Закрыть

Схема зануления и заземления: Особенности заземления и зануления | Полезные статьи

разновидности схемы, как правильно выполнить защиту техники

Обязательным условием безопасного функционирования электроприборов и различного оборудования является качественное заземление и зануление. Такая работа выполняется самостоятельно, что позволяет избежать выхода из строя техники из-за ее перенапряжения и коротких замыканий в сети. Заземление и зануление электроустановок выполняется с учетом особенностей оборудования, что предупредит его преждевременный выход из строя.

  • Определение понятий
  • Выбор технологии
  • Разновидности защитных систем
  • Популярные способы зануления

Определение понятий

Под заземлением принято понимать использование специальных конструкций, которые соединяют электропроводку дома или отдельные приборы с землёй. Благодаря наличию такой защиты прикосновение к поверхностям, которые находятся под напряжением, не приведет к летальному исходу, а удар тока будет минимальным. Изготавливается защита с электрооборудованием, имеющим изолированную нейтраль.

Заземляющие устройства могут выполняться целой группой проводников, соединяющих с землей токопроводящие элементы.

Заземление электрооборудования также увеличивает аварийные токи замыкания, что необходимо в тех случаях, когда имеющаяся защита срабатывает при попадании под напряжение нетоковедущих частей. Это позволяет предупредить выход оборудования из строя при замыканиях, неквалифицированном ремонте и вмешательстве в электросети. Сегодня принято выделять несколько разновидностей заземления:

  • рабочий тип обеспечивает бесперебойную работу электрооборудования в штатном и аварийном режиме;
  • защитный тип обеспечивает безопасность электроустановок, предупреждая пробой на корпус и рабочую поверхность токоведущих проводов;
  • грозозащитный тип отводит молнию от зданий, уводя разряд в землю, предупреждает повреждение электрооборудования и возгорание строений.

Принято также различать искусственно изготовленное и естественное заземление. Первое выполняется для защиты сооружений и электроприборов от повышенного напряжения. Такие устройства состоят из металлического стержня, провода, труб некондиционного типа и стальных уголковых приспособлений. Естественное заземление также изготовлено человеком, однако изначально оно не предназначается для защиты от повышенного напряжения. В качестве него можно рассматривать железобетонные сооружения, трубопроводы, обсадные трубы и т. д.

Зануление также обеспечивает необходимую защиту электрооборудования, предупреждая его выход из строя из-за замыканий и перенапряжения в сети. Такой вид работ отличается от заземления принципом монтажа и назначением. Зануление подразумевает подключение токопроводящих элементов к корпусу электроприбора или металлическим деталям. Для обеспечения безопасности обязательно соединение с нейтралью, которая является источником трехфазного пониженного напряжения.

Основной задачей зануления является защита электрооборудования и рабочего персонала от поражения током за счёт срабатывания автоматического коммутационного оборудования. Принцип работы такой защиты заключается в создании искусственных коротких замыканий при попадании тока на корпус техники или в случаях пробоя изоляции. Возникновение короткого замыкания приводит к срабатыванию:

  • предохранителей;
  • автоматических выключателей;
  • специальной защиты от короткого замыкания.

Заземление отличается от зануления применением специального оборудования, которое использует нейтраль и за счёт коротких замыканий разрывает цепь, предупреждая серьёзное поражение электрическим током. Особенностью зануления является необходимость высокой мощности тока нулевого провода, за счёт которого происходит короткое замыкание. Только в этом случае можно обеспечить стопроцентную вероятность защиты от поражения электричеством при наличии проблем в электроснабжении. Если мощности нулевого провода и токов короткого замыкания недостаточно, это приводит к появлению повышенного напряжения в электрооборудовании.

Выбор технологии

Планируя электрозащиту дома, многие из нас задумываются о выполнении дополнительной защиты электроснабжения. Однако домовладельцы не всегда понимают, в чем разница заземления и зануления. Основными различиями являются:

  • при заземлении избыточный ток отводится в землю, а при выполнении зануления напряжение сбрасывается в щитке на ноль;
  • заземление считается наиболее эффективным способом защиты человека от поражения электротоком.

Сделать заземление проще, чем зануление. В последнем случае потребуется помощь специалиста, который должен рассчитать оптимальные показатели нулевого тока и лишь после этого можно будет обеспечить правильность работы защитного оборудования.

К выполнению заземления чаще всего прибегают владельцы частных домов, а вот обладателям квартир в многоэтажках требуется делать зануление, для чего дополнительно устанавливают УЗО и аналогичные устройства, предупреждающие поражение током и повреждение работающих электроприборов. При правильном устройстве защиты можно полностью исключить опасность поражения электротоком, а различная техника и приборы будут полностью защищены от вероятных скачков напряжения и замыканий в сети.

Для обеспечения качественной защиты при занулении необходимо учитывать фазность приборов и выполнять сложные расчёты. Самостоятельно провести такую работу не представляется возможным. Только опытный электрик правильно спланирует подключение, установит соответствующие защитные приборы и проведет качественное зануление.

Выполненное заземление не будет зависеть от разности приборов, поэтому его проще обустроить самостоятельно, даже не имея каких-либо профессиональных навыков. Сбросить лишнее напряжение в землю намного безопаснее, чем монтировать дополнительные приспособления, которые отводят ток на щиток.

Сегодня в продаже имеются уже готовые комплекты для заземления частного дома. Потребуется только заглубить на несколько метров в землю металлический контур, подключить к нему фазу со щитка, что и позволит обеспечить максимальную безопасность используемых электроприборов. Можно подобрать различные комплекты, которые подходят для дачи или полноразмерного частного дома, отличаются своей конструкцией, способом подключения и максимально возможной нагрузкой.

В последние годы отмечается тенденция, когда полноценное зануление выполняется на производстве и предприятиях, где требуется обеспечить повышенную электробезопасность эксплуатируемым приборам и промышленному оборудованию. Обычные же домовладельцы в целях защиты от поражения током обустраивают простейшее заземление, сделать самостоятельно которое не составит особого труда.

Разновидности защитных систем

Основные требования к заземлению и занулению описаны в ГОСТе, что упрощает выполнение такой работы и стандартизирует используемые устройства. Защитные системы отличаются способом обустройства, принципом работы и используемым дополнительным оборудованием.

Система TN-C была разработана в Германии еще в начале прошлого века. Такая защита предусматривает использование единого кабеля с PE проводником и нулевым проводом.

Недостатком этой системы заземления является появление избыточного напряжения при нарушении корпуса оборудования и отгорания нуля. Несмотря на имеющиеся недостатки, TN-C пользуется сегодня популярностью благодаря простоте в реализации.

Системы заземления TN-S и TN-C-S используют два провода, которые отходят от щитка и идут в землю. Контур выполняется в виде сложной металлической конструкции, что полностью исключает вероятность поражения током и выход из строя электроприборов при наличии проблем с электроснабжением. Эта схема получилась чрезвычайно удачной, она пользуется популярностью и обустраивается на дачах и в частных домах.

Заземление по типу TT основывается на соединении контура электроустановки с металлическими элементами, находящимися под землёй. Такая схема не получила сегодня должного распространения из-за сложности в реализации, а также возможных перепадов напряжения в сети.

Разновидность защиты OT подразумевает передачу лишнего напряжения на корпус и в землю с нейтрали, которая изолирована от грунта и подключена к приборам с большим сопротивлением. Такая схема получила распространение при использовании электрического оборудования, которому требуются стабильность и повышенная безопасность.

Популярные способы зануления

Зануление PNG отличается простотой конструкции, что объясняется совмещением защитных и нулевых проводников. К недостаткам этой системы безопасности относятся повышенные требования к взаимодействию проводникового сечения ее потенциалов. PNG широко используется при необходимости зануления асинхронных агрегатов, работающих в трехфазных сетях.

Наибольшую популярность сегодня получили модифицированные системы зануления электроустановок, которые питаются от однофазной сети. В них используется общий совмещенный PEN проводник, соединяющийся с глухозаземленной нейтралью. После такого соединения происходит разделение кабелей PE и N, которые далее подключаются к корпусу или аналогичным приборам защиты. Преимуществом такой технологии зануления является ее универсальность, возможность использования в однофазной и трехфазной сети, а также простота конструкции и полная безопасность.

Заземление и зануление электроустановок позволяет защитить технику от скачков напряжения и коротких замыканий. Зануление подразумевает использование специального оборудования, позволяющего перенаправить лишнее напряжение на щиток. Такая защита используется преимущественно на промышленных предприятиях и объектах, где требуется повышенная безопасность работы оборудования. Владельцы частных домов могут самостоятельно выполнить заземление, что позволит им защитить себя и используемые электроприборы от замыканий и перепадов в сети.

Защитные зануление и заземление | Электрооборудование насосных, компрессорных станций и нефтебаз

Подробности
Категория: Разное-архив
  • электродвигатель
  • оборудование
  • промышленность
  • горная

Содержание материала

  • Электрооборудование насосных, компрессорных станций и нефтебаз
  • Пожаро- и взрывоопасность
  • Техническая характеристика применяемого электрооборудования
  • Выбор электрооборудования условиям окружающей среды
  • Механические характеристики и свойства синхронных электродвигателей
  • Механические характеристики и свойства электродвигателей постоянного тока
  • Режимы работы электродвигателей
  • Типы и исполнения электродвигателей
  • Выбор электродвигателей по номинальным данным
  • Муфты для соединения электродвигателя с механизмом
  • Аппараты ручного и автоматического управления
  • Реле управления
  • Аппараты защиты
  • Пусковые и регулировочные сопротивления
  • Станции и щиты управления
  • Условные графические обозначения в электрических схемах
  • Основы автоматического управления
  • Электрообезвоживающие и электрообессоливающие установки
  • Электрический привод насосов
  • Электрический привод компрессоров
  • Электрический привод задвижек
  • Электрический привод вентиляторов
  • Электрическое освещение
  • Светильники
  • Расчет электрического освещения
  • Внутреннее и наружное освещение
  • Виды и способы электропроводок
  • Электропроводки во взрывоопасных зонах
  • Электропроводки в помещениях с невзрывоопасными зонами
  • Кабели и кабельные линии
  • Присоединение проводов и кабелей к электрооборудованию
  • Воздушные электрические линии
  • Гибкие и жесткие токопроводы
  • Трансформаторные подстанции и РУ
  • Выключатели
  • Разъединители, короткозамыкатели и отделители
  • Измерительные трансформаторы
  • Шины распределительных устройств. Изоляторы
  • Источники постоянного тока
  • Комплектные распределительные устройства 6-10 кВ
  • КТП, компоновка подстанций
  • Источники электроснабжения, категории электроприемников
  • Понизительные подстанции и распределительные устройства
  • Источники аварийного электроснабжения
  • Релейная защита
  • Автоматизация электроснабжения
  • Автоматическое включение резерва
  • Защитные зануление и заземление
  • Молниезащита
  • Защита от статического электричества
  • Эксплуатация и ремонт электрооборудования
  • Экономичность эксплуатации электроустановок
  • Ремонт электрооборудования и электросетей
  • Сведения по технике безопасности

Страница 48 из 54

Глава 13
Защитные зануление и заземление. Молниезащита. Защита от статического электричества
Защитные зануление и заземление
Электрические сети напряжением до 1000 В могут быть как с глухозаземленной, так и с изолированной нейтралью.

Рис. 93. Схема защитного зануления (а) и заземления (б):
1 — нейтраль обмотки трансформатора; 2 — заземлитель; 3 — зануляющий проводник; 4,5 — заземляющий болт; 6 —пробивной предохранитель; 7 —заземляющий проводник
В системе с глухозаземленной нейтралью нулевая точка (нейтраль) обмотки трансформатора, соединенной в звезду, наглухо соединена с землей через металлический заземлитель (рис. 93,а). В системе с изолированной нейтралью нейтраль обмотки трансформатора и соединенной в звезду изолирована от земли или соединена с землей через пробивной предохранитель 6, установленный в нейтрали или в одной из фаз трансформатора (рис. 93,б).
Как в системе с глухозаземленной нейтралью, так и в системе с изолированной нейтралью при случайном замыкании одной из фаз сети на корпус электрооборудования или другие конструктивные нетоковедущие части электроустановок последние могут оказаться под полным или частичным напряжением, и прикосновение к ним вызывает поражение электрическим током. Для предохранения обслуживающего персонала от поражения электрическим током при прикосновении к частям электроустановок, случайно оказавшимся под напряжением в результате повреждения изоляции токоведущих проводников или по другим причинам, в сетях с глухозаземленной нейтралью применяют защитное зануление, а в сетях с изолированной нейтралью — защитное заземление.
Защитным занулением называется преднамеренное соединение с нейтралью трансформатора в сетях с глухозаземленной нейтралью всех металлических частей электроустановок, которые по тем или иным причинам могут случайно оказаться под напряжением. Соединение это выполняют проводником, который называется зануляющим или нулевым защитным проводником (в отличие от нулевого рабочего проводника, по которому проходит рабочий ток при неравномерной нагрузке в четырехпроводной силовой сети или двухпроводной осветительной сети). При замыкании одной из фаз сети на корпус электрооборудования, имеющего соединение нулевым защитным (зануляющим) проводником с глухозаземленной нейтралью трансформатора, возникает однофазное короткое замыкание, которое вызывает срабатывание соответствующего защитного аппарата (предохранителя, автомата, реле), автоматически отключающего поврежденный участок.
Защитное зануление служит для автоматического отключения поврежденного участка сети в минимально возможное короткое время, т. е. для того, чтобы значительно уменьшить время прикосновения к поврежденному оборудованию и уменьшить опасность поражения электрическим током.
Защитным заземлением называется преднамеренное соединение с землей в сетях с изолированной нейтралью всех металлических частей электроустановок, которые могут случайно оказаться под напряжением по тем или иным причинам. Соединение это выполняется проводником, который называется заземляющим, и металлическим заземлителем, имеющим непосредственное соединение с землей. При случайном замыкании фазы сети на корпус электрооборудования большая часть тока замыкания пойдет через заземляющий проводник в землю, а меньшая часть — через тело человека, прикоснувшегося к электрооборудованию, так как сопротивление металлического заземляющего проводника во много раа меньше, чем сопротивление тела человека.
Защитное заземление служит для уменьшения проходящего через тело человека тока замыкания на землю до безопасного для человека значения.
Поскольку сети с изолированной нейтралью не отключаются при замыкании на землю, в них необходим тщательный контроль за состоянием изоляции и своевременным устранением возникших повреждений.
Во взрывоопасных зонах в результате появления разности потенциалов между частями электрооборудования, случайно оказавшимися под напряжением, и землей возникает искра, которая может послужить причиной взрыва. Таким образом, во взрывоопасных зонах зануление и заземление служат не только для защиты людей от поражения электрическим током, но и для предотвращения возникновения взрывов.
Занулению и заземлению подлежат все металлические части электроустановок, которые могут случайно сказаться под напряжением. К таким частям относятся корпусы электрических машин, пусковых аппаратов, светильников и трансформаторов, а также каркасы щитов и камер распределительных устройств, шкафы силовых пунктов, металлические муфты и оболочки кабелей, трубы электропроводки и т. п. Для присоединения зануляющего (заземляющего) проводника на корпусе электрооборудования и на каркасе электроконструкций предусматривается заземляющий болт или винт, снабженный знаком «земля».
Устройство, состоящее из заземлителей (металлических электродов, закладываемых в землю) и соединенных с ним зануляющих (заземляющих) проводников, называется заземляющим устройством.
Зануляющим (заземляющим) проводником обычно служит полосовая сталь толщиной 3—4 мм и шириной 25—40 мм или круглая сталь диаметром 8—12 мм. Допускается использовать в качестве зануляющих и заземляющих проводников стальные трубы электропроводки, алюминиевую оболочку кабеля, а также различные металлические конструкции, связанные с землей и составляющие непрерывную электрическую цепь. Исключение составляют взрывоопасные зоны, в которых для зануления (заземления) необходимо прокладывать специальный проводник — стальную полосу, четвертый провод при электропроводках в стальных трубах или использовать четвертую жилу кабеля при кабельных проводках.
Зануляющие (заземляющие) проводники внутри помещений прокладывают таким образом, чтобы они были видны и доступны для контроля их целостности.

Рис. 94. Заземлитель из угловой стали

Во взрывоопасных помещениях зануляющие (заземляющие) проводники прокладывают в виде контура (внутри помещения или снаружи) и присоединяют их к заземлителям по меньшей мере в двух разных местах, по возможности с противоположных сторон помещения. Зануление (заземление) электрооборудования осуществляют присоединением к ответвлению от этого контура. Снаружи помещений зануляющие и заземляющие проводники прокладывают в земле (в траншеях) на глубине 0,5—0,7 м.
В сетях с глухозаземленной нейтралью проводимость зануляющих проводников должна быть не менее 50% проводимости фазных проводников. При одинаковом материале требование выполняется, если сечение зануляющего проводника будет не меньше половины сечения фазного проводника. В сетях с изолированной нейтралью проводимость заземляющих проводников должна быть не меньше 1/3 проводимости фазных проводников. Сечение заземляющих медных проводников должно быть не более 25 мм2, алюминиевых не более 35 мм2 и стальных не более 120 мм2.
Заземлители (рис. 94), к которым присоединяют зануляющие (заземляющие) проводники, представляют собой вертикальные металлические стержни длиной до 5 м из круглой стали диаметром 12—16 мм или из угловой стали длиной 2,5—5 м с толщиной стенки не менее 4 мм. Допускается использовать в качестве заземлителей некондиционные или отбракованные трубы с толщиной стенки не менее 3,5 мм. Заземлитель закладывают в землю в вертикальном положении с таким расчетом, чтобы его верхний конец находился на глубине 0,5—0,7 м от уровня земли. Число заземлителей определяется проектом. Соединение зануляющих (заземляющих) проводников с заземлителем выполняется сваркой. Заземлители обычно располагают вблизи от трансформаторов. Однако, если в этом месте грунт оказался плохо проводящим, засоренным строительным мусором или залитым нефтепродуктами, для закладки заземлителей выбирают другое место (можно за пределами подстанции).


Рис. 95. Зануление (заземление) электрооборудования: электродвигателя (а) и пускового аппарата (б)


Рис. 96. Зануление (заземление) светильников

Общее сопротивление заземляющего устройства должно быть не более 4 Ом. Значение сопротивления контролируют испытателем заземления МС-07 или МС-08, который состоит из встроенного в корпус генератора постоянного тока с рукояткой для вращения генератора и измерительного прибора со шкалой и стрелкой, показывающей значение сопротивления.
На рис. 95,а показан пример выполнения зануления (заземления) электродвигателя, питание которого осуществляется проводами, проложенными в стальной трубе. Труба присоединяется к заземляющим болту 1 и к стальной полосе 3 перемычкой 2. У взрывозащищенных электродвигателей, кроме болта на корпусе, имеется еще один болт внутри вводной коробки для присоединения четвертого провода или четвертой жилы кабеля.
На рис. 95,б показан пример зануления (заземления) пускового аппарата, подвод к которому выполнен бронированным кабелем. Броня кабеля и кабельные муфты присоединены к болту заземления 1 перемычкой 2. Корпусы электрических машин и аппаратов, а также конструкций, на которых они установлены, присоединяют к общей системе зануления (заземления) стальной полосой 3.
Светильники с металлическим корпусом при электропроводках в стальных трубах в сетях с изолированной нейтралью заземляют с помощью перемычки 3 (рис. 96,а), проложенной между заземляющим винтом 4 на корпусе светильника и флажком 2 на трубе 1. В сетях с глухозаземленной нейтралью (рис. 96,б) перемычку 3 устанавливают между зануляющим винтом 4 и нулевым рабочим проводом 5. Если же трубу 1 вводят в горловину светильника, то зануление осуществляется соединением на резьбе металлического корпуса светильника с зануленными трубами электропроводки. Взрывозащищенные светильники (рис. 96,в) во взрывоопасных зонах всех классов, кроме класса В-I, зануляют присоединением нулевого рабочего провода 5 к зануляющему винту 4 внутри светильника, а в установках класса В-1 — присоединением к винту 4 отдельного (третьего) зануляющего провода.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *