Закрыть

Заземление нейтрали – Заземление нейтрали в сетях – типы, схемы согласно требованиям ПУЭ

Содержание

Изолированная и глухозаземленная нейтраль

Содержание:
  1. Изолированная нейтраль
  2. Достоинства и недостатки изолированной нейтрали
  3. Глухозаземленная нейтраль
  4. Особенности глухого заземления
  5. Видео: зануление и заземление

В процессе производства, преобразования, транспортировки, распределения и потребления электроэнергии используется трехфазная симметричная система проводов. Достичь такой симметричности стало возможно путем приведения фазных и линейных напряжений в одинаковое состояние. В результате, на всех фазах образуется равномерная токовая загрузка, а также одинаковый сдвиг фаз токов и напряжений.

Однако во время функционирования всей этой системы рано или поздно возникают аварийные ситуации в виде обрыва провода, пробоя изоляции и прочих специфических неисправностей, приводящих к нарушениям симметрии трехфазной системы. Последствия таких нарушений должны быть устранены как можно скорее. Большую роль в этом играет степень быстродействия релейной защиты, на работу которой влияет изолированная и глухозаземленная нейтраль. Каждый из этих режимов имеет свои достоинства и недостатки и применяется в наиболее подходящих условиях. В любом случае от их состояния во многом зависит нормальное функционирование релейной защиты.


Изолированная нейтраль

Изолированная нейтраль нашла достаточно широкое применение в отечественных энергетических системах. Данный способ заземления применяется для генераторов или трансформаторов. В этом случае их нейтральные точки не соединяются с заземляющим контуром. В распределительных сетях на 6-10 киловольт нейтральной точки может не быть вообще, поскольку соединение трансформаторных обмоток выполняется методом треугольника.

В соответствии с ПУЭ, режим изолированной нейтрали может быть ограничен емкостным током, представляющим собой ток однофазного замыкания на землю сети. Его компенсация с помощью дугогасящих реакторах предусматривается при следующих значениях:

  • Ток свыше 30 ампер, напряжение 3-6 киловольт;
  • Ток свыше 20 ампер, напряжение 10 киловольт;
  • Ток свыше 15 ампер, напряжение 15-20 киловольт;
  • Ток свыше 10 ампер, напряжение 3-20 киловольт, с металлическими и железобетонными опорами воздушных ЛЭП
  • Все электрические сети с напряжением 35 киловольт.
  • В блоках «генератор-трансформатор» при токе 5 ампер и генераторном напряжении 6-20 киловольт.

Компенсация тока замыкания на землю может быть заменена резистивным заземлением нейтрали с помощью резистора. В этом случае алгоритм действия релейной защиты будет изменен. Впервые заземление в режиме изолированной нейтрали было применено в электроустановках со средним значением напряжения.


Достоинства и недостатки изолированной нейтрали

Несомненным достоинством режима изолированной нейтрали является отсутствие необходимости быстрого отключения первого однофазного замыкания на землю. Кроме того, в местах повреждений образуется малый ток, при условии малой токовой емкости на землю.

Однако этот режим имеет ряд существенных недостатков, из-за которых его использование существенно ограничено.

Основные недостатки изолированной нейтрали:

  • Возможные дуговые перенапряжения перемежающегося характера дуги малого тока в месте однофазного замыкания на землю.
  • Повреждения могут возникнуть во многих местах по причине пробоя изоляции на других соединениях, где возникают дуговые перенапряжения. По этой причине выходят из строя сразу многие кабели, электродвигатели и другое оборудование.
  • Дуговые перенапряжения воздействуют на изоляцию в течение продолжительного времени. В результате, в ней постепенно накапливаются дефекты, что приводит к снижению срока эксплуатации.
  • Все электрооборудование необходимо изолировать на линейное напряжение относительно земли.
  • Места повреждений довольно сложно обнаружить.
  • Реальная опасность поражения людей электротоком в случае продолжительного замыкания на землю.
  • При однофазных замыканиях не всегда может быть обеспечена правильная работа релейной защиты, поскольку значение реального тока замыкания полностью связано с режимом работы сети, в частности, с количеством включенных присоединений.

Таким образом, большое количество недостатков перекрывает все достоинства данного режима заземления. Однако в определенных условиях этот метод считается достаточно эффективным и не противоречит требованиям ПУЭ.


Глухозаземленная нейтраль

Более прогрессивным способом считается режим глухозаземленной нейтрали. В этом случае нейтраль генератора или трансформатора непосредственно соединяется с заземляющим устройством. В некоторых случаях соединение осуществляется с использованием малого сопротивления, например, трансформатора тока. В отличие от защитного, такое заземление нейтрали называется рабочим. Значение сопротивления заземляющих устройств, соединенных с нейтралью, не должно превышать 4 Ом в электроустановках с напряжением 380/220 вольт.

В электроустановках, где используется глухозаземленная нейтраль, поврежденный участок должен быстро и надежно отключаться в автоматическом режиме в случае возникновения замыкания между фазой и заземляющим проводником. С связи с этим, при напряжении до 1000 вольт, корпуса оборудования должны обязательно соединяться с заземленной нейтралью установок. Таким образом, обеспечивается быстрое отключение поврежденного участка в случае короткого замыкания с помощью реле максимального тока или предохранителя.


Особенности глухого заземления

Заземление нейтрали в глухом режиме предусмотрено для четырехпроводных сетей переменного тока. В таких случаях выполняется глухое заземление нулевых выводов силовых трансформаторов. Соединяются все части, подлежащие заземлению и нулевой заземленный вывод. Нулевой провод должен быть цельным, без предохранителей и каких-либо разъединяющих приспособлений.

В качестве глухозаземленной нейтрали воздушных линий с напряжением до 1 киловольта используется нулевой провод, прокладываемый вместе с фазными линиями на тех же опорах.

Все ответвления или концы воздушных линий, длиной свыше 200 метров подлежат повторному заземлению нулевого провода. То же самое касается вводов в здания, где имеются установки, подлежащие заземлению. В качестве естественных заземлителей могут использоваться железобетонные опоры, а также заземляющие устройства, защищающие от грозовых перенапряжений.

Таким образом, изолированная и глухозаземленная нейтраль обеспечивает нормальную работу релейной защиты генераторов и трансформаторов. Кроме того, они надежно защищают людей от поражения электрическим током.


electric-220.ru

описание типов и видов, способов подключения

Эффективно заземленная нейтральВоздушные, кабельные линии на трансформаторных подстанциях работают с высоким напряжением. Его передача предполагает соблюдение мер безопасности. Высоковольтные линии аналогично энергосистемам с 380 В подсоединяются по специально установленным схемам — так обеспечивается надлежащая защита от случайного поражения током, проходящим через действующую цепь. При этом нейтральная трансформаторная точка — «нейтраль» — подлежит надежному заземлению.

Способы подсоединения

Особенность функционирования высоковольтных систем заключается в том, что при повреждении, обрыве линии происходит замыкание на землю отдельного провода. При этом токи утечки представлены внушительными величинами. Отличительными являются меры безопасности, которые применяются к подобным сетям. Они несравнимы с аналогичными действиями, проводимыми в цепях конечных потребителей

. В сетях с 6 — 35 кВ стандартно задействуются следующие виды заземления нейтрали:

  1. Схема заземления нейтральПрямая связь с заземляющим устройством (ЗУ), которое устанавливается вблизи высоковольтной опоры, подстанции с трансформатором. Такую схему принято называть глухозаземленной нейтралью.
  2. Подключение выполняется с помощью специальных устройств — компенсаторов или реакторов дугогасящего типа.
  3. В процессе задействуется заземляющая система, предполагающая подключение описываемой нейтральной точки посредством резистора.
  4. Создание изолированной нейтрали в обход к подсоединению ЗУ в пределах обслуживаемого объекта, защищаемой высоковольтной линии.

Монтирование компенсационных деталей по сети проведения нейтрального проводника помогает снизить величины токов замыкания. Работа подобной цепи заключается в нейтрализации опасного электричества через планомерное изменение индуктивности на катушке. В последней напряжение обязательно имеет обратную фазу.

Когда достигаются определенные показатели индуктивности, ток в месте замыкания используемого заземлителя достигает нулевых значений. Более эффективное действие подобного заземления с параллельной индукцией обеспечивается за счет включения резистора. Такой прибор обеспечивает стекание активного тока, который необходим для работы высоковольтного защитного реле.

Важно! Каждая описанная система предполагает установку на принимающей стороне отдельного ЗУ. С его помощью создается эффективное заземление нейтрали, обеспечиваются надлежащие условия по использованию ВЛ.

Способы заземленияБез подключения в цепь обозначенных устройств невозможно создание эффективных защитных функций. Если случится случайная поломка нейтрального проводника, на подстанциях силовые действующие установки будут незащищенными.

Стоит упомянуть еще вариант заземления нейтрали, включенной в сети от 6 до 35 кВ. Общая точка подводится к питающей цепи, что дает возможность эффективно использовать заземлитель. При этом создаются оптимальные условия для стекания активного тока. Существенным недостатком метода выступает его высокая стоимость, по этой причине он задействуется только на территориях питающих подстанций, у которых входные напряжения достигают 110 кВ и более.

Системы с изоляцией от земли

Работа высоковольтных сетей с эффективно заземленной нейтралью изоляционного типа является распространенной в различных регионах России. В этом случае нейтральная точка в трансформаторе или генераторе с трехфазной обмоткой не заземляется. Популярность подобного варианта включения нейтрали объясняется тем, что замыкание на землю фазы не является коротким, т. к. попросту отсутствует взаимосвязь с грунтом.

Особенность же заключается в том, что ВЛ в таком аварийном режиме работает без существенных поломок на протяжении нескольких часов. Среди достоинств такой схемы отмечено также наличие малых токов в точке замыкания ОЗЗ (одна фаза на землю). Объясняется такой принцип небольшой емкостью сети по отношению к грунту.

Важно! Подобный тип включения имеет токи ОЗЗ на порядок ниже в сравнении с межфазными замыканиями. Это очередное преимущество обозначенных сетей.

Отсутствует необходимость во включении защитных быстродействующих устройств от ОЗЗ, в результате чего снижаются затраты при эксплуатации систем. Не обойтись и без недостатков при подключении:

  1. Правила прокладки заземленияВ некоторых случаях создаются перенапряжения, имеющие дуговой эффект даже при небольших токах в месте заземления одной фазы.
  2. Существует вероятность выхода из строя высоковольтных, кабельных установок вследствие повреждения изоляционного слоя.
  3. Ведется повышенный учет напряжений (380 В). При необходимости линейная электрическая техника подвергается тщательной изоляции.
  4. Сложное нахождение и определение конкретной точки повреждения.

Выбирая описанный тип подсоединения нейтральной точки, следует учитывать все его преимущества и недостатки, тщательно продумать последствия от возможных аварийных ситуаций.

Подключение с помощью низкоомного сопротивления

Обзор эффективных способов и видов заземления нейтралиСреди многих видов нейтралей часто используется заземление через резистор с незначительной номинальной величиной. Они нашли широкое применение на территории Беларуси, России. Логично в таких схемах задействовать высокоомный резистор (RB-режим), который задает низкие уровни перенапряжений при ОЗЗ.

В других случаях при заземлении нейтральной точки задействуются комбинированные способы ее подсоединения посредством применения индуктивности (RB-режим и LB).

Более подробное изучение обозначенных подходов показывает, что резисторы высокоомного типа характеризуются внушительными размерами. К тому же они отличаются значительными ценами и массой. Однако и обустройство дугогасящих реакторов отличается своими особенностями и недостатками. Поэтому при выборе режима, поддерживаемого низкоомным резистором, следует провести тщательные расчеты и исчисления с учетом обозначенных факторов.

Существует два типа проведения низкого заземления. В первом случае выполняется установка резонансного резисторного приспособления, с помощью которого срабатывает защита от токов при ОЗЗ. Что касается второго варианта, он предполагает использование заземленных схем посредством индуктивности. Они направлены на обеспечение защиты в случае фазных двойных замыканий.

Виды заземления нейтральПри резистивном подключении стоит принимать во внимание дополнительные токи в нейтрали, которые могут стать причиной прерывания емкостных значений ОЗЗ до 3 раз и более. Индуктивные или реактивные схемы по уровню своего заземления не должны превышать общее значение электротоков, исходящих от двойных замыканий.

Исходя из ПУЭ, обозначенные выше рабочие режимы могут быть кратковременными или длительными. Последний вариант предполагает расположение заземляющих деталей в единую цепь, в которой нейтраль функционирует на постоянной основе.

Именно такой способ подключения, на что указывают правила устройства электрических установок, допустим только при выполнении качественного заземления с показателем RЗ ≤ 0,5 Ом. Подобный подход эффективен с точки зрения трудовых затрат и экономических соображений.

rusenergetics.ru

Чем называют эффективно заземленную нейтраль?

Чем называют эффективно заземленную нейтраль?

Высоковольтные линии электропередач предназначены для передачи энергии на большие расстояния. Для обеспечения безопасной работы энергосистемы используются средства защиты.  Для чего применяются различные виды заземления нейтрали. Схема подключения заземлителя зависит от питающего напряжения:

Таблица

Для исключения перенапряжения неповрежденных фаз при возникновении однофазного замыкания на землю.

В электросетях с напряжением 110 КВ и выше выполняется система с эффективно заземленной нейтралью. Она представляет собой разновидность сети с глухозаземленной нейтралью.  И предназначена для уменьшения коммутационного перенапряжения сети. Что уменьшает требования к изоляции. А это существенно снижает стоимость электросетей.

Позволяет применить быстродействующую защиту от коротких замыканий на землю. Что, в свою очередь, уменьшает вероятность сложных трехфазных замыканий, но в тоже время при замыкании на землю возникают большие токи.

Эффективно заземленная нейтраль

Что же такое эффективно заземленная нейтраль – это трехфазная сеть с коэффициентом замыкания на землю, который эквивалентен значению меньше или равному 1,4 в системах с питающим напряжением свыше 1000 В. И рассчитывается по формуле:

Кз=Uф.з  /Uф.ном.

Эффективное заземление нейтрали применяется в сетях напряжением 110 КВ и выше. Применение такой схемы обусловлено стоимостью изоляции.

Схема эффективно заземленной нейтрали

При использовании такой электросхемы во время замыкания одной фазы на землю, потенциал на остальных не превышает значения равного межфазному напряжению, умноженному на коэффициент 0,8.  Что позволяет производить расчет изоляции на это значение. В отличие от сетей с изолированной или компенсированной нейтралью, где расчет производится на полное межфазное напряжение.

Требования к сетям, согласно нормативу

Правилами эксплуатации электроустановок потребителями предъявляются требования к заземляющему устройству, сопротивление которого не должно превышать 0,5 Ом в схеме, где применена эффективно заземленная нейтраль.  При этом должно учитываться значение искусственного заземляющего устройства, сопротивление которого не должно превышать значения 1 Ом. Что справедливо для сетей с потенциалом выше 1000 В и током короткого замыкания на землю более 500 А.

Однофазное короткое замыкание в сетях с эффективно заземленной нейтралью

Эти требования к заземляющему устройству предъявляются при возникновении КЗ фазы на землю, что является однофазным замыканием в схеме, где присутствует заземленная нейтраль, чтобы немедленно и эффективно произошло отключение.

К сложным аварийным ситуациям относятся замыкания двух или трех фаз на землю. Однако, в этом случае напряжение на неповрежденных фазах и токи замыкания будут существенно ниже, чем при однофазном.

Поэтому при расчетах принимают большие значения, а напряжение и токи двух и трехфазных замыканий не используются.

КЗ в сетях с заземленной (а) и изолированной (б) нейтралями

Такое подключение эффективно при аварии и служит для понижения потенциала между не отказавшей фазой и землей в сетях, где применяется заземленная нейтраль, что позволяет не допустить превышение шагового напряжения.  А также не ограничивает вынос потенциала за пределы подстанции и уменьшает риск поражения электрическим током обслуживающего персонала.

Большая часть замыканий после снятия напряжения исчезает, а автоматика (АПВ) включает подачу электропитания в ЛЭП. Для уменьшения токов в аварийной ситуации заземляют не все трансформаторы, а только часть.  Так, при смонтированных на подстанции двух силовых трансформаторов подключают только один. Такая система называется электросетью с эффективно заземленной нейтралью.

Преимущества и недостатки системы

Главным достоинством таких систем можно отметить ограничение потенциала в системах напряжением 110 КВ и более в неповрежденных линиях при возникновении аварийной ситуации, что оказывает существенное значение для материалов изоляции. А также применение относительно несложных устройств релейной защиты от однофазных коротких замыканий на землю.

Недостатками подобных электросетей, касательно к сетям с изолированной нейтралью, можно отнести высокие токи КЗ, что требует моментального отключения напряжения.  Если этого не произойдет, то возникает опасность серьезного повреждения линии, а также возрастает вероятность поражения электрическим током обслуживающего персонала.

И велико возникновение пожара и даже взрыва. Высокие токи КЗ предъявляют особые требования к устройствам защиты, она должна срабатывать мгновенно, а это усложняет приборы защиты.

Использование в сетях ниже тысячи вольт

Эффективно заземленная нейтраль применяется в основном в сетях с напряжением в 110 В. и более.  Однако, допустимо применять в сетях ниже тысячи вольт, где нет, и не предвидится применение приборов, у которых имеется опасность возникновения пожара. Или отсутствуют устройства, у которых может повредиться электрооборудование или возникнуть взрыв.

В последнее время такие электросхемы получили распространение в городских электросетях. Что имеет смысл при коэффициенте тока короткого замыкания на землю меньше единицы.  Это дает возможность использовать кабель, рассчитанный на напряжение 6 КВ использовать в сети 10 КВ. Что позволяет увеличить передаваемую мощность на величину 1,73 без замены кабеля и коммутационной аппаратуры.

electriktop.ru

Зачем и как делают заземление трансформаторов

От производителей электроэнергии передается ток высокого напряжения. Чтобы им могли пользоваться потребители на бытовом уровне, применяют понижающие трансформаторы. Согласно ПУЭ для них необходимо применять защитное заземление. Предусмотрен внешний и внутренний контур заземления. Устанавливают также защиту от ударов молнии.

Принципы устройства

Трансформатор преобразует (трансформирует) параметры переменного электрического тока. Происходит это благодаря явлению электромагнитной индукции. Основные детали прибора – катушки (обмотки) с проводами и ферромагнитный сердечник.

На одну катушку ток поступает, и она называется первичной. Вторичных катушек может быть 1, 2 и больше. С них снимается ток с уже измененными характеристиками.

У повышающего трансформатора число витков на вторичной обмотке больше, чем на первичной. В прямой связи увеличивается индуцированное напряжение с одновременным понижением силы тока.

Устройство понижающих трансформаторов другое. Они сделаны с точностью наоборот. Число витков в первичной обмотке у них больше, чем на вторичной обмотке, поэтому индуцированное напряжение снижается.

На большие расстояния выгоднее передавать электричество высокого напряжения и низкой силы тока, поскольку потери энергии на выделения тепла наименьшие.

Так и поступают. А трансформаторы впоследствии преобразуют ток до необходимых параметров.

Способ соединения обмоток трансформатора может быть выбран «треугольник», «звезда» или «зигзаг». В случае «треугольника» обмотки соединены последовательно, образуя замкнутый контур. Способ «звезда» предполагает соединение концов фазных обмоток в одну точку. Ее называют нулевой (нейтральной) точкой.

В случае «зигзага» каждая фазная обмотка состоит из 2-х частей на разных стержнях. Соединение 2-х частей происходит навстречу друг другу. Образовавшиеся три вывода соединяют, как «звезду».

Для трансформаторов высокого напряжения применяют соединение «звезда». Заземляется нулевая точка или конец вторичной обмотки. При объединении в «звезду» заземляют фазный провод.

Применение

Для преобразования тока, который передается по электрическим сетям, применяют силовые трансформаторы. Такие устройства способны работать с большими мощностями. Они преобразуют напряжение на линиях с 35…750 кВ в напряжение 6 и 10 кВ и далее в 400 В. После этого электроэнергией могут пользоваться потребители на бытовом уровне.

Трансформаторы тока используют, чтобы снижать ток до требуемой величины. Их применяют в схемах бесконтактного управления, чтобы обезопасить людей и технику от поражения током.

Трансформаторы тока применяют также в измерительных и защитных устройствах, схемах сигнализации и в других приборах.

Особенность трансформатора тока в том, что его вторичная обмотка работает в режиме, близком к короткому замыканию. Если по какой-то причине происходит разрыв цепи на вторичной обмотке, то напряжение на ней повышается до значительных величин.

Скачек напряжения может вызвать поломку оборудования, включенного в сеть. Поэтому должно присутствовать защитное заземление.

Существуют также трансформаторы напряжения, импульсные трансформаторы, автотрансформаторы, сварочные и другие. Для каждого из них существуют своя схема и особенности подключения заземления. Чтобы правильно его выполнить, необходимо изучить техническую документацию к оборудованию.

Зачем заземлять

Заземление нейтрали трансформатора необходимо для создания стабильной работы электроустановки и безопасности людей, которые могут находиться на подстанции.

Рабочее заземление на трансформаторе является частью защитного. Это значит, что заземление, предназначенное для стабильной работы устройства, также защищает от поражения током.

Правила устройства электроустановок требуют, чтобы все силовые трансформаторы были заземлены.

В трансформаторах напряжения заземляется только трансформатор. Согласно правилам устройства электроустановок у трансформатора напряжения заземление вторичной обмотки происходит путем соединения общей точки или одного из концов обмотки с заземляющим проводником.

В трансформаторах тока заземляются вторичные обмотки. Для подключения проводников предусмотрены специальные зажимы. Обмотки нескольких установок можно соединять одним проводником и подключать к одной шине.

В электротехнике выделяют понятие сети с эффективно заземленной нейтралью. Оно применимо для силового трансформатора, у которого заземлено большинство нейтралей обмоток (глухое заземление нейтрали).

Если произойдет однофазное замыкание, то напряжение на поврежденных фазах не должно быть выше 1,4 напряжения на рабочих фазах в нормальных условиях.

Дугогасящие реакторы

В сетях, рассчитанных на 110 кВ и выше, предусмотрена защита с глухозаземленной нейтралью. Если сеть рассчитана на 35 кВ и ниже, то применяется заземление с изолированной нейтралью.

Преимущество изолированной нейтрали в том, что если произойдет замыкание фазы на земли, то это не приведет к короткому замыканию.

На трансформаторах с системой изолированной нейтрали устанавливают дугогасящие реакторы. Они компенсируют емкостные токи, возникающие при замыкании на землю.

Дело в том, что вдоль линии электропередачи накапливается электрический заряд (емкостное электричество). И как только происходит разрыв или иное повреждение изоляции, при контакте с землей возникает ток.

Если он достигает 30 А, образуется разрядная дуга. В результате кабель нагревается, начинает разрушаться изоляция и вместе с ней проводник.

Такое явление приводит к двухфазному и трехфазному замыканию. Срабатывает защита, и трансформатор полностью отключается. Обесточенными остаются сотни и тысячи потребителей электроэнергии.

Чтобы этого не произошло, устанавливают дугогасящие реакторы. Нейтраль заземляют через них. Во время однофазного замыкания на землю возрастает индуктивность дугогасящего реактора. Индуктивная проводимость компенсирует емкостную, и электрическая дуга не возникает.

Через дугогасящие реакторы заземляют нейтраль первичной обмотки одного из трансформаторов сети, в которой соединение обмоток происходит по типу «звезда-треугольник».

Если произошло замыкание на землю, то благодаря такой системе заземления, трансформатор сможет работать на протяжении еще 2-х часов, пока неполадки не будут устранены.

Создание внешнего контура

Чтобы сделать внешний контур заземления трансформатора, применяют вертикальные электроды, соединенные горизонтальными перемычками. Перемычки выполняют из листовой стали толщиной 4 мм и шириной 40 мм. Электроды втыкают в грунт по периметру трансформатора.

Проверяют удельное сопротивление грунта. Оно должно составлять максимум 100 Ом*м. Исходя из этого, требуется создать контур сопротивлением максимум 4 Ом.

Если взять круг диаметром 16 м, с условным трансформатором посередине, то для создания заземляющего контура потребуется минимум восемь электродов длиной по 5 м каждый.

Их размещают на расстоянии приблизительно 1 м от фундамента трансформаторной станции. Чем ближе стержни будут располагаться к стене, тем лучше. Горизонтальные полоски-соединения укладывают на ребро на глубину 0,5-0,7 м.

Такое требование к расположению связано с вопросами безопасности. Заземлитель не должен быть поврежден при проведении каких-либо ремонтных и строительных работ.

Защита от молний

Чтобы выполнить молниезащиты трансформаторной подстанции с металлической крышей, необходимо соединить крышу с внешним контуром заземления.

Соединение происходит в двух противоположных точках. То есть в одной точке кровля соединяется с внешним контуром, и со стороны, расположенной напротив, также происходит соединение кровли с контуром. Соединительным проводником становится проволока толщиной 8 мм.

Если кровля не металлическая, то на ней наверху создают специальный молниеприемник.

Создание внутреннего контура

Трансформаторная подстанция разделена на 3 помещения. Отдельно делают помещения для высокого и низкого напряжения – это помещения распределительных устройств (для входа и выхода). И отдельно предусмотрена трансформаторная камера, непосредственно для трансформатора.

В каждом отделении должна быть проложена заземляющая полоса. Ее прикрепляют к стенам на высоте 0,4…0,6 м, чтобы заземлить все части из металла, не предназначенные для проведения тока. Для крепления применяют дюбеля или специальные держатели круглых и плоских заземляющих проводников.

К заземляющей полосе подключают швеллер, предназначенный для установки трансформатора. Он размещен в стяжке пола. Подсоединяют и другие детали (шинный мост, металлические элементы барьера, крепежные детали, место присоединения переносного заземления). К системе заземления подключают все опорные конструкции из металла и стальные каркасы.

Для разборных соединений применяют болты, в остальных случаях элементы сваривают между собой. Для закрепления переносного заземления используют гайку с ушками «барашек».

Перемычки делают из гибкого медного провода ПВ3. Однако изоляционную оболочку с такого провода надо снять, чтобы можно было следить за целостностью жил.

Заделку в стены осуществляют посредством вставки гильз и заполнением свободного пространства негорючим материалом. Полосу окрашивают в желтый цвет с зелеными полосами. Такую окраску имеет защитный нулевой провод.

Нулевую шину подключают к заземляющему контуру. Корпус трансформатора соединяют с контуром перемычками.

При осмотре трансформатора на вход ставят оградительный барьер и навешивают табличку «Осторожно! Высокое напряжение!».

evosnab.ru

Режимы работы нейтрали трансформатора: разновидности, достоинства и недостатки

В высоковольтных сетях возможны следующие виды заземления нейтрали трансформатора:

  1. изолированная;
  2. компенсированная;
  3. высокоомное резистивное заземление;
  4. низкоомное резистивное заземление;
  5. эффективное заземление нейтрали.

Также возможны комбинации из нескольких способов соединения с землей, реализуемых поочередно в комплексе. Рассмотрим по очереди все эти способы, их достоинства и недостатки и показания к применению.

Изолированная нейтраль

Это некогда еще самый распространенный способ заземления нейтрали, применяемый в сетях 6-35 кВ. Сейчас он понемногу вытесняется другими способами.

Достоинство изолированной нейтрали – наличие небольших токов однофазного замыкания на землю (ОЗЗ), с которыми сеть может работать некоторое время, необходимое для поиска и устранения повреждения.

 Ток замыкания носит емкостной характер. Он обусловлен наличием емкостной связи между электрооборудованием, кабельными и воздушными линиями и землей. Активная составляющая тока почти отсутствует, так как резистивной связи между нейтралью и землей нет. Но недостатки таких сетей пересиливают ее достоинство.

При достаточной разветвленности сети емкостные токи увеличиваются, так как увеличивается количество одновременно подключенного к ней электрооборудования. Настает момент, когда ток становится настолько ощутимым, что все равно и почти сразу приводит к перерастанию ОЗЗ в междуфазное.

Режимы работы нейтрали по уровню напряжения

regim neitral К тому же при ОЗЗ резко повышается напряжение на неповрежденных фазах. Особенно это проявляется при замыканиях с перемежающейся дугой, погасающей при прохождении синусоидального напряжения в месте КЗ через ноль. При повторном нарастании напряжения дуга загорается вновь.

При резком погасании дуги осуществляется зарядка емкостей фаз, на которых ОЗЗ нет, до напряжения, выше номинального рабочего. Последующее зажигание дуги дает толчок к их дополнительному заряду и так далее. Результат грозит пробоем изоляции в других местах сети, имеющих ослабленную изоляцию. Дополнительно возникает риск возникновения резонансных явлений в сердечниках трансформаторов напряжения.

Это явление, называемое феррорезонансом, гарантированно выводит из строя их первичные обмотки.

 Работу трансформаторов, у которых нейтраль изолирована, целесообразно использовать в неразветвленных сетях малой протяженности.

Компенсированная нейтраль

Большие емкостные токи ОЗЗ приходится снижать. Для этого сеть с изолированной нейтралью дополняется установкой компенсации. В состав ее входит силовой трансформатор с первичной обмоткой, соединенной в звезду и имеющей вывод нейтрали. Вторичная обмотка его иногда не используется, а может питать какую либо нагрузку.

Нейтраль трансформатора установки компенсации заземляется через дугогасящую катушку (катушку Петерсона), представляющую собой реактор с изменяемой индуктивностью.

Обмотка его находится на магнитопроводе и помещена в бак с маслом, как у обычного трансформатора. Регулировка индуктивности осуществляется либо переключением отводов, либо путем изменения зазора в магнитопроводе. В сетях 35кВ распространен способ подключения катушки непосредственно к нейтрали силового трансформатора. Настройка катушки возможна в резонанс с емкостью сети, но тогда ток ОЗЗ исчезает совсем. Его не зафиксировать стандартными элементами защиты, состоящими из ТТНП и токового реле, реагирующего на ток нулевой последовательности.

Чтобы защита работала, используют режим работы катушки с перекомпенсацией. Но использование компенсированного заземления не избавляет сеть от опасных перенапряжений, не устраняет проблему ферромагнитного резонанса. Оно всего лишь снижает токи ОЗЗ.

Про ферромагнитный резонанс смотрите в видео ниже:

Но и это может обратиться во вред: неразвившееся повреждение в кабельной линии в дальнейшем сложнее найти.

Тем не менее, установки компенсации встраиваются во все разветвленные и протяженные сети 6-35 кВ РФ.

Высокоомное резистивное заземление нейтрали

Парадокс в том, что многие основные руководящие документы в РФ, в том числе ПУЭ, ПТЭЭС и ПТЭЭП, не слишком подробно повествуют о резистивном заземлении нейтрали. Хотя польза от него очень ощутима. neitral transa 2 Есть два случая высокоомного заземления:

  1. Первый – установка резистора в нейтраль трансформатора, аналогично дугогасящему реактору.
  2. Второй – использование для этой цели обмотки, соединенной в разомкнутый треугольник.

Высокоомным заземление называется потому, что сопротивление резистора выбирается из соображений возможности длительной работы сети с ОЗЗ.

Но при этом сохраняются достоинства сети с изолированной нейтралью: есть время на поиск повреждения. Но при этом снижаются величины перенапряжений путем шунтирования емкостей фаз сети резистором.

Что приводит к ускорению их разряда при погасании дуги, что в свою очередь снижает потолочное значение, до которого они успевают зарядиться. В итоге минимизируется риск выхода из строя изоляции электрооборудования от перенапряжений, а также – уменьшается до минимума вероятность возникновения феррорезонансных явлений.

Про резистивное заземление нейтрали можно посмотреть в видео ниже:

Низкоомное заземление нейтрали

Уменьшение сопротивления резистора необходимо в случае, если требуется обеспечить быстродействующее отключение присоединения с ОЗЗ релейной защитой.

При этом еще больше снижается величина перенапряжений, что приводит к повышению степени безаварийности работы электрооборудования.

Увеличение тока КЗ через низкоомный резистор приводит к необходимости увеличения его способности отводить тепло. Если это невозможно, то предусматривается ограничение длительности протекания тока с помощью устройств РЗА. При срабатывании защиты резистор отключается, и нейтраль переводится в изолированный режим работы.

Есть и второй вариант: перевод нейтрали через заранее установленное время, необходимое для ликвидации повреждения в ней устройствами РЗА, с низкоомного заземления на высокоомное. Режим низкоомного заземления иногда применяется в комбинации с установками компенсации емкостных токов. В случае фиксации ОЗЗ к сети кратковременно подключается резистор, помогающий срабатывать устройствам защиты. neitral transa 3

Эффективно заземленная нейтраль

Схемы непосредственного заземления нейтралей трансформаторов используются в сетях 110 кВ и выше.

Главная задача при таком режиме работы – получение сравнительно больших токов ОЗЗ для облегчения их фиксации и отключения релейной защитой. Однако при этом увеличиваются капиталовложения на обустройство контуров заземления, по сравнению с электроустановками, имеющими изолированную нейтраль.

А при питании повреждения от нескольких источников одновременно величина тока КЗ в месте ОЗЗ значительно превышает их величины при междуфазных КЗ.

Для исключения этого недостатка нейтрали трансформаторов, подключенных к линии с нескольких сторон, не соединяют с землей одновременно: соединение выполняется на одном из них. За этим следят оперативные работники, занятые эксплуатацией сетей.

pue8.ru

Глухозаземлённая нейтраль - ElectrikTop.ru

Глухозаземлённая нейтраль

Глухозаземленной нейтралью называется общая точка соединения типа «звезда» выходных обмоток трехфазного трансформатора или генератора, если она имеет непосредственное (или через сопротивление малой величины) соединение с физической землей. В нашей стране она используется только в электрических линиях напряжением 0,4 кВ.

Зачем заземлять нейтраль

Подключение общей точки выходных обмоток силовых трансформаторов с физической землей осуществляется с тремя целями:

  1. Для обеспечения безопасности людей, обслуживающих электроустановки, и их самих.
  2. Для поддержания качества подаваемой электроэнергии в пределах отраслевых норм.
  3. Получения напряжения бытового номинала 220 вольт.

Обеспечение безопасности людей

Глухозаземленная нейтральВ нашей стране все электрические сети напряжением 0,4 кВ делаются четырехпроводными и с глухозаземленной нейтралью, причем дублирование соединения нейтрального проводника (он тянется от общей точки соединения трех обмоток трансформатора силовой подстанции) с физической землей, осуществляется на каждой третьей опоре. Это делается с той целью, чтобы сопротивление заземления всегда было не более единиц Ом.

При надежном соединении нейтрали с землей случайное прикосновение к одной фазе не приведет к поражению электрическим током человека, если на нем обувь с подошвой, имеющей диэлектрические свойства. По той причине, что общее сопротивление линии рука – нога равно не менее 1 кОм, а это в десятки раз больше, чем у проводника, соединяющегося с заземлителем. Ток через человека просто не пойдет.

Если нейтральный проводник заземлен, то однофазное замыкание на физическую землю сопровождается лавинообразным ростом силы тока, что сопровождается возникновением электрической дуги и выделением большого количества тепла, в результате чего аварийный проводник плавится и его контакт с землей прекращается.

Путь протекания тока при поражении человека в сетях 0,4к.в

Чтобы ускорить процесс отключения, в линии устанавливаются автоматические электромагнитные выключатели, которые обесточивают ее при возникновении сверхтоков (КЗ). Это снижает время действия электрического тока на людей или электроустановки. Что дает шанс на то, что первые останутся живы и относительно невредимы, а вторые – работоспособными.

Поддержание качества подаваемой электроэнергии

В общем для трех обмоток трансформатора проводнике сила тока равна нулю и нет напряжения электрического поля. Это является результатом сложения трех векторов сил тока, угол (фазный сдвиг) между которыми равен 1200. Но так происходит только в том случае, если все три фазы симметричны друг другу по электрическим параметрам. В реальности они могут отличаться, что приведет к тому, что в нейтрали возникнет ток, а потребителю будет подано, например, не 380, а 320 или 450 вольт. Заземление нейтрали в трехфазной сети принудительно выравнивает фазы, благодаря тому, что паразитный ток стекает на землю.

Это особенно актуально в том случае, если электроэнергия подается для питания однофазных потребителей. Оно осуществляется прокладыванием трехфазной линии с общей нейтралью (четыре провода) и подключением групп потребителей к разным фазам. Поскольку уровень энергопотребления в квартирах существенно отличается – в одной, например, включен только телевизор, а в другой еще и стиральная машина, перекос фаз может достигать критического уровня.

Графическое представление результата смещения нейтрали

Если соединение с заземлителем недостаточно надежно и имеет большое сопротивление, нейтральный провод, который обычно делают меньшего сечения, чем фазный, может отгореть. Это приводит к тому, что у кого-то напряжение на вводах будет почти 380 вольт, а у других около 110. Оба режима опасны для бытовых приборов и могут привести к электротравме людей или животных.

Бытовой номинал напряжения

Бытовое напряжение 220 вольт снимается между фазной линией и нейтралью, от линейного (между фазами) оно отличается в 1,7 раза. Для обеспечения стабильности его значения нейтраль заземляется.

Схемы подключения заземленной нейтрали

Существует несколько схем глухозаземленной нейтрали.

  • TN-C. Самая простая и наиболее распространенная в сельской местности схема. Четырехпроводная воздушная линия – три фазных и одна нейтраль, которая заземляется сначала у трансформатора, а потом на промежуточных столбах. Используется для питания одно- и трехфазных потребителей.
  • ТТ. Улучшенный вариант глухозаземленной нейтрали TN-C. Отличается от нее независимым заземляющим контуром, устраиваемым в здании или рядом с ним. К нему присоединяются корпуса бытовых электроприборов. Используется при подключении вновь построенных частных домов к четырехпроводным воздушным линиям электроснабжения.
  • TN-S. Применяется при прокладке подземных электролиний в пределах жилых кондоминиумов. Пять жил. Три токоведущих, одна нейтраль «звезды» (технологический 0) и защитный заземляющий проводник PE. Последние две соединены с заземлителем силовой подстанции. Применяется для подачи электричества группам однофазных потребителей.
  • TN-C-S. Используется при индивидуальном питании однофазных потребителей от подъездного распределительного щитка. Три линии – фазная, технологический ноль N и защитный проводник PE. Место подключения провода PE – к нейтрали подстанции или к независимому заземляющему контуру – не имеет значения.

Подробнее с системами заземления можно ознакомиться здесь.

Заземление и зануление

Из-за того, что технологическая нейтраль обмоток трансформатора заземляется, существует путаница в применение проводников N и PE.

Правила устройства электроустановок четко определяют, что технологическую нейтраль – провод N – можно подключать к корпусам электроприборов только в трехфазной сети. Именно в этом случае по нему не течет ток и потому он называется нулевым проводником, а способ его подключения занулением.

При питании однофазных потребителей по проводу N течет ток. Поэтому его категорически нельзя подключать к корпусу электроприбора. Во-первых, это опасно из-за возможности поражения людей электрическим током. Во-вторых, питание на потребителя не будет подано, поскольку между его схемой и корпусом нет электрической связи.

ВНИМАНИЕ! Корпус однофазного бытового электроприбора можно только заземлять, подключая к проводнику PE!

Аналогичной ошибкой является подключение к клемме N АВДТ или УЗО защитного проводника PE. Если PE подключен к входу и выходу, то защита не будет срабатывать. А при разноименной коммутации, например, провод N на входе, а PE на выходе, будет, наоборот, происходить постоянное отключение.

Глухозаземленная нейтраль не является гарантированной защитой от поражения людей электрическим током. Она только снижает тяжесть последствий. Поэтому соблюдение правил электробезопасности в любом случае обязательно.

electriktop.ru

Глухозаземленная нейтраль. Устройство и работа. Применение

Схема сети с глухозаземленной нейтралью служит для защиты человека от поражения электрическим током. В аварийных случаях глухозаземленная нейтраль выравнивает потенциалы, вследствие чего касание человека к металлическим частям электрооборудования становится безопасным.

Защитное устройство также сыграет свою роль в аварийных ситуациях, отключив подачу питания, так как при коротких замыканиях сила тока в сети возрастает.

Глухозаземленная нейтраль — устройство и работа

Питание потребителей электрической энергией производится с помощью силовых трансформаторов и генераторов. Чаще всего обмотки трех фаз этих устройств соединены по схеме звезды, в которой общая точка является нейтралью. Если эта нейтраль соединена с заземлением через малое сопротивление, либо напрямую, непосредственно возле источника питания, то ее называют глухозаземленная нейтраль.

Рис 1

Применяются также и другие режимы работы нейтрали с заземлением, в зависимости от режимов работы сети при замыканиях на землю, необходимых методов защиты человека от удара током, методов ограничения перенапряжений с:
  • Эффективно заземленной нейтралью.
  • Незаземленной нейтралью.
  • Компенсированной нейтралью.

Такие режимы используются для электрических устройств на 6 киловольт и более. Изолированная нейтраль используется до 1 кВ, и не нашла широкого применения. Она делает безопасной работу только передвижных устройств, в которых невозможно выполнить контур заземления.

Монтаж на нейтрали устройств компенсации дает возможность снизить емкостный ток замыкания устройств, действующих с напряжением более 1 кВ. Компенсация производится с помощью катушек индуктивности, вследствие чего ток в точке замыкания становится нулевым. Для эффективной работы защиты применяется заземление нейтрали резистором. Он образует активную часть тока, на который действует защитное реле.

Глухозаземленная нейтраль является наиболее эффективным способом защиты людей от поражения током. Она применяется в большинстве электрических сетей питания. Напряжение между фазами называется линейным, а между фазой и нолем – фазным. Номинальное напряжение электроустановки определяется по линейному значению напряжения. Оно может быть 220, 380, 660 вольт. В бытовых сетях питания напряжение равно 380 вольт.

Однофазные потребители подключаются между фазами и нолем равномерно. Силовой трансформатор на подстанции имеет заземляющий контур. В него входят металлические детали, соединенные между собой, и углубленные в землю. Размеры контура определяют с учетом эффективного распределения тока по земле при замыкании.

Работоспособность заземления определяется величиной сопротивления растекания тока. Допустимые величины этого параметра указаны в правилах электроустановок. Для электроподстанций сопротивление заземления не должно быть выше 4 Ом при напряжении 380 вольт.

Заземляющий контур соединяется с нулевой шиной, выполненной в виде металлической полосы. К ней подключается провод нулевого вывода трансформатора. Также к ней подключаются жилы кабелей, которые отходят к потребителям. Фазы подключаются к автоматическим выключателям, рубильникам, контактам предохранителей.

Кабели, отходящие от подстанции, имеют четыре жилы. В кабелях старого образца могут быть три жилы в алюминиевой оболочке, которая выступает в качестве провода ноля. Для ввода питания существуют вводные распределительные устройства, которые содержат шину ноля. К ней присоединяют нулевые жилы отходящих и питающих кабелей. Вводное устройство может иметь контур повторного заземления, подключенного также к шине ноля.

Чтобы понять, как работает глухозаземленная нейтраль, рассмотрим аварийный режим.

Пример аварийного случая

На некотором электрооборудовании, на котором работают люди, произошел обрыв провода фазы. При этом фазный провод прикоснулся к металлическим корпусным элементам. В результате возникло короткое замыкание, при котором резко повысилась сила тока. Плавкий предохранитель или электрический автомат сработают и отключат питание сети.

Резистор R0 (Рис. 1) будет иметь меньшее сопротивление, нежели сопротивление по пути протекания тока по телу человека, который случайно прикоснулся фазного проводника. Это исключает удар электрическим током.

В теории потенциал провода ноля относительно земли имеет нулевое значение. Повторное заземление в электроустановке потребителя упрочняет эту нулевую величину.

Возможные случаи поражения людей током:
  • Ошибки при эксплуатации и ремонте, которые приводят к прикосновению к частям и элементам оборудования, находящегося под напряжением.
  • Повреждение изоляции в электрооборудовании, в результате чего металлический корпус попадает под напряжение.
  • Повреждение изоляции токоведущих элементов или неисправность электрооборудования, вследствие чего на поверхности пола возникает зона разности потенциалов, которая создает опасность для прохождения в ней людей. Это называется шаговым напряжением.
  • Повреждение изоляции кабелей и проводников, вследствие чего металлические конструкции, по которым проходят кабели, оказываются под напряжением.

Чтобы исключить аварийные случаи, корпуса устройств соединяют с заземлением. В промышленности по периметру цехов прокладывают металлическую полосу, к которой подключают все металлические элементы. Таким образом уравниваются потенциалы с землей.

При замыкании фазы на корпус заземленного устройства, ток будет протекать к заземлению, даже при отказе защитных устройств. Сопротивление тела человека относительно земли значительно выше сопротивления между корпусом устройства и землей. Таким образом, человека спасает глухозаземленная нейтраль.

Другим принципом защиты является быстрое обесточивание сети. Этому способствует защитное устройство в виде автоматического выключателя, либо предохранителя.

Шаговое напряжение действует следующим образом. Если на влажном бетонном полу лежит неизолированный проводник, находящийся под напряжением, то подходить к нему очень опасно. Напряжение отходит от него волнами, подобно кругам на воде. При попадании ног человека в эту зону, возникает удар электрическим током.

Чтобы защитить людей от шагового напряжения, в полу помещения встраивают металлическую сетку, которая в разных местах соединяется с заземляющим контуром. Этим способом ноги человека шунтируются металлической арматурой решетки, и основная часть электрического тока пройдет мимо человека.

Требования ПУЭ

Заземление должно подключаться к устройству специальным проводником. Для сокращения пути протекания электрического тока и уменьшения затрат, подбирают место непосредственно рядом с источником напряжения, например, трансформатором. Имеется ограничение, заключающееся в том, что если заземлителем является имеющийся бетонный фундамент, то к арматуре бетонного основания, выполненного из металла, подключение выполняют в двух и более местах.

Подобное число подключений выполняют к каркасам из металла, которые расположены в глубине грунта. При таких условиях система заземления способна достаточно эффективно защитить человека от неприятных ситуаций.

Если в качестве источников питания выступают трансформаторы, находящиеся на разных этажах здания, то подключение к нейтрали производится отдельным проводом, который подключают к металлическому каркасу всего строения.

В цепи подключения заземления не должно находиться предохранителей, плавких вставок и других компонентов, которые могут нарушить неразрывность этой цепи. Также принимают вспомогательные меры, которые препятствуют механическим повреждениям.

Некоторые ограничения ПУЭ
  • Если на рабочих, защитных или нулевых проводниках установлен токовый трансформатор, то провод заземлителя монтируется сразу за этим устройством, к нейтральному проводнику.
  • Сопротивление заземляющего устройства в сети 220 вольт ограничивается наибольшей величиной 4 Ом, за исключением особых свойств земли, которые создают повышенное сопротивление более 100 Ом на метр.
  • на воздушных линиях передач заземление устанавливают на конце и на вводе линии для дублирования заземления. Это дает возможность эффективной работы защитных устройств. Это правило используют в случае, когда нет надобности в монтаже большого числа устройств, которые могут устранить перенапряжения при ударах молнии.
    • При выборе проводников для устройства заземления необходимо применять нормативы по наименьшим допустимым размерам и материалу проводников, применяющихся для повторного заземления, проложенного в земле.
Например, если используется стальной уголок, то толщина его стенки должна быть не менее 4 мм. Общая площадь сечения для проводов заземления, соединяющихся с основной шиной, согласно п. 1.7.117 ПУЭ, должна быть:
  • 10 мм2 – медный провод.
  • 16 мм2 – алюминиевый проводник.
  • 75 мм2 – стальной проводник.

Электрический автомат, устанавливаемый для защиты, должен иметь скорость срабатывания при коротком замыкании более 0,4 с при 220 вольт.

В бытовой сети согласно п. 7.1.36 ПУЭ требуется прокладывать сеть к потребителям от общих щитков тремя проводниками: фаза, рабочий ноль и защитное заземление (глухозаземленная нейтраль). Однако во многих квартирах это требование нередко нарушается, что подтверждается отсутствием в розетках заземляющего контакта.

Старые нормативные требования для отечественных зданий были определены для незначительных мощностей. На сегодняшний день мощности бытовых электрических устройств значительно повысились. В квартирах появились кондиционеры, варочные панели, духовые шкафы, которые имеют повышенную мощность.

Для повышения эффективности защиты в современных квартирах обязательным условием является наличие заземления. В новых домостроениях глухозаземленная нейтраль уже заложена в стандартных проектах. В старых постройках хорошие хозяева монтируют заземление при капитальном ремонте.

Похожие темы:

electrosam.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *