статьи.
  2. Посредством ГЗШ должно быть обеспечено электрическое соединение сторонних проводящих частей здания с открытыми проводящими частями электроустановки здания. Для этого защитную шину вводного устройства (ВУ) или вводно-распределительного устройства (ВРУ) электроустановки здания следует соединить посредством защитного проводника с главной заземляющей шиной. Защитные проводники всех распределительных и конечных электрических цепей должны быть присоединены к защитной шине ВУ или ВРУ.
  3. Главную заземляющую шину, как правило, следует устанавливать отдельно от вводного устройства или вводно-распределительного устройства электроустановки здания вблизи распределительного устройства. Допускается устанавливать ГЗШ внутри ВУ или ВРУ.
  4. В местах, доступных только обученным и квалифицированным лицам, главная заземляющая шина может устанавливаться открыто. В местах, доступных обычным лицам, ГЗШ должна иметь защитную оболочку. Степень защиты оболочки выбирается в соответствии с условиям окружающей среды, но не менее IP2Х согласно ГОСТ 14254−2015.
  5. Если электроустановка здания имеет несколько обособленных вводов, то главная заземляющая шина должна быть предусмотрена для каждого ввода. При наличии нескольких обособленных вводов, в том числе вводов от разных трансформаторных подстанций, главная заземляющая шина должна быть выполнена для каждого вводного устройства. Эти шины должны быть соединены защитным проводником уравнивания потенциалов, минимальное сечение которого должно удовлетворять требованиям 543.1 ГОСТ Р 50571.5.54-2013 для ввода наибольшего сечения.

При наличии нескольких встроенных трансформаторных подстанций главная заземляющая шина должна устанавливаться возле каждой из них. Эти шины должны быть соединены защитным проводником уравнивания потенциалов, сечение которого должно быть не менее половины сечения РЕ (PEN)-проводника отходящей от щитов низкого напряжения подстанций линии наибольшего сечения.

Если от различных обособленных вводов, для каждого из которых предусмотрено отдельное ГЗШ, может быть осуществлено электроснабжение одной и той же нагрузки, например, при срабатывании АВР, то ГЗШ , представляющая собой отдельное изделие, может быть установлена только у основного ввода, а все остальные вводы могут быть соединены общей магистралью,  кольцевой  замкнутой  или линейной разомкнутой в зависимости от протяженности и особенностей расположения ВРУ.

  1. При наличии в здании нескольких электрических вводов системы трубопроводов, выполненных из металла, и заземлитель рекомендуется подключать к главной заземляющей шине основного ввода.
  1. В качестве отдельного устройства ГЗШ может быть выполнена в виде отрезка медной или стальной полосы, установленного открыто или в оболочке, и предназначенного для радиального присоединения проводников защитного уравнивания потенциалов, или в виде протяженной и, если требуется, замкнутой (кольцевой) магистрали.
  1. Стальные шины должны иметь металлическое покрытие, стойкое к коррозии и обеспечивающее выполнение требований для разборных контактных соединений класса 2 в соответствии с ГОСТ 10434−82.
  1. Если главная заземляющая шина и присоединяемые к ней проводники выполнены из разных металлов, следует принять меры по обеспечению надежного контактного соединения.
  1. Эквивалентную проводимость поперечного сечения главной заземляющей шины, устанавливаемой вблизи ВРУ, рекомендуется принимать равной половине проводимости защитной шины соответствующего ВРУ.
  1. Для магистрального исполнения главной заземляющей шины площадь ее поперечного сечения должна учитывать требования механической прочности с учетом возможных механических воздействий и с учетом обеспечения минимальных значений падения напряжения между присоединениями защитных проводников уравнивания потенциалов.
  1. Присоединение к главной заземляющей шине проводников уравнивания потенциалов может быть выполнено по радиальной или магистральной схеме.
  1. Цветовая и буквенно-цифровая идентификация главной заземляющей шины должна соответствовать ГОСТ 33542–2015.

В международном и национальном стандартах отсутствуют требования к минимально допустимому сечению ГЗШ. Однако, рассуждая логически, можно утверждать, что минимальное сечение главной заземляющей шины не может быть меньше наибольшего сечения присоединяемых к ней проводников.

Использованные источники

  1. ГОСТ 30331.1-2013
  2. ГОСТ Р 50571.5.54-2013
  3. СП 437.1325800.2018
  4. Ю.В. Харечко. Замечания и предложения к своду правил СП 437.1325800.2018 «Электроустановки низковольтные зданий и сооружений. Правила проектирования защиты от поражения электрическим током»

Всё о проводе заземления

Провод заземления — это провод предназначенный для преднамеренного электрического соединения определенной точки сети, электроустановки или оборудования с заземляющим контуром.

Электрические установки, в большинстве своем, всегда заземляются при помощи специального провода заземления. Провод заземления призван соединить проводящие элементы установки с землей, имеющей изначально нулевой потенциал, и тем самым создать безопасный нулевой потенциал на заземляемом элементе.

Главное назначение провода заземления — защитить человека от поражения электрическим током, если питающее установку фазное напряжение по какой-то причине попадет на ее корпус.

В качестве примера можно привести стиральную машину, в проводке которой со временем повредилась изоляция и оголенный фазный провод в определенный момент соприкоснулся с ее металлическим корпусом бытового прибора.

В этом случае человек попадает под угрозу, так как коснувшись корпуса машины, он получит электротравму, поскольку ток потечет через его тело стремясь в направлении земли, а ведь человек стоит практически на полу, который не всегда оказывается надежно изолирован от заземленных проводящих предметов, тех же батарей отопления или арматуры.

Здесь следует понимать, что даже небольшой переменный ток, порядка 60 мА, способен оказаться для человека смертельным, особенно если данный ток пройдет через сердце.

Чтобы полностью исключить риск электротравмы и летального исхода, бытовые и промышленные электроустановки всегда оснащаются заземляющим проводом.

Данный провод электрически соединяет все проводящие элементы установки, которые в штатном режиме не должны быть под напряжением, с контуром заземления, имеющим нулевой потенциал. В этом случае, при пробое фазы на корпус (или на другую защищенную заземлением проводящую часть прибора), ток сразу потечет в землю по пути наименьшего сопротивления, то есть через провод заземления. И если в цепи есть устройство защитного отключения (УЗО), то и оно обязательно сработает.

Прежде всего, в большинстве установок, назначение провода заземления — защита человека, однако в некоторых случаях заземление необходимо для обеспечения нормальной работы электроприбора. Таким образом, провода заземления подразделяются на защитные и рабочие.

В любом случае проводник заземления, будь он рабочим или защитным, должен быть правильно смонтирован и обязан соответствовать неким требованиям. Данные требования определяются условиями эксплуатации установок и режимами их работы. В конце концов есть конкретные критерии, которые рассмотрим ниже.

Требования к проводу заземления

Если защищаемое оборудование, а прежде всего — его корпус, установлен стационарно и не предполагает частого перемещения с места на место, то в качестве заземляющего используют одножильный однопроволочный провод.

Если же заземляется например дверца щитка, которая время от времени движется, то здесь нужен гибкий многожильный провод.

Когда защитный проводник прокладывается по корпусу оборудования или укладывается открыто, он должен всегда быть в изоляции. При скрытой проводке допускается голый проводник.

Когда однофазная проводка еще только монтируется, целесообразно выполнить ее трехжильным кабелем, один из проводников в котором будет являться защитным, заземляемым, если же речь о трехфазой системе, то используют пятижильный кабель. В случае если проводка уже проложена, а заземление отсутствует, проводник заземления прокладывают отдельно.

Роль сопротивления

Очень важно чтобы электрическое сопротивление провода заземления было небольшим. По этой причине чаще всего в качестве проводов заземления используют проводники с медными жилами, так как медь отличается большей удельной проводимостью нежели алюминий или сталь.

Омическое сопротивление контура заземления вместе с подключаемым к нему проводником заземления крайне важно. Здесь влияют такие факторы как: сечение провода, переходное сопротивление в местах контакта проводника с оборудованием и с контуром заземления (болты, сварка) и контура заземления — с грунтом.

В зависимости от типа электроустановки, от величин фазных и линейных напряжений, согласно ПУЭ 1.7.101 — 1.7.103, требования к сопротивлению предъявляются следующие:

Кстати, согласно ПУЭ 1.7.121, в качестве проводников заземления можно использовать не обязательно отдельно прокладываемые медные провода, допускается использовать и проводящую бронированную оболочку кабеля, (прямое назначение которой — защита кабеля от механических повреждений) а также лотки, короба, рельсы, балки, и части конструкции сооружений, за исключением (согласно ПУЭ 1.7.123) металлических частей труб водоснабжения и газопроводов, а также арматуры, входящей в основу железобетонных конструкций.

Цветовая и буквенная маркировка провода заземления

Чтобы провод заземления можно было легко узнать и отличить от других проводов, ему соответствует индивидуальная цветовая и буквенная маркировка, данное положение регламентировано ПУЭ 1.1.29. Буквы РЕ, наносимые на клеммы, концы кабеля и схемы, обозначают землю.

Характерный цвет провода заземления — желто-зеленый, полосы желтого и зеленого цвета наносятся обычно по всей длине изоляции провода, либо в другой конфигурации, но так, чтобы эти два цвета были легко узнаваемы.

В некоторых сетях защитный заземляющий проводник совмещен с нулевым проводником. Но нулевой проводник, согласно ПУЭ 1.1.29, маркируется синим цветом и имеет обозначение N. Однако в случаях когда данные проводники совмещены, цветовая маркировка будет сочетать в себе синюю и желто-зеленую изоляцию.

Буквенное же обозначение будет заменено на РЕN. Данная маркировка не относится непосредственно к шинам питания, так как красный, желтый и зеленый обозначают в этом случае фазы, а нулевой проводник может быть бесцветным. В составе кабеля шина PE окрашивается черный цвет.

Сечение провода заземления

С активным сопротивлением провода заземления напрямую связаны эффективность и скорость срабатывания УЗО, а значит и надежность защиты человека от поражения электрическим током. Следовательно сечение провода заземления обязано соответствовать рабочим параметрам той линии, к которой данное заземление относится.

Практически проводник заземления не призван выдерживать такую значительную нагрузку, какую должны нести фазные проводники и нулевой проводник. По этой причине сечение проводника заземления принимается немного меньшим.

В соответствии с ПУЭ 1.7.126, площадь сечения проводника заземления PE принимается исходя из площади фазных проводников конкретной рассматриваемой линии. Так, если сечение фазного провода меньше 16 кв.мм, то сечение проводника заземляющего должно быть аналогичным.

Если фаза обладает сечением от 16 до 35 кв.мм, то сечение проводника заземления не может быть меньше 16 кв.мм. Если же фазные проводники отличаются сечением превосходящим 35 кв.мм, то сечение проводника заземления не может быть менее половины сечения такого фазного проводника. Кроме того целесообразно воспользоваться формулой для более точного определения сечения проводника заземления, дабы сэкономить материалы:

Здесь в расчет принимается величина тока короткого замыкания I, время срабатывания защитного устройства t, а также коэффициент С, характеризующий материал проводников и его изоляцию.

Подключение провода заземления

Прежде чем осуществить подключение провода заземления, находят и обозначают выводы всех жил кабеля с двух концов. Жилы легко найти по цветовым маркировкам. Фазные проводники имеют разнообразную цветную маркировку.

Синий или голубой — это нулевой проводник. Заземляющий же проводник всегда выделяется желто-зеленым или ярко-зеленым цветом. Если нет уверенности в соблюдении стандарта и порядка монтажа по маркировкам, провода стоит сначала прозвонить.

Когда все проводники надлежащим образом идентифицированы, приступают к подключению проводника заземления. Здесь обязательно применение обжима, опрессовки, пайки, наконечника или затяжки винтом с гайкой. Скрутка недопустима.

При соединении проводников из разных металлов (например медного и алюминиевого) — пользуются обжимной гильзой. После выполнения соединения проводников между собой, провод заземления подключают с одной стороны к контуру заземления, с другой — к корпусу защищаемого оборудования.

Ранее ЭлектроВести писали, что луганские энергетики объявили амнистию своим сотрудникам, которые воруют электроэнергию. Если сотрудник до 30 ноября придет с повинной, что он воровал электроэнергию, ему просто выпишут штраф. Если нет, к штрафу добавится еще и увольнение. Факты воровства электричества не единичны. Люди воруют ток у соседей, на предприятиях, или просто из сети. 

По материалам: electrik.info.

Устройство и назначение главной заземляющей шины

Создание заземления для электроустановок в производственных и жилых помещениях – это обязательное условие. Вместе с автоматическими отключающими приборами, заземление минимизирует возможность возгораний вследствие короткого замыкания и травматизма людей. В данной статье мы расскажем о том, как устроена заземляющая шина.

Устройство главной заземляющей шины

  • Конструкция заземления представляет собой комплекс металлических элементов, которые предназначены для того, чтобы обеспечить надежный контакт корпусов электроустановок с грунтом (землей). Эта конструкция состоит из:
  • главной заземляющей шины
  • отводов от корпуса электроустановок
  • заземляющего провода в электропроводке
  • общего контура заземления.

Согласно требованиям ГОСТов и ПУЭ, все составляющие должны быть выполнены из стальных или медных сплавов, при этом разновидность конструкции заземляющего контура и тип электроустановки не имеет значения. Эффективность работы защитного заземляющего устройства зависит от величины его электрического сопротивления.
Стандартная схема подключения к ГШЗ:

  • молниезащита
  • контур заземления
  • трубы канализации, водопровода и отопления
  • главная шина заземления.

Сопротивление заземляющего контура

Общая величина сопротивления заземления состоит из ряда компонентов, сопротивления общей шины, обособленных кабелей и контура в грунте. Однако, всеми этими величинами можно пренебречь, металлические компоненты при условии надежного соединения обладают отличной проводимостью и довольно малым сопротивлением.
Самым важным является сопротивление грунта, по которому расходятся токи. Чем ниже уровень сопротивления, тем лучше. В пункте 7.1.101 ПУЭ (правила устройства электроустановок) говорится: «Для сооружений с сетями 220 или 380В сопротивление грунта должно достигать не более 30 Ом, а для генераторов и трансформаторных подстанций не более 4 Ом».
Попробуем разобраться, что же оказывает влияние на величину сопротивления. Этот показатель во многом зависит от состава грунта. Таким образом, наиболее подходящим является состав из таких компонентов:

  • торф
  • суглинок
  • глина. 

Очень высокий уровень проводимости грунта наблюдается при высоком уровне влажности. Однако, вы обязательно должны учесть:

  • число и габариты заземляющих электродов
  • насколько глубоко залегает контур
  • из каких материалов состоят все элементы заземления
  • надежны ли электрические контакты в местах соединений.

Все компоненты, из которых состоит заземляющая система, крепятся через главную шину. Именно от грамотного выбора материала установки этого элемента и присоединения к нему заземляющих проводников зависит бесперебойное функционирование электроустановок. Помимо этого, на главной шине заземления осуществляются все требуемые подключения для измерения параметров системы заземления. Специалисты советуют в целях повышения проводимости заземляющего контура, налить в грунт раствор медного купороса.
О методе измерений стоит рассказать более детально. Оно осуществляется при помощи особых приборов, квалифицированными специалистами. Во время сдачи объекта в эксплуатацию электроснабжающая компания или электротехническая лаборатория проводит все необходимые измерения. Итоги измерений должны быть оформлены при помощи протокола. При этом один экземпляр выдают заказчику. Осуществлять контрольные замеры нужно хотя бы раз в год.

Требования ПУЭ к главной шине заземления

Правила создания электроустановок в пункте 1.7.119 прописывают главные нормативы по установке главной заземляющей шины, для сетей до 1 кВт. Главная заземляющая шина чаще всего находится в шкафе распределительного устройства. Если присутствует большое количество заземляющих проводников, то стоит использовать отдельный шкаф.
Стоит отметить, что в некоторых случаях разрешается устанавливать ГШЗ в открытом виде возле РУ, однако лишь в том случае, когда помещение закрывается. При этом доступ в это помещение ограничен, входить могут исключительно квалифицированные сотрудники.
При наличии схемы заземления типа TN-С в распределительных устройствах разрешено применять шину РЕ как ГШЗ. Стоит учесть, что сечение главной заземляющей шины должно быть не меньше, чем у проводов заземления, которые к ней подсоединяются. Для главной шины заземления используют медь, в редких случаях, устанавливают сталь. Специалисты акцентируют внимание на том, что очень грубой ошибкой является использование алюминиевых полос. Алюминий категорически запрещен вследствие разности сопротивления на контактах из разных металлов. Полученные таким образом контакты нагреваются, уровень их проводимости понижается, а при сильных токовых нагрузках болтовые соединения и вовсе полностью выгорают.
Соединения делают разборными при помощи специализированных инструментов. Зачастую это делается с помощью болтовых креплений с шайбами и гайками. Концы проводов нужно обязательно опрессовать медными наконечниками с отверстиями под болты и завинтить на шину. Также отметим, что на стене возле шины или отведенном для нее отдельном шкафу необходимо нанести специальный знак.
В пункте 1.7.120 сказано, что для помещений, которые имеют два и более отдельных ввода, каждый шкаф РУ должен быть оснащен отдельной шиной заземления. Трансформаторная подстанция также должна быть установлена отдельная шина с заземляющим контуром и РЕN проводник, от которых уходит на ГШЗ ВРУ (вводное распределительное устройство) помещений с электроустановками. Чтобы выровнять потенциал, заземляющие шины на разных РУ, должны быть соединены при помощи провода. Стоит отметить, что сечение проводника должно более ½ большего провода, подходящего на одну из ГШЗ в ВРУ с трансформаторной подстанции.
Чтобы соединить несколько шин от разных ВРУ допущено применение металлоконструкций самого разного назначения, однако только в том случае, если они неразборные и имеют непрерывный электрический контакт. В тоже время, вам стоит учесть требования пункта 1.7.123, запрещающего использовать в качестве РЕN проводника:

  • газораспределительные трубы
  • трубопроводы с горючими материалами
  • составляющие систем отопления, водоснабжения или канализации
  • оболочки бронированных кабелей из свинца или металла
  • трос, несущий провод для электрической проводки.

Специалисты уверяют, что заземлять эти конструкции на главную шину заземления можно, согласно пункта 1.7.20. Однако создавать прямые соединения шин, на различных шкафах при помощи перечисленных конструкций, пунктом 1.7.123 запрещено. На первый взгляд заземление троса и трубопровода на ГШЗ ВРУ гарантирует их прямое соединение, однако в процессе ремонта или демонтажа этих систем цепь окажется разорванной.
По этой причине используют лишь неразборные токопроводящие системы, ведь более надежным является проведение многожильного медного провода с желто-зеленой изоляцией, которая соответствует обозначению заземляющего РЕN проводника. Таким образом, вы получите соединение, которое обеспечит распределение потенциала растекания автономно, не зависимо от прочих систем.

Конструкция и монтаж

Главная ГЗШ – это медная пластина, имеющая отверстия для крепежных болтов, на которые навинчены наконечники проводов. Протяженность шины и число отверстий зависит от габаритов шкафа и числа элементов с проводами, нуждающимися в заземлении. Разработчики создают шины разной длины и ширины с болтами, которые имеют разный диаметр, зависящий от сечения прикручиваемого провода и наконечника.
В металлическом корпусе шкафа шину фиксируют болтами на изолированных подставках, таким образом гарантируется электрический контакт корпуса и шины. Всю конструкцию устанавливают в горизонтальном положении, внутри нижней части ВРУ. В таком положении удобнее заводить и прикручивать провода для заземления. Вследствие наличия изолирующих опор на болтах для крепления всей конструкции, присутствует определенное расстояние между стенкой шкафа и шиной.
Таким образом, вы сможете зафиксировать и держать при помощи гаечного ключа головку болта с обратной стороны шины, и более надежно затянете наконечники проводов. Стоит отметить, что частая ошибка вследствие невнимательности заключается в том, что нужно промаркировать провода до опрессовки, иначе придется обрезать наконечники и проделывать всю работу снова.
В том случае, если затягивать гайки на болтах неудобно, вследствие крайне маленького расстояния между планкой и стенкой, то нужно поменять болты крепления и диэлектрические опоры на более длинные. Это действие поможет увеличить пространство между шиной и задней стенкой, однако учтите, чтобы осталось расстояние для закрытия дверцы шкафа.
Подключать провода необходимо с желто-зеленой изоляцией по всей длине или надеть кембрик, термотрубку, имеющие такую же расцветку. На дверцу шкафа внутри нужно обязательно наклеить схему, на которой указано, откуда и на какую клемму ГЗШ подключены линии заземления.
Прежде всего нужно подключить провод от контура заземления здания, а уже потом от подстанции идущий с линии ЛЭП или подземным кабелем. Чаще всего сечение составляет свыше 10 мм2. После этого можно заземлять прочие конструкции, корпуса отдельных приборов, трубопроводы, а также вентиляционные системы.
Не путайте шину главного заземления с РЕN шиной, на которую подводятся кабели заземления разных групп электропроводки, розетки, освещение, отдельные помещения. В конце концов, через корпус шкафа они имеют электрический контакт и соединены при помощи отдельного провода между собой. Отметим, что равномерное распределение проводов оптимально распределяет потенциал, который оказывает влияние на правильное срабатывание автоматов защиты.

Подключение ГШЗ в ВРУ на столбах ЛЭП

Особенности такой схемы подключения состоит в том, что шкафы ВРУ на столбах, оснащены собственным заземлителем и довольно часто подключаются к зданию через кабель на троссовой подвеске.
Для этого, на ГЗШ заводят кабель от заземления столба, заземляющую линию ЛЭП, а также отвод от металлического троса. Помимо этого, главные шины ВРУ столба и ВРУ здания должны быть соединены отдельной линией. Трос необходимо заземлить с двух сторон, на шину возле ЛЭП и на шину в ВРУ для здания.

Система заземления операционной и других помещений группы 2

В ГОСТ Р 50571.28 п.710.413.1.6.1 однозначно сказано: «В каждом медицинском помещении группы 1 или 2 должна быть выполнена система дополнительного уравнивания потенциалов для уравнивания электрических потенциалов…». Подробнее про систему дополнительного уравнивания потенциалов читайте здесь.

I категория надежности и «особая группа» нуждаются в радиальной схеме линий питания, включая разводку заземления. Магистральная схема допустима только для III и II категорий надежности электроснабжения. Но ради экономии заземление для первой категории и особой группы часто создают по магистральной схеме с отводами до подключаемых помещений.

Рассмотрим пример. Пособие по проектированию учреждений здравоохранения (СНиП 2.08.02-89 ) гласит: «…Внутри здания магистраль рабочего заземления выполняется проводом с алюминиевой жилой сечением 25 кв. мм, а ответвления к клеммникам рабочего заземления – сечением 10 кв. мм в стальной трубе скрыто. Ответвления к клеммникам рабочего заземления выполняются без разрыва магистрали с помощью сжимов…».

Сразу же возникает ряд замечаний:

  • Электрический раздел данного пособия содержит большое количество ошибок и противоречий с нормативами более высокого статуса, например с ПУЭ (Правила устройства электроустановок). Как следствие, возникают сомнения в квалификации авторов этого раздела.
  • Еще одна цитата: «…Шина устанавливается на высоте 150 мм от уровня пола в одной плоскости со стеной, без зазоров и щелей или скрыто. К шине через каждые 1,5 м. привариваются выступающие болты М6…». Не стоит заострять внимание на некрасивом внешнем виде такой конструкции, а вот болты, размещенные на такой высоте от пола, представляют угрозу травмы для ног персонала. Шину можно установить скрыто, но тогда нарушатся главные правила, которые нельзя обойти: доступ к осмотру и возможность индивидуального отключения присоединенного проводника уравнивания потенциалов. Как вариант, можно через 1,5 м устанавливать специальные герметичные смотровые лючки, но…
  • На сегодняшний день пособие имеет статус «недействительно».

Варианты присоединения шины дополнительного уравнивания потенциалов к главной заземляющей шине (ГЗШ):

Согласно российской нормативной базе оба варианта являются правомерными.

Вариант 1 имеет ограничение. Если проводник соединяет шины дополнительного уравнивания потенциалов с шиной РЕ распределительного щита 16 кв.мм, то и жила РЕ в составе кабеля питания должна быть не менее 16 кв.мм.

Для варианта 1 и 2 справедливо, что при укладке проводника соединения шин в один лоток или короб с негорючими кабелями (ВВГнг-FRLSTx…) тип проводника должен быть тоже негорючим. Однако негорючие одножильные провода желто-зеленого цвета не производятся, решением является маркировка провода специальной желто-зеленой липкой лентой.

Согласно ГОСТ Р 50571.28 п.710.413.1.6.3: «Шина уравнивания потенциалов должны быть расположены в самом медицинском помещении или в непосредственной близости от него. В каждом распределительном шкафу или в непосредственной близости от него должны быть расположена шина системы дополнительного уравнивания потенциалов, к которой должны быть подключены проводники…».

Схема подключения заземляющих проводников электрооборудования к шине дополнительного уравнивания потенциалов:

РЗ-01 (ЩРЗ-01, ЩРЗ-03) – розетка заземления для быстрого подключения и заземления переносных и передвижных электроприборов.

В Европе принято использовать 2 шины в помещении: 1-я шина защитного заземления (РЕ) с подключением заземляющих проводников от электрооборудования и 2-я шина уравнивания потенциалов (РА), предназначенная для подключения сторонних проводящих частей. Шины между собой соединены и подключены к ГЗШ.

Шину дополнительного уравнивания потенциалов для помещений группы 2 можно создать несколькими способами:

  • Проложить шину в пластиковый электротехнический короб.
  • Применить специальные щитки заземления типа ЩРМ-ЩЗ (IP54).
  • Использовать шины заземления распределительного шкафа. Здесь следует выполнить условие: шкаф должен быть расположен внутри помещения или в непосредственной близости, а количество проводников уравнивания потенциала невелико.

Подробнее читайте в статье «Защитное заземление. Основная и дополнительная системы уравнивания потенциалов. Сторонние проводящие части», раздел «Практика выполнения дополнительной системы уравнивания потенциалов».

Общая схема заземления помещения группы 2 с учетом антистатического пола:

Антистатический пол можно сделать другим способом.

Если есть функциональное, рабочее, заземление, то можно использовать варианты, представленные ниже:

Вариант «Б» дополнительно содержит фильтр заземления (ФЗ), не допускающий распространение высокочастотных помех из одной системы заземления в другую.

Фильтры заземления ТМ «Полигон» выбираются по сечению внутреннего проводника. Индуктивность фильтра для расчетов принимается как 20 метров медного проводника равного сечения.

 

Технический директор компании ЗАО «НПФ Полигон»
Соснин Владимир Вячеславович
тел.: (812) 327 07 06
e-mail: [email protected]

Как красится шина заземления

Цветовое обозначение в электроустановках шин, проводов, проводников

Цветовое обозначение шин

Согласно шестого издания ПУЭ в электроустановках должна быть обеспечена возможность легкого распознавания частей, относящихся к отдельным их элементам (простота и наглядность схем, надлежащее расположение электрооборудования, надписи, маркировка, расцветка).

Буквенно-цифровое и цветовое обозначения одноименных шин в каждой электроустановке должны быть одинаковыми.

Шины должны быть обозначены:

1) при переменном трехфазном токе:

  • шины фазы A – желтым цветом,
  • шины фазы B – зеленым,
  • шины фазы C – красным,
  • нулевая рабочая N – голубым,
  • эта же шина, используемая в качестве нулевой защитной, – продольными полосами желтого и зеленого цветов;

2) при переменном однофазном токе:

  • шина A, присоединенная к началу обмотки источника питания, – желтым цветом,
  • шина B, присоединенная к концу обмотки, – красным.

3) при постоянном токе:

  • положительная шина [ +] – красным цветом,
  • отрицательная [ −] – синим,
  • нулевая рабочая M – голубым;

4) резервная как резервируемая основная шина; если же резервная шина может заменять любую из основных шин, то она обозначается поперечными полосами цвета основных шин.

• Шины однофазного тока, если они являются ответвлением от шин трехфазной системы, обозначаются как соответствующие шины трехфазного тока.

Цветовое обозначение должно быть выполнено по всей длине шин, если оно предусмотрено также для более интенсивного охлаждения или для антикоррозийной защиты.

Допускается выполнять цветовое обозначение не по всей длине шин, только цветовое или только буквенно-цифровое обозначение либо цветовое в сочетании с буквенно-цифровым только в местах присоединения шин; если неизолированные шины недоступны для осмотра в период, когда они находятся под напряжением, то допускается их не обозначать. При этом не должен снижаться уровень безопасности и наглядности при обслуживании электроустановки.

Для цветового и цифрового обозначения отдельных изолированных или неизолированных проводников должны быть использованы цвета и цифры в соответствии с ГОСТ Р 50462 * “Идентификация проводников по цветам или цифровым обозначениям”.

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в т. ч. шины, должны иметь буквенное обозначение РЕ и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов.

Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.

Буквенно-цифровые и цветовые обозначения одноименных шин в каждой электроустановке должны быть одинаковыми.

Шины должны быть обозначены:

  • 1) при переменном трехфазном токе: шины фазы A – желтым, фазы B – зеленым, фазы C – красным цветами;
  • 2) при переменном однофазном токе шина В, присоединенная к концу обмотки источника питания, – красным цветом, шина А, присоединенная к началу обмотки источника питания, – желтым цветом. Шины однофазного тока, если они являются ответвлением от шин трехфазной системы, обозначаются как соответствующие шины трехфазного тока;
  • 3) при постоянном токе: положительная шина ( +) – красным цветом, отрицательная ( −) – синим и нулевая рабочая M – голубым цветом.

* Прим.: ГОСТ Р 50462 заменён на ГОСТ Р 50462-2009.

Обозначение электропроводки

Согласно ПУЭ-7 электропроводка должна обеспечивать возможность легкого распознания по всей длине проводников по цветам:

    • голубого цвета – для обозначения нулевого рабочего или среднего проводника электрической сети;
    • двухцветной комбинации зелено – желтого цвета – для обозначения защитного или нулевого защитного проводника;
    • двухцветной комбинации зелено – желтого цвета по всей длине с голубыми метками на концах линии, которые наносятся при монтаже – для обозначения совмещенного нулевого рабочего и нулевого защитного проводника;

черного , коричневого , красного , фиолетового , серого , розового , белого , оранжевого , бирюзового цвета – для обозначения фазного проводника.

Цветовое обозначение по функциональному назначению

Цветовая идентификация проводников по функциональному назначению цепей, в которых используют (согласно ГОСТ 12.2.007.0):

  • для проводников в силовых цепях – черный ;
  • для проводников в цепях управления, измерения и сигнализации переменного тока – красный ;
  • для проводников в цепях управления, измерения и сигнализации постоянного тока – синий ;
  • для нулевых защитных проводников – комбинация зеленого и желтого ;
  • для проводников, соединенных с нулевым рабочим проводником и не предназначенных для заземления, – голубой .

Идентификация проводов

Согласно ГОСТ МЭК 60204-1-2002 “ЭЛЕКТРООБОРУДОВАНИЕ МАШИН И МЕХАНИЗМОВ” если для идентификации проводов применяют маркировку цветом, могут быть использованы следующие цвета: черный, коричневый, красный, оранжевый, желтый, зеленый, голубой (включая светло-голубой), фиолетовый, серый, белый, розовый, бирюзовый [1] .

В целях безопасности цвета зеленый и желтый не должны использоваться, если имеется возможность спутать их с двухцветным сочетанием зеленый – желтый .

Защитный провод должен быть легко распознаваем благодаря своей форме, расположению, маркировке или цвету. Когда используют обозначение цветом, это должно быть двухцветное сочетание зеленый – желтый . Его используют по всей длине провода. Это сочетание предназначено только для защитного провода.

На изолированных проводах двухцветное сочетание зеленый – желтый должно быть таким, чтобы на длине 15 мм один из цветов покрывал не менее 30%, но не более 70% поверхности провода, а другой цвет – оставшуюся часть.

Когда защитный провод легко различим благодаря своей форме, конструкции, расположению (например, провод с оплеткой) или когда изолированный провод труднодоступен, цветовое кодирование не является обязательным по всей длине. Однако концы или доступные части должны четко маркироваться графическим символом 417-МЭК-5019 [2] или двухцветным сочетанием зеленый – желтый .

Когда цепь включает нулевой провод, обозначаемый цветом, последний должен быть светло-голубым (МЭК 60446, 3.1.2). Если возможно разночтение, светло-голубой цвет не должен использоваться для обозначения других проводов. При отсутствии нулевого провода светло-голубой провод может быть использован для других целей, но только не в качестве защитного провода.

Когда используют обозначение цветом, применяемые в качестве нулевых неизолированные провода должны маркироваться светло-голубой полосой шириной от 15 до 100 мм, цвет, который дублируют на каждой оболочке, оборудовании или в каждом доступном месте, или же окрашивают в светло-голубой цвет по всей длине.

Идентификация других проводов должна осуществляться с помощью цвета (или целиком, или одной, или несколькими полосами), цифр, букв, а также путем их сочетания. Цифры должны быть арабскими, буквы – латинскими (прописными или строчными).

• Изолированные однополярные жесткие провода должны иметь следующее цветовое обозначение:

  • черный – силовые цепи переменного и постоянного тока;
  • красный – цепи управления переменного тока;
  • голубой – цепи управления постоянного тока;
  • оранжевый – цепи управления блокировкой с питанием от внешнего источника энергии.

Исключения относительно вышеперечисленного допустимы:

  • для внутренних кабелей на независимых приборах, приобретаемых отдельно с полным комплектом кабелей;
  • когда используемый изоляционный материал невозможно окрасить в нужные цвета;
  • когда используется многопроводный кабель, за исключением двухцветного сочетания зеленый-желтый.

Монтаж внутреннего контура заземления

Перед засыпкой траншей к наружному контуру заземления приваривают стальные полосы или круглые стержни, которые затем заводят внутрь здания, где находится оборудование, подлежащее заземлению. Вводов, соединяющих заземлители с внутренней заземляющей сетью (внутренним контуром заземления), должно быть не менее двух и выполняются они стальными проводниками тех же размеров и сечений, что и соединение заземлителей между собой. Как правило, вводы заземляющих проводников в здание прокладывают в несгораемых неметаллических трубах, выступающих по обе стороны стены примерно на 10 мм.

В цехах промышленных предприятий и зданиях трансформаторных подстанций электрооборудование, подлежащее заземлению, располагается самым различным образом, поэтому для присоединения его к системе заземления в помещении должны быть проложены заземляющие и нулевые защитные проводники.

В качестве последних используются нулевые рабочие проводники (кроме взрывоопасных установок), а также металлические конструкции здания (колонны, фермы и др.), проводники, специально предназначенные для этой цели, металлические конструкции производственного назначения (каркасы распределительных устройств, подкрановые пути, шахты лифтов, обрамленные каналы и др.), стальные трубы электропроводок, алюминиевые оболочки кабелей, металлические кожухи шинопроводов, короба и лотки, металлические стационарно проложенные трубопроводы любого назначения (кроме трубопроводов горючих и взрывоопасных веществ и смесей, канализации и центрального отопления).

Запрещается использовать в качестве нулевых защитных проводников металлические оболочки трубчатых проводов, несущие тросы, металлорукава, броню и свинцовые оболочки кабелей, хотя сами по себе они должны быть заземлены или занулены и иметь надежные соединения на всем протяжении.

Если естественные магистрали заземления использовать нельзя, то в качестве заземляющих или нулевых защитных проводников применяют стальные проводники, минимальные размеры которых приведены в табл. 1.

Таблица 1. Минимальные размеры заземляющих проводников

Вид проводника Место прокладки
в здании в наружной установке (НУ) и в земле
Круглая сталь Диаметр 5 мм Диаметр 6 мм
Прямоугольная сталь Сечение 24 мм2, толщина 3 мм Сечение 48 мм2, толщина 4 мм
Угловая сталь Толщина полок 2 мм Толщина полок 2,5 мм в НУ и 4 мм в земле
Стальная газопроводная труба Толщина стенок 2 ,5 мм Толщина стенок 2,5 мм в НУ и 3,5 мм в земле
Стальная тонкостенная труба Толщина стенок 1,5 мм 2,5 мм в НУ, в земле не допускается

Заземляющие проводники в помещениях должны быть доступны для осмотра, поэтому они (за исключением стальных труб скрытой электропроводки, оболочек кабелей и т. п.) прокладываются открыто.

При монтаже внутреннего контура заземления проход через стены выполняется в открытых проемах, несгораемых неметаллических трубах, а через перекрытия — в отрезках таких же труб, выступающих над полом на 30 – 50 мм. Заземляющие проводники должны проводиться свободно, за исключением взрывоопасных установок, где отверстия труб и проемов заделываются легкопробивными несгораемыми материалами.

Перед прокладкой стальные шины выправляются, очищаются и окрашиваются со всех сторон. Места соединения после сварки стыков покрываются асфальтовым лаком или масляной краской. В сухих помещениях можно использовать нитроэмали, а в помещениях с сырыми и едкими парами нужно применять краски, стойкие к химически активной среде.

В помещениях и наружных установках с неагрессивной средой в местах, доступных для осмотра и ремонта, допускается использование болтовых соединений заземляющих и нулевых защитных проводников при условии, что будут приняты меры против их ослабления и коррозии контактных поверхностей.

Рис. 1. Крепление заземляющих проводников дюбелями непосредственно к стене (а) и с подкладкой (б)

Рис. 2. Крепление плоских (а) и круглых (б) проводников заземления с помощью опор

Открыто проложенные заземляющие и нулевые защитные проводники внутреннего контура заземления должны иметь отличительную окраску: на зеленом фоне полоски желтого цвета шириной 15 мм на расстоянии 150 мм друг от друга. Заземляющие проводники прокладываются горизонтально или вертикально, под углом их можно прокладывать только параллельно наклонным конструкциям здания.

Проводники с прямоугольным сечением крепятся широкой плоскостью к кирпичной или бетонной стене с помощью строительно-монтажного пистолета или пиротехнической оправки. К деревянным стенам заземляющие проводники прикрепляют шурупами. Опоры для крепления заземляющих проводников должны устанавливаться с соблюдением следующих расстояний: между опорами на прямых участках — 600 – 1000 мм, от вершин углов на поворотах — 100 мм, от уровня пола помещения — 400 – 600 мм.

В сырых, особо сырых и помещениях с едкими парами крепить заземляющие проводники непосредственно к стенам не разрешается, они привариваются к опорам, закрепленным дюбелями или вмазанным в стену.

Что такое главная шина заземления и где ее используют

При организации работы электрооборудования и электрической сети основным вопросом является безопасность системы. В основе такой системы находится главная заземляющая шина. В этой статье мы расскажем о технических особенностях заземления и о практических аспектах его установки.

Применение

Заземляющая шина применяется как составной элемент защитного контура при отводе линий электропередачи к многоквартирным домам и промышленным зданиям. Заземление выполняет функцию защиты человека и других живых организмов от воздействия тока при работающих электробытовых приборах. Шины используются в системах мощностью до 1000 В.

Шина призвана выступать соединительным элементом для множества проводников одновременно, а также обеспечивает работы всей заземлительной системы сооружения. На главную заземляющую шину (ГЗШ) возлагается функция выравнивания показателей потенциалов в электросети. Благодаря этому элементу, происходит разделение проводника и соединение контактов. Контакты же передают электрические разряды, что требуется для нормального функционирования отдельных систем в здании.

Конструкция

Система изготавливается из металла. В качестве конструкционных элементов могут выступать водопроводы, газопроводы и любые другие металлические трубы, а также канализационный колодец, стальные элементы здания. Нередко в целях заземления используются вентиляция и система кондиционирования воздуха.

Медь для шины заземления в бобине

Согласно Правилам устройства электроустановок (сокращенно — ПУЭ), заземлительные устройства могут быть не только стальными, но и медными. Причем медь — лучший вариант, поскольку этот металл отличается прекрасной электропроводимостью, слабо окисляется под воздействием напряжения, не подвержен ржавлению. Необходимо заметить, что сталь для изготовления шин заземления используется гораздо чаще, но связано это с ее более низкой ценой. Не рекомендуется изготовление заземляющих реек из алюминия, так как этот металл быстро коррозирует и характеризуется недостаточным сопротивлением.

Обратите внимание! Главная заземляющая шина характеризуется меньшей площадью сечения в сравнении с защитным проводом или нулем рабочего провода силовой линии.

Для шины PE в электрических установках до 1000 В сечение проводников должно быть разным в зависимости от металла. В случае с медным проводником сечение должно быть более 10 квадратных миллиметров, для алюминия этот показатель составляет 16 квадратных миллиметров, а для стали — 75 квадратных миллиметров.

Девятнадцатидюймовая шина заземления медная должна предусматривать участки для единовременного подключения 14 или 18 направляющих. Таким образом, на одной полосе будет от 14 до 18 крепежных болтов. Полоса чаще всего оснащается парой изоляторов и размещается в специальном шкафу (так называемом шкафу №19) и подключается к заземлительному контуру через ПВЗ провод. Девятнадцатидюймовая шина используется для стыковки контактов, сечение которых составляет 2,5 квадратных миллиметра.

Согласно требованиям ГОСТа, главная заземляющая шина должна иметь не менее пяти одновременных соединений.

Заземлительное устройство можно изготовить из стали с омеднением. Толщина листа — 14,2 миллиметра. Такой комплект будет стоить недешево, зато обретет все свойства, характерные для медных проводников.

Обратите внимание! Четырнадцати разъемов обычно достаточно для десяти и более квартир при условии равномерного распределения нагрузки.

Заземляющие шины выпускаются двух типов — REC-ET2-M и REC-ET. Первая модель закрепляется на специальных профилях в монтажных шкафах. А вот держатель шин заземления, гальванопокрытие которого защищает изделие от коррозии, не будет работать без специального органайзера, при наличии которого можно подключить до девяти потребителей.

Местоположение

По месту своего нахождения заземляющая шина может располагаться как во внутренней части вводного устройства, так и неподалеку от него. Если заземление находится внутри, разумнее применять PE-шину. К данному устройству подключается PE-провод, на другом конце которого находится главная заземляющая шина. Причем электропроводимость проводника должна быть равной или превышать проводимость PE-провода линии электропитания.

Совет! Заземление рекомендуется обустраивать еще на стадии планирования жилого дома или другого сооружения.

Где бы ни была установлена заземляющая шина, все ее части, ответственные за выравнивание потенциалов, должны соответствовать ГОСТу 10434. Указанные правила касаются контактов второго класса.

Установка конструкции разрешается только в местах, к которым можно в дальнейшем сохранять свободный беспрепятственный доступ. Доступ нужен для осуществления замены деталей, а также в аварийной ситуации. В условиях промышленных предприятий популярным местом установки короба является вентиляционная система.

Основной способ соединения проводников к заземлению — сварка. Именно приваривание считается наиболее надежным методом фиксации контактов таким образом, что не нарушить электропроводимости.

Установить заземляющую шину можно в металлическом шкафу. Данная конструкция представляет собой короб, собранный из гнутых металлических профилей. С внешней стороны ящика имеется дверца, через которую и осуществляется доступ к шине. Главная заземляющая шина в электротехническом шкафу должна устанавливаться по горизонтали. Деталь фиксируется болтовыми соединениями по бокам и плотно прижимается к основанию.

Щит главной шины заземления

На фасадной части короба должна быть прикреплена паспортная табличка с указанием технических характеристик изделия. Ящик необходимо оснастить замками, закрываемыми на ключ, — это необходимо во избежание случайных контактов с посторонними людьми. Защитный короб можно устанавливать на высоте не менее 150 сантиметров от пола, что необходимо для осложнения доступа к нему со стороны детей. При выборе места монтажа устройства необходимо иметь в виду, что на надежность и безопасность работы заземлительной системы влияет и окружающая среда. В частности, при 80 % влажности воздуха оптимальная температура воздуха составит от 15 до 20 градусов выше нуля. Это не значит, что шины заземления не могут функционировать при более низких или более высоких температурах, однако долговечность и надежность конструкции при неблагоприятных погодных условиях снизится. Также следует размещать короб как можно дальше от источников огня и агрессивных химических веществ.

Обратите внимание! Если доступ в помещение разрешен ограниченному кругу квалифицированных лиц, разрешается установка шины открытым способом.

Встроенные шины

Не обязательно создавать конструкцию с нуля, можно приобрести готовое устройство со встроенными шинами заземления. В качестве примера можно привести DIN-рею, которая представляет собой комплект разборного оборудования в металлическом ящике. К рее прилагается специальный коммутатор на 220 В, обеспечивающий электропитание аппарата. В комплект панели входит DIN-рея, нулевые шины (три единицы) с изолятором. Одновременно возможно подключение до 22 потребителей.

Панель 19″ с DIN-рейкой серии КП

На рынке представлены три разновидности реек: DIN U3 для автоматических выключателей, DIN U3 — также под автоматы, но в комплекте имеется и шина нулевая с заземлением. Также можно приобрести DIN U4, оснащенную дополнительными функциями (например, возможностью установки электросчетчика). Все DIN-рейки покрываются антикоррозийным материалом.

Один из популярных вариантов DIN-реи — TLK-ERH-CU. Девятнадцатидюймовое изделие производится из меди. Данная модель отличается невысокой стоимостью и достойным уровнем качества.

Тонкости установки полосы заземления

Заземление предохраняет от ударов электрическим током, когда нетоковедущие части электроустановок оказываются под напряжением. Это может произойти в результате удара молнии или нарушения изоляции. В первую очередь при устройстве заземления используются естественные заземлители, например, трубы или арматура. Если же они отсутствуют либо не обеспечивают требуемое сопротивление растеканию, то возникает необходимость в искусственных заземлителях.

Расположение контура

Как правило, заземляющие проводники выполняются из металлической полосы или прута. Система включает в себя внешний и внутренний контуры. Вне здания производится крепление полосы заземления к электродам, заглубленным в грунт на расстоянии не менее 1 м от фундамента и образующим контур заземления. Чаще контур имеет треугольную форму, но возможна его прокладка в линию или вокруг периметра здания.

Глубина укладки определяется степенью промерзания грунта и составляет не менее 0,5-0,7 м. Меньшая глубина возможна на входе в здание, где вводы проводников обычно заключают в металлические трубы. Горизонтальные полосы заземления рекомендуется класть ребром на дно траншеи. Их длина определяется размером контура и расстоянием до здания.

Внешний контур подвергается атмосферной и подземной коррозии. Разрушение поверхности проводников и арматуры постепенно снижает эффективность защиты. Окрашивание подземных частей системы заземления не рекомендуется.

Для их изготовления используется нержавеющая сталь и защитные медные и цинковые покрытия. Внутри помещения металлическая полоса прокладывается открыто вдоль конструкций здания. При повышенной влажности используется кронштейн крепления полосы заземления.

Стальной прокат

Заземляющая шина должна обладать высокой электропроводностью, пластичностью и хорошей свариваемостью. В качестве плоского проводника в системах для заземления и выравнивая потенциалов используется преимущественно стальная полоса. Этот универсальный вид металлопроката имеет прямоугольное сечение без внутренних пустот и плоскую форму. Полоса изготавливается по ГОСТ 103-2006 «Прокат сортовой стальной горячекатаный полосовой» и обладает рядом ценных качеств:

  • небольшая стоимость;
  • долгий срок использования;
  • высокая прочность.

Данный стандарт определяет стальной прокат общего назначения толщиной от 4 до 80 мм и шириной от 10 до 200 мм. В зависимости от назначения изготавливают полосы мерной, кратной и немерной длины. Специфика прокатки сталей определяет требования, предъявляемые к длине проката. Полоса из обыкновенных сталей поставляется длиной до 12 м, из легированных – до 6 м. Регламентирована и минимальная длина, для всех видов она составляет 2 м. Рулонный прокат имеет то преимущество, что количество сварных соединений при его использовании в контуре сокращается.

Полоса может быть нормальной или повышенной точности проката. Но этот параметр, как и точность углов или серповидность, практически не влияет на качество заземления и не является значащим при выборе.

Оцинкованная

Для продления срока службы и защиты от воздействия окружающей среды на сталь наносится цинковое покрытие по ГОСТ 9.307-89 «Покрытия цинковые горячие». Стальную полосу предварительно обрабатывают и погружают в емкость с расплавом цинка. Толщина покрытия составляет 40-200 мкм. Чем толще слой, тем больше он способствует увеличению прочности изделия. Усиление покрытия осуществляется повторным погружением полосы в цинковый расплав.

Оцинковка является на данный момент наиболее эффективным и дешевым способом защиты. Нанесение покрытия увеличивает стоимость проката, но срок его службы при этом вырастает. Свойства цинка сохраняются и при небольших повреждениях поверхности. Оцинкованная полоса устойчива к коррозии, упруга, не трескается и имеет аккуратный внешний вид. Она производится из углеродистых и низколегированных марок стали методом продольной резки стального листа и поставляется в виде бухт весом 50-60 кг или хлыстов длиной 5-6 м.

Согласно ПУЭ минимальное сечение заземляющего проводника для установок с напряжением менее 1 кВ равняется 75 мм2. Полоса 4х20 мм является наиболее экономичным решением, которое удовлетворяет этим требованиям. Чаще для изготовления заземляющего контура используется оцинкованная полоса сечением 4х40 мм, 5х40 мм, 5х50 мм. Эти изделия обеспечивают выполнение норм и удобны для монтажа заземления. Один метр полосы 4х40 мм согласно стандарту весит около 1,3 кг. Масса погонного метра также регламентируется ГОСТ 103-2006 и применяется для расчета необходимого количества ленты.

Медная

Наряду с оцинкованными полосами широко применяются на практике полосы заземления с медным покрытием. Медь менее активна электрохимически, чем сталь и цинк. Поэтому она служит дольше и может применяться в более сложных условиях.

Омедненные заземлители обладают хорошей пластичностью. Они поставляются немерной длиной, что удобно для прокладки контуров заземления. Также медная полоса используется для внутреннего контура в качестве магистрального проводника, служащего для подключения к нему оборудования. Минусом полос заземления с медным покрытием является их высокая цена.

Прокладка внутреннего контура

Электрооборудование, которое подлежит заземлению, размещено по всей площади производственных помещений. К системе заземления оно подключается путем прокладки внутри здания магистральных шин. Установка заземляющих проводников делается открыто, к ним всегда должен быть свободный доступ для контроля и осмотра. Исключение составляют металлические трубы скрытой электропроводки и взрывоопасные установки, где проемы заделываются легко выбиваемыми негорючими материалами.

Полосы заземления внутреннего контура положено прокладывать горизонтально или вертикально. Только если здание включает наклонные конструкции, разрешено прокладывать проводники параллельно им. Внутренний контур заземления монтируется с использованием стен и потолков, при необходимости прокладки по полу полоса заземления укладывается в каналы. Проводники прямоугольного сечения монтируют широкой плоскостью к стене. Крепление полосы к кирпичным и бетонным поверхностям производится забиванием гвоздей с помощью строительно-монтажного пистолета. Для фиксации на деревянных стенах используются шурупы.

Заземляющие проводники соединяют между собой при помощи сварки. При сильном нагреве защитное цинковое покрытие испаряется, при этом снижается сопротивляемость стали внешним воздействиям. Поэтому точки соединения обрабатываются цинковым спреем или эмалью. В местах, где предусмотрено измерение сопротивления заземляющего устройства, проводник крепится болтами. Он должен иметь возможность отсоединения, но только с помощью инструмента. Точки крепления полос заземления должны находиться на расстоянии от 650 мм до 1000 мм друг от друга. Они расположены тем чаще, чем больше поперечное сечение полосы.

Конструкция здания может включать температурные швы, предохраняющие его от деформации Пересекающая такой шов полоса заземления должна иметь компенсирующий изгиб. Через стены и перекрытия полосу заземления свободно проводят через проемы или заключают в стальную трубу.

Крепление на кронштейнах

Крепление прямо на стены разрешено только в помещениях с сухой неагрессивной атмосферой. При наличии в воздухе большого количества влаги и едких паров заземляющие проводники полагается приваривать к опорам. Расстояние до стены должно составлять не менее 10 см. Держатели шин заземления изготовляются из стали, их крепят пистолетными дюбелями или приваривают к вмазанным в стену закладкам. На сложных поверхностях применяют дюбели с распорной гайкой или капроновые распорные дюбели. Расстояние между опорами должно составлять от 600 мм до 1000 мм по прямой, на углах 100 мм от точки поворота. Рекомендуемая высота, на которой должен быть размещен кронштейн, составляет от уровня пола 400-600 мм.

Проводники заземления окрашиваются по всей длине желтыми и зелеными прилегающими друг к другу полосами. Цветные полосы должны иметь одинаковую ширину, для шин она установлена в диапазоне 15-100 мм.

Заземление играет важную роль в защите людей и имущества от повреждений. Благодаря ему такие внезапные явления, как молния или короткое замыкание, не приведут к человеческим жертвам и порче материальных ценностей.

Использование стальной полосы в качестве заземляющего проводника хорошо показало себя на практике и признано эффективным и выгодным.

Энергетика: Размер и расчет сборных шин

Шина

Шина
А шина (также называемая шина, шина или шина), представляет собой полосу или шину меди, латунь или алюминий, которые проводят электричество внутри распределительного щита, распределения плата, подстанция, аккумуляторная батарея или другое электрическое оборудование. Его основная цель должен проводить электричество, а не функционировать как структурный элемент.

Шины обычно плоские полосы или полые трубки, так как эти формы позволяют рассеивать больше тепла эффективно благодаря большому соотношению площади поверхности к площади поперечного сечения.А полая секция имеет более высокую жесткость, чем сплошной стержень аналогичного допустимая нагрузка по току, позволяющая увеличить расстояние между опорами сборных шин во дворах под открытым небом.

Сборная шина может быть опираться на изоляторы, иначе изоляция может полностью окружить его. Сборные шины защищены от случайного контакта либо металлическим заземленным корпусом, либо возвышение вне пределов досягаемости. Шины нейтрали питания также могут быть изолированы. Шины заземления (безопасное заземление) обычно не оголены и прикручиваются непосредственно к любое металлическое шасси своего корпуса.Шины могут быть заключены в металлический корпус в виде шинопровода или шинопровода, шины с изолированной фазой или изолированно-фазная шина.

Сборные шины могут быть соединены друг с другом и с электрооборудованием с помощью болтов, зажимов или сварных соединений. соединения. Часто стыки между секциями сильноточной шины имеют соответствие поверхности, покрытые серебром для уменьшения контактного сопротивления. На сверхвысоком напряжения (более 300 кВ) в уличных автобусах, корона вокруг соединений становится источником радиопомех и потерь мощности, поэтому подключение используется арматура, рассчитанная на эти напряжения.

Шины обычно внутри распределительного устройства, щитов управления или шинопровода. Распределительные щиты раздельные электроснабжение отдельными цепями в одном месте. Автобусы или автобусы воздуховоды, представляют собой длинные шины с защитной крышкой. Вместо того, чтобы разветвлять основной поставка в одном месте, они позволяют новым цепям ответвляться в любом месте маршрут автобуса.

Преимущества

Ниже приведены некоторые преимущества шины. магистральная система по сравнению с обычной кабельной системой: —

1. Время установки на месте сокращается по сравнению с проводными системами, что приводит к экономии затрат.

2. Это обеспечивает повышенную гибкость в дизайн и универсальность с учетом будущих модификаций.

3. Большая безопасность и душевное спокойствие для спецификаторы, подрядчики и конечные пользователи.

4. Благодаря простоте сборной шины легко оценить затраты от этапа проектирования / оценки до установка на месте. Это потому что технические характеристики и цена каждого компонента всегда известны.

5. Недальновидно сравнивать стоимость шины по сравнению с длиной кабеля — а не реальная стоимость кабеля установка, включающая несколько трасс кабеля, лоток и крепления, не говоря уже о длительное время и усилия на протягивание кабеля.

6. Распределительная шина распределяет мощность по ее длине через точки отвода вдоль сборной шины, как правило, на 0,5 или 1 м центров. Отводные блоки вставляются по длине сборной шины, чтобы подавать нагрузку; это может быть вспомогательный распределительный щит или, на заводе, для отдельные машины.Ответвления обычно можно добавлять или снимать с помощью сборной шины. жить, исключая простои производства.

7. Установлены вертикально такие же системы может использоваться для приложений с восходящей сетью, с ответвлениями, питающими отдельные этажи. Сертифицированные противопожарные барьеры доступны в точках, где проходит шина. через плиту перекрытия. Защитные устройства, такие как предохранители, предохранители или цепи выключатели расположены вдоль трассы сборных шин, что снижает потребность в больших распределительные щиты и большое количество распределительных кабелей, идущих к и от установленного оборудования.

8. Очень компактный, что обеспечивает экономию места.

9. Когда нужно учитывать эстетику, шинопровод может быть выполнен из натуральной оцинковки, алюминия или окрашен. финиш. Специальные цвета, подходящие к распределительным щитам или определенной цветовой схеме. также доступны по запросу.

10. У шинопровода есть несколько ключей преимущества перед традиционными формами распределения энергии, в том числе: —

11. (а) Сокращенное время установки на месте по сравнению с проводными системами, таким образом что приводит к экономии затрат.

а. Повышенная гибкость дизайна и универсальность с учетом будущих модификаций.

б. Повышенные функции безопасности, вызванные использование высококачественных компонентов, которые обеспечивают большую безопасность и спокойствие для спецификаций, подрядчиков и конечных пользователей.

12. Неравномерный распределение тока происходит, когда в параллельно.

13. У шинопровода есть отводы на через равные промежутки времени по каждой длине, чтобы можно было отключать питание и распространяется туда, где это необходимо.Поскольку он полностью автономен, ему нужно только для механического монтажа и электрического подключения для обеспечения работоспособности.

14. Для более высоких оценок распределения мощности нам нужно иметь несколько прядей кабеля. В таких условиях неуравновешенный происходит распространение тока, вызывающее перегрев какого-либо кабеля. Этот полностью избегается в системах BTS.

15. При использовании нескольких прядей кабелей это часто приводит к неправильным торцевым соединениям, вызывая перегрев контактов, подгорание концов кабелей и является основной причиной возгорания. Это полностью исключены в системах шинопроводов.

Текущий грузоподъемность

Токопроводящая емкость сборной шины обычно определяется максимальной температурой, при которой бар разрешен к работе, как это определено национальными и международными стандарты, такие как британский стандарт BS 159, американский стандарт ANSI C37.20 и т. д. Эти стандарты предусматривают максимальное повышение температуры, а также максимальную температуру окружающей среды. температуры.

BS 159 предусматривает максимальное повышение температуры на 50 ° C выше средней температуры окружающей среды за 24 часа до 35 ° C, а пиковая температура окружающей среды — 40 ° C.

ANSI C37.20 в качестве альтернативы допускает повышение температуры на 65 ° C выше максимальной температуры окружающей среды 40 ° C, при условии, что что используются посеребренные (или приемлемая альтернатива) болтовые заделки. Если нет, допускается повышение температуры на 30 ° C.

Очень приблизительный Метод оценки допустимой токовой нагрузки медной шины: Предположим, что плотность тока в неподвижном воздухе составляет 2 А / мм2 (1250 А / дюйм2). Этот способ следует использовать только для оценки вероятного размера шины, окончательный размер выбран после рассмотрения методов расчета.Ссылаться каталог производителей.

Самый популярный большой палец Правило, которому следуют в Индии, предполагает плотность тока 1,0 А / кв.мм для алюминия и 1,6 А для меди для любого стандартного прямоугольного проводника профиль.

Стандарт размер шины

Ср.

Заявление площадь

Кабель

шина

1

Число схем

Один контур на этаж.Значит, для 20-этажного дома нужно 20 контуров.

Просто один контур может покрыть все этажи.

2

Основной Коммутатор

Нужно 1 исходящий для каждого контура. Отсюда 20 шт. Расходы МССВ. Более высокая стоимость и требуется больше места в электрическом помещении

Нужно только 1 исходящий на каждый стояк. Меньшая стоимость и размер основной панели.

3

Вал Размер

С использованием 4-жильные кабели, и, учитывая 1 кабель на фидер, вам понадобится 20 кабелей на нижний этаж.Для размещения кабелей / кабельного лотка требуется большое пространство.

Типичный размер стояка 1600А составляет 185 мм x 180 мм. Значительная экономия на стояке размер и, следовательно, больше полезной площади на каждом этаже.

4

Огонь и безопасность

В высокая концентрация изоляционных материалов, используемых в кабелях и проводниках включает очень высокий уровень горючей энергии.

В объем изоляционных материалов, используемых в кабельных каналах, сокращен до минимума, поэтому энергия горения значительно ниже, чем у кабелей.Изоляционные материалы используемые, не выделяют едких или токсичных газов в случае пожара. Однажды источник пожара устранен, эти материалы тушатся в несколько секунд, чтобы минимизировать эффект возгорания

5

Будущее расширение

нагрузка на любом этаже, превышающем первоначальный план, владелец должен проложить дополнительный кабель от запасной питатель на главной доске на этот этаж.

От предоставление дополнительных отводных щелей на каждом этаже на этапе проектирования, только собственник необходимо приобрести ответвительную коробку и подключить ее туда, где есть дополнительная нагрузка. обязательный.Поскольку подключение может быть выполнено в режиме реального времени, отключение не требуется для любой из существующих клиентов / цепей. Будущая гибкость.

6

Вина выдерживают уровни

Ограничено по размеру проводника каждой цепи.

Много выше — обычно стояк на 1600 А имеет отказоустойчивость от 60 до 70 кА. Безопаснее при электрической неисправности.

7

Монтаж время

Много длиннее

Каждый стояк на 20-ти этажном доме можно установить примерно за 2–3 дня.

8

Напряжение падение

Высокая сопротивление, если вы выбираете размер кабеля в зависимости от номинального тока пола.

Много более низкий импеданс. Следовательно, падение напряжения существенно ниже.

Шины Снижение системных затрат

Ламинированная шина будет снизить производственные затраты за счет сокращения времени сборки, а также внутренних затраты на погрузочно-разгрузочные работы.Различные проводники заделываются по желанию заказчика. указанные места, чтобы исключить догадки, обычно связанные со сборкой операционные процедуры. Уменьшение количества деталей приведет к сокращению количества заказов и материалов. затраты на погрузочно-разгрузочные работы и инвентарь.

Автобус баров Повышение надежности

Ламинированные шины могут помочь вашей организации обеспечить качество в процессах. Уменьшение количества ошибок подключения приводит к меньшему количеству переделки, снижение затрат на обслуживание и снижение затрат на качество.

Автобус баров Увеличение емкости

Увеличение емкости приводит к уменьшению характеристическое сопротивление.Это в конечном итоге приведет к более эффективному сигналу. подавление и устранение шума. Сохранение тонких диэлектриков и использование диэлектрики с высоким относительным K-фактором увеличивают емкость.

Устранить Ошибки проводки

Заменив стандартный жгуты проводов с шинами исключают возможность неправильной разводки. Жгуты проводов имеют высокую частоту отказов по сравнению с шинами, которые имеют практически нет. Устранение этих проблем требует больших затрат. Добавление шин в Ваши системы — это эффективная страховка.

Автобус бар Нижняя индуктивность

Любой проводник, по которому проходит ток, будет иметь электромагнитное поле. Использование тонких параллельных проводников с тонким ламинированные вместе диэлектрики сводят к минимуму влияние индуктивности на электрические схемы. Подавление магнитного потока увеличивается до максимума, когда противоположные потенциалы ламинированные вместе. Ламинированные шины были разработаны для уменьшения эффект близости во многих полупроводниковых приложениях, а также приложениях которые связаны с сильными электромагнитными помехами (EMI).

Автобус баров Нижнее сопротивление

Увеличение емкости и уменьшение индуктивность является определяющим фактором в устранении шума. Сохранение диэлектрика Минимальная толщина позволит достичь желаемого низкого импеданса.

Автобус бары Provide Denser Packaging

Использование широких тонких проводников, ламинированных вместе привели к уменьшению потребности в пространстве. Ламинированные шины помогли уменьшить общий размер и стоимость системы.

Автобус стержни обеспечивают более широкий выбор методов подключения

Гибкость шин позволила неограниченное количество стилей подключения на выбор. Втулки, Чаще всего используются тиснения и язычки для застежек.

Автобус бары Улучшение тепловых характеристик

Широкие и тонкие проводники подходят для обеспечивая лучший воздушный поток в системах. По мере уменьшения размеров упаковки стоимость отвод тепла из систем значительно увеличился.Шина не может только уменьшить требуется общий размер, но он также может улучшить воздушный поток благодаря своему гладкому дизайну.

Материал: Медь будет марки ETP согласно DIN 13601-2002 и не содержит кислорода. медь.

Химическая Состав: Чистота меди соответствует DIN EN 13601: 2002. Медь + серебро 99,90% мин.

Типовой пример

Рейтинг Сила тока: 3200А.

Система: 415 В переменного тока, TPN, 50 Гц.

Вина Уровень: 50КА. За 1 сек.

Операция Температура: 40 ° C выше 45 ° C окружающей среды.

РАССМОТРЕНИЕ

Вложение размер: 1400 мм. широкий X 400 мм. высота

Автобус Размер стержня: 2: 200×10 для Ph., 1: 200×10 для нейтрали.

Автобус материал стержня: Электролитический гр. Al. (IS 63401 / AA6101)

Рейтинг короткого замыкания

-вплоть до Номинальный ток 400A: 25KA на 1 сек.

-600 до 1000A номинальный ток: 50KA на 1 сек.

-1250 до 2000А номинальный ток: 65-100КА на 1 сек.

-2500 до 5000A номинальный ток: 100-225KA на 1 сек.

В минимальное поперечное сечение, необходимое в квадратных миллиметрах для шины в различных распространенных случаях, перечислено ниже —

Материал

Уровень неисправности (KA)

Выдержать время

1 сек.

200 мсек.

40 мс.

10 мс.

Алюминий

35

443

198

89

44

50

633

283

127

63

65

823

368

165

82

Медь

35

285

127

57

28

50

407

182

81

41

65

528

236

106

53

Позволять выберем сборную шину с примером:

1) Алюминий Шина на 2000А, выдерживает 35 кА в течение 1 с — Минимум из таблицы необходимое поперечное сечение будет 443 мм2.Таким образом, мы можем выбрать шину 100 мм x 5 мм. как минимальное сечение. Учитывая плотность тока 1 А / мм 2 учитывая температуру, а также скин-эффект, для этого случая нам потребуются шины 4 x 100 мм x 5 мм.

2) Медь сборная шина на 2000А, выдерживает 35 кА на 1 сек — Минимум из таблицы необходимое поперечное сечение будет 285 мм2. Таким образом, мы можем выбрать шину 60 мм x 5 мм. как минимальное сечение. Учитывая плотность тока 1,6 А / мм2, учитывая температуру и скин-эффект, нам потребуется 4 x 60 мм x 5 мм шины для этого случая.

Таким образом, используя приведенную выше формулу и таблицу, мы легко подобрать шины для наших распределительных щитов.

Размер в мм

Площадь

кв.

Масса / км

допустимая нагрузка по току в ампер (медь) при 35 град. C

AC (номер автобуса)

DC (номер автобуса)

Я

II

III

II II

Я

II

III

II II

12X2

24

0.209

110

200

115

205

15X2

30

0,262

140

200

145

245

15X3

75

0. 396

170

300

175

305

20X2

40

0,351

185

315

190

325

20X3

60

0.529

220

380

225

390

20X5

100

0,882

295

500

300

510

25X3

75

0.663

270

460

275

470

25X5

125

1. 11

350

600

355

610

30X3

90

0.796

315

540

320

560

30X5

150

1,33

400

700

410

720

40X3

120

1.06

420

710

430

740

40X5

200

1,77

520

900

530

930

40X10

400

3. 55

760

1350

1850

2500

770

1400

2000

50X5

250

2,22

630

1100

1650

2100

650

1150

1750

50X10

500

4.44

920

1600

2250

3000

960

1700

2500

60X5

300

2,66

760

1250

1760

2400

780

1300

1900

2500

60X10

600

5.33

1060

1900

2600

3500

1100

2000

2800

3600

80X5

400

3,55

970

1700

2300

3000

1000

1800

2500

3200

80X10

800

7. 11

1380

2300

3100

4200

1450

2600

3700

4800

100X5

500

4,44

1200

2050

2850

3500

1250

2250

3150

4050

100X10

1000

8.89

1700

2800

3650

5000

1800

3200

4500

5800

120X10

1200

10,7

2000

3100

4100

5700

2150

3700

5200

6700

160X10

1600

14.2

2500

3900

5300

7300

2800

4800

6900

9000

200X10

2000

17,8

3000

4750

6350

8800

3400

6000

8500

10000

Повышение температуры

В течение короткое замыкание, шина должна выдерживать термическое воздействие, как а также механическое воздействие. Когда происходит сортировка, температура рост прямо пропорционален квадрату действующего значения неисправности. Текущий. Продолжительность короткого замыкания очень мала, т.е. одна секунда до выключатели размыкаются и устраняют неисправность. Отвод тепла через конвекция и излучение в течение этого короткого промежутка времени незначительны, и все тепло наблюдается самой сборной шиной. Повышение температуры из-за неисправности может рассчитываться по формулам.

Т = К (I / A) 2 (1 + αθ) 10 -2

T = температура подъем в секунду

А = площадь поперечного сечения проводника

α = температурный коэффициент удельного сопротивления при 20 град.C / град. C

= 0,00393 для меди

= 0,00386 для алюминия

K = константа

= 0,52 для меди

= 1,166 для алюминия

θ = температура проводника в момент повышения температуры рассчитывается.

Типовой расчет

Оценено ток = 1000А

Вина ток = 50КА в течение 1 сек

Допустимый повышение температуры = 40 ° C

Шина материал = алюминиевый сплав E91E

Снижение рейтинга коэффициент по материалу = 1

Снижение рейтинга коэффициент из-за повышения температуры = 0.86

Снижение рейтинга коэффициент корпуса = 0,75

Общее коэффициент снижения рейтинга = 1×0,75×0,86 = 0,66

Минимум площадь поперечного сечения, необходимая для выдерживания короткого замыкания в течение 1 сек.

= (I fc x √t ) /0,08

Где, I fc = ток уровня неисправности в KA

t = 1 секунда

Область A = (50x √1 ) /0,08 = 625 кв. Мм

С учетом всех факторов снижения рейтинга A = 625 / 0,66. = 946,97

Сказать, площадь поперечного сечения на фазу = 1000 кв. мм

Для нейтраль, площадь поперечного сечения на фазу = 500 кв. мм

для получения дополнительных сведений обратитесь к практическому руководству по прокладке кабеля и разговору о ящике для инструментов
В Индии —
чел.
Доступно с книгой магазин и —
Цена: Rs.375 / — без стоимости доставки

Электрооборудование: Сборная шина — Таблица 3: Быстрый переключатель шин

Быстрый селектор шин — Зная допустимую нагрузку, проектировщики и специалисты по оценке могут получить приблизительный размер шины. Затем необходимо проверить допустимую нагрузку выбранной шины, проверив таблицу 1.

Требуемая мощность, * (диапазон) А Размеры сборной шины, дюймы **
Повышение 30 ° C Повышение 50 ° C Повышение 65 ° C
100
(100-149)
1 / 16×1 / 2,1 / 16×3 / 4 1 / 16×1 / 2
150
(150-199)
1 / 16×1
1 / 8×1 / 2
3 / 16×1 / 2
1 / 16×3 / 4 1 / 16×1 / 2
200
(200-249)
1 / 8×3 / 4
1 / 4×1 / 2
1 / 8×1 / 2 1 / 16×3 / 4
1 / 8×1 / 2

250
(250-299)

1 / 16×1 1/2
1 / 8×1
3 / 16×3 / 4
1 / 16×1
1 / 8×3 / 4
3 / 16×1 / 2
1 / 16×1

300
(300-349)

1 / 16×2
3 / 16×1
1 / 4×3 / 4
1 / 4×1 / 2 1 / 8×3 / 4
3 / 16×1 / 2
350
(350-399)
1 / 8×1 1/2 1 / 16×1 1/2
1 / 8×1
3 / 16×3 / 4
1 / 4×1 / 2
400
(400-449)
1 / 4×3 / 4
3 / 8×3 / 4
1 / 4×3 / 4 1 / 4×1 / 2
400
(400-449)
1 / 4×1
3 / 8×3 / 4
1 / 4×3 / 4 1 / 16×1 1/2
1 / 8×1
3 / 16×3 / 4
450
(450-499)
1 / 8×2
3 / 16×1 / 2
1 / 16×2
3 / 16×1
1 / 4×3 / 4
500
(500-599)
1 / 4×1 1/2
3 / 8×1
1 / 8×1 1/2
1 / 4×1
3 / 8×3 / 4
1 / 16×2
1 / 8×1 1/2
3 / 16×1
600
(600-699)
1 / 8×2 1/2
3 / 16×2
1 / 2×1
1 / 2×1
1 / 8×2
3 / 16×1 1/2
1 / 4×1
1 / 4×1
3 / 8×3 / 4
700
(700-799)
1 / 8×3
3 / 16×2 1/2
1 / 4×2
3 / 8×1 1/2
1 / 4×1 1/2 1 / 8×2
3 / 16×1 1/2
3 / 8×1
800
(800-899)
1 / 8×3 1/2
3 / 16×3
1 / 4×2 1/2
3 / 8×2
1 / 8×2 1/2
3 / 16×2
1 / 2×1
1 / 4×1 1/2
900
(900-999)
1 / 8×4
3 / 16×3 1/2
1 / 4×3
1 / 8×3
3 / 16×2 1/2
1 / 4×2
3 / 8×1 1/2
1 / 8×2 1/2
1 / 2×1
1000
(1000-1249)
3 / 16×4 1 / 4×3 1/2
3 / 8×2 1/2, 3 / 8×3
1 / 2×2, 1 / 2×2 1/2
1 / 8×4
3 / 16×3
1 / 4×2 1/2
3 / 8×2
1 / 8×3
3 / 16×2 1/2
1 / 4×2
3 / 8×1 1/2
1250
(1250-1499)
1 / 4×4
3 / 8×3 1/2
1 / 2×3
3 / 16×3 1/2, 3 / 16×4
1 / 4×3
3 / 8×2 1/2
1 / 2×2
1 / 8×4
3 / 16×3
1 / 4×2 1/2
3 / 8×2
1500
(1500-1749)
1 / 4×5
3 / 8×4
1 / 2×3 1/2, 1 / 2×4
1 / 4×3 1/2, 1 / 4×4
3 / 8×3
1 / 2×2 1/2
3 / 16×3 1/2, 3 / 16×4
1 / 4×3
3 / 8×2 1/2
1 / 2×2
1750
(1750–1999)
1 / 4×6
3 / 8×5
3 / 8×3 1/2
1 / 2×3
1 / 4×3 1/2, 1 / 4×4
3 / 8×3
1 / 2×2 1/2
2000
(2000-2499)
1 / 4×8
3 / 8×6
1 / 2×5, 1 / 2×6
3 / 4×4, 3 / 4×5
1 / 4×6
3 / 8×5
1 / 2×4
1 / 4×5
3 / 8×4
1 / 2×3 1/2
2500
(2500-2999)
1 / 4×10
3 / 8×8
3 / 4×6
3 / 8×6
1 / 2×5
3 / 4×4
1 / 4×6
3 / 8×5
1 / 2×4
3000
(3000-3499)
1 / 4×12
3 / 8×10
1 / 2×8
1 / 4×8
1 / 2×6
3 / 4×5
1 / 4×8
3 / 8×6
1 / 2×5
3 / 4×4
3500
(3500-3999)
3 / 8×12
1 / 2×10
3 / 4×8
1 / 4×10
3 / 8×8
3 / 4×6
1 / 2×6
3 / 4×5
4000
(4000-4499)
1 / 2х12
3 / 4х10
1 / 4×12
3 / 8×10
1 / 2×8
1 / 4×10
3 / 8×8
3 / 4×6
4500
(4500-4999)
3 / 4х12 1 / 2×10 3 / 4×8 1 / 4×12
3 / 8×10
1 / 2×8
5000
(5000-5999)
3 / 8×12
1 / 2×12
3 / 4×10
3 / 8×12
1 / 2×10
3 / 4×8
* Для тока 60 Гц

** В таблице приведены поперечные сечения шин, которые, вероятно, будут достаточно большими для токов в каждом диапазоне.Зная требуемую допустимую нагрузку, определите возможные размеры шины по таблице. Затем проверьте Таблицу 1, чтобы убедиться, что выбранный размер имеет необходимую допустимую нагрузку.

Пример: Предположим, что требуемая допустимая нагрузка составляет 185 А при повышении температуры на 30 ° C. Таблица 3 показывает, что, вероятно, будет достаточно размера 1/16 x 1 дюйм. Это подтверждается таблицей 1, в которой указана допустимая токовая нагрузка шины 1/16 x 1 дюйм как 187 ампер.

электрическая — Можно ли иметь смешанные заземления и нейтрали на шинах в коробке выключателя?

Статья 250 Заземление и соединение

II.Система заземления

250.24 Заземление систем переменного тока, обслуживаемых службами.
(A) Соединения заземления системы. Система проводки в помещении, питаемая от заземленной сети переменного тока, должна иметь провод заземляющего электрода, подключенный к заземленному рабочему проводу на каждой линии в соответствии с 250.24 (A) (1) — (A) (5).

(1) Общие. Соединение проводника заземляющего электрода должно быть выполнено в любой доступной точке от конца нагрузки воздушных проводов обслуживания, ответвления, подземных проводников обслуживания или стороны обслуживания к клемме или шине, включая клемму, к которой заземленный провод обслуживания подключен на средства отключения услуги.

Это означает, что заземленная (нейтраль) от сети должна быть соединена с землей, и что соединение может быть выполнено путем соединения шины нейтрали с заземляющим электродом.

(5) Разъемы заземления на стороне нагрузки. Заземленный провод не должен подключаться к обычно нетоковедущим металлическим частям оборудования, к заземляющему проводнику (ам) оборудования или повторно подключаться к заземлению на стороне нагрузки средств отключения обслуживания, за исключением случаев, разрешенных в настоящей статье.

Это означает, что заземленные (нейтральные) проводники должны быть заземлены только при главном рабочем выключателе.

Если основная сервисная панель находится в том же месте, где заземленный (нейтральный) провод соединен с заземляющим электродом, тогда нет проблем с смешиванием заземления и нейтрали на одной и той же шине (при условии, что имеется соответствующее количество проводники, оканчивающиеся под каждым наконечником). Если две шины не соединены; как и в любом другом месте, кроме основного отключения (существует исключений, ), то вы не можете смешивать их.

Обратите внимание, как заземленная и заземляющая шины подключены в главной сервисной панели. Это значит, что; электрически говоря, их можно рассматривать как одну шину. Это означает, что как заземленные (нейтраль), так и заземляющие проводники оборудования могут быть подключены к любой шине.

В субпанели шины расположены отдельно. Так что заземленные (нейтраль) и заземляющие жилы оборудования нельзя смешивать.

Почему алюминиевые шины завоевывают все большую популярность на рынке низковольтных устройств

Свойства материала

Раньше сборные шины представляли собой плоские медные полосы, которые производители панелей покупали и устанавливали в распределительные щиты низкого напряжения.Теперь у нас есть алюминиевые шины с горизонтальным профилем, которые подключаются вертикально с более широким диапазоном значений тока. Это хорошо для OEM-производителей.

Одна из причин, по которой сборные шины заменили проводные системы распределения энергии в промышленности, — это распространение алюминия. А рост популярности алюминия происходит из-за его низкой стоимости по сравнению с медью. Перерабатываемый алюминий не подвержен дефициту или нестабильности товарных рынков.

Кроме того, он на 70 процентов легче красного металла. Один оператор может быстро и легко установить шины из алюминия, потому что они такие легкие.А благодаря индивидуализированным экструдированным профилям они надежно фиксируются в нужном положении.

Большая поверхность, больший теплообмен, более эффективное рассеивание тепла

Полые и экструдированные профильные шины имеют большую поверхность, чем стандартные прямоугольные секции. Это дает больший теплообмен и более эффективное рассеивание тепла. В тесном корпусе это серьезное преимущество.

Фактически, вы можете экструдировать свои шины, чтобы усилить естественную конвекцию — один из трех способов отвода тепла.Например, длинная и тонкая шина с дополнительными ребрами улучшает смешивание и поток тепла и воздуха.

Современные алюминиевые шины с их полостями, выступами и ионизированными поверхностями оптимизируют отвод тепла и снижают удельное сопротивление.

Алюминиевые шины более проводящие, чем медные

Некоторые говорят, что алюминий значительно менее проводящий, чем медь. Но так ли это? Конечно, при таком же номинальном токе площадь поперечного сечения алюминиевого шинопровода больше. Но он намного легче.Фактически, килограмм на килограмм, алюминиевые шины на 50 процентов токопроводительнее, чем медные. Вы удваиваете удельную проводимость на массу.

Люди также говорят, что «алюминиевые шины не выдерживают электромеханической нагрузки». Но знают ли они, что алюминиевая шина с прочностью на разрыв может выдерживать ток в 4000А? Или что высокопрочные алюминиевые сплавы имеют механическое сопротивление до 530 Ньютон / мм²? Этого вполне достаточно, чтобы выдержать напряжение и боль теплового расширения.

В наш век затрат и заботы об окружающей среде алюминий проявляет свои неотъемлемые свойства.

Хотите узнать больше?

Раздел 26 Электрооборудование 0526 Заземление и соединение — Физические объекты

1 Общий

1,1

Все заземляющие проводники должны быть изолированы и помещены в кабельный канал.

1,2

Все заземляющие провода должны быть «ЗЕЛЕНЫМИ».

1,3

Использование неизолированных проводов недопустимо, за исключением тех случаев, когда они расположены в фундаменте здания или где иное указано в Руководстве консультанта или в объеме работ.

1,4

Справочный раздел 27 Спецификации связи для требований к заземлению электросвязи.

2 питателя

2,1

Обеспечьте отдельный изолированный «ЗЕЛЕНЫЙ» заземляющий провод в каждом кабелепроводе. Прикрепите проводник к каждому концу закрывающей металлической дорожки качения.

3 ответвления цепи

3,1

Обеспечьте отдельный изолированный «ЗЕЛЕНЫЙ» заземляющий провод в каждом ответвлении цепи.

3.1,1

Для каждой электрической системы (208 В, 240 В, 480 В и т. Д.) Обеспечьте отдельный «ЗЕЛЕНЫЙ» провод, идущий от панели источника для каждой системы в кабелепроводе.

4 Автобусный канал

4,1

Все концы фланцев шинопровода (при подсоединении кабеля) должны иметь заземляющую шину соответствующего размера с наконечником (при необходимости) для подключения к шине заземления оборудования в распределительных щитах, а также к «XO» в горловине силового трансформатора.

5 Панели панелей

5,1

Все щиты и распределительные щиты должны иметь шину заземления оборудования.

6 отдельно производных систем

6,1

Отдельно производные системы должны быть заземлены в соответствии с NEC

.

6,2

Если выводится нейтральный проводник, провод заземляющего электрода должен быть проложен к основной шине системы заземляющих электродов здания, к общей системной шине заземляющих электродов или, как одобрено Purdue Engineering, к ближайшему доступному эффективно заземленному конструктивному элементу или эффективно заземленному металлическому водопроводу. трубка.

6.2.1

Шина системы заземляющих электродов главного здания

6.2.2

Система заземляющих проводов с общим электродом, спроектированная в соответствии с описанием в NEC 250.30 (A) (4) 2008 года для таких приложений, должна быть предусмотрена в каждом помещении с электрооборудованием, содержащем оборудование вспомогательного уровня распределения. Изучите предлагаемые места с Purdue Engineering.

6.2.3

В некоторых случаях шина заземления прибора может быть установлена ​​в определенных электрических помещениях. Проверяйте с Purdue Engineering для каждого проекта.Система заземления прибора должна быть отдельной (без гальванической развязки), за исключением случаев, когда она подключена к системной шине заземляющего электрода здания.

6.2.4

Ближайший доступный эффективно заземленный элемент конструкции

6.2.5

Металлический заземляющий электрод для водопроводной трубы, как указано в NEC 250.30 (A) (1) 2008 года.

Примечание: Этот метод заземления должен быть одобрен Purdue в индивидуальном порядке.

6,3

В некоторых случаях в некоторых электрических помещениях может быть установлена ​​система заземления приборов.Проверяйте с Purdue Engineering для каждого проекта. Система заземления прибора должна быть отделена от системы электрического заземления, за исключением случаев, когда она подключена к системной шине заземляющего электрода главного здания. Эта система предназначена для корпусного или статического заземления чувствительного электронного оборудования, а не для электрических соединений системы. Изучите предлагаемые места с Purdue Engineering.

7 Система электродов заземления

7,1

В главном электрическом помещении здания установите медную шину достаточной длины 1/4 на 4 дюйма (минимум два фута), чтобы она действовала в качестве точки подключения системы заземляющих электродов для всех заземляющих электродов, как описано в NEC 250.52 A. Шина должна быть способна принимать наконечники NEMA с 2-мя отверстиями. Эту шину следует называть шиной системы заземляющих электродов здания. На каждом проводе, оканчивающемся на нем, должна быть прикреплена этикетка, обозначающая противоположный конец проводника (т. Е. Заземление Ufer).

7,2

Все соединения должны быть выполнены с помощью экзотермической сварки Cadweld, внесенной в список UL.

7,3

Стержни заземления должны иметь длину 10 футов и диаметр дюйма.

8 корпусов для обслуживания трансформаторов в главном кампусе

8.1

Сетевые трансформаторы, обслуживающие здания главного кампуса, считаются отдельно производными системами. Соединение нейтрали будет происходить только на трансформаторе.

8,2

Перемычка заземления оборудования (стороны питания) будет проложена от X0 трансформатора здания к шине заземления первого средства отключения здания. Этот проводник будет непрерывным и представляет собой один кусок провода без промежуточных стыков. (Исключение: когда фидером от трансформатора является шинопровод, допускается использование заводских шинных соединений (в шине, служащей перемычкой на стороне питания).

8,3

Размер должен быть основан на NEC или 12,5 процента от наибольшего фазового проводника, в зависимости от того, что больше.

8,4

Трансформаторы должны быть соединены двумя заземляющими проводниками 4/0 AWG от контура заземления вокруг трансформатора.

8.4.1

Завершите заземляющие проводники с помощью наконечников с 2-мя отверстиями NEMA в трансформаторе и выполните экзотермическую сварку в контуре заземления.

8.4.2

Заземлите проводники на прямоугольных площадках заземления возле основания трансформатора: один находится в отсеке ВН, а другой — в отсеке НН.

8,5

Кроме того, каждый трансформатор должен иметь один провод заземляющего электрода (GEC) от системы заземления трансформатора (состоящей из заземляющего кольца и заземляющих стержней, окружающих трансформатор) до клеммы «X0» трансформатора. Размер GEC должен соответствовать NEC, но не менее 4/0 AWG без покрытия.

9 Зданий для обслуживания генераторов в главном кампусе

9,1

Генераторы, обслуживающие здания главного кампуса, могут быть, а могут и не быть отдельно производными системами.Проконсультируйтесь с инженером-электриком Purdue по поводу предпочтений при каждой установке.

9,2

Для отдельно созданных генераторов соединение нейтрали будет происходить только на генераторе.

9.2.1

Для генераторов, которые являются отдельно производными системами, соединительная перемычка оборудования (стороны питания) будет проложена от X0 генератора к шине заземления первого средства отключения. Этот проводник будет непрерывным и представляет собой один кусок провода без промежуточных стыков.

9.2.2

Размер должен быть основан на NEC или 12,5 процента от наибольшего фазового проводника, в зависимости от того, что больше.

9.2.3

Кроме того, каждый генератор должен иметь один GEC (провод заземляющего электрода) от системы заземления генератора (состоящей из заземляющего кольца и заземляющих стержней, окружающих генератор) до клеммы «X0» генератора. Размер GEC должен соответствовать NEC, но не менее 4/0 AWG для обеспечения механической прочности.

9,3

Если генераторы не являются отдельно производными системами, убедитесь, что нейтраль и земля не соединены.

9,4

Генераторы

должны быть соединены двумя заземляющими проводниками 4/0 AWG от контура заземления вокруг генератора. Оба заземляющих проводника 4/0 должны заканчиваться (наконечниками с отверстиями NEMA 2) на каждой из прямоугольных площадок заземления рядом с основанием корпуса генератора.

10 Заземление здания

10,1

По усмотрению A / E и по согласованию с Purdue Engineering, здания должны быть окружены неизолированным многожильным медным проводом соответствующего размера.

10.1.1

Проводник должен быть заглублен за пределами фундамента здания и ниже возможной линии замерзания, но не менее чем на 36 дюймов ниже уровня готовой конструкции.

10.1.2

А (10 футов) десятифутовый заземляющий стержень, сваренный медной сваркой, должен быть установлен в каждом углу и с интервалами от 100 до 150 футов вдоль стен здания.

10.1.3

Контур заземления должен быть подключен к основному заземляющему электроду здания.

10,2

Все заземления должны быть подключены к контуру заземления.Контур заземления должен быть подключен к основному заземляющему электроду здания.

10,3

Все открытые колонны здания должны быть подключены к этому контуру заземления.

10,4

Скрытые колонны здания должны быть заземлены с интервалом от 50 до 75 футов вокруг здания.

10,5

Все соединения заземляющих проводов с колоннами, заземляющими стержнями и т. Д. Должны выполняться с помощью экзотермической сварки, внесенной в список UL, или разрешаться для механических соединений обжимом.

11 Уфер Заземление

11.1

Системы заземления Ufer должны соответствовать Статье 250 Раздела III NEC. Фундаментная арматура подключается к колонне здания и контуру заземления. Контур заземления должен быть подключен к основному заземляющему электроду здания. Все соединения заземляющих проводов с колоннами, фундаментной арматурой, другими заземляющими проводниками и т. Д. Должны выполняться экзотермической сваркой, внесенной в список UL.

11,2

Всегда должен присутствовать внешний электрод, чтобы предотвратить повреждение фундамента, которое может возникнуть в результате высоких токов замыкания.

12 Триада и другие устройства заземляющих стержней

12,1

Если установлены два или более заземляющих стержня, расстояние должно быть как минимум в два раза больше длины стержня между любыми двумя соседними заземляющими стержнями.

13 Типовая схема заземления

13,1

Ниже приведена схема заземления типичного трансформатора с одной контактной площадкой, как отдельно производной системы. Это предпочтительный метод заземления Университета Пердью. Адаптировать по мере необходимости для конкретного приложения и согласовать с требованиями Division 33 Utilities.

Патенты и заявки на сборные шины (класс 361/611)

Номер публикации: 20150124376

Аннотация: Настоящее изобретение имеет цель предоставить распределительное устройство, способное улучшить работоспособность, и способ сборки распределительного устройства.Распределительное устройство в соответствии с настоящим изобретением имеет: множество коммутационных блоков 2, 3, 4, 5, имеющих подвижный электрод, приводимый в действие горизонтально и приведенный в контакт или размыкаемый от неподвижного электрода; множество рабочих механизмов 8, 9, которые приводят в действие подвижные электроды во множестве блоков переключения 2, 3, 4, 5; соединительные элементы 13, 14, предусмотренные в коммутационных блоках 2, 3, 4, 5 и подключенные к шинам A, B; и кожух, который включает в себя все соединительные элементы 13, 14, множество переключателей 2, 3, 4, 5 и множество рабочих механизмов 8, 9.Блоки переключения 2, 3, 4, 5 расположены по высоте. Множество рабочих механизмов 8, 9 предусмотрено на передней или задней стороне корпуса. Множество соединительных элементов 13, 14 шины предусмотрено на другой стороне корпуса.

Тип: Заявление

Подано: 20 мая 2013 г.

Дата публикации: 7 мая 2015 года

Заявитель: Hitachi, Ltd.

Изобретателей: Аюму Морита, Кендзи Цучия

Оловянные медные шины

Мы производим и экспортируем Луженые покрытые медные шины для шин.При распределении электроэнергии шина представляет собой полосу из меди или алюминия, которая проводит электричество в распределительном щите, распределительном щите, подстанции или другом электрическом оборудовании
Размер шины определяет максимальное количество тока, которое может безопасно переноситься. Шины могут иметь площадь поперечного сечения всего 10 мм2, но электрические подстанции могут использовать в качестве шин металлические трубы диаметром 50 мм (1963 мм2) или более. эффективное решение.2 бара длиной 1 фут составляет всего 0,0000329 Ом — примерно 8 Вт теряется при 500 А.

Где использовать Медные шины с луженым покрытием:
Очень жесткие силовые соединения.
Подключение поля / якоря к клеммам двигателя

Где не использовать Медные шины с луженым покрытием:
В любом месте, где требуются гибкие соединения.
Между выводами аккумуляторной батареи. (Может вызвать чрезмерную нагрузку на клеммы.)

Форма / размер:
Подавайте тонкие и широкие.
Площадь поперечного сечения должна быть такой же, как у эквивалентной проводки
{Мы также делаем шину другой формы, как показано на изображении справа}

Проводник

Размер мм

Товар

Код

Проводник

Размер мм

Товар

Код

12 × 3

CCBB001

20 × 3

CCBB002

20 × 5

CCBB003

25 × 3

CCBB004

25 × 4

CCBB005

25 × 5

CCBB006

25 × 6

CCBB007

30 × 5

CCBB008

31 × 25

CCBB009

38 × 3

CCBB010

38 × 4

CCBB011

38 × 6

CCBB012

40 × 3

CCBB013

40 × 5 CCBB014

40 × 6

CCBB015

40 × 10

CCBB016

50 × 5

CCBB017

50 × 6 CCBB018

50 × 10

CCBB019

50 × 12

CCBB020

60 × 5

CCBB021

60 × 8

CCBB022

60 × 10

CCBB023

75 × 6

CCBB024

75 × 10

CCBB025

75 × 12

CCBB026

80 × 5

CCBB027

80 × 6 CCBB028

80 × 10

CCBB029

80 × 12

CCBB030

100 × 5

CCBB031

100 × 6

CCBB032

100 × 10

CCBB033

100 × 20

CCBB034

сопутствующие товары .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *