Закрыть

Подключение двигателя 380 к сети 220: Подключение электродвигателя 380В на 220В

Как подключить электродвигатель с 380 на 220: способы и схемы

Многими практиками доказана эффективность трехфазных асинхронных электродвигателей. Однако для ее использования необходимо подключение трехфазного питания, которое, увы, присутствует далеко не у каждого в доме. Но если вы задаетесь вопросом, как подключить электродвигатель с 380 на 220 В, мы рассмотрим возможные варианты включения трехфазных электрических машин в домашних условиях.

Содержание

Общие правила

Перед началом включения обязательно проверяется величина напряжения, на которое рассчитан электродвигатель – если подключить разность потенциалов больше указанной, обмотки перегреются, если низкое, он не запустится.

Как правило, на асинхронных машинах указывается сразу два параметра, реже только один:

  1. 660/380 В;
  2. 380/220 В;
  3. 220/127 В.

Номинал определяется совместно со схемой соединения обмоток – звезда или треугольник. В первом случае обмотки имеют общую точку, а фазные провода соединяются с остальными тремя выводами катушек. Во втором, конец одной обмотки присоединяется к началу следующей таким образом, что образуется замкнутый контур. Одни агрегаты включаются только звездой, другие, треугольником, а некоторые можно самостоятельно подключать любым из способов, обе характеристики указаны на шильде электродвигателя.

Для треугольника используется меньшее напряжение, а для звезды большее из двух указанных. Отличие в том, что трехфазные двигатели, соединенные звездой,  будут иметь плавный пуск, а треугольник сможет выдать большую мощность.

Физически подключение трехфазного электродвигателя в однофазную сеть не принесет никакого результата – вращение вала так и не произойдет. Причина этого в отсутствии переменного электрического поля, обеспечивающего попеременное воздействие на ротор. Поэтому проблему можно решить, обеспечив смещение электрического напряжения и тока в фазных обмотках. Чтобы получить желаемый результат от одной фазы, можно дополнительно включить в цепь конденсатор, который обеспечит отставание напряжения до -90º.

Однако полноценного смещения напряжения в обмотках статора добиться не получится. Хоть на электродвигатель подается и номинальное напряжение, КПД составит всего 30 – 50%, что будет определяться схемой соединения обмоток асинхронного электродвигателя.

Не включайте электродвигатель без нагрузки. Так как он не предназначен для такого режима, электрическая машина быстро выйдет со строя. Минимизируйте холостой ход насколько это возможно.

Способы и схемы подключения

В зависимости от типа используемой нагрузки для электродвигателя, его конструктивных особенностей и характеристик, желаемого результата могут использоваться различные схемы подключения. Чаще всего, чтобы подключить трехфазный агрегат в качестве бытовой однофазной нагрузки используются конденсаторы, но их количество и способ введения в работу зависят от многих параметров. Поэтому далее мы рассмотрим различные варианты схем подключения электродвигателей.

Без конденсаторов

Чтобы подключить асинхронный электродвигатель к сети 220В вовсе не обязательно использовать емкостной элемент. Благодаря развитию полупроводниковых ключей и схем с их использованием вы можете  избежать ненужных потерь мощности. Для этого применяется транзисторный или динисторный ключ.

Схема бесконденсаторного пуска треугольникСхема бесконденсаторного пуска треугольник

Приведенная выше схема предназначена для пуска электродвигателей с малыми оборотами до 1500 об/мин и относительно небольшой мощностью.

Работа схемы производится следующим образом:

  • при подаче напряжения на ввод провода подключаются к двум точкам мотора;
  •  напряжение на третью точку треугольника подается через времязадающую R-C  цепочку;
  • магазин сопротивлений R1 и R2 регулирует интервал сдвига за счет перемещения бегунка;
  • после насыщения конденсатора в цепочке динистор VS1 пропускает сигнал на открытие симистора VS2.

Если же подключение электрического агрегата предусматривает большую пусковую нагрузку и требует работы на высоких оборотах – до 3000об/мин, то необходимо применять аналогичную схему электронного ключа с двумя симисторами и отдельными времязадающими элементами для каждого из них. Но обмотки электрической машины будут подключаться по схеме разомкнутой звезды. Работа схемы аналогична предыдущей:

Схема бесконденсаторного пуска звездаСхема бесконденсаторного пуска звезда

С конденсаторами

Использование емкостных элементов, чтобы подключить электродвигатель, является наиболее распространенным способом. Для этого используются два конденсатора, один из которых пусковой, а второй рабочий.  Пусковой вводится кратковременно, дополнительная емкость позволяет увеличить сдвиг напряжения в соответствующей обмотке и создать большее усилие.

Схема включения с конденсаторамиСхема включения с конденсаторами

Как видите из рисунка выше, на электродвигатель подается однофазное напряжение между точками L и N. Асинхронный двигатель АД подключается к ним двумя обмотками,  а к третей та же фаза подключается через  контакты кнопочного переключателя SA1 и SA2, коммутирующие параллельно включенные конденсаторы C1 и C2.

Включение асинхронного электродвигателя происходит по такому принципу:

  • Нажатием кнопки Пуск приводятся в движение две пары контактов — SA1 и SA2, после чего в обмотках начинает протекать электроток;
  • После отпускания кнопки контакт SA2 остается замкнутым, подавая фазу со смещением через конденсатор  C1, а SA1 размыкается, выводя из цепи пусковой конденсатор C2;
  • Пусковые характеристики возвращаются к номинальным и двигатель работает в штатном режиме.

Но при таком подключении асинхронного двигателя в сеть 220В будет обеспечиваться вращение ротора лишь в одну сторону. Поэтому для выполнения реверсивных движений понадобится полностью перебирать точки подключения или использовать другой способ.

С реверсом

Для некоторых технологических операций требуется осуществлять прямое и обратное вращение вала электродвигателя, поэтому подключение должно менять последовательность чередования напряжения на обмотках. Разумеется, что вручную выполнять подобные операции нецелесообразно, особенно, когда смена направления производится по нескольку раз в час.

Поэтому осуществление реверса электродвигателя, гораздо эффективнее сделать через коммутатор с двумя парами контактов, имеющих противоположную логику. Это может быть тумблер или поворотный переключатель, включаемый в схему вместо обычной кнопки:

Включение трехфазного двигателя с реверсомВключение трехфазного двигателя с реверсом

Как видите на рисунке, принцип подключения ничем не отличается от рассмотренной схемы с конденсатором с той лишь разницей, что переключатель SA имеет два устойчивых положения. В одном случае он подает напряжение на конденсаторы с фазы, во втором с нулевого проводника. Поэтому чередование обмоток меняется на противоположное простым переключением тумблера.

Используя пускатель

Если в работе электродвигатель создает большую пусковую и рабочую нагрузку, то лучше подключить его через магнитный пускатель или контактор. Который обеспечит надежную коммутацию и последующую защиту электрической машины от аварийных ситуаций.

Схема включения через магнитный пускатель
Схема включения через магнитный пускатель

Как видите на схеме, включение осуществляется за счет нажатия кнопки Пуск, которая замыкает цепь управления катушкой пускателя и подает напряжение на пусковой конденсатор Спуск.  При протекании тока по катушке пускателя К1 происходит замыкание ее контактов К1.1 и К1.2. Первые предназначены для замыкания питающей линии электродвигателя. Вторые шунтируют кнопку Пуск, которая возвращается в отключенное состояние и размыкает цепь питания пускового конденсатора.

Как подбирать конденсаторы?

Если вы собрались подключить электродвигатель, то выбор  конденсатора осуществляется по таким принципам:

  • Номинальное напряжение выбирается из соотношения 1,15 от подаваемого на мотор. Если брат больше, это увеличит стоимость установки и ее габариты. Если емкость рассчитать впритык, конденсатор перегреется и перегорит.
  • Тип конденсатора – наиболее распространенные модели – бумажные, но они обладают большими габаритами. Поэтому выгоднее приобретать полипропиленовые. От электролитических лучше отказаться.
  • Чтобы выбрать емкость пускового и рабочего конденсатора, необходимо воспользоваться таблицей соответствия по мощности электродвигателя:

Таблица: определение емкости конденсаторов

Мощность трехфазного электродвигателя, кВт0,40,60,81,11,52,2
Минимальная емкость конденсатора Ср , мкф406080100150230
Емкость пускового конденсатора (Сп), мкф80120160200250300

Если нужной вам мощности в таблице нет, можно воспользоваться расчетными формулами:

Сраб = (2800*I)/U — для включения трехфазного двигателя звездой

Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником

где I – величина ток, протекающего через обмотки электродвигателя, а U – напряжение сети. Чтобы узнать емкость пускового конденсатора для подключения трехфазного агрегата, необходимо полученную величину рабочего умножить на два.

Видео в помощь

Как подключить электродвигатель 380В на 220В

В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».

Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?

Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.

Конструктивные особенности

Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).

Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.

При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

Как подключить электродвигатель с 380 на 220В без конденсатора?

Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.

Схема №1.

Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

Схема №2.

Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.

Делается это следующим образом:

  • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
  • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

При реализации рассмотренных схем стоит учесть ряд особенностей:

  • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
  • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.

Как подключить через конденсаторы

Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.

Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

  • Рабочие конденсаторы подключаются параллельно;
  • Номинальное напряжение должно быть не меньше 300 Вольт;
  • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
  • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.

Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

Расчет емкости должен производиться с учетом номинальной мощности ЭД.  Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

  • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
  • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
  • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

С конденсатором дополнительная упрощенная — для схемы звезда.

С конденсатором дополнительная упрощенная — для схемы треугольник.

Как подключить с реверсом

В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.

Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.

Для реализации схемы можно использовать переключатель с двумя положениями.

К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.

Как подключить по схеме «звезда-треугольник» (с тремя проводами)

В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.

Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».

Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

Принцип работы схемы прост:

  • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
  • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
  • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

Итоги

Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.

схемы, фото, видео урок как подключить через конденсатор

Автор Aluarius На чтение 7 мин. Просмотров 7.4k. Опубликовано

Для подключения электродвигателя 380 на 220 В можно воспользоваться разными схемами. Сразу же оговоримся, что оптимальный вариант подключение электрического двигателя, работающего на 380В, к трехфазной сети.

А что делать в том случае, если на участок заходят всего два провода (ноль и фаза), то есть на участок подается однофазное напряжение 220 вольт? Выход один – провести подключение электродвигателя 380 на 220 В, для чего можно воспользоваться разными схемами.

Схема подключения трехфазного двигателя к однофазной сетиСхема подключения трехфазного двигателя к однофазной сети.

Сразу же оговоримся, что оптимальный вариант подключение электрического двигателя, работающего на 380В, к трехфазной сети. Это обеспечит и номинальную мощность прибора, и номинал вращения, отсюда и эффективность работы агрегата. Поэтому любое вмешательство в параметры создает условия снижения качества эксплуатации.

Схемы подключения

В основном подключение электрического двигателя к однофазной сети производится при соединении двух питающих проводов по схеме или треугольник, или звезда. В первом случае выходная мощность мотора будет отличаться от номинальной (то есть, при трехфазном подключении) на 30%. Во втором, на 50%. То есть, схема треугольник в данном случае является эффективной.

Из электродвигателя торчат три провода. Так вот фаза питающего провода подключается к одному из них, ноль к другому. А вот третий провод подключается к схеме через конденсатор.

Подключение по схеме звезда и треугольник

Внимание! Вращение вала электродвигателя в ту или другую сторону зависит от того, к какому проводу будет подключен конденсатор: к фазе или к нулю. Чтобы изменить направление вращения, необходимо просто перебросить провода.

И третий параметр – это частота вращения. Так вот он от номинального не отличается. То есть, если электродвигатель вращается, к примеру, 1280 об/мин от трехфазной сети, то при подсоединении его к однофазной сети он будет вращаться с той же частотой.

Как выбрать конденсатор

Есть несколько нюансов, которые касаются количества подсоединяемых конденсаторов.

  1. Если мощность электромотора не превышает 1,5 кВт, то в схему можно устанавливать один рабочий конденсатор.
  2. Если же двигатель сразу при пуске работает под нагрузкой или его мощность превышает 1,5 кВт, тогда в схему придется установить два конденсатора: рабочий и пусковой. Оба элемента в схему вставляются параллельно. При этом последний будет работать только при запуске мотора, после чего он автоматически отключается.

По сути, схема подключения электродвигателя запитана на кнопку «Пуск» и на тумблер отключения питания. Чтобы запустить мотор, необходимо нажать на кнопку «Пуск» и удерживать ее до полного включения двигателя. Это можно контролировать даже на слух.

Подключение трехфазного двигателя в сеть 220В через конденсаторПодключение трехфазного двигателя в сеть 220В через конденсатор.

Иногда есть необходимость, чтобы электродвигатель работал то в ту, то в другую сторону. Это тоже несложная схема, в которую необходимо установить дополнительный тумблер переключения направления вращения ротора.

Один конец тумблера (основной) запитывается на конденсатор, второй на ноль, третий на фазу. Если при такой схеме подключения мотор набирает слабо обороты, или его мощность снижается, то придется установить дополнительно пусковой конденсатор.

Емкость конденсатора

Есть несколько параметров устанавливаемых в электродвигатель конденсаторов, которые придется рассчитывать под необходимый номинал мощности мотора. И один из них – это емкость. Чтобы ее определить, можно воспользоваться несколькими формулами.

  • Формула: C=2800x(I/U) – если схема подключения треугольник. И C=480x(I/U) – если звезда. При этом «I» – это сила тока, которую можно замерить электрическими клещами, «U» – это напряжение в сети переменного тока.
  • Формула: C=66xP, где «P» – мощность движка.

Емкость конденсатора

Есть более простой вариант определения емкости, в нем присутствует соотношение – на каждые 1,0 кВт мощности необходимо присоединять 70 мкФ. Кстати, в данном случае приходится именно подбирать.

Поэтому рекомендуется использовать конденсаторы разной емкости. Подключая их в схему, производится запуск движка, который должен работать корректно. Если необходимо уменьшить или увеличить емкость, то добавляется или уменьшается один из конденсаторов.

Внимание! При сборке схемы, необходимо проверять силу тока в обмотках. Она должна быть меньше, чем номинал данного показателя.

Что касается емкости пускового конденсатора, то он должен быть в 2,5-3,0 раза больше, чем у рабочего.

Пример подбора конденсаторов по емкости

Вводные данные:

  • Схема подключения – треугольник.
  • Сила тока электродвигателя – 3 А (указывается и на бирке прибора, и в паспорте).

Теперь данные подставляем в формулу: C=4800*(3/220)=65 мкФ. Конечно, такого конденсатора нет, но его можно заменить несколькими, соединенными параллельно между собой. К примеру, 10 штук по 6 мкФ, и один 5 мкФ. При этом емкость пускового прибора будет находиться в диапазоне 160-200 мкФ.

Обратите внимание, что этот расчет делается на номинальную мощность мотора. Поэтому если электрический агрегат будет работать без нагрузки, то будет все время греться. Поэтому стоит продумать ситуацию, для чего можно просто снизить емкость установленного блока конденсаторов.

Но данная ситуация – палка о двух концах. Все дело в том, что снижая емкость, снижается и мощность. Поэтому совет: установить в схему минимальный показатель емкости (в нашем случае 160 мкФ), а после проверки начинать поднимать его до оптимального значения.

Соединение конденсаторов

И все же учитывайте тот факт, что работа без нагрузки – это быстрый выход из строя электродвигателя, который был переделан из прибора, подключаемого к сети 380В в сеть на 220В.

Тип конденсаторов

Какие же конденсаторы используются при подключении электродвигателя 380 на 220 вольт? Чаще всего это марки КБП, МБГП, МПГО, МБГО, все они бумажного типа в герметичном металлическом корпусе. У всех этих типов есть один недостаток – большие габаритные размеры при небольшой емкости. Поэтому связка из нескольких изделий – достаточно большая, что неудобно во всех отношениях.

Есть на рынке так называемые электролитические конденсаторы.

  • Во-первых, у них другая схема подключения двигателя 380В в сеть переменного тока. Сюда добавляются диоды и резисторы, что усложняет схему.
  • Во-вторых, вышедший из строя диод становится причиной того, что через конденсатор начинает перемещать ток большой силы. Конечный результат – взрыв последнего.
Полипропиленовые конденсаторы cbbПолипропиленовые конденсаторы CBB.

И третий тип конденсаторов – это полипропиленовые элементы металлизированного типа, марка СВВ. Их форма может быть круглой или пластинчатой. Приборы высокого качества, небольших размеров и большой емкости. Их-то и рекомендуют сегодня устанавливать специалисты, когда стоит вопрос, как подключить электродвигатель 380 вольт на 220.

Напряжение конденсатора

Рабочее напряжение – один из основных параметров, на которые надо обязательно обращать внимание. Здесь две позиции:

  • Конденсатор с большим напряжением (от номинального) стоит дорого и имеет большие размеры. Установленный на электродвигатель он изменит размеры последнего, что не всегда удобно.
  • С меньшим напряжением. Эта ситуация приведет к перегреву прибора, и даже к взрыву.

Поэтому совет: умножаете напряжение в сети на 1,15 – это и будет напряжение конденсатора.

Полезные советы

Схема трехфазного двигателя

  1. Конденсаторы всегда сохраняют на своих выводах высокое напряжение, поэтому эти приборы всегда надо огораживать.
  2. Работая с этими элементами, необходимо проводить их предварительную разрядку.
  3. Нельзя проводить подключение электродвигателя мощностью более 3,0 кВт к сети переменного тока. Сгорят автоматы и другие приборы, включенные в схему обвязки.
  4. Рабочее напряжение бумажных конденсаторов в два раза меньше от номинального, которое указано на их корпусе.

Заключение по теме

Как видите, подключать двигатель 380В в сеть 220В переменного однофазного тока не большая проблема. Конечно, теряется мощность, но в домашних условиях эксплуатации это не самое важное. Поэтому если вы решили своими руками сделать данное подключение, то в первую очередь правильно подберите конденсатор и определитесь со схемой.

Как подключить электродвигатель 380В на 220В через конденсатор

Большинство собственников частных гаражей или мастерских сталкиваются с таким вопросом, как подключить электродвигатель 380В на 220В через конденсатор или другими методами. Некоторые виды оборудования, которые могут находиться в частной собственности, например, бетономешалки, точильные или деревообрабатывающие станки, потребляют большую мощность.

Обеспечить ее может асинхронный трехфазный двигатель, только главная его беда – расчет на подключение к силовой сети напряжением 380В, которое в большинстве частных домохозяйств отсутствует или сильно ограничено. Варианты выхода из существующей ситуации 380/220 рассмотрим далее.

Разница между однофазными и трехфазными агрегатами

Прежде чем приступить к непосредственному рассмотрению схем подключения типа 380/220, нужно разобраться в следующем:

  • что собой представляют двигатели обоих классов,
  • как они работают,
  • каковы принципы функционирования однофазной (220) и трехфазной (380) сети.

Поскольку большинство асинхронных электродвигателей являются трехфазными (на 380В), то начнем, пожалуй, с них. Любой подобный агрегат имеет два ключевых элемента: подвижный ротор, соединенный с приводным валом, и неподвижный кольцевидный статор. Каждый из них имеет фазные обмотки, смещенные относительно друг друга на 120º. Принцип действия двигателя на 380В заключается в создании подвижного (вращающегося) магнитного поля. Оно создается в обмотках статора при подаче напряжения на них. За счет разности частот полей ротора и статора, между контактными обмотками возникает ЭДС, которая заставляет вал вращаться. На клеммы такого двигателя должны приходить три фазы (по 220 В) через соединение по схеме звезда или треугольник.

Однофазным принято называть силовой агрегат, рассчитанный на подключение к идентичной, чаще всего бытовой сети 220В. Учитывая, что любой такой кабель имеет две жилы (фаза и ноль), двигателю достаточно иметь всего одну фазную обмотку. По факту, на статоре конструктивно есть две обмотки, но одна используется как рабочая, а вторая – пусковая. Для того, чтобы двигатель на 220В начал работать, то есть, чтобы возникло вращающееся магнитное поле и следом за ним ЭДС, необходимо задействовать обе цепи. При этом, пусковая обмотка подключается через промежуточную емкостную/индуктивную цепь или же замыкается, если мощность агрегата мала.

Как можно заключить, главная разница между этими двумя классами двигателей (220 и 380 В) заключается не столько в количестве фаз/проводов подключения, сколько в организации пуска.

Особенности и способы подключения к однофазной сети

Однофазный ток 220В, подающийся на электродвигатель, точнее на его статор и ротор, формирует два равнозначных магнитных поля, вращающихся в противоположные стороны. Для того, чтобы заставить ротор вращаться, нужно вручную или за счет пусковых устройств организовать сдвиг фаз. Мощность будет ниже номинальной (50…70%), но двигатель будет работать.

Очевидно, что прямым включением одной из фазных обмоток к сети в 220В при неработающих остальных запустить двигатель не удастся. Следовательно, нужно все три фазы соединить через промежуточный контур. Сделать это можно двумя основными способами:

  1. Емкостная цепь. Одна из обмоток двигателя подключается через емкость, которая формирует сдвиг фазы тока вперед на 90º. После пуска, эту цепь можно отключить,
  2. Индуктивная цепь. Действует примерно так же, как и предыдущая, только сдвиг фазы происходит в обратном направлении.

Иногда бывает достаточно даже механического поворота ротора, чтобы двигатель на 380 заработал от 220.

Общие схемы подключения двигателей с 380В на 220В через конденсатор

Чаще всего при необходимости решения такой задачи используют рабочий и пусковой конденсаторы (батареи конденсаторов). Базовые схемы подключения треугольником и звездой на 380В можно видеть на следующей иллюстрации:

Базовые схемы подключения треугольником и звездой на 380В

Нефиксированная кнопка «Разгон» используется для активации параллельно подключенного пускового конденсатора. Ее необходимо удерживать до тех пор, пока двигатель не наберет максимальных оборотов. После этого пусковую цепь необходимо обязательно разъединить, чтобы предотвратить перегревание обмоток. Если мощность двигателя мала, пусковым конденсатором можно пренебречь, работая только через рабочий.

Расчет емкости конденсаторов ведется по следующим формулам:

Формула для расчета емкости конденсатора

Емкость пускового конденсатора при этом должна быть вдвое выше рабочей. Если не прибегать к расчету по формулам, то можно воспользоваться значением 7 мкФ/кВт.

Практическое применение показывает, что более эффективным является подключение треугольником, так как при этом распределение напряжения в обмотках будет более равномерным, да и мощность снижается меньше. Есть правда одно ограничение, которое касается компоновки клеммного блока двигателя. Если под его крышкой находится лишь три вывода на 380, то имеет место заранее предустановленная схема соединения, которую не изменишь. Если же там располагается шесть выводов, то можно выбирать, какой вариант организовать. Характерное обозначение наносится на металлическую табличку с характеристиками.

Если 380-вольтовый двигатель предполагается использовать на 220В в режиме с частыми пусками и остановками, то базовую схему можно доработать с организацией цепи динамического торможения:

Базовая схема с организацией цепи динамического торможения

Здесь можно видеть включение двигателя треугольником через емкостную цепь конденсаторов С1 (пускового) и С2 (рабочего). Дополнительно организована цепь на транзисторе и элементе сопротивления, которая подключается трехпозиционным ключом. Когда он находится в положении «3», напряжение сети 220В поступает на обмотки статора и кнопкой К1 можно совершить его запуск. Для остановки двигателя ключ переводится в положение «1», после чего на обмотки подается постоянный ток и осуществляется торможение. Следует отметить, что этот переключатель имеет только два фиксированных положения «2» и «3». Для использования обычного двухпозиционного ключа в эту цепь необходимо будет добавить еще один конденсатор. Выглядит это следующим образом:

Схема подключения трехфазного двигателя с добавлением конденсатора

Ранее уже упоминался тот факт, что однофазный ток приводит к организации разнонаправленных эквивалентных магнитных полей статора и ротора, которые можно сдвинуть (заставить вращаться) в ту или иную сторону. Следовательно, можно реализовать на практике схему реверсного подключения электродвигателя на 380В:

Cхема реверсного подключения электродвигателя на 380В

Схема является в некотором роде комбинацией двух предыдущих, только здесь использованы сдвоенный переключатель и пуск через реле Р1.

Рассмотренные в статье схемы являются базовыми, но в зависимости от конкретного случая их можно модифицировать как угодно, чтобы добиться включения в однофазную сеть 220В трехфазного асинхронного электродвигателя на 380В.

Схема подключения трехфазного электродвигателя | У электрика.ру

Схема подключения трехфазного электродвигателяЗдравствуйте. Информацию по этой теме трудно не найти, но я постараюсь сделать данную статью наиболее полной. Речь пойдет о такой теме, как схема подключения трехфазного двигателя на 220 вольт и схема подключения трехфазного двигателя на 380 вольт.

Для начала немного разберемся, что такое три фазы и для чего они нужны.  В обычной жизни три фазы нужны только для того, чтобы не прокладывать по квартире или по дому провода большого сечения. Но когда речь идет о двигателях, то здесь три фазы нужны для создания кругового магнитного поля и как результат, более высокого КПД. Двигатели бывают синхронные и асинхронные. Если очень грубо, то синхронные двигатели имеют большой пусковой момент и возможность плавной регулировки оборотов, но более сложные в изготовлении.  Там, где эти характеристики не нужны, получили распространение асинхронные двигатели. Нижеизложенный материал подходит для обоих типов двигателей, но в бóльшей степени относится к асинхронным.

Что нужно знать о двигателе? На всех моторах есть шильдики с информацией, где указаны основные характеристики двигателя. Как правило, двигатели выпускаются сразу на два напряжения. Хотя если у вас двигатель на одно напряжение, то при сильном желании его можно переделать на два. Это возможно из-за конструктивной особенности. Все асинхронные двигатели имеют минимум три обмотки. Начала и концы этих обмоток выводятся в коробку БРНО (блок расключения (или распределения) начал обмоток) и в неё же, как правило, вкладывается паспорт двигателя:шильдик

Если двигатель на два напряжения, то в БРНО будет шесть выводов. Если двигатель на одно напряжение, то вывода будет три, а остальные выводы расключены и находятся внутри двигателя. Как их оттуда «достать» в этой статье мы рассматривать не будем.

Итак, какие двигатели нам подойдут. Для включения трёхфазного двигателя на 220 вольт подойдут только те, где есть напряжение 220 вольт, а именно 127/220 или 220/380 вольт. Как я уже говорил, двигатель имеет три независимых обмотки и в зависимости от схемы соединения они способны работать на двух напряжениях. Схемы эти называются «треугольник» и «звезда»:Схемы «треугольник» и «звезда»

Думаю, даже не нужно объяснять, почему они так называются. Нужно обратить внимание, что у обмоток есть начало и конец и это не просто слова. Если, к примеру, лампочке неважно, куда подключить фазу, а куда ноль, то в двигателе при неправильном подключении возникнет «короткое замыкание» магнитного потока. Сразу двигатель не сгорит, но как минимум не будет вращаться, как максимум потеряет 33% своей мощности, начнёт сильно греться и, в итоге, сгорит. В то же время, нет чёткого определения, что «вот это начало», а «вот это конец».  Тут речь идет скорее об однонаправленности обмоток. Дам небольшой пример.однонаправленность обмоток

Представим, что у нас есть три трубки в некоем сосуде. Примем за начала этих трубок обозначения с заглавными буквами (A1, B1, C1), а за концы со строчными (a1, b1, c1) Теперь, если мы подадим воду в начала трубок, то вода закрутится по часовой стрелке, а если в концы трубок, то против часовой. Ключевое слово здесь «примем». То есть, от того назовём мы три однонаправленных вывода обмотки началом или концом меняется только направление вращения.направленность против часовой

А вот такая картина будет, если мы перепутаем начало и конец одной из обмоток, а точнее не начало и конец, а направление обмотки. Эта обмотка начнёт работать «против течения». В итоге, неважно, какой именно вывод мы называем началом, а какой концом, важно, чтобы при подаче фаз на концы или начала обмоток не произошло замыкания магнитных потоков, создаваемых обмотками, то есть, совпало направление обмоток, или ещё точнее, направление магнитных потоков, которые создают обмотки.

В идеале, для трёхфазного двигателя желательно использовать три фазы, потому что конденсаторное включение в однофазную сеть даёт потерю мощности порядка 30%.

Ну, а теперь непосредственно к практике. Смотрим на шильдик двигателя. Если напряжение на двигателе 127/220 вольт, то схема соединения будет «звезда», если 220/380 – «треугольник». Если напряжения другие, например, 380/660, то для включения двигателя в сеть 220 вольт такой двигатель не подойдет. Точнее, двигатель напряжением 380/660 можно включить, но потери мощности здесь уже будут более 70%. Как правило, на внутренней стороне крышки коробки БРНО указано, как надо соединить выводы двигателя, чтобы получить нужную схему. Посмотрите ещё раз внимательно на схему соединения:схема соединения

Что мы здесь видим: при включении треугольником напряжение 220 вольт подаётся на одну обмотку, а при включении звездой — 380 вольт подаётся на две последовательно соединённых обмотки, что в результате даёт те же 220 вольт на одну обмотку. Именно за счёт этого и появляется возможность использовать для одного двигателя сразу два напряжения.

Существует два метода включения трехфазного двигателя в однофазную сеть.

  1. Использовать частотный преобразователь, который преобразует одну фазу 220 вольт в три фазы 220 вольт (в этой статье мы рассматривать такой метод не будем)
  2. Использовать конденсаторы (этот метод мы и рассмотрим более подробно).

Схема включения трехфазного двигателя на 220 вольт

Для этого нам потребуются конденсаторы, но не абы какие, а для переменного напряжения и номиналом не менее 300, а лучше 350 вольт и выше. Схема очень простая.Схема включения трехфазного двигателя на 220 вольт

А это более наглядная картинка:skhema-podklyucheniya-trekhfaznogo-yelekt7

Как правило, используется два конденсатора (или два набора конденсаторов), которые условно называются пусковые и рабочие. Пусковой конденсатор используется только для старта и разгона двигателя, а рабочий включен постоянно и служит для формирования кругового магнитного поля. Для того, чтобы рассчитать ёмкость конденсатора применяются две формулы:рассчитать ёмкость конденсатора

Ток для расчёта мы возьмём с шильдика двигателя:шильдик двигателя

Здесь, на шильдике мы видим через дробь несколько окошек: треугольник/звезда, 220/380V и 2,0/1,16А. То есть, если мы соединяем обмотки по схеме треугольник (первое значение дроби), то рабочее напряжение двигателя будет 220 вольт и ток 2,0 ампера. Осталось подставить в формулу:формула

Ёмкость пусковых конденсаторов, как правило, берётся в 2-3 раза больше, здесь всё зависит от того, какая нагрузка находится на двигателе – чем больше нагрузка, тем больше нужно брать пусковых конденсаторов, чтобы двигатель запустился. Иногда для запуска хватает и рабочих конденсаторов, но это обычно случается, когда нагрузка на валу двигателя мала.

Чаще всего, на пусковые конденсаторы ставят кнопку, которую нажимают в момент запуска, а после того, как двигатель набирает обороты, отпускают. Наиболее продвинутые мастера ставят полуавтоматические системы запуска на основе реле тока или таймера.

Есть ещё один способ определения ёмкости, чтобы получилась схема включения трёхфазного двигателя на 220 вольт. Для этого потребуется два вольтметра. Как вы помните, из закона Ома, сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Сопротивление двигателя можно считать константой, следовательно, если мы создадим равные напряжения на обмотках двигателя, то автоматически получим требуемое круговое поле. Схема выглядит так:схема сопротивления двигателя

Суть метода, как я уже говорил, заключается в том, чтобы показания вольтметра V1 и вольтметра V2 были одинаковые. Добиваются равенства показаний изменением номинала ёмкости «Cраб»

Подключение трехфазного двигателя на 380 вольт

Здесь вообще нет ничего сложного. Есть три фазы, есть три вывода двигателя и рубильник. Нулевую точку (где соединяются три обмотки, началами или концами – как я уже говорил выше, абсолютно неважно, как мы назовём выводы обмоток) при схеме соединения обмоток звездой, подключать к нулевому проводу не надо. То есть, для включения трехфазного двигателя в трехфазную сеть 380 вольт (если двигатель 220/380) нужно соединить обмотки по схеме звезда, и подать на двигатель только три провода с тремя фазами. А если двигатель 380/660 вольт, то схема соединения обмоток будет треугольник, ну а там точно нулевой провод некуда подключать.

Смена направления вращения вала трехфазного двигателя

Независимо от того, будет это конденсаторная схема включения или полноценная трехфазная, для смены вращения вала нужно поменять местами две любые обмотки. Другими словами поменять местами два любых провода.

На чём хочется остановиться более подробно. Когда мы считали ёмкость рабочего конденсатора, то мы использовали номинальный ток двигателя. Проще говоря, такой ток в двигателе будет только тогда, когда он будет полностью нагружен. Чем меньше нагружен двигатель, тем меньше будет ток, поэтому ёмкость рабочего конденсатора, полученная по этой формуле будет МАКСИМАЛЬНО ВОЗМОЖНОЙ ёмкостью для данного двигателя. Чем плохо использовать максимальную емкость для недогруженного двигателя – это вызывает повышенный нагрев обмоток. В общем, чем-то приходится жертвовать: маленькая ёмкость не даёт двигателю набрать полную мощность, большая ёмкость при недогрузке вызывает повышенный нагрев. Обычно в этом случае я предлагаю такой выход – сделать рабочие конденсаторы из четырёх одинаковых конденсаторов с переключателем или набором переключателей (что будет доступнее). Допустим, мы посчитали ёмкость 40 мкФ. Значит, для работы нам надо использовать 4 конденсатора по 10 мкФ (или три конденсатора 10, 10 и 20 мкФ) и в зависимости от нагрузки использовать 10, 20, 30 или 40 мкФ.

Ещё один момент по пусковым конденсаторам. Конденсаторы для переменного напряжения стоят гораздо дороже конденсаторов для постоянного. Использовать конденсаторы для постоянного напряжения в сетях с переменным, крайне не рекомендуется по причине того, что конденсаторы взрываются. Однако, для двигателей существует специальная серия конденсаторов Starter, предназначенная именно для работы, как пусковые. Использовать конденсаторы серии Starter в качестве рабочих тоже запрещено.

И в завершение нужно отметить такой момент – добиваться идеальных значений нет смысла, поскольку это возможно только, если нагрузка будет стабильной, например, если двигатель будет использоваться в качестве вытяжки.  Погрешность в 30-40% это нормально. Другими словами, конденсаторы надо подбирать так, чтобы был запас по мощности в 30-40%.

 

Поделиться ссылкой:

Похожее

Подключение трехфазного двигателя к сети 220 или 380 В по схеме

Среди электрических машин, предназначенных для совершения механической работы, одними из наиболее продуктивных считаются трехфазные агрегаты. Вращение ротора осуществляется посредством одновременного воздействия магнитного потока от фазных обмоток. Что и обеспечивает одновременное усилие сразу трех моментов, пропорционально взаимодействующих друг с другом. Как можно выполнить  подключение трехфазного двигателя в зависимости от их конструктивных особенностей и параметров электрической сети мы рассмотрим далее.

Общая информация

Подключение трехфазных двигателей подразумевает относительно сложную операцию, которая требует понимания процессов, протекающих в электроустановке. Для чего необходимо рассмотреть как составляющие элементы, так и их назначение.

Конструктивно трехфазные электродвигатели состоят из:

  • Статора с магнитопроводом;
  • Ротора с валом;
  • Обмоток.

В зависимости от типа двигателя встречаются модели с короткозамкнутым или фазным ротором. В одних ротор вращается только за счет электромагнитного поля, наводимого от обмоток статора, в других, вращение вала получает усилие от поля ротора при протекании тока в его обмотках.  Для включения трехфазных двигателей необходимо разобраться с тем, как фазы обмоток соединяются между собой.

Схемы подключения обмоток двигателя

В трехфазных асинхронных электродвигателях применяется два варианта соединения – в звезду и треугольник. В трехфазных асинхронных электрических машинах, в зависимости от модели, можно реализовать схему:

  • Звезда;
  • Треугольник;
  • Звезда и треугольник.

Простейший способ определения возможностей конкретного асинхронного электромотора – посмотреть на шильд (металлическая пластина с техническими параметрами). На них обозначается в том числе и номинал рабочего напряжения для соответствующего соединения. Здесь может указываться обозначение только для звезды, только для треугольника или и тот и другой вариант одновременно, пример такой маркировки приведен на рисунке ниже:

Пример обозначения на шильдеПример обозначения на шильде

Если шильд отсутствует или информация на нем стерлась, то схему подключения можно узнать, открыв блок распределения начал обмотки (БРНО). Если вы увидите 6 выводов, имеющих клеммные соединения, можно определить тип включения обмоток. Гораздо хуже, когда борно имеет только три вывода, а подключение производится внутри корпуса. В этом случае нужно разобрать трехфазный электромотор, чтобы увидеть способ соединения.

Звезда

Схема подключения трехфазного двигателя звездой предусматривает, что начало каждой обмотки объединяется  в одну точку, а к их концам подключаются фазы от питающей линии. Такой тип обеспечивает значительно более плавный пуск и относительно щадящий режим работы. Однако мощность, с которой вращается ротор, в полтора раза ниже, чем при подключении треугольником. Схематически данное подключение выглядит следующим образом:

Схема подключения звездаСхема подключения звезда

Как видите на рисунке, концы выводов обмоток трехфазного двигателя A2, B2, C2 соединены в один электрический узел. А к клеммам  A1, B1, C1 – подключаются фазные провода, как правило, на 220 или 380 вольт.

Если рассматривать данную схему на примере борна, выглядеть оно будет так:

Соединение обмоток звездойСоединение обмоток звездой

Треугольник

Чтобы подключить электродвигатель треугольником вам необходимо подвести конец одной обмотки к началу другой. И таким образом замкнуть обмотки в своеобразное кольцо, в точки соединения которых и подключаются выводы питающей линии. Схема соединения треугольником обеспечивает максимальный момент и усилие на валу, что особенно актуально для больших нагрузок. Однако и ток в обмотках при номинальной нагрузке также пропорционально повысится, не уже говоря о режимах перегрузки.

Поэтому включение трехфазного двигателя треугольником и требует понижения напряжения. К примеру, если одну и ту же электрическую машину можно подключить с соединением обмоток и треугольником, и звездой, то звезда будет иметь напряжение питания 380, а треугольник 220 вольт или 220 и 127 вольт соответственно. Схематически подключение обмоток треугольником будет выглядеть так:

Схема подключения треугольникСхема подключения треугольник

Как видите, соединение производится от A2 к B1, от B2 к C1,  от C2 к A1, в некоторых моделях электрических машин маркировка выводов может отличаться, но на крышке борна будет отображаться их принадлежность к той или иной обмотке и возможные варианты соединения между собой.

Соединение обмоток треугольникомСоединение обмоток треугольником

Варианты подключения

Трехфазные двигатели имеют отличные характеристики, довольно широкий модельный ряд и применяются в самых разнообразных устройствах. Поэтому их применяют как в промышленных устройствах с трехфазным питанием, так и в бытовых однофазных электроустановках. Далее разберем оба варианта подключения электрических машин.

В однофазную сеть

Конструктивная особенность трехфазного агрегата, в отличии от однофазных асинхронных двигателей, состоит в необходимости сдвига фаз в обмотках, иначе вращения вала не будет происходить. Чтобы изменить ситуацию одну фазу разделяют для всех трех обмоток, в две из которых включаются дополнительная индуктивность и пусковая емкость. Которые и обеспечивают сдвиг тока и напряжения относительно напряжения в сети.  Индуктивность позволяет осуществить сдвиг напряжения в отрицательную область до -90°,  а вот однофазный конденсатор, наоборот, в положительную до +90°.

Графически функция отставания напряжения от тока будет выглядеть следующим образом:

Изменение тока и напряжения на емкости и индуктивностиИзменение тока и напряжения на емкости и индуктивности

Однако на практике смещение обеспечивается только емкостными элементами, которые включаются в цепь электроснабжения одной из обмоток, а две другие запускаются между фазным и нулевым проводом. Схема подключения трехфазного двигателя в однофазной цепи приведена на рисунке ниже:

Схема включения в однофазную сетьСхема включения в однофазную сеть

Как видите на рисунке, от фазного провода делается отпайка, содержащая конденсаторный однофазный магазин из двух элементов, один для пуска C2, второй для постоянной работы C1. При нажатии кнопки пуска происходит одновременное замыкание контактов SA1 и SA2, но после создания достаточного момента и начала вращения  SA1 отбрасывается и выводит C1 из цепи, оставляя C2. Мощность, при такой схеме включения двигателя, снижается до 30 – 50%.

Расчет конденсаторного пуска производится по формуле:

Сраб = (2800*I)/U — для включения трехфазного двигателя звездой

Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником

Пусковой конденсатор используется только в нагруженном пуске, поэтому в легком запуске его можно не применять. Тогда вместо емкости пускового будет задействоваться рабочий.

В трёхфазную сеть

В трехфазной сети, несмотря на наличие необходимого типа питающего напряжения, всегда используется магнитный пускатель для приведения двигателя во вращение. Производить запуск без пускателя или контактора довольно опасно, поэтому они являются неотъемлемым элементом.

Схема включения в трехфазную сетьСхема включения в трехфазную сеть

На рисунке выше приведена обычная схема подключения двигателя к трехфазной сети, которая работает по такому принципу:

  • подача напряжения на двигатель от сети производится через рубильник 1.
  • далее, при включении кнопки пуска 6 осуществляется питание катушки контактора 4, которая притягивает силовые контакты пускателя 3;
  • после чего двигатель начинает вращение, а пусковая кнопка  6 шунтируется через повторитель 5;
  • для остановки трехфазного двигателя используется кнопка Стоп – 7, находящаяся в нормально замкнутом положении;
  •  защита двигателя от перегрузки контролирует токовую нагрузку в сети и при возникновении угрозы размыкает контакты 2.

Данная схема может упрощаться в связи с конструктивными особенностями применяемых пускателей. Так как некоторые из них изготавливаются без повторителей, могут иметь функцию реверсирования трехфазного двигателя или выпускаться без защиты. Более детальную информацию о магнитных пускателях вы можете почерпнуть из соответствующей статьи на сайте: https://www.asutpp.ru/elektromagnitnyj-puskatel.html

Видео по теме

Как правильно подключить электродвигатель с 380 В на 220 В: схемы и описание

Способы и схемы подключения электродвигателя 380В к сети 220В с подробным описанием.

Для использования трехфазных асинхронных электродвигателей требуется трёхфазное питание, которое, присутствует далеко не у каждого в доме. Но если вы задаетесь вопросом, как подключить электродвигатель с 380 на 220 В, мы рассмотрим возможные варианты включения трехфазных электрических машин в домашних условиях.

Перед началом включения, обязательно проверяется величина напряжения, на которое рассчитан электродвигатель – если подключить разность потенциалов больше указанной, обмотки перегреются, если низкое, он не запустится.

Как правило, на асинхронных машинах указывается сразу два параметра, реже только один:

  • 660/380 В;
  • 380/220 В;
  • 220/127 В.

Номинал определяется совместно со схемой соединения обмоток – звезда или треугольник. В первом случае обмотки имеют общую точку, а фазные провода соединяются с остальными тремя выводами катушек.

Во втором, конец одной обмотки присоединяется к началу следующей таким образом, что образуется замкнутый контур. Одни агрегаты включаются только звездой, другие, треугольником, а некоторые можно самостоятельно подключать любым из способов, обе характеристики указаны на шильде электродвигателя.

Для треугольника используется меньшее напряжение, а для звезды большее из двух указанных.

Отличие в том, что трехфазные двигатели, соединенные звездой, будут иметь плавный пуск, а треугольник сможет выдать большую мощность.

Физически подключение трехфазного электродвигателя в однофазную сеть не принесет никакого результата – вращение вала так и не произойдет. Причина этого в отсутствии переменного электрического поля, обеспечивающего попеременное воздействие на ротор. Поэтому проблему можно решить, обеспечив смещение электрического напряжения и тока в фазных обмотках. Чтобы получить желаемый результат от одной фазы, можно дополнительно включить в цепь конденсатор, который обеспечит отставание напряжения до -90º.

Однако полноценного смещения напряжения в обмотках статора добиться не получится. Хоть на электродвигатель подается и номинальное напряжение, КПД составит всего 30 – 50%, что будет определяться схемой соединения обмоток асинхронного электродвигателя.

Не включайте электродвигатель без нагрузки. Так как он не предназначен для такого режима, электрическая машина быстро выйдет со строя. Минимизируйте холостой ход насколько это возможно.

Способы и схемы подключения трёхфазных электродвигателей

В зависимости от типа используемой нагрузки для электродвигателя, его конструктивных особенностей и характеристик, желаемого результата могут использоваться различные схемы подключения. Чаще всего, чтобы подключить трехфазный агрегат в качестве бытовой однофазной нагрузки используются конденсаторы, но их количество и способ введения в работу зависят от многих параметров. Поэтому далее мы рассмотрим различные варианты схем подключения электродвигателей.

Подключение без конденсаторов

Чтобы подключить асинхронный электродвигатель к сети 220В вовсе не обязательно использовать емкостной элемент. Благодаря развитию полупроводниковых ключей и схем с их использованием вы можете избежать ненужных потерь мощности. Для этого применяется транзисторный или динисторный ключ.

Схема бесконденсаторного пуска треугольник

Приведенная выше схема предназначена для пуска электродвигателей с малыми оборотами до 1500 об/мин и относительно небольшой мощностью.

Работа схемы производится следующим образом:

При подаче напряжения на ввод провода подключаются к двум точкам мотора;
напряжение на третью точку треугольника подается через времязадающую R-C цепочку;
магазин сопротивлений R1 и R2 регулирует интервал сдвига за счет перемещения бегунка;
после насыщения конденсатора в цепочке динистор VS1 пропускает сигнал на открытие симистора VS2.
Если же подключение электрического агрегата предусматривает большую пусковую нагрузку и требует работы на высоких оборотах – до 3000об/мин, то необходимо применять аналогичную схему электронного ключа с двумя симисторами и отдельными времязадающими элементами для каждого из них. Но обмотки электрической машины будут подключаться по схеме разомкнутой звезды. Работа схемы аналогична предыдущей

Схема бесконденсаторного пуска звезда.

Подключение с конденсаторами

Использование емкостных элементов, чтобы подключить электродвигатель, является наиболее распространенным способом. Для этого используются два конденсатора, один из которых пусковой, а второй рабочий. Пусковой вводится кратковременно, дополнительная емкость позволяет увеличить сдвиг напряжения в соответствующей обмотке и создать большее усилие

Схема включения с конденсаторами

Как видите из рисунка выше, на электродвигатель подается однофазное напряжение между точками L и N. Асинхронный двигатель АД подключается к ним двумя обмотками, а к третей та же фаза подключается через контакты кнопочного переключателя SA1 и SA2, коммутирующие параллельно включенные конденсаторы C1 и C2.

Включение асинхронного электродвигателя происходит по такому принципу:

Нажатием кнопки Пуск приводятся в движение две пары контактов — SA1 и SA2, после чего в обмотках начинает протекать электроток;
После отпускания кнопки контакт SA2 остается замкнутым, подавая фазу со смещением через конденсатор C1, а SA1 размыкается, выводя из цепи пусковой конденсатор C2;
Пусковые характеристики возвращаются к номинальным и двигатель работает в штатном режиме.
Но при таком подключении асинхронного двигателя в сеть 220В будет обеспечиваться вращение ротора лишь в одну сторону. Поэтому для выполнения реверсивных движений понадобится полностью перебирать точки подключения или использовать другой способ.

 

Подключение с реверсом

Для некоторых технологических операций требуется осуществлять прямое и обратное вращение вала электродвигателя, поэтому подключение должно менять последовательность чередования напряжения на обмотках. Разумеется, что вручную выполнять подобные операции нецелесообразно, особенно, когда смена направления производится по нескольку раз в час.

Поэтому осуществление реверса электродвигателя, гораздо эффективнее сделать через коммутатор с двумя парами контактов, имеющих противоположную логику. Это может быть тумблер или поворотный переключатель, включаемый в схему вместо обычной кнопки:

Включение трехфазного двигателя с реверсом

Как видите на рисунке, принцип подключения ничем не отличается от рассмотренной схемы с конденсатором с той лишь разницей, что переключатель SA имеет два устойчивых положения. В одном случае он подает напряжение на конденсаторы с фазы, во втором с нулевого проводника. Поэтому чередование обмоток меняется на противоположное простым переключением тумблера.

 

Используя пускатель

Если в работе электродвигатель создает большую пусковую и рабочую нагрузку, то лучше подключить его через магнитный пускатель или контактор. Который обеспечит надежную коммутацию и последующую защиту электрической машины от аварийных ситуаций.

Схема включения через магнитный пускатель

Как видите на схеме, включение осуществляется за счет нажатия кнопки Пуск, которая замыкает цепь управления катушкой пускателя и подает напряжение на пусковой конденсатор Спуск.  При протекании тока по катушке пускателя К1 происходит замыкание ее контактов К1.1 и К1.2. Первые предназначены для замыкания питающей линии электродвигателя. Вторые шунтируют кнопку Пуск, которая возвращается в отключенное состояние и размыкает цепь питания пускового конденсатора.

Как подбирать конденсаторы?

Если вы собрались подключить электродвигатель, то выбор  конденсатора осуществляется по таким принципам:

  • Номинальное напряжение выбирается из соотношения 1,15 от подаваемого на мотор. Если брат больше, это увеличит стоимость установки и ее габариты. Если емкость рассчитать впритык, конденсатор перегреется и перегорит.
  • Тип конденсатора – наиболее распространенные модели – бумажные, но они обладают большими габаритами. Поэтому выгоднее приобретать полипропиленовые. От электролитических лучше отказаться.
  • Чтобы выбрать емкость пускового и рабочего конденсатора, необходимо воспользоваться таблицей соответствия по мощности электродвигателя:

Таблица: определение емкости конденсаторов

Мощность трехфазного электродвигателя, кВт0,40,60,81,11,52,2
Минимальная емкость конденсатора Ср , мкф406080100150230
Емкость пускового конденсатора (Сп), мкф80120160200250300

Если нужной вам мощности в таблице нет, можно воспользоваться расчетными формулами:

Сраб = (2800*I)/U — для включения трехфазного двигателя звездой

 

Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником

где I – величина ток, протекающего через обмотки электродвигателя, а U – напряжение сети. Чтобы узнать емкость пускового конденсатора для подключения трехфазного агрегата, необходимо полученную величину рабочего умножить на два.

Звезда / Дельта подключение двигателя 380В / 220В | GoHz.com

Если двигатель спроектирован для работы в трехфазном источнике питания на 380 В, то он не может быть подключен в треугольнике к тому же источнику питания. Это было бы эквивалентно приложению 380 вольт к обмоткам 220 В, так что очевидно, что двигатель выйдет из строя.

Обратите внимание, что в звезде каждая обмотка получает корень3 от приложенного напряжения (или 380 / 1,732), соединяющегося в треугольник, что означает, что каждая обмотка получает фазово-фазовое напряжение EG 380В.

Если двигатель рассчитан на 380В — «треугольник подключен», то он может быть подключен по схеме «звезда» или «треугольник», так как подключение электродвигателя с номиналом 380В «звезда» снизит напряжение на обмотках до 220В, что нормально и часто используется в звездах / звездах. Дельта начинает уменьшать пусковой ток.Все 6 обмоток двигателя должны быть доступны.

Как указано выше, вы можете взять трехфазный двигатель, подключенный к звезде на 380 В, и запустить его как трехфазный электродвигатель, подключенный к треугольнику. Возвращаясь к основам, это ток, управляемый напряжением, которое создает поток. Плотность потока (зависит от многих вещей) является функцией тока и напряжения. Ток контролируется сопротивлением цепи и нагрузкой на двигатель. Поскольку большая часть изоляции, которая входит в двигатели, рассчитана на напряжение 1000 В плюс, напряжение не является проблемой до тех пор, пока полное сопротивление не станет достаточно низким, чтобы превысить ограничение тока на проводниках до точки, где температура разрушит изоляцию.Мы запустили 380В на 525В и наоборот в чрезвычайной ситуации. Эффективность и коэффициент мощности НЕ будут соответствовать дизайну, и вы должны это понимать. Настройка защиты сложна и безопасна, пожалуйста.

Таким образом, вы можете подать любое напряжение на двигатель, если оно не превышает уровень изоляции и ограничения тока данного конкретного двигателя.

В заключение, есть однофазные входы для трехфазных преобразователей частоты (VFD). Очень часто я получаю запрос, что они не могут довести двигатель до полной нагрузки, не превышая данные заводской таблички.Небольшие двигатели, для которых эти ЧРП, где они предназначены, как правило, соединены звездой. Поскольку VFD не может генерировать шину постоянного тока выше пикового напряжения на входе, вы никогда не сможете получить напряжение 380 В на входе 220 В. Таким образом, VFD выдает три фазы 220v. Двигатель должен быть подключен в треугольник, чтобы работать при полной нагрузке / мощности.

,
WK310 220В вход на 380В выходной преобразователь 15кВт 18,5 кВт 22кВт двигатель преобразователь частоты контроллер Подъемник | |

• Наша технология продуктов

A. Схема подключения клемм нашей продукции

升压技术

B. Техническая спецификация для нашей продукции

● Входные и выходные характеристики

Диапазон входного напряжения: 220 В ± 15%

Диапазон входных частот: 47 ~ 63 Гц

Диапазон выходного напряжения: 0 ~ 380В

Диапазон выходных частот: 0 ~ 650 Гц

● Функции периферийного интерфейса

Программируемый цифровой вход: 4 входа

Программируемый аналоговый вход: AI1: вход 0 ~ 10 В, AI2: 0 ~ + 5 В или вход потенциометра панели

Выход с открытым коллектором: 1 выход

Выход реле: 1 выход

Аналоговый выход: 1 выход, дополнительно 4 ~ 20 мА или 0 ~ 10 В

● Технические характеристики

Управление: векторное управление без PG, управление V / F

Пусковой момент: без векторного управления PG: 0.5 Гц / 150% (SVC)

Коэффициент скорости: нет управления вектором PG: 1: 100

Точность контроля скорости: векторное управление PG: ± 0,5% от максимальной скорости

Несущая частота: 0.5k ~ 15.0kHz

● Особенности

Режим настройки частоты: цифровая настройка, аналоговая настройка, настройка последовательной связи, многоскоростной режим, настройка PID.

Функция ПИД-управления

Функция многоскоростного управления: 8-скоростное управление

Функция контроля частоты качания

Мгновенное отключение электроэнергии без функции остановки

Функция клавиши REV / JOG: пользовательские многофункциональные сочетания клавиш

Функция автоматической регулировки напряжения: при изменении напряжения сети выходное напряжение может автоматически поддерживаться постоянным

Обеспечивают до 25 видов защиты от сбоев: от перегрузки по току, перенапряжения, пониженного напряжения, перегрева, потери фазы, перегрузки и другой защиты.

,
5,5 кВт VSD 220 В до 380 В Шпиндельные инверторы Преобразователь частоты привода переменного тока VFD Завод Прямые продажи | |

● Входные и выходные характеристики

Диапазон входного напряжения: 220 В ± 15%

Диапазон входных частот: 47 ~ 63 Гц

Диапазон выходного напряжения: 0 ~ номинальное входное напряжение

Диапазон выходных частот: 0 ~ 650 Гц

● Функции периферийного интерфейса

Программируемый цифровой вход: 4 входа

Программируемый аналоговый вход: AI1: вход 0 ~ 10 В, AI2: 0 ~ + 5 В или вход потенциометра панели

Выход с открытым коллектором: 1 выход

Выход реле: 1 выход

Аналоговый выход: 1 выход, дополнительно 4 ~ 20 мА или 0 ~ 10 В

● Технические характеристики

Управление: векторное управление без PG, управление V / F

Пусковой момент: без векторного управления PG: 0.5 Гц / 150% (SVC)

Коэффициент скорости: нет управления вектором PG: 1: 100

Точность контроля скорости: векторное управление PG: ± 0,5% от максимальной скорости

Несущая частота: 0.5k ~ 15.0kHz

● Особенности

Режим настройки частоты: цифровая настройка, аналоговая настройка, настройка последовательной связи, многоскоростной режим, настройка PID.

Функция ПИД-управления

Функция многоскоростного управления: 8-скоростное управление

Функция контроля частоты качания

Мгновенное отключение электроэнергии без функции остановки

Функция клавиши REV / JOG: пользовательские многофункциональные сочетания клавиш

Функция автоматической регулировки напряжения: при изменении напряжения сети выходное напряжение может автоматически поддерживаться постоянным

Обеспечивают до 25 видов защиты от сбоев: от перегрузки по току, перенапряжения, пониженного напряжения, перегрева, потери фазы, перегрузки и другой защиты.

● Схема подключения клемм управления

,
2,2 кВт преобразователь 220 В 1 фаза. Вход 380 В 3 фазы. Регулятор двигателя. Для электродвигателя. Промышленное оборудование. ЧПУ | |

нота:

1. Входное напряжение 220В, выходное трехфазное напряжение 380В, подключение двигателя менять не нужно

2. Инвертор подходит только для трехфазного двигателя

3. Выход должен быть напрямую подключен к двигателю

4. Инвертор не может быть использован непосредственно в качестве источника питания

5.При настройке параметров параметры должны быть изменены в состоянии останова, иначе измененные параметры не могут быть сохранены.

6. Перед подключением убедитесь, что входное питание отключено.

7. Терминал заземления используется для заземления

8. После завершения цепи аварийного останова проверьте, действительно ли действие.

6. Не подключайте выходную линию инвертора к внешнему корпусу.

7. Пожалуйста, проверьте, соответствует ли напряжение источника питания главной цепи переменного тока номинальному напряжению инвертора.

8. Запрещается проводить тестирование напряжения на преобразователе.

9. Пожалуйста, подключите тормозной резистор согласно схеме подключения.

10. Не подключайте входное питание к выходным клеммам U, V, W.

11. Не подключайте контактор к выходной цепи

12. Выберите сброс При использовании функции проверки запрещается приближаться к механическому оборудованию, предотвращать одновременный повторный запуск аварийного сигнала и подтверждать, что рабочий сигнал отключен, прежде чем можно будет использовать функцию сброса аварийного сигнала.

13. Запрещается прикасаться к инвертору во включенном состоянии, чтобы избежать поражения электрическим током.

14. Отремонтируйте и разберите инвертор только при выключенном питании.

15. Запрещено модифицировать инвертор без разрешения

tu_01 tu_02 tu_03

yiButton

функция

программа

Выберите нормальный режим или режим программирования (эта кнопка действует, когда инвертор работает или остановлен).При изменении параметров необходимо нажать эту кнопку, чтобы войти в режим.

Функция / сохранить

Нормальный режим: нажмите эту кнопку, чтобы отобразить различную информацию о состоянии преобразователя, такую ​​как заданная частота, выходная частота, ток, температура

Переключиться в режим: нажмите эту кнопку, чтобы отобразить содержимое параметра, а затем нажмите эту кнопку, чтобы сохранить измененное значение параметра.

Кнопка △

Увеличение номера параметра или значения параметра

Короткое нажатие на эту кнопку, значение значения будет изменяться шаг за шагом.

Длительное нажатие на эту кнопку, значение изменяемого значения быстро меняется

Кнопка ▽

Номер параметра или уменьшение значения параметра

сдвиг

Сдвиг в режиме программирования

Электрический в нормальном режиме

Вперед / назад

Вперед и назад переключатель

Бегать

Запустите выход инвертора

стоп

Остановить работу или сброс ошибки

Примечание. При настройке параметров параметры должны быть изменены в состоянии останова, в противном случае измененные параметры не могут быть сохранены.

tu_04 tu_05 tu_06 tu_07

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *