Закрыть

Какое сопротивление должно быть на заземлении – Норма сопротивления контура заземления | Элкомэлектро

Содержание

Норма сопротивления контура заземления | Элкомэлектро

О компании » Электролаборатория » Контур заземления » Норма сопротивления контура заземления

Очень часто энергетики спорят на тему, какие должны быть нормы растекания тока контура заземления? Какова величина сопротивления контура заземления? Какое допустимое сопротивление контура заземления? Как правило, в таких спорах можно услышать разные цифры, одни называют 4 Ом, от других можно услышать 20 Ом, некоторые специалисты говорят, что сопротивление контура заземлителя не нормируется. Так какие же должны быть нормы и почему такая путаница?

Какие бывают испытания?

Начну с того, что поясню, какие бывают испытания.  Электролаборатория проводит приёмо-сдаточные или эксплуатационные испытания. Приёмо-сдаточные испытания проводятся после окончания монтирования новой электроустановки, после того как, электроустановка смонтирована и сдана в эксплуатацию, с этого момента начинаются эксплуатационные испытания. Соответственно приёмо-сдаточные испытания проводятся только один раз, после окончания электромонтажных работ, а эксплуатационные испытания проводятся периодически, в процессе эксплуатации.

И так, существуют приёмо-сдаточные и эксплуатационные испытания. Приёмо-сдаточные испытания регламентируются Правилами Устройства Электроустановок (ПУЭ), а эксплуатационные Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

Почему спорят специалисты?

Наконец, мы подошли к самому главному. Почему спорят специалисты, почему такие разные цифры они называют?

Во первых, нужно понять о каких испытаниях идёт речь. Если разговор идёт о приёмо-сдаточных испытаниях, то ответ нужно смотреть в ПУЭ, Глава 1.8, Нормы приёмо-сдаточных испытаний, а если об эксплуатационных, то ответ ищем в ПТЭЭП, Приложение 3, Нормы испытаний электрооборудования и аппаратов электроустановок потребителей.

Во вторых нужно понять предназначение контура заземления. Контур заземления бывает для подстанций и распределительных пунктов выше 1000 Вольт, воздушных линий электропередач до 1000 Вольт и выше 1000 Вольт и электроустановок до 1000 Вольт.

Какие нормы?

1. Контур заземления для электроустановки напряжением до 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт.

ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления — 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока.

2. Контур заземления для трансформаторной подстанции и распредпунктов напряжением больше 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом.

ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом.

В электроустановке 3 — 35 кВ сетей с изолированной нейтралью — 250/Ip, но не более 10 Ом, где Ip — расчетный ток замыкания на землю.

3. Контур заземления воздушной линии электропередачи напряжением выше 1 кВ:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 2 гласит: Заземляющие устройства опор высоковольтной линии (ВЛ) при удельном сопротивлении грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10, 15, 20 и 30 Ом соответственно.

ПТЭЭП, Приложение № 31, таблица 35, п. 4 гласит:

А. Для воздушных линий электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 — 20 кВ в
населенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м.

Б. Для воздушных линий электропередач на напряжение до 1000 Вольт:

Опора ВЛ с грозозащитой – 30 Ом, Опоры с повторными заземлителями нулевого провода – 15, 30 и 60 Ом для напряжений питающей сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Подведём итог

Для электромонтажников, работающих в сетях напряжением ниже 1000 Вольт:

Сопротивление растекания контура заземления на вновь построенной электроустановке должно быть 15, 30 или 60 Ом или 2, 4 и 8 Ом при измерении с присоединёнными естественными заземлителями и повторными заземлителями отходящих линий для напряжений питающей сети 660-380, 380-220 или 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Сопротивление растекания контура заземления на уже эксплуатирующейся электроустановке, тоже 15, 30 и 60 Ом или 2, 4, 8 Ом при измерении с присоединёнными естественными и повторными заземлителями для напряжений сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Как видим, значения сопротивления контура заземления одинаковы, не зависимо от вида испытаний, но разные в зависимости от назначения контура заземления!

www.megaomm.ru

Сопротивление заземления

Сопротивление заземления (сопротивление растеканиЮ электрического тока) определяется как величина «противодействия» растеканию электрического тока в земле, поступающего в нее через заземлитель.

Измеряется в Ом и должно иметь минимально низкое значение. Идеальный случай — нулевая величина, что означает отсутствие какого-либо сопротивления при пропускании «вредных» электротоков, что гарантирует их ПОЛНОЕ поглощение землей.

Так как идеала достигнуть невозможно, все электрооборудование и электроника создаются исходя из некоторых нормированных величин сопротивления заземления = 60, 30, 15, 10, 8, 4, 2, 1 и 0,5 Ом.

  • для частных домов, с подключением к электросети 220 Вольт / 380 Вольт необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом

    При подключении локального заземления к нейтрали трансформатора / генератора в системе TN суммарное сопротивление заземления (локального + всех повторных + заземления трансформатора / генератора) должно быть не более 4 Ом (ПУЭ 1.7.101). Данное условие выполняется без каких-либо дополнительных мероприятий при правильном заземлении источника тока (трансформатора либо генератора)

Подробнее об этом на странице «Заземление дома».

  • при подключении газопровода к дому должно выполняться стандартное требование для заземления дома. Однако из-за использования опасного оборудования необходимо выполнять локальное заземление с сопротивлением не более 10 Ом
    (ПУЭ 1.7.103; для всех повторных заземлений)

    Подробнее об этом на странице «Заземление газового котла / газопровода».


  • для заземления, использующегося для подключения молниеприемников, сопротивление заземления должно быть не более 10 Ом (РД 34.21.122-87, п. 8)

    Подробнее об этом на странице «Молниезащита и заземление».


  • для источника тока (генератора или трансформатора) сопротивление заземления должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока (ПУЭ 1.7.101)

  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.

  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление
    не более 2 или 4 Ом

  • для подстанции 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)

Приведенные выше нормы сопротивления заземления справедливы для нормальных грунтов с удельным электрическим сопротивлением
не более 100 Ом*м (например, глина / суглинки).

Если грунт имеет более высокое удельное электрическое сопротивление — то часто (но не всегда) минимальные значения сопротивление заземления повышаются на величину 0,01 от удельного сопротивления грунта.

Например, при песчаных грунтах с удельным сопротивлением
500 Ом*м минимальное сопротивление локального заземления дома с системой TN-C-S повышается в 5 раз — до 150 Ом (вместо 30 Ом).

zandz.com

Сопротивление заземление: нормы, испытания. Переходное заземление

Основной характеристикой заземляющего защитного устройства является сопротивление. Сопротивление заземления включает в себя сопротивление грунта, проходящего через него тока, сопротивление заземлителя и сопротивление проводников. Две последние величины зачастую имеют малые значения по сравнению с сопротивлением растекания тока.

Заземление, которое проходит в доме требует проверки, для удостоверения в своей исправности. После окончания работ по монтажу заземления, вся защитная линия подвергается тщательному осмотру и диагностики на предмет невредимости и правильности соединения.

Нормы сопротивления заземления

Идеальное сопротивление заземления равно нулю, но таких данных добиться практически невозможно. Поэтому было создано нормирование данных величин, опубликованных в правилах устройства электроустановок (ПУЭ). Данные нормы сопротивления подходят для грунта, способствующего наилучшему растеканию электрического тока – глина, суглинок, торф. Также показатель сопротивления зависит от погоды и климата на местности монтажа защитного устройства.

Так, согласно ПУЭ для жилищ частного сектора, следует иметь заземление локализованного значения с указанными данными составляющими не более 30 Ом., при подключении электрической сети 220/380 Вольт.

В не зависимости от погодных условий значение сопротивления должно соответствовать таким показателям: 2 Ома для 380 Вольт однофазного тока и 660 Вольт трехфазного тока; 4 Ома для 220 Вольт однофазного тока и 380 Вольт трехфазного тока; 8 Ом для 127 Вольт однофазного тока и 220 Вольт трехфазного тока.

Заземлителю, проходящего вблизи от нейтрали трансформатора или генератора, должно принадлежать сопротивление: не более 15 Ом для напряжения 380 Вольт однофазного тока и 660 Вольт трехфазного тока; не более 30 Ом для напряжения 220 Вольт однофазного тока и 380 Вольт трехфазного тока; не более 60 Ом для напряжения 127 Вольт источника однофазного тока и 220 Вольт источника трехфазного тока.

Какое должно быть сопротивление заземления

Одним из основных критериев продуктивности любого помещения защитного заземления является сопротивление заземления. Это значение показывает противодействие беспрепятственному распространению электрического тока в слоях земли, поступающего в грунт через защитное устройство – заземлитель.

В лучшем случае этот показатель сопротивления равен нулю. При данной величине электрический ток поглощается полностью. В практическом плане такого показателя добиться невозможно. Для правильной работы электрооборудования и надежной защиты граждан допускается конечное значение 0,5 Ом для всего защитного устройства.

Переходное сопротивление заземления

Схема заземления включает в себя множество элементов, соединенных между собой. В случае обрыва, распайки швов или окисления соединений данный показатель начинает увеличиваться, что приводит к ухудшению эффективности защитной системы. При существовании большой массы потребителей и наличие значимых соединений в заземляющей схеме данная величина возрастает.

В промежутках соединений элементов заземления определяют переходное сопротивление. Для контактирующего соединения допускается максимальное значение 0,05 Ом. В случаях, когда данный показатель выше 0,05 Ом, это говорит о неработоспособности системы. Такие неисправности необходимо устранять, так как увеличенное сопротивление, делает защитные функции системы ничтожными.

Переходное сопротивление в заземляющем устройстве называется металлосвязью. Она характеризует соединение в цепи между заземляющим устройством и заземляемым электрооборудованием. Дефекты, возникающие в металлосвязи, ведут к короткому замыканию. Цель замеров сопротивления металлосвязи — определение наличия повреждения на отрезке участка электрооборудования и заземляющего устройства.

Основной характеристикой металлосвязи является сопротивление измеряемой части заземляющей системы, которое должно соответствовать 0,05 Ом. В ходе проверки исследуются надежность и правильность соединений посредством визуального осмотра. Качество сварочных швов проверяется ударом тяжелого молотка. В ПУЭ оговаривается, что заземляющие проводники должны быть надежно скреплены, что обеспечивает целостность электрической линии.

Заземляющие проводники, сделанные из стали, требуется соединять при помощи сварки. Данные участки должны быть расположены так чтобы предоставить беспрепятственный доступ для осуществления проверок, измерений, осмотров в дальнейшем времени.

Согласно требованиям ПУЭ соединения проводников и нейтралей присоединяются посредством сварки или болтов. Для присоединения электроприборов, которые постоянно монтируются, употребляются гибкие проводники.

Испытания сопротивления заземления

Существуют приемо-сдаточные и эксплуатационные испытания.

Первые на основании ПУЭ проводятся после окончания работ по установке защитного заземления. Эксплуатационным испытаниям, регламентируемым ПТЭЭП, подвергаются электроустановки, которые сданы в эксплуатацию. При данном виде испытаний, обследования проводятся на протяжении всего периода работы защитного устройства.

В соответствии с правилами измерение сопротивления заземляющей конструкции должно осуществляться один раз в шесть лет. Если есть подозрение на повреждение заземляющего устройства, такое испытание проводится чаще.

Замеры переходного сопротивления проходят не менее одного раза в год.

Кроме измерения сопротивления также при испытаниях должен происходить тщательный осмотр всех видимых частей заземляющего устройства.

Раз в 12 лет необходимо проводить детальный осмотр с частичным вскрытием грунта в местах наиболее вероятного появления коррозии. Если грунт в данном районе ведет себя агрессивно, то количество таких осмотров увеличивается.

Также один раз в шесть лет проводится проверка состояния предохранителей.

Если в результате проверки было выявлено более 50% повреждений, такую защитную конструкцию следует заменить в обязательном порядке.

uzotoka.ru

Нормы сопротивления заземляющих устройств, сопротивление заземления

Электричество, хотим мы того или нет, есть везде. В космическом пространстве, пронизывая все на своем пути, несутся бесчисленные космические лучи – электрически заряженные элементарные частицы. За пределами нашей планеты на высоте около 17 000 км над ее поверхностью находятся радиационные пояса, наполненные электрическими зарядами. На высоте 1000 км расположилась ионосфера – ионизированный космическими лучами слой воздушной оболочки Земли.

Атмосфера пронизана радиоволнами. Поверхность Земли покрыта линиями электропередачи. Например, в Беларуси по состоянию на 01.01.2017 суммарная длина воздушных линий 0.4 кВ – 750 кВ составила более 275 000 км. И, конечно же, электричество есть в каждом доме, на каждом заводе, в каждом предприятии. Сегодня все люди так или иначе взаимодействуют с электричеством, которое, однако, может быть не только другом.

Для уменьшения вероятности электротравматизма применяют защитное заземление – преднамеренное электрическое соединение с землей нетоковедущих частей, которые могут оказаться под опасным напряжением. Цель – защитить человека от действия тока в случае прикосновения к токопроводящим частям, находящимся под напряжением. Допустимое сопротивление заземляющего устройства закреплено в ПУЭ и ТКП 181-2009. Человек может по неосторожности прикоснуться непосредственно к токоведущим элементам или неосмысленно к корпусу электроустановки, на котором появилось напряжение из-за повреждения изоляции, замыкания фазы на корпус, обрыва нулевого провода в случае заземления нейтрали трансформатора и т.п. В обоих случаях через человека начнет протекать ток. Наиболее важное значение в такой экстремальной ситуации имеет величина этого тока, которая зависит от значений сопротивления земли и сопротивления заземления. В зависимости от силы ток, протекающий через пострадавшего, может вызвать три варианта развития событий:

1) Зуд, покалывание или ощущение тепла — при токе (0,5…1,5) мА;

2) Сильное непроизвольное сокращение мышц, которое может привести к тому, например, что рука, держащая проводник или рукоять, не сможет разжаться – при токе (10…25) мА;

3) Хаотическое судорожное сокращение сердца или его остановка – при токе более 50 мА.

Однако заземление используется и для целей эффективного и экономичного функционирования электрических сетей. Такое заземление называется рабочим. Поэтому при эксплуатации сетей 110 кВ и выше производят регулярное измерение сопротивления заземления, которое согласно методике расчета пропорционально зависит от удельного электрического сопротивления грунта. Этими измерениями занимаются лаборатории электрофизических измерений, у которых можно заказать испытание заземляющих устройств. После проведения измерения заказчику выдается акт проверки контура заземления.

Приведем таблицу ориентировочных величин расчетного удельного сопротивления грунта для разных пород по механическому составу и воды (все значения в Ом∙м). На территории Беларуси преобладают суглинистые и супесчаные почвы.

Глина, меловой песок

10…60

Суглинок

40…150

Супесок

150…400

Песок

От 400 до нескольких тысяч

Крупнозернистый песок, гравий, щебень

1000…10 000 или выше

Гранит, гнейс, сланец, базальт

от 1000 до нескольких десятков тысяч

Речная вода

5…100

Морская вода

0,2…1,0 или выше

Удельное сопротивление земли целесообразно измерять без нарушения целостности ее строения, поэтому наилучшим методом измерения является т.н. «метод четырех точек», при котором для измерений в землю вбиваются штыри диаметром около 1 см. Заказать измерение удельного сопротивления грунта в лаборатории электрофизических измерений «ТМРсила-М», имеющей большой опыт работы в области электроизмерений. 

Также согласно источникам приведем таблицу с нормируемыми сопротивлениями заземлений в зависимости от удельного сопротивления грунта (ПУЭ, ТКП 181-2009):

 Вид электроустановки  Характеристика заземляемого объекта  Характеристика заземляющего устройства  Сопротивление, Ом
 1. Электроустановки напряжением выше 1000 В, кроме ВЛ*  Электроустановка сети с эффективно заземленной нейтралью  Искусственный заземлитель с подсоединенными естественными заземлителями   0,5
 2. Электроустановки напряжением до 1000 В с гпухозаземлененой нейтралью, кроме ВЛ***  Электроустановка с глухозаземленными нейтрапями генераторов ипит рансформаторов или выводами источников однофазного тока

 Искусственный заземпигель с подключенными естественными заземлителями и учетом испопьзования заземпитепей повторных заземлений нулевого провода ВЛ до 1000 В при количестве отходящих линий не менее двух при напряжении источника, В:

 трехфазный               однофазный

     660                             380

     380                             220

     220                             127

 Искусственный заземпитель, расположенный
в непосредственной близости от нейтрали
генератора или трансформатора или вывода
источника однофазного тока при напряжении
источника, В:

 трехфазный               однофазный

     660                             380

     380                             220

     220                             127

 

 

 

 

 

2

4

8

 

 

 

 

15

30

 60 

 3. ВЛ напряжением выше 1000 В****

 Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, железобетонные и металлические опоры ВЛ 35 кВ и такие же опоры ВЛ 320 кВ в населенной местности, на подходах к трансформаторным подстанциям с высшим напряжением 3-20 кВ, а также заземлители электрооборудования, установленного на опорах ВЛ 110 кВ и выше

 

 Электрооборудование, установленное на опорах ВЛ 3-35 кВ

 

 Железобетонные и металлические опоры ВЛ 3-20 кВ в ненаселенной местности

 3аземпитепь опоры при удельном сопротивлении грунта р, Ом-м:

 до 100;

 более 100 до 500

 более 500 до 1000

 более 1000 до 5000

 более 5000

 

 Заземлитель опоры

 

 Заземлитель опоры при удельном сопротивлении грунта р, Ом/м:

 до 100

 более 100

 

 

10*****

15*****

20*****

30*****

6-103 р*****

 

250/l**, но не более 10

 

 

30*****

0,3р*****

 4. ВЛ напряжением до 1000 В***

 

 

 

 

 

ВЛ напряжением до 1000 В****

 

 

 

 

 Опора ВЛ с устройством грозозащиты

 Опоры с повторными заземлителями нулевого провода

 

 

 

 

 Опоры с повторными заземлителями нулевого провода

 

 

 

 

 

 Заземлитель опоры для грозозащиты

 Общее сопротивление заземления всех повторных заземлений при напряжении источника, В:

 трехфазный                  однофазный

      660                               380

      380                               220

      220                               127

 Заземлитель каждого из повторных заземлений при напряжении источника, В:

 

 трехфазный                  однофазный

      660                               380

      380                               220

      220                               127

 

 

 30

 

 

5

10

20

 

 

 

 

15

30

60

 

 

 * Для злектроустановок напряжением выше 1000 В и до 1000 В с изолированной нейтралью при удельном сопротивлении грунта р более 500 Ом-м допускается увеличение сопротивления в 0,002 р раз, но не более десятикратного.

 ** I — расчетный ток замыкания на землю, А.

 В качестве расчетного тока принимается:

 — в сетях без компенсации емкостного тока — ток замыкания на землю;

 — в сетях с компенсацией емкостного тока;

 — для заземляющих устройств, к которым присоединены дугогасящие реакторы, — ток, равный 125 % номинального тока зтих реакторов;

 — для заземляющих устройств, к которым не присоединены дугогасящие реакторы, — ток замыкания на землю, проходящий в сети при отключении наиболее мощного из дугогасящих реакторов ипи наиболее разветвленного участка сети.

 *** Для установок и ВЛ напряжением до 1000 В с глухозаземленной нейтралью при удельном сопротивлении грунта р более 100 Ом-м допускается увеличение указанных выше норм в 0,01 р раз, но не более десятикратного.

 **** Сопротивление заземлителей опор ВЛ на подходах к подстанциям должно соответствовать требованиям ТКП 339.

 ***** Для опор высотой более 40 м на участках ВЛ, защищенных тросами, сопротивление заземлитепей должно быть в 2 раза меньше приведенных в таблице.

 

tmr-power.com

Сопротивление заземляющего устройства | Заметки электрика

Здравствуйте, дорогие посетители сайта заметки электрика.

Сегодня мы узнаем какое сопротивление заземляющего устройства удовлетворяет требованиям нормативных документов.

Итак, в прошлой статье мы рассмотрели как правильно выполнить монтаж контура заземления. Но для каждого контура заземления имеется свое требование к сопротивлению.

Сопротивление заземляющего устройства, еще его называют сопротивление растекания электрического тока — это величина, которая прямо пропорциональна напряжению на заземляющем устройстве, и обратно пропорциональна току растекания в «землю».

Единица измерения — Ом.

И чем меньше это значение, тем лучше.  В идеальном случае — сопротивление заземляющего устройства должно быть равно нулю. Но реально добиться такого сопротивления просто невозможно.

И как всегда, по нормам сопротивления заземлений, обратимся к нормативному документу ПУЭ 7 издания, к главе 1.7.

ПУЭ. Раздел 1. Глава 1.7.

Для каждой электроустановки и ее уровня напряжения, в ПУЭ четко определены сопротивления заземления. 

В данной статье мы рассмотрим нормативы сопротивлений только тех электроустановок, которые нам интересны, т.е. бытового напряжения 380 (В) и 220 (В).

Вышеперечисленные нормы сопротивления заземляющих устройств относятся к грунтам, идеально подходящим для монтажа контура заземления (глина, суглинок, торф).

P.S. А на десерт, интересное видео…

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Сопротивление заземления молниезщиты — нормативы, периодичность замеров

Принцип действия громоотвода — перехват молнии и перенаправление разряда в землю для нейтрализации. Но эффективность всей системы зависит от величины сопротивления заземления молниезащиты, то есть от способности грунта поглощать электрический ток. Параметр измеряется в Ом, должен стремиться к нулю, однако, структура почв не позволяет достичь идеального значения.

Нормы для сопротивления заземления молниезащиты

В Инструкции по устройству молниезащиты РД 34.21.122-87 регламентированы максимальные значения противодействия растеканию тока для различных категорий зданий и сооружений, с учетом удельного сопротивления грунта:

  • I и II категория — 10 Ом;
  • III категория — 20 Ом;
  • Если электропроводность превышает 500 Ом*м — 40 Ом;
  • Наружные установки — 50 Ом.

Сопротивление падает в 2-5 раз при увеличении силы тока молнии.

Качество заземления молниезащиты

Ключевой параметр — сопротивление заземления — зависит от конфигурации заземлителя и удельного сопротивления почвы. Для вычисления значения существует специальная формула. Но для готовых заземлителей задача значительно упрощается: производитель предоставляет заранее подсчитанный коэффициент, который достаточно умножить на удельное сопротивление грунта, чтобы получить искомое значение.

Удельное сопротивление для различных грунтов

Значение прежде всего зависит от влажности и состава почвы, плотности прилегания пластов, наличия кислот, солей и щелочей. Вычисляется путем проведения геологических изысканий. Это комплекс сложных мероприятий, поэтому при расчетах принято использовать справочные величины:

  • Песчаный грунт, увлажненный поземными водами — 10-60 Ом*м;
  • Песок сухой — 1500-4200 Ом*м;
  • Бетон — 40-1000 Ом*м;
  • Чернозем — 60 Ом*м;
  • Глина — 20-60 Ом*м;
  • Илистая почва — 30 Ом*м;
  • Садовая земля — 40 Ом*м;
  • Супесь — 150 Ом*м;
  • Суглинок полутвердый — 100 Ом*м;
  • Солончак — 20 Ом*м.

На практике сопротивление молниезащиты всегда будет ниже расчетного значения: при погружении электрода в землю значительно снижается удельное сопротивление из-за уплотнения и увлажнения почвы грунтовыми водами.

Требования к заземлителю

Согласно РД 34.21.122-87 для заземления необходимо не менее трех электродов вертикального типа. Расстояние между ними — как минимум в два раза больше, чем глубина погружения. Кроме того, СО 153-34.21.122-2003 требует, чтобы расстояние от стен здания до электродов было не менее 1 метра.

Уменьшение сопротивления заземления

Поскольку удельное сопротивление почвы — величина относительно постоянная, для увеличения электропроводности необходимо изменять конфигурацию заземлителя: увеличивать площадь соприкосновения электродов с грунтом. Можно удлинить проводник или создать контур заземления: несколько отдельно стоящих электродов соединяются в единую сеть. В расчет берется сумма площадей.

Современные заземлители — эффективны и просты в установке. Электроды заглубляются до 30 метров. Благодаря этому удается значительно уменьшить общую площадь, компактно разместить заземлитель молниезащиты в условиях ограниченного пространства. Для монтажа не нужны специальные инструменты, штыри стыкуются между собой муфтой с резьбовым соединением. Медное покрытие электродов обеспечивает защиту от коррозии, увеличивая срок службы до 100 лет!

Измерение сопротивления заземления и периодичность проверок

Производятся с помощью специальных приборов (измерительных комплексов) по заданной схеме измерений в нескольким точках смонтированного контура молниезащиты. Данные показаний заносятся в специальную форму — протокол проверки сопротивлений заземлителей и  заземляющих устройств.

Замеры производят всегда по окончании монтажа системы молниезащиты и заземления, а также после выполнения ремонтных работ как на устройствах молниезащиты, так и на самих защищаемых объектах и вблизи них. Полученные данные заносят в акты (протоколы проверок), паспорта заземляющих устройств и журналы учета.

Примеры протоколов и паспортов можно посмотреть по этой ссылке.

Кроме внеочередных мероприятий существует регламент проведения измерения значений сопротивления, которые осуществляют для разных категорий зданий и сооружений с следующей периодичностью: для категории I II — 1 раз в год перед сезоном гроз, для III категории — не реже 1 раза в 3 года, для взрывоопасных объектов и производств — не реже 1 раза в год.

Важно использовать при этом приборы, поверенные должным образом, а также правильно выбрать точки измерений. Вот почему необходимо обращаться при этом в специализированные организации, которые имеют в своем распоряжении квалифицированный персонал и необходимые приборы, а также могут гарантировать вам качество работ на определенное время.

Компания «МЗК-Электро» предлагает квалифицированный монтаж заземления. Опытные специалисты проведут необходимые расчеты, подберут оптимальное по стоимости и эффективности решение для конкретного объекта. В работе используем сертифицированное оборудование от ведущих производителей. Доверьте проектирование громоотвода профессионалам — вы гарантированно получите надежную молниезащиту!

www.mzke.ru

Сопротивление заземления | | Электрика в квартире, ремонт бытовых электроприборов

Автор DUNDUK На чтение 3 мин. Опубликовано

Сопротивление заземления  — это противодействие грунта (земли) растеканию по нему электрического тока, поступающему через заземлители.

Как мы знаем из курса физики, сопротивление измеряется в Ом и чем оно меньше, тем лучше. Идеальный вариант — это нулевое значение, означающее отсутствие вообще какого-либо сопротивления.

Такого идеала в природе не существует, поэтому все электрооборудование и электроника нормируются величинами сопротивления заземления  в 60, 30, 15, 10, 8, 4, 2, 1 и 0,5 Ом.

При подключении локального заземления к нейтрали трансформатора / генератора в системе TN суммарное сопротивление заземления (локального + всех повторных + заземления трансформатора / генератора) должно быть не более 4 Ом (ПУЭ 1.7.101). Данное условие выполняется без каких-либо дополнительных мероприятий при правильном заземлении источника тока (трансформатора либо генератора).

Что касается частных домов, имеющих электрическую сеть на 220/380 Вольт, то величина сопротивления заземления не должна превышать значение в 30 Ом.

Если к частному дому подключен газопровод, то сопротивление заземления должно быть не более 10 Ом, так как используется опасное оборудование.

Заземление, используемое для подключения молниеприемников, обязано иметь сопротивление не более 10 Ом.

Для источника тока (генератора или трансформатора) сопротивление заземления должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока (ПУЭ 1.7.101)

Для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.

При подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом.

Для подстанции 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90).
Приведенные выше нормы сопротивления заземления справедливы для нормальных грунтов с удельным электрическим сопротивлением не более 100 Ом*м (например, глина / суглинки).

Если грунт имеет более высокое удельное электрическое сопротивление — то часто (но не всегда) минимальные значения сопротивление заземления повышаются на величину 0,01 от удельного сопротивления грунта.

Например, при песчаных грунтах с удельным сопротивлением 500 Ом*м минимальное сопротивление локального заземления дома с системой TN-C-S повышается в 5 раз — до 150 Ом (вместо 30 Ом).

Качество заземления

Сопротивление заземления является основным качественным показателем заземлителя и напрямую зависит от:

  • удельного сопротивления грунта;
  • конфигурации заземлителя, в частности: площади электрического контакта электродов заземлителя с грунтом.

Удельное сопротивление грунта

Параметр определяет собой уровень «электропроводности» земли как проводника — как хорошо будет растекаться в такой среде электрический ток, поступающий от заземлителя. Чем меньший размер будет иметь эта величина, тем меньше будет сопротивление заземления.

Удельное электрическое сопротивление грунта (Ом*м) — это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, его влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Обычно используется таблица ориентировочных величин «удельное сопротивление грунта», т.к. его точное измерение возможно только в ходе проведения специальных геологических изыскательных работ.

Конфигурация заземлителя

Сопротивление заземления напрямую зависит от площади электрического контакта электродов заземлителя с грунтом, которая должна быть как можно большей. Чем больше площадь поверхности заземлителя, тем меньше сопротивление заземления.

Чаще всего, из-за наименьшей сложности монтажа, в роли заземлителя используется вертикальный электрод в виде стержня/трубы/уголка.

Для увеличения площади контакта заземлителя с грунтом:

• увеличивается длина (глубина) электрода;
• используется несколько соединенных вместе коротких электродов, размещенных на некотором расстоянии друг от друга (контур заземления). В таком случае площади единичных электродов просто складываются вместе, что подробно описано на отдельной странице о расчете заземления.

elektrikdom.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *