Закрыть

Алюминий и медь реакция: Влияние меди на алюминий

Содержание

Влияние меди на алюминий

Медь с алюминием имеют разные электрохимические потенциалы и при контакте образуют гальваническую пару - электрохимическая коррозия... Соединяют их вроде через прокладку...

Присутствие в одной отопительной системе медного теплообменника и алюминиевого радиатора - явление далеко не необычное... Надо специальный ингибитор добавлять – performax

При соединении меди и алюминия происходит химическая реакция с образованием интерметаллидов. Медь с алюминием образуют два вида интерметаллидов и все бы ничего, но они оба имеют более плотную кристаллическую упаковку. Именно поэтому контакт ослабевает.

Реакция меди и алюминия протекает только с наличием воды.

Воздух в системе отопления вещь неприятная но от попадания не затрахован нито, в первую очередь это кочество материалов, даже у солидных прохзводителей присутствует брак. Но с этим можно бороться, а как бить с долговечностью данной системы и электролизом. Внимание! Выбирая алюминиевый радиатор, следует помнить 1) Алюминий предъявляет повышенные требования к химическому составу теплоносителя (в частности, к показателю pH), по-скольку в процессе эксплуатации происходит активное выделение водорода (если теплоноситель "кислый", то он вступает в реакцию с алюминием) 2) 2) Алюминиевые радиаторы не рекомендуется устанавливать с медными системами отопления. При условии установки автоматических кранов Маевского (воздухоотводчик), такая система будет функционировать

Медь не терпит двух соседей - алюминия и цинка. При установке на медных трубах алюминиевых радиаторов через теплоноситель (воду, или незамерзайку) образуется электрохимическая пара медь-алюминий. При этом выделяется водород, который постоянно завоздушивает систему. Особенно этот эффект становится заметным, если система отопления заполняется незамерзающим теплоносителем. На радиаторах приходится устанавливать автоматические воздушники, которые портят дизайн помещений, и увеличивается объем подпитки. Сами радиаторы при этом не разрушаются, т.к. расход алюминия на процесс ничтожен. Тем не менее, НИИ Сантехники (Москва, Локомотивный проезд, 21) в официальных бумагах не рекомендует устанавливать на медные трубопроводы алюминиевые радиаторы. При установке медных вставок на стальных оцинкованных трубопроводах (например, в системах центрального горячего водоснабжения), цинк с труб, расположенных "ниже по течению" от медной вставки, реагирует с медью с образованием крупных рыхлых хлопьев. При этом вода теряет прозрачность и становится непригодной для применения. НИИ Сантехники в своих рекомендациях ЗАПРЕЩАЕТ применение медных вставок на стальных оцинкованных трубопроводах.

Взаимодействие меди и алюминия в системе отопления

Полезная информация о химических процессах в отоплении передаётся штатными химиками нашего предприятия.

Московская фирма по обслуживанию котлов и систем отопления, а также по профилактике и ремонту газовых (дизельных) котлов предлагает свои услуги для вас, владельцы частных домов и предприятий Москвы и Московской области.

Уже 20 лет проводим мероприятия химической очистки и промывки теплообменников и отопительных систем неразборным и разборным способом с применением специального насосного оборудования. Квалифицированный подбор химических реагентов мастерами нашего коллектива при взаимодействии и взаимовыручке. Вы всегда с нашим коллективом специалистов.

Предприятие работает в московском регионе и в ближайших областях.

Запомните наши телефоны и адрес, это пригодится не только вам.

Компания по работе с отоплением

8 (495) 761 16 82

Дежурная техническая служба

8 (901) 540 45 21

круглосуточно

Алюминий и медь в современной водогрейной технике и автономной отопительной системе присутствуют в виде элементов и узлов, труб и теплообменников, а также запорной арматуры во всех её проявлениях. Хотим мы этого или нет, но химические процессы происходят и безопасность их природы, зависит от правильной профессиональной схемы и квалифицированной установки.

Во всём мире, а так же в России, в огромной стране, которая является неоспоримым лидером по производсту и использованию тепла с помощью различных энергоносителей, применяются системы обогрева с деталями и приборами, в том числе из медных и алюминиевых составляющих. Это факт. И есть смысл обсудить этот вопрос более тщательно.

Жителям России, как никому нужно правильно относиться к установке отопительных конструкций. Таким образом определяется долговечность приборов отопления, которые работают в общей схеме протока теплоносителя. Это залог безупречных финансовых вложений и развития на любом уровне, будь то частный дом или газовая котельная коммерческого предприятия. К нашему великому сожалению в жизни всё происходит не совсем так. 

Система отопления современного дома — это сложная инженерная конструкция, которая требует грамотного расчета, умелого исполнения и правильной эксплуатации. Эта система построена из множества различных узлов, имеющих, зачастую, совершенно разнообразную химическую природу. На просторах интернета регулярно ведутся дебаты о совместимости тех или иных металлов в системе отопления.

Порой встречаются довольно «сказочные» объяснения и рекомендации. Попробуем внести ясность. Данная информация, предоставленная коллективом инженеров предприятия, помогает пользователю техники, является собственностью, и расположена на analyzer-w.ru интернет портале для вас.

Мы уже писали о причинах и условиях возникновения коррозии металлов. Достаточно часто в системах отопления, в том числе и в загородных домах, соседствуют медь и алюминий. Медными могут быть и теплообменники некоторых котлов, и трубы, по которым циркулирует теплоноситель, и соединительные фитинги и радиаторы. Из алюминия, как правило, изготавливаются радиаторы отопления.

Так что же происходит при взаимодействии меди и алюминия, например, если трубы системы отопления медные, а радиаторы из алюминия? Все зависит от условий эксплуатации и правильности монтажа такой системы.

Для возникновения активных процессов электрохимической коррозии необходим непосредственный контакт двух разных по природе металлов (медь и алюминий) и наличие электролита (воды). То есть, если медная труба соединяется с алюминиевым радиатором через диэлектрическую вставку и контакт между трубой и радиатором отсутствует, то ни о каких процессах коррозии речи идти не может.

Более того, алюминий всегда покрыт защитной пленкой оксида алюминия (технология завода-производителя), который представляет собой чрезвычайно устойчивое вещество, не склонное к химическим взаимодействиям и не способствует разрушению металлов. Поэтому процессы коррозии с участием алюминия возможны только при повреждении металлической поверхности отопительного прибора.

Наше предприятие много лет занимается задачами восстановления и идеальной работы отопительной системы в зданиях предприятий и организаций, в частных и многоквартирных домах в Москве и Московской области. Для решения вопросов бесперебойной и качественной работы отопления, котлов и топочных в нашей технической службе имеются все возможности.

При обращении в фирму и её сервисный центр по Московской области и Москве вы получите исчерпывающую бесплатную консультацию и техническое решение предельного состояния техники отопления не по вине самого оборудования.

Тщательный подбор химической очистки и разновидности гидропневматических промывок даст высокоточный положительный результат после завершения техпроцедуры. Отзывы о работе инженерной службы направляйте на официальный сайт НПО фирмы.

Спасибо, что интересуетесь скучной, но зачастую экстренно полезной информацией для улучшения комфорта и сохранения тепла в быту и на предприятии.


По этой теме читайте дополнительно здесь:

Химпромывка отопительной системы в жилом доме.

Оценка промывки отопительной конструкции вашего дома у нас возможна по телефону.

У нас сможете заказать многие виды работ для системного отопления.

Неотложный ремонт газового котла импортного производства в Москве и МО.

Восстановление платы управления отопительного котла с пусконаладкой.

Квалифицированный монтаж системы отопления.

02.04.2021

07.11.2019

07. 11.2019

07.11.2019

07.11.2019

Как правильно соединить провода алюминий и медь

Практически все уже знают, что алюминиевая проводка это наследие прошлого века, и ее обязательно нужно менять при ремонте квартиры. Мало кто проводит капремонт и забывает об этом.

Однако случаются ситуации, когда ремонт проводится частично, и возникает крайняя необходимость соединить алюминиевый провод с медным или просто их нарастить, добавив несколько лишних сантиметров жилы.

Электрохимическая коррозия

При этом алюминий и медь не совместимы гальванически. Если вы их соедините напрямую, это будет что-то вроде мини батарейки.

При прохождении тока через такое соединение, даже при минимальной влажности, происходит электролизная химическая реакция. Проблемы обязательно рано или поздно себя проявят.

Окисление, ослабление контакта, его дальнейший нагрев с оплавлением изоляции. Переход в короткое замыкание, либо отгорание жилы.

К чему может в итоге привести такой контакт, смотрите на фото.

Как же сделать такое соединение грамотно и надежно, чтобы избежать проблем в будущем.

Вот несколько распространенных способов, которые применяют электрики. Правда не все они удобны для работы в монтажных коробках.

Рассмотрим подробнее каждый из них и выберем наиболее надежный, не требующий последующего обслуживания и ревизий.

Соединение через болт и стальные шайбы

Здесь для соединения используется стальная шайба и болт. Это один из наиболее проверенных и простых методов. Правда получается очень габаритная конструкция.

Для монтажа, закручиваете кончики проводов колечками. Далее подбираете шайбы.

Они должны быть такого диаметра, чтобы все ушко провода спряталось за ними и не могло контактировать с другим проводником.

Самое главное, как расположить колечко. Его нужно одевать так, чтобы во время закручивания гайки, ушко не разворачивалось, а наоборот стягивалось во внутрь.

Стальные шайбы между проводниками из разных материалов препятствуют процессам окисления. При этом не забывайте про установку гравера или пружинной шайбы.

Без нее контакт со временем ослабнет.

Особо нужно отметить, что не рекомендуется использовать оцинкованные болты или шайбы.

Дело в том, что безопасно соединять между собой можно металлы, у которых электрохимический потенциал соединения не превышает 0,6мВ.

Вот таблица таких потенциалов.

Как видите у меди и цинка здесь целых 0,85мВ! Такое подключение даже хуже чем прямой контакт алюминиевых и медных жил (0,65мВ). А значит, соединение будет не надежным.

Однако, несмотря на простоту резьбовой сборки, в итоге получается большая, неудобная конструкция, формой похожая на улей.

И запихнуть все это дело в не глубокий подрозетник, не всегда есть возможность. Более того, даже в такой простой конструкции многие умудряются напортачить.

Последствия себя не заставят ждать через очень короткое время.

Еще один способ — это применение соединительного сжима типа орех.

Он часто используется для ответвления от питающего кабеля гораздо большего сечения, чем отпайка.

Причем здесь даже не требуется разрезание магистрального провода. Достаточно снять с него верхний слой изоляции. Некоторые нашли ему применение для подключения вводного кабеля к СИПу.

Однако делать этого не стоит. Почему, читайте в статье ниже.

Но опять же, для распаечных коробок орехи не подходят. Более того, и такие зажимы бывает, выгорают. Вот реальный отзыв от пользователя на одном из форумов:

Есть серия специальных зажимов, которыми можно стыковать медь с алюминием.

Внутри таких клемм находится противоокислительная паста.

Однако споры о 100% надежности таких зажимов, тем более для розеточных, а не осветительных групп, не утихают до сих пор. При определенной укладке в ограниченном пространстве, контакт может ослабнуть, что неминуемо приведет к выгоранию.

Причем произойти это может даже при нагрузке ниже минимальной на которую рассчитаны Ваго. Почему и когда это происходит?

Дело в том, что когда сжимаются соединяемые проводники, между прижимной пластиной и местом контакта появляется небольшой зазор. Отсюда и все проблемы с нагревом.

Вот очень наглядное видео, без лишних слов объясняющее данную проблему.

Клеммная колодка

Данный способ имеет один существенный минус. Большинство продаваемых колодок очень низкого качества.

Некоторые исхитряются и чтобы избежать прямого контакта меди и алюминия, медную жилку припаивают сбоку такого зажима, а не вставляют во внутрь.

Правда клемму для этого придется разобрать. Кроме того, надежный контакт алюминия под винтом без ревизии, не живет очень долго.

Винтики каждые полгода-год нужно будет подтягивать. Частота ревизионных работ будет напрямую зависеть от нагрузки и ее колебаний в периоды максимума и минимума.

Забудете подтянуть и ждите беды. А если все это соединение запрятано глубоко в подрозетнике, то лезть туда каждый раз, не совсем удобное занятие.

Поэтому остается самый надежный из доступных способов – опрессовка. Здесь не будем рассматривать применение специализированных медно-алюминиевых гильз ГАМ, так как они начинаются от сечений 16мм2.

Для домашней же проводки, как правило наращивать нужно провода 1,5-2,5мм2 не более.

Соединение меди с алюминием опрессовкой

Рассмотрим наиболее распространенный случай, который встречается в панельных домах. Допустим, вам нужно запитать одну или несколько дополнительных розеток от уже существующего алюминиевого вывода в сквозной нише.

Для наращивания берете ГИБКИЙ медный провод сечением 2,5мм2. Это уменьшит механическое воздействие на алюминиевою жилу, когда вы будете укладывать провода в подрозетник.

Зачищаете концы медного провода. Далее, для такого соединения их нужно обязательно пропаять. Это исключит непосредственный контакт в гильзе меди и алюминия.

Для пайки удобно использовать самодельный тигель, представляющий из себя слегка доработанный паяльник в форме топорика.

При этом перед пайкой флюсом снимите с жилы оксидный слой.

Сам процесс лужения заключается в окунании провода в специальное отверстие в паяльнике, заполненное оловом.

После остывания жилы остатки флюса удаляются растворителем.

Далее переходите к алюминиевым проводам, торчащим из стены. Аккуратно зачищаете их концы и также удаляете слой окиси.

Для этого можно воспользоваться оксидной токопроводящей пастой. Такая же паста используется при монтаже модульных штыревых систем заземления.

Она рассчитана на работу в любых условиях и исключает дальнейшее появление окиси на поверхности провода. Имейте в виду, что оксидная пленка может в последствии иметь сопротивление в несколько раз большее, чем сам алюминий.

И не удалив ее, вся ваша дальнейшая работа пойдет насмарку. Более того, температура плавления такой пленки достигает 2000 градусов (против примерно 600С у Al).

После всех подготовительных работ, вставляете в гильзу ГМЛ провода с двух сторон. Все что осталось, это опрессовать данное соединение.

У некоторых  возникнет логичный вопрос, а не продавится ли при опрессовке слой припоя на жиле? Тогда получается что все манипуляции по лужению будут напрасны.

Главное здесь правильно подобрать по сечению гильзу и матрицы инструмента для обжатия.

В этом случае мягкий припой как бы загерметизирует контактное пятно медноалюминиевого соединения. А без отсутствия доступа кислорода к этой точке, эрозии контакта наблюдаться не будет.

Будьте внимательны, при работе с алюминиевыми проводниками нужно действовать крайне осторожно, так как это очень ломкий материал. Одно неосторожное движение и облом жилы вам обеспечен.

После опрессовки необходимо заизолировать данное соединение клеевой термоусадкой.

Именно клеевой тип обеспечит 100% герметичность и предотвратит поступление кислорода к контактным местам. Чтобы не рисковать и не прожечь изоляцию, нагревать термоусадку лучше строительным феном, а не зажигалкой или портативной горелкой.

Полученный пучок проводов укладывать в подрозетник нужно с большой осторожностью, так как алюминий не любит резких перегибов.

Так как наращенные медные жили гибкие, то на концы этих проводников одеваете изолированные наконечники НШВИ.

Только после этого их можно смело заводить в клеммные колодки розеток и затягивать винты.

Безусловно, это не единственный способ наращивания алюминиевых проводов, но он является одним из самых простых (в отличии от сварки или пайки) и надежных (в отличии от скрутки). Подробнее

Если же у вас есть малейшая возможность сменить целиком алюминиевую проводку, делайте это обязательно, не экономьте на своей безопасности.

Статьи по теме

Почему нельзя соединять медь и алюминий в электропроводке?

Практически все уже знают, что алюминиевая проводка это наследие прошлого века, и ее обязательно нужно менять при ремонте квартиры. Мало кто проводит капремонт и забывает об этом.

Однако случаются ситуации, когда ремонт проводится частично, и возникает крайняя необходимость соединить алюминиевый провод с медным или просто их нарастить, добавив несколько лишних сантиметров жилы.

При этом алюминий и медь не совместимы гальванически. Если вы их соедините напрямую, это будет что-то вроде мини батарейки.

При прохождении тока через такое соединение, даже при минимальной влажности, происходит электролизная химическая реакция. Проблемы обязательно рано или поздно себя проявят.

Окисление, ослабление контакта, его дальнейший нагрев с оплавлением изоляции. Переход в короткое замыкание, либо отгорание жилы.

К чему может в итоге привести такой контакт, смотрите на фото.

Как же сделать такое соединение грамотно и надежно, чтобы избежать проблем в будущем.

Вот несколько распространенных способов, которые применяют электрики. Правда не все они удобны для работы в монтажных коробках.

Рассмотрим подробнее каждый из них и выберем наиболее надежный, не требующий последующего обслуживания и ревизий.

Здесь для соединения используется стальная шайба и болт. Это один из наиболее проверенных и простых методов. Правда получается очень габаритная конструкция.

Для монтажа, закручиваете кончики проводов колечками. Далее подбираете шайбы.

Они должны быть такого диаметра, чтобы все ушко провода спряталось за ними и не могло контактировать с другим проводником.

Самое главное, как расположить колечко. Его нужно одевать так, чтобы во время закручивания гайки, ушко не разворачивалось, а наоборот стягивалось во внутрь.

Стальные шайбы между проводниками из разных материалов препятствуют процессам окисления. При этом не забывайте про установку гравера или пружинной шайбы.

Без нее контакт со временем ослабнет.

Дело в том, что безопасно соединять между собой можно металлы, у которых электрохимический потенциал соединения не превышает 0,6мВ.

Вот таблица таких потенциалов.

Как видите у меди и цинка здесь целых 0,85мВ! Такое подключение даже хуже чем прямой контакт алюминиевых и медных жил (0,65мВ). А значит, соединение будет не надежным.

Однако, несмотря на простоту резьбовой сборки, в итоге получается большая, неудобная конструкция, формой похожая на улей.

И запихнуть все это дело в не глубокий подрозетник, не всегда есть возможность. Более того, даже в такой простой конструкции многие умудряются напортачить.

Последствия себя не заставят ждать через очень короткое время.

Еще один способ — это применение соединительного сжима типа орех.

Он часто используется для ответвления от питающего кабеля гораздо большего сечения, чем отпайка.

Причем здесь даже не требуется разрезание магистрального провода. Достаточно снять с него верхний слой изоляции. Некоторые нашли ему применение для подключения вводного кабеля к СИПу.

Однако делать этого не стоит. Почему, читайте в статье ниже.

Но опять же, для распаечных коробок орехи не подходят. Более того, и такие зажимы бывает, выгорают. Вот реальный отзыв от пользователя на одном из форумов:

Есть серия специальных зажимов, которыми можно стыковать медь с алюминием.

Внутри таких клемм находится противоокислительная паста.

Однако споры о 100% надежности таких зажимов, тем более для розеточных, а не осветительных групп, не утихают до сих пор. При определенной укладке в ограниченном пространстве, контакт может ослабнуть, что неминуемо приведет к выгоранию.

Причем произойти это может даже при нагрузке ниже минимальной на которую рассчитаны Ваго. Почему и когда это происходит?

Дело в том, что когда сжимаются соединяемые проводники, между прижимной пластиной и местом контакта появляется небольшой зазор. Отсюда и все проблемы с нагревом.

Вот очень наглядное видео, без лишних слов объясняющее данную проблему.

Данный способ имеет один существенный минус. Большинство продаваемых колодок очень низкого качества.

Некоторые исхитряются и чтобы избежать прямого контакта меди и алюминия, медную жилку припаивают сбоку такого зажима, а не вставляют во внутрь.

Правда клемму для этого придется разобрать. Кроме того, надежный контакт алюминия под винтом без ревизии, не живет очень долго.

Винтики каждые полгода-год нужно будет подтягивать. Частота ревизионных работ будет напрямую зависеть от нагрузки и ее колебаний в периоды максимума и минимума.

Забудете подтянуть и ждите беды. А если все это соединение запрятано глубоко в подрозетнике, то лезть туда каждый раз, не совсем удобное занятие.

Поэтому остается самый надежный из доступных способов – опрессовка. Здесь не будем рассматривать применение специализированных медно-алюминиевых гильз ГАМ, так как они начинаются от сечений 16мм2.

Для домашней же проводки, как правило наращивать нужно провода 1,5-2,5мм2 не более.

Рассмотрим наиболее распространенный случай, который встречается в панельных домах. Допустим, вам нужно запитать одну или несколько дополнительных розеток от уже существующего алюминиевого вывода в сквозной нише.

Для наращивания берете ГИБКИЙ медный провод сечением 2,5мм2. Это уменьшит механическое воздействие на алюминиевою жилу, когда вы будете укладывать провода в подрозетник.

Зачищаете концы медного провода. Далее, для такого соединения их нужно обязательно пропаять. Это исключит непосредственный контакт в гильзе меди и алюминия. Для пайки удобно использовать самодельный тигель, представляющий из себя слегка доработанный паяльник в форме топорика.

  • При этом перед пайкой флюсом снимите с жилы оксидный слой.
  • Сам процесс лужения заключается в окунании провода в специальное отверстие в паяльнике, заполненное оловом.
  • После остывания жилы остатки флюса удаляются растворителем.

Далее переходите к алюминиевым проводам, торчащим из стены. Аккуратно зачищаете их концы и также удаляете слой окиси.

Для этого можно воспользоваться оксидной токопроводящей пастой. Такая же паста используется при монтаже модульных штыревых систем заземления.

Она рассчитана на работу в любых условиях и исключает дальнейшее появление окиси на поверхности провода. Имейте в виду, что оксидная пленка может в последствии иметь сопротивление в несколько раз большее, чем сам алюминий.

И не удалив ее, вся ваша дальнейшая работа пойдет насмарку. Более того, температура плавления такой пленки достигает 2000 градусов (против примерно 600С у Al). После всех подготовительных работ, вставляете в гильзу ГМЛ провода с двух сторон. Все что осталось, это опрессовать данное соединение.

У некоторых  возникнет логичный вопрос, а не продавится ли при опрессовке слой припоя на жиле? Тогда получается что все манипуляции по лужению будут напрасны.

Главное здесь правильно подобрать по сечению гильзу и матрицы инструмента для обжатия.

В этом случае мягкий припой как бы загерметизирует контактное пятно медноалюминиевого соединения. А без отсутствия доступа кислорода к этой точке, эрозии контакта наблюдаться не будет.

Будьте внимательны, при работе с алюминиевыми проводниками нужно действовать крайне осторожно, так как это очень ломкий материал. Одно неосторожное движение и облом жилы вам обеспечен.

После опрессовки необходимо заизолировать данное соединение клеевой термоусадкой.

Именно клеевой тип обеспечит 100% герметичность и предотвратит поступление кислорода к контактным местам. Чтобы не рисковать и не прожечь изоляцию, нагревать термоусадку лучше строительным феном, а не зажигалкой или портативной горелкой.

  1. Полученный пучок проводов укладывать в подрозетник нужно с большой осторожностью, так как алюминий не любит резких перегибов.
  2. Так как наращенные медные жили гибкие, то на концы этих проводников одеваете изолированные наконечники НШВИ.
  3. Только после этого их можно смело заводить в клеммные колодки розеток и затягивать винты.
  4. Безусловно, это не единственный способ наращивания алюминиевых проводов, но он является одним из самых простых (в отличии от сварки или пайки) и надежных (в отличии от скрутки). Подробнее
  5. Если же у вас есть малейшая возможность сменить целиком алюминиевую проводку, делайте это обязательно, не экономьте на своей безопасности.

Как соединить алюминиевый провод с медным — обзор способов

Любая кабельная продукция имеет токопроводящую жилу, выполненную из алюминия или меди. Так как эти материалы обладают хорошей токопроводимостью, теплоотдачей и стоят недорого, то при монтаже и подключении довольно часто возникает необходимость соединения этих двух разных по химическому составу элементов электрических цепей.

Согласно правилам устройства электроустановок (ПУЭ глава 2.1. п 2.1.21) простая скрутка между собой двух проводов разного материала запрещена, если нет последующей пайки или сварки. Однако, существуют и более действенные способы для выполнения данной процедуры как в домашних условиях, так и на производстве.

В этой статье мы расскажем, как правильно выполнить соединение медного и алюминиевого провода и каких ошибок не следует допускать.

Какие проблемы могут возникнуть при соединении алюминия и меди

Не так давно электропроводку в квартире или частном доме выполняли из алюминиевого провода, так как её было достаточно чтобы обеспечить питанием все существующие немногочисленные электроприборы. С развитием мира электроники и бытовой техники появилась тенденция роста нагрузки на электрические цепи. Соответственно возникла необходимость соединения старой и новой проводки.

При касании алюминия и меди возникает химическая реакция, которая впоследствии ухудшает электрический контакт, место подключения начинает греться и в итоге может стать причиной возгорания проводки и даже пожара.

При повышенной окружающей влажности этот процесс происходит достаточно быстро, так как между проводниками образуется тонкая плёнка, обладающая высоким сопротивлением, следствием чего является нагрев и обрыв цепи.

Но всё же каждый электрик знает как соединить алюминиевый провод с медным, чтобы в дальнейшем избежать неприятной ситуации.

На видео ниже наглядно показаны последствия небезопасного контакта между медью и алюминием:

В любом случае рекомендуется заменить старую проводку на медную, которая будет иметь нагрузочную способность, соответствующую текущему потреблению электроприборов. Если нет возможности полностью заменить проводку на новую, то выполняют частичную замену проводки. В таком случае и возникает необходимость соединения старой и новой электропроводки – медного и алюминиевого проводов. 

Способы соединения разных проводов

Существует несколько основных общепринятых распространённых приспособлений, которые дают возможность ликвидировать непосредственный контакт между двумя материалами, действующими друг на друга агрессивно. Рассмотрим каждый отдельно.

Клеммные колодки

Клеммные колодки могут быть оснащены болтовым или зажимным механизмом соединения. Данная конструкция даёт подключение к одному выводу алюминиевого, а к другому медного токопроводящего материала, которые контактируют между собой через стальную пластину.

Пластина изготовлена из нейтрального металла, который не вступает в реакцию с медью и алюминием – обычно это латунные пластины либо медные луженые пластины.

Например, широко применяемой клеммой Wago 2273, можно соединить одновременно от двух до восьми проводников разного сечения, выполнить крепёж на DIN-рейку с помощью специального монтажного адаптера.

Болтовой зажим в колодках более надёжен и применяется в силовых не высоковольтных цепях. Чаще всего он осуществляется с помощью «ореха».

Это небольшая разветвительная коробка, выполненная из диэлектрического материала, в форме напоминающего грецкий орех, внутри которого расположен блок металлических пластин, через которые и происходит контакт между алюминиевыми и медными проводами.

Все эти вышеописанные способы относятся к разъёмным соединениям, то есть для многоразового подключения и отключения, в случае необходимости.

  • На примере наглядно показывается выполненное скрепление меди и алюминия в распределительной коробке за счет использования латунных клеммников:
  • О том, как соединить провода клеммами WAGO, читайте в нашей отдельной публикации!

Метод опрессовки

Иногда, при прокладке и монтаже электропроводки, появляется необходимость в выполнении качественного неразъёмного соединения медных и алюминиевых проводов опрессовкой с помощью гильз. Чаще она встречается на вводе в электрический шкаф, распределительное устройство или при соединении кабеля с уже установленным агрегатом, где нельзя выполнить замену алюминия на медь, и наоборот.

Такой вид подсоединения проводников является более затратным, так как требует специального инструмента. Но в то же время, при проведении многочисленных монтажных работ такого плана, профессионалы часто выбирают именно его.

Опрессовка проводов гильзами обеспечивает более надёжный и долговечный контакт. Таким методом на производстве скрепляют медные и алюминиевые жилы даже к особо мощным и высоковольтным потребителям.

Для выполнения этих работ необходим специальный инструмент и особые медно-алюминиевые гильзы.

Их сжим может выполняться даже с помощью обычного молотка и металлических накладок, что не совсем правильно, или же существует профессиональный ручной гидравлический пресс.

Таким сжимом рекомендуется пользоваться не только при опрессовке гильз, но и наконечников. Кстати, они тоже могут быть выполнены наполовину из меди и алюминия, для подключения, например, алюминиевого кабеля к какому-либо аппарату с медными выводами или клеммами.

Обычно алюмомедные гильзы используют для соединения жил кабелей большого сечения. При небольших сечениях, например, в домашней электропроводке, выполняется опрессовка нескольких проводников одной гильзой.

При этом провода заводят с разных сторон, для соединения как бы в стык, как показано на фотографии выше.

Нельзя складывать алюминиевые и медные проводники параллельно друг другу (внахлест), как это было показано на иллюстрации с гидравлическим прессом, потому что в этом случае возникает прямой контакт алюминия и меди. Также нельзя использовать медные нелуженные гильзы с алюминиевым кабелем.

Болтовое соединение

Очень часто при работе с электропроводкой у простого человека, не занимающегося электромонтажными работами, в домашних условиях может появиться экстренная необходимость в создании хорошего и надёжного контакта между алюминиевым и медным проводом. Бежать в магазин для покупки специального инструмента и материалов не целесообразно при выполнении разовых работ, а их нужно сделать и при этом качественно.

Тогда имеет смысл воспользоваться обычным болтом с гайкой и несколькими шайбами. Главное, в этом методе — это разделить шайбами два металла, агрессивных друг к другу, так как показано на рисунке внизу.

Болтовое соединение алюминиевого и медного провода можно выполнить в распределительной коробке, которая является неотъемлемой частью любой проводки как в доме, так и в квартире. Таким образом, через болт с лёгкостью и достаточно качественно соединяются даже провода с разными жилами по сечению.

Колечки из провода должны быть завернуты в сторону затягивания гайки, при болтовом соединении. Это нужно чтобы при затягивании колечки не раскручивались и не увеличивались в диаметре, а наоборот плотнее оборачивались вокруг болта.

На видео наглядно показывается, как соединить жилы разного материала болтом:

Похожий способ — применение заклепочника. Ниже наглядно показывается, как соединить провода заклепкой:

Есть еще вариант применения алюмомедных наконечников и алюмомедных шайб. Можно опрессовать алюминиевый кабель наконечником и подсоединять к медной шине. Либо при использовании алюмомедной шайбы можно опрессовать алюминиевый кабель обычным алюминиевым кабельным наконечником и подключить на шину через данную шайбу.

Особенности соединения жил на улице

При монтаже кабельной линии по улице все элементы соединения подвержены воздействию внешних негативных факторов, таких как снег, обледенение, дождь и т. д.

Поэтому для выполнения таких работ необходима только герметично закрывающаяся конструкция, устойчивая к ультрафиолетовым лучам и низким температурам. Осуществляя подключения на столбе, крыше и в другом открытом месте чаще всего применяются прокалывающие зажимы.

Возможно вам будет интересно более подробно узнать, как соединить СИП с медным кабелем на улице, т.к. в этом случае как раз происходит соединение алюминия и меди на открытом воздухе.

В помещениях при прокладке кабеля в стене под штукатуркой кабель укладывается в штробе цельным, и любое соединение даже однородных металлов нежелательно. Всё подключения в розетке или распределительной коробке выполняются любым вышеописанным способом, подходящим для каждой индивидуальной ситуации.

Распространённые ошибки, полезные советы и правила

К вашему вниманию несколько полезных советов, позволяющих безопасно соединить алюминиевый провод с медным между собой:

  1. Перед тем как соединить жилы пайкой нужно знать, что медь залудить будет очень просто, а алюминий только с помощью специального припоя.
  2. Нельзя слишком сильно сжимать места соединения как многожильных, так и одножильных проводников. В противном случае возникнет деформация и повреждение жил.
  3. Всегда стоит соблюдать маркировку и правильно подбирать клеммники в зависимости от сечения жилы и типа установки (в помещении или же на улице).
  4. Ни в коем случае не используйте для соединения алюминиевой и медной проводки обычные скрутки. Это один из самых небезопасных способов коммутации жил, который чаще всего приводит к пожару.

Это и все, что мы хотели рассказать вам о том, как выполнить соединение медного и алюминиевого провода. Надеемся, предоставленные способы и правила помогли вам понять всю сущность работ!

Будет полезно прочитать:

Как правильно соединять алюминиевые провода с медными в электропроводке

В квартирах домов старой постройки зачастую электропроводка выполнена из алюминиевых проводов, соединенных между собой методом скрутки.

При подключении к алюминиевой электропроводке светильников, установке дополнительных розеток и другого электрооборудования необходимо учитывать, что при повышенной влажности сопротивление контакта между алюминиевыми и медными проводами со временем увеличивается. Это приводит к нагреву места соединения и разрушению контакта.

Для надежного соединения медных и алюминиевых проводов между собой необходимо соблюдать простые правила, о которых и пойдет речь.

Способы соединения алюминиевых проводов с медными

Подключать медные провода к уже существующей проводке из алюминиевых проводов, не так сложно, как кажется на первый взгляд. Главное соблюдать технологию.

Соединение скруткой

Скрутка, хотя правилами ПУЭ в настоящее время запрещена, является одним из самых распространенных способов соединения проводов в быту, благодаря простоте и не требующая дополнительных затрат. Но при соединении разнородных металлов, скрутка является и самым низко надежным способом соединения проводников.

При колебаниях температуры окружающей среды, из-за линейного расширения металлов, между проводами в скрутке образуется зазор, увеличивается сопротивление контакта, начинает выделяться тепло, провода окисляются, и контакт в конечном итоге между проводниками полностью нарушается. Конечно, это происходит спустя не один год, но, тем не менее, если планируется надежная долговременная работа электропроводки, то соединение проводов скруткой лучше заменить более надежным, например резьбовым или с помощью клеммных колодок.

Но если возникла необходимость скрутить провода, то скрутку нужно выполнять таким образом, чтобы проводники обвивали друг друга, а не один обвивал другой.

На фотографии слева показана скрутка, которую делать недопустимо, так как не будет, обеспечена достаточная механическая прочность соединения.

Скрутку медного проводника и алюминиевого без принятия мер по дополнительной герметизации ее недопустимо. Герметизировать скрутку можно любым водостойким защитным лаком.

Максимально надежное соединение медного и алюминиевого проводников получится, если медный провод предварительно залудить припоем. На правой фотографии скрутка медного и алюминиевого проводов выполнена правильно.

Соединять провода можно разного диаметра, многожильный провод с одножильным проводом. Только многожильный провод необходимо предварительно пролудить припоем, сделав, таким образом, его одножильным.

Витков в скрутке должно быть не менее трех для толстого провода и не менее пяти для тонкого, диаметром менее 1 мм.

Резьбовое соединение алюминиевых проводов с медными

Соединение проводов, при правильном выполнении, с помощью винтов и гаек является самым надежным и способно обеспечивать надлежащий контакт на протяжении всего срока службы электропроводки и подсоединенных электроприборов.

Легко разбирается и позволяет соединять любое количество проводников, ограниченное только длиной винта. С помощью резьбового соединения можно успешно соединять провода в любом сочетании, алюминиевые и медные, тонкие и толстые, многожильные и одножильные.

Главное, не допускать непосредственного контакта проводов из меди и алюминия, и устанавливать пружинные шайбы.

Для того, чтобы выполнить резьбовое соединение необходимо снять с проводников изоляцию на длину, равную четырем диаметрам винта, если жилы окисленные, то зачистить металл до блеска и сформировать колечки.

Далее на винт одевают пружинную шайбу, простую шайбу, колечко одного проводника, простую шайбу, колечко другого проводника, шайбу и в довершение гайку, завинчивая винт в которую весь пакет стягивают до выпрямления пружинной шайбы.

Для проводников с диаметром жил до 2 мм достаточно винта М4. Соединение готово. Если проводники из одного металла или при соединении алюминиевого провода с медным, конец которого залужен, то шайбу между колечками проводников прокладывать не нужно. Если медный провод многожильный, то его сначала нужно пролудить припоем.

В настоящее время широкое распространение получил способ соединения проводов с помощью клеммной колодки. Конечно, этот вид соединения проводов по надежности уступает соединению с помощью винта и гайки, но имеет ряд преимуществ.

Позволяет надежно и быстро соединять алюминиевые провода и медные между собой в любом сочетании, не требуется формировать на концах проводов колечки, не нужно соединение изолировать, так как конструкция клеммной колодки исключает случайное прикосновение оголенных участков проводов друг с другом.

Для подсоединения провода к клеммной колодке, достаточно зачистить его конец от изоляции на длину 5 мм, вставить в отверстие и зажать винтом. Затягивать винт нужно со значительным усилием, особенно это важно при соединении алюминиевых проводов.

Клеммная колодка незаменима при подключении люстры к коротким алюминиевым проводам, выходящим из потолка. От многократных скруток алюминиевые провода обламываются и становятся короткими.

Даже если выходит алюминиевый проводник длиной всего в один сантиметр, то с помощью клеммной колодки можно подключить люстру надежно.

Очень удобна клеммная колодка для соединения перебитых в стене алюминиевых и медных проводов, так как длина перебитых проводов для соединения другими способами недостаточна. Но прятать клеммную колодку под штукатурку без размещения в распределительной коробке, не допустимо.

Соединение алюминиевых проводов с медными с помощью клеммной колодки с плоско пружинным зажимом Wago

В настоящее время широкое распространение получили клеммные колодки с плоско пружинным зажимом Wago (Ваго) немецкого производителя. Клеммники Wago бывают двух конструктивных исполнений, одноразовые, когда провод вставляется без возможности изъятия, и многократного применения, с рычажком, позволяющим многократно как вставлять провода, так и вынимать.

На фото одноразовый клеммник Wago. Они рассчитаны для соединения любых видов одножильных проводов, в том числе и медных с алюминиевыми проводами сечением от 1,5 до 2,5 мм2. Колодка рассчитана на соединение электропроводки в соединительных и распределительных коробках с силой тока до 24 А, но я сомневаюсь в этом. Думаю, током силой более 5 А нагружать клеммы Wago не стоит.

Пружинные клеммники Wago очень удобные для подключения люстр, соединения проводов в соединительных и распределительных коробках. Достаточно просто с усилием вставить провод в отверстие колодки, и он надежно зафиксируется.

Для того, чтобы вынуть провод из колодки потребуется значительное усилие. После изъятия проводов может произойти деформации пружинящего контакта и надежное соединение проводов при повторном соединении этой клеммой не гарантируется.

Это является большим недостатком одноразового клеммника.

Более удобный клеммник Wago многоразовый, имеющий оранжевый рычажок. Такие клеммники позволяют соединять и в случае необходимости, разъединять между собой любые провода электропроводки, одножильные, многожильные, алюминиевые в любом сочетании сечением от 0,08 до 4,0 мм2. Рассчитаны на ток до 34 А.

Достаточно снять с провода изоляцию на 10 мм, поднять вверх оранжевый рычажок, вставить провод в клемму и вернуть рычажок в исходное положение. Провод надежно зафиксируется в клеммнике.

Клеммная колодка Wago является современным средством соединения проводов без инструмента быстро и надежно, но обходится дороже, чем традиционные способы соединения.

Неразъемное соединение алюминиевых проводов с медными

Неразъемное соединение проводов обладает всеми преимуществами резьбового, за исключением возможности разборки и повторной сборки соединения без разрушения заклепки и необходимость наличия специального инструмента для выполнения заклепки – заклепочника.

Сегодня заклепки широко используются для неразъемного соединения тонкостенных деталей конструкций при создании перегородок и интерьера в любых помещениях.

Скорость, прочность, низкая цена и простота выполнения операции по заклепке – вот главное достоинство данного вида неразъемного соединения.

Принцип работы заклепочника простой, втягивание и отрезание стального стержня, продетого через трубчатую алюминиевую заклепку со шляпкой. Стержень имеет утолщение и когда втягивается в трубку заклепки, расширяет ее. Заклепки бывают разных длин и диаметров, так что есть возможность подобрать любую.

Для того, чтобы соединить проводники заклепкой, нужно их подготовить так же, как и для резьбового соединения. Диаметры колечек должны быть чуть больше диаметра заклепки. Оптимальный диаметр заклепки это 4 мм.

На заклепку одевают сначала алюминиевый проводник, затем пружинную шайбу, далее медный и плоскую шайбу. Вставляют стальной стержень в заклепочник и сжимают его ручки до щелчка (это происходит обрезка излишков стального стержня).

Соединение готово.

Надежность резьбового и неразъемного соединения заклепкой достаточно высокая. Такой способ соединения можно успешно применять для сращивания, например, поврежденных при ремонтных работах в стене алюминиевых проводников дополнительной вставкой. Только нужно позаботиться о хорошей изоляции оголенных участков соединений.

С другими видами и способами соединения проводов вы можете ознакомиться на странице «Как правильно соединять электрические провода».

Существует мнение, что алюминиевые и медные провода соединять непосредственно вместе недопустимо и это действительно научно обоснованный факт. А можно ли соединять медный провод с оцинкованной клеммой? Конечно, Вы не можете сразу дать ответ, но через минуту будете ориентироваться в этом вопросе не хуже опытного химика.

Что же происходит при соприкосновении двух разных проводников тока? Если влаги нет, то соединение будет надежным всегда. Но в атмосферном воздухе всегда есть пары воды, которые и является виновником разрушения контактов. Каждый проводник тока обладает определенным электрохимическим потенциалом. Это свойство металлов широко используется в технике, например, изготавливают термопары.

Но если вода попадает между металлами, то образует короткозамкнутый гальванический элемент, начинает течь ток и как в гальванической ванне разрушается один из электродов, так и в соединении разрушается один из металлов. Электрохимический потенциал каждого токопроводящего материала известен, и зная величину можно точно определить, какие материалы допустимо соединять между собой.

Таблица электрохимических потенциалов (мВ) возникающих между соединенными проводниками

Согласно требованиям стандарта допускается механическое соединение между собой материалов, электрохимический потенциал (напряжение) между которыми не превышает 0,6 мВ. Как видно из таблицы, надежность контакта при соединении меди с нержавеющей сталью (потенциал 0,1 мВ) будет гораздо выше, чем с серебром (0,25 мВ) или золотом (0,4 мВ)!

А если медный провод покрыть оловянно-свинцовым припоем, то можно его смело соединять любым механическим способом с алюминиевым! Ведь тогда электрохимический потенциал, как видно из таблицы, составит всего 0,4 мВ.

Почему нельзя соединять напрямую медный провод с алюминиевым?

Чтобы повесить люстру или проложить новую линию провода в старой квартире, зачастую нужно соединять алюминиевые и медные провода. Однако электрики категорически запрещают делать такие скрутки. Разберемся, почему нельзя скручивать медь и алюминий и как выполнять соединение проводников из разного металла правильно.

Трудности с проводкой

Современные правила создания внутриквартирной проводки (ПУЭ) требуют, чтобы все проводники в квартире были медными. Однако в советское время в целях экономии в большинстве домов проводка делалась из алюминиевых проводов. Поэтому перед жильцами квартир старой постройки часто возникает проблема соединения медных и алюминиевых проводников. Причин может быть несколько, например:

  • необходимость нарастить обломившийся алюминиевый провод;
  • установка дополнительной розетки;
  • замена старой люстры современной.

Обычно провода соединяют наиболее простым способом – скруткой. Однако электрики категорически запрещают скручивать алюминий с медью. Такое соединение называют пожароопасным и недолговечным. Однако далеко не все способны объяснить причины запрета на создание такого соединения.

Что говорит физика?

Согласно законам природы, при соединении двух металлов возникает гальваническая пара.

Поскольку каждый металл имеет свое значение электрохимического потенциала, в месте контакта участники пары начнут транспортировку электронов. Такие процессы происходят, например, в батарейке.

Если в месте контакта присутствует электролит или металлы находятся под током, скорость перехода электронов из одного металла в другой существенно возрастет.

Поскольку электрохимический потенциал меди и алюминия отличается существенно, гальванические процессы в месте соединения идут быстро. Это приводит к нескольким неприятным последствиям:

  • Появлению на поверхности алюминиевого провода пленки окислов. Эти продукты разрушения металла плохо проводят электричество и существенно снижают качество контакта.
  • Постепенная коррозия разрушит проводники и создаст зазоры между ними. Это также приведет к ухудшению контакта.

Помимо способности образовывать гальваническую пару, алюминий с медью отличаются высокой разницей в способности расширяться при нагреве. Из-за перепадов температур проводники расширяются неравномерно, что также ведет к увеличению зазоров и падению качества контакта.

Некачественный контакт начинает греться при прохождении сквозь него тока. Поэтому место скрутки медного и электрического провода быстро превратится в источник нагрева. А там недалеко и до пожара. Поэтому электрики категорически запрещают выполнять соединение медного и алюминиевого провода путем скрутки.

Некоторые применяемые в электротехнике металлы и сплавы имеют небольшую разницу в электрохимическом потенциале и коэффициентах расширения. Такие материалы называют совместимыми. Для алюминия совместимыми являются цинк, дюраль, электротехническая сталь. Для меди – хром, никель, латуни и бронзы.

Как быть, если соединение необходимо?

Иногда все же приходится соединять несовместимые металлы между собой. В таких случаях применяют специальные технологические решения, которые способны повысить качество контакта. Разберем некоторые из них подробнее.

Соединения с помощью клеммных колодок

Клеммники, или клеммные колодки, – расходный материал для современного электрика. Это помещенная в пластиковый корпус контактная группа, выполненная из медного сплава и покрытая слоем никеля. Пользоваться ими довольно просто:

  1. Нужно зачистить соединяемые провода.
  2. Вставить концы в противоположные гнезда колодки.
  3. Надежно зафиксировать, затянув прижимные винты.

Если слишком сильно прижать алюминиевую жилу, она может обломиться. Поэтому не стоит чрезмерно затягивать винты!

Клеммники WAGO

Современный вариант клеммной колодки, оснащенный пружинными фиксаторами. Достаточно отжать прижимные лапки, вставить зачищенные провода на место и снова зажать. Однако накопленный опыт эксплуатации таких колодок выявил ряд недостатков:

  • Со временем пружина фиксатора может ослабеть, что приведет к нарушению контакта и перегреву.
  • WAGO стоят дороже обычных клеммников.

Соединение с помощью болта

Обыкновенный стальной болт, оснащенный тремя шайбами, также может помочь надежно соединить алюминиевый проводник с медным. На концах проводов делаются кольца, затем они надеваются на болт. Порядок таков: шайба – медь – шайба – алюминий – шайба. Затем контакт тщательно прижимается гайкой и изолируется.

Недостаток такого способа – крупные размеры соединения. Подходит оно только для проводников большого сечения.

Таким образом, хотя соединять медь с алюминием скруткой и нельзя из-за высокой пожарной опасности, существуют безопасные способы соединения для таких проводов. Если вы используете одно из них, можете не волноваться за стабильность контакта и защищенность вашего дома от пожара.

Ответы Mail.

ru: ..почему нельзя напрямую соединять алюминиевые и медные провода? (+)

Friendly Fire Гений (55767) 12 лет назад

Практика — критерий истины. Ради эксперимента соединил обычной скруткой алюминиевый провод с медным. Постоянная нагрузка на шнурок где-то в среднем 400-500 ватт. Уже пятый год жду, когда сгорит — ХРЕНУШКИ! Греется, конечно, но не до такой степени, чтобы разрушить изоляцию.

Алексей ЛобановУченик (117) 10 месяцев назад

Ваш случай называется «систематическая ошибка выжившего». Проблема главным образом кроется не в постоянной нагрузке на соединение, а в пиковых типа короткого замыкания. Там, где нормальное соединение перенесли бы кз без потерь, Ваше с гораздо большей вероятностью может вспыхнуть. Алло, некачественная проводка — самая частая причина пожаров.

Танюшкин Гуру (3067) 12 лет назад

Алюминий будет коррозировать и ,в конце концов, разрушится. Может произойти короткое замыкание. Данный процесс будет ускоряться при повышенной влажности.

White Rabbit Искусственный Интеллект (312559) 12 лет назад

Разница электрохимических потенциалов альминия имеди слишком велика.В результате образуется гальваническая пара (типа батарейки) и начинает протекать электричесий ток, во ВЛАЖНОЙ АТМОСФЕРЕ вызывающий интенсивную коррозию алюминия.

Это приводит к возрастанию сопротивления контактаЮ он начинает греться и искрить, добавляется электроэррозионное разрушение.

В общем короткое замыкание в результата совсем необязательно, разве уж очень не повезёт, а вот качество соединения (сопротивление контакта) очень быстро ухудшится. ВО ВЛАЖНОЙ АТМОСФЕРЕ!

Черепахарь Оракул (56548) 12 лет назад

Да, значительная разница в электрохимическом потенциале меди и алюминия. Результат — возможно ослаблание контакта и искрение. Это плохо, скачки напряжения — могут перегореть лампы и приборы окруче.

А если это соединение недоступно, тог кирдык проводке. Впрочем, во многих случаях это соединение работает годами и ничего не делается.

ПРосто, когда работаешь с силовой проовдкой, такие рисковые вещи необходимо свести к минимуму. Ещё есть правила ПУЭ.

Сергей Семакин Просветленный (24330) 12 лет назад

При вводе в дом со столба это делать нельзя, т.к. в месте соединения алюминия и меди будет большое переходное сопротивление, следовательно их нагревание, электрохимическая коррозия. Что в дальнейшем приведет либо к короткому замыканию, либо провод алюминевый просто отгорит.

В крайнем случае соединения делаются через коммутирующие зажимы, в быту их называют «орехами». Вообще смотрите «Правила устройства электроустановок». Если сами никогда не занимались монтажем электропроводки в доме, лучше сделайте это с помощью специалистов и посмотрите сами как это все делается. Есть много тонкостей которые нужно знать.

Правильно выполненные работы, залог вашей безопасности и сохранности дома. Успеха!

Siatkoq Karomel Ученик (245) 4 года назад Из практики — электрики в доме заменили старую проводку (люмишку) на медную. В квартире оставалась старая (люмишка) — через 2 месяца после замены в счетчике на клеммах окислились контакты, перегрелась проводка и пошел специфический запах 🙂 Менял проводку. Алюминий – металл с высокой окисляемостью Это процесс образования на его поверхности окисной плёнки, имеющей очень высокое сопротивление, что естественно не может не сказываться на токопроводимости такого соединения. Медные провода менее подвержены окислению, вернее, окисная плёнка на них имеет гораздо меньшее сопротивление, чем окисная плёнка на алюминиевых проводах, поэтому на токопроводимости это сказывается очень незначительно. Поэтому при соединении медных и алюминиевых проводов электрический контакт фактически происходит через окисные плёнки меди и алюминия, имеющие разные электрохимические свойства, что существенно может затруднять токопроводимость в этом месте соединения. Что же делать когда соединять разнородные металлы действительно нужно? Остается только два пути: соединять через другой металл или устранять образование разрушающей оксидной пленки. В первом случае используются самые различные соединители: клеммные колодки без непосредственного соприкосновения разнородных проводников, защитный слой из третьего металла шайбы специальные наконечники. Для соединения меди и алюминия используются специальные пасты, которые и защищают контакт от окисления и попадания влаги, препятствуют последующему разрушению контакта.

Если для дружбы этих двух металлов нужен третий, то можно один из них залудить. Например луженый медный многожильный провод прекрасно выполнит поставленную задачу при соединении с одножильным алюминиевым.

что лучше всего подходит для проводки?

В СССР вся проводка была алюминиевой, а в современных новостройках таких уже и не встретишь. Но чем медь лучше алюминия? Какую проводку лучше использовать для дома: медную или алюминиевую? Рассказываем, почему материал проводов так быстро и безспворотно изменился. 

Превосходство меди над алюминием для проводки

1. Электропроводность

Медь превосходит алюминий по электропроводности. Удельное электрическое сопротивление меди составляет 0,017 Ом*мм2/м в то время, как у алюминия 0,028 Ом*мм2/м. То есть электропроводность алюминия составляет 65% электропроводности меди, поэтому для одной и той же нагрузки алюминиевый провод придется брать сечением на «ступень» выше меди.

Например, необходимо запитать нагрузку в 5 кВт. Для нее нужно будет взять или медный провод сечением 2,5 мм2, например, NYM 3х2,5, или алюминиевый сечением 4 мм2. Так как алюминиевый провод более объемный, то он будет занимать больше места в кабель-каналах, для него потребуется клеммы для розеточных групп крупнее по размеру, чем для медных. Учитывая это, медь удобнее использовать для проводки в доме.

2. Окисление

И медь, и алюминий окисляются в процессе эксплуатации под действием воздуха. Однако у меди окисление происходит значительно медленней, и сама по себе пленка (зеленоватый налет) довольно легко разрушается, поэтому неплохо проводит ток (хотя проходимость немного ухудшается).
У алюминия же окисление происходит гораздо быстрее, а сама оксидная пленка очень плотная и плохо проводит ток. Окисленные соединения на скрутках, сжимах или клеммах чаще всего становятся причиной горения контакта. Удалить оксидную пленку можно кварцево-вазелиновой смазкой, но найти ее в магазинах не так-то просто, да и это дополнительные расходы и время на обслуживание.

3. Механическая прочность

Медный провод более гибкий и прочный, чем алюминиевый. В процессе монтажа жилы приходится изгибать, например, для соединения в распредкоробках и розетках. Медные жилы могут выдержать многоразовое изгибание без повреждения, а вот алюминиевые лишь 5 — 10 изгибаний, а дальше ломаются.

Особые проблемы алюминиевая проводка создает, когда нужно ремонтировать соединения в распредкоробках — старый алюминий уже имеет микротрещины, поэтому при одном неверном движении жила может обломаться и придется снимать часть штукатурки, чтобы вытащить хоть немного провода.

4. Теплопроводность

Данный параметр характеризует способность проводника рассеивать тепло. Чем выше коэффициент теплопроводности, тем лучше металл рассеивает тепло. У меди коэффициент теплопроводности составляет 389,6 Вт/м* °С, а у алюминия 209,3 Вт/м* °С. То есть медь почти в два раза лучше рассеивает тепло, чем алюминий. Особенно это важно в местах соединений, где провод греется сильнее всего. При одной и той же нагрузке медь в два раза быстрее будет отводить тепло (точнее не нагреваться).

Превосходство алюминия над медью для ЛЭП 

Но алюминий вовсе не отправлен на пенсию: воздушные линии электропередач по-прежнему выполняют из этого металла. Стало быть, и у него есть преимущества? Конечно! 

1. Вес

Вес во многом определяется исходя из плотности металла. Чем выше плотность, тем тяжелее проводник. Плотность меди составляет 8900 кг/м3, а алюминия 2700 кг/м3. То есть при равном объеме медный провод будет весить в 3,3 раза больше алюминиевого. Для домашней проводки это не критично, так как провод лежит в штробах, а для воздушной линии электропередач это важный показатель. Именно поэтому для ВЛЭП используют алюминиевый провод.

2. Цена

Здесь алюминий явный победитель. Все минусы алюминия сказались на относительно невысокой цене, которая примерно в 4 раза ниже цены на медь, поэтому воздушные линии, а также вводы в дом выполняют исключительно алюминиевым проводом.

Интересные факты из мира электрики:

Теги электропроводка

Гальваническая коррозия алюминия – aluminium-guide.com

Следует подчеркнуть, что стойкость алюминия и алюминиевых сплавов к нормальным условиях окружающей среды является очень высокой. Главным источником защиты от коррозии является прочная, самовосстанавливающаяся оксидная пленка, которая всегда присутствует на алюминии в условиях окружающей воздушной атмосферы (рисунок 1).

Рисунок 1 – Естественная защита алюминия от коррозии – поверхностная оксидная пленка [4]

Основные типы коррозии алюминия

Для коррозии алюминия характерны следующие основные типы [4]:

  • Общая коррозия
  • Щелевая коррозия
  • Фреттиниг-коррозия
  • Коррозия под напряжением
  • Гальваническая коррозия
  • Точечная (питтинговая) коррозия
  • Межзеренная коррозия
  • Подповерхностная коррозия

Рисунок 2 – Общая коррозия алюминия: растворение естественной оксидной пленки
растворами сильных щелочей и некоторых кислот [4]


Рисунок 3 – Щелевая коррозия алюминия [4]


Рисунок 4 – Фреттинг-коррозия алюминия: взаимное трение двух алюминиевых компонентов
в условиях шероховатого контакта [4]


Рисунок 5 – Коррозия алюминиевых сплавов под напряжением: при некоторых условиях
в сплавах Al-Cu, Al-Mg, Al-Zn-Mg [4]


Рисунок 6 – Гальваническая коррозия алюминиевого сплава
происходит в условиях его мокрого или влажного контакта
с другим, более “благородным” металлом, таким как медь [4]


Рисунок 7 – Питтинговая (точечная) коррозия алюминия
под воздействием хлоридных ионов [4]


Рисунок 8 – Межзеренная коррозия и подповерхностная коррозия [4]

В зависимости от условий окружающей среды, нагружения и функционального назначения детали любой из видов коррозии может явиться причиной преждевременного разрушения. Кроме того, неправильное применение алюминиевых деталей и изделий может усугублять коррозионные процессы.

Гальваническая коррозия алюминия

Наиболее частые ошибки проектирования алюминиевых конструкций связаны с гальванической коррозией. Гальваническая или электрохимическая коррозия происходит, когда два разнородных металла образуют электрическую цепь, замыкаемую жидким или пленочным электролитом или коррозионной средой. В этих условиях разность потенциалов между разнородными металлами создает электрический ток, проходящий через электролит, который (ток) и приводит к коррозии в первую очередь анода или менее благородного металла из этой пары.

Сущность гальванической коррозии

Когда два различных металла находятся в прямом контакте с электропроводящей жидкостью, то опыт показывает, что один из них может корродировать, то есть подвергаться коррозии. Это называют гальванической коррозией.

Другой металл не будет корродировать, наоборот, он будет защищен от этого вида коррозии.

Этот вид коррозии отличается от тех видов коррозии, которые могли бы возникнуть, если бы оба эти металлы были помещены раздельно в ту же самую жидкость. Гальваническая коррозия может случиться с любым металлом, как только два различных металла будут находиться в контакте в электропроводящей жидкости.

Внешний вид гальванической коррозии

Внешний вид гальванической коррозии является очень характерным. Эта коррозия не раскидывается по всей поверхности изделия, как это бывает с точечной – питтинговой – коррозий. Гальваническая коррозия плотно локализована в зоне контакта алюминия с другим металлом. Коррозионное воздействие на алюминий имеет равномерный характер, он развивается в глубь в виде кратеров, которые имеют более или менее округлую форму [3[.

Все алюминиевые сплавы подвергаются идентичной гальванической коррозии [3].

Принцип батареи

Гальваническая коррозия работает как батарея, которая состоит из двух электродов:

  • катода, где происходит реакция восстановления
  • анода, где происходит реакция окисления.

Эти два электрода погружены в проводящую жидкость, которая называется электролитом. Электролит – это обычно разбавленный кислотный раствор, например, серной кислоты, или соляной раствор, например, сульфат меди. Эти два электрода соединены снаружи электрической цепью, которая обеспечивает циркуляцию электронов. Внутри жидкости передача электрического тока происходит путем перемещения ионов. Жидкость, таким образом, обеспечивает ионное электрическое соединение (рисунок 9).

Рисунок 9 – Принцип гальванической ячейки [3]

Рисунок 1 показывает ячейку, в которой электролитом является раствор серной кислоты. Серная кислота полностью диссоциирована в воде (поскольку является сильной кислотой) путем образования ионов Н+, которые определяют кислотность среды. Происходит следующая электрохимическая реакция [3]:

  • цинковый анод окисляется:

Zn → Zn2+ + 2e

на медном катоде восстанавливаются протоны Н+:

 

2Н+ + 2e → Н2

Полная реакция имеет вид:

Zn + H2O → Zn(OH)2 + H2

Эта ячейка производит электричество за счет потребления цинка, который выделяется в виде гидроксида цинка Zn(OH)2.

Для работы ячейки необходимо одновременное выполнение трех условий:

  • два различных металла, которые образуют два электрода;
  • присутствие электролита;
  • непрерывность всей электрической цепочки.

Если хотя бы одно из этих условий не выполняется, например, если нарушается электрический контакт, то ячейка не будет производить электричество, и окисления на аноде не будет происходить (также как и восстановления на катоде).

Условия для гальванической коррозии

Гальваническая коррозия основана на том же самом принципе и для того, чтобы она происходила необходимо одновременное выполнение следующих трех условий [3]:

  • различные типы металлов;
  • присутствие электролита;
  • электрический контакт между двумя металлами.

Различные типы металлов

Для любых металлов, которые относятся к различным их типам, гальваническая коррозия является возможной. Металл с электроотрицательным потенциалом (или более электроотрицательный металл, если они оба электроотрицательные) действует как анод.

Тенденцию различных металлов образовывать гальванические пары и направленность электрохимического действия в различных коррозионных средах (морской воде, тропическом климате, промышленной атмосфере и т.д.) показывают в так называемых гальванических рядах. Чем далее удалены друг от друга металлы в этих рядах, тем более серьезной может быть электрохимическая коррозия. В разных коррозионных средах эти последовательности металлов могут быть разными (рисунок 10).

Присутствие электролита

Область контакта должна быть смочена водным раствором, чтобы обеспечивать ионную электропроводимость. В противном случае отсутствует возможность для гальванической коррозии.

Электрический контакт между металлами

Электрический контакт между металлами может происходить или путем прямого контакта между двумя металлами, или через крепежное соединение, например, болт.

Рисунок 10 [1]

Как видно из графиков рисунка 10 алюминий и его сплавы становятся анодами в гальванических ячейках с большинством металлов, и алюминий корродирует, как говорят, жертвенно и защищает от коррозии другой металл гальванической пары.

Только магний и цинк, включая и оцинкованную сталь, являются более анодными и поэтому, сами подвергаясь коррозии, защищают от нее алюминий.

Алюминий и кадмий вообще имеют почти одинаковые электродные потенциалы и поэтому ни алюминий, ни кадмий не подвергаются гальванической коррозии. К сожалению, кадмий признан весьма токсичным и все реже применяется, а во многих странах просто запрещен, как антикоррозионная защита.

Гальванические пары

Относительное расположение двух металлов или сплавов в гальваническом ряду указывает только возможность гальванической коррозии, если различие их гальванических потенциалов является достаточно большим. Больше этот ряд ничего не говорит, и особенно ничего – о скорости или интенсивности гальванической коррозии. Она может быть нулевой или несущественной или даже незаметной. Ее интенсивность зависит от типов металлов, которые входят в контакт – гальванической пары.

Пара: алюминий – нелегированная сталь

В строительных конструкциях алюминиевые детали, которые открыты для воздействия климатических и погодных воздействий, могут соединяться винтами из обычной стали. Опыт показывает, что алюминий в контакте со стальными винтами подвергается только очень поверхностной коррозии. Возникающая ржавчина, которая не оказывает никакого влияния на алюминий, полностью пропитывает слой оксида алюминия и образует на поверхности пятна. Фактически, для алюминиевой конструкции в контакте с незащищенной сталью важнее будет ее влияние на внешний вид и декоративные качества, а не способность сопротивляться коррозии.

Это явление имеет следующее объяснение:

  • на поверхностях контакта образуются пленки с продуктами коррозии – ржавчины на стали и оксида алюминия на алюминии, которые и замедляют электрохимические реакции.

Пара: алюминий – оцинкованная сталь

Судя по гальваническому ряду, цинк является более электроотрицательным, чем алюминий. Крепеж из оцинкованной стали может, поэтому, применяться для соединения и сборки конструкций из алюминиевых сплавов. Надо помнить, что когда цинковое покрытие станет слишком изношенным, чтобы защищать сталь и алюминий, наступает предыдущий сценарий контакта между алюминием и голой сталью [3] .

Пара: алюминий – нержавеющая сталь

Хотя и существует большая разность потенциалов между нержавеющей сталью и алюминиевыми сплавами – около 650 мВ, очень редко можно увидеть гальваническую коррозию на алюминии в контакте с нержавеющей сталью. Поэтому алюминиевые конструкции очень часто собираются с применением болтов и винтов из нержавеющей стали [3].

Пара: алюминий – медь

Контакт между алюминиевыми сплавами и медью, а также медными сплавами (бронза, латунь) приводит к совершенно незначительной гальванической коррозии алюминия под воздействием атмосферных условий. Тем не менее, рекомендуется обеспечивать электрическую изоляцию между этими двумя металлами, чтобы локализовать коррозию алюминия.

Необходимо отметить, что продуктом коррозии меди является, так называемая, патина. Эта патина – голубовато-зеленый налет на меди, который состоит в основном из карбоната меди. Эта патина химически воздействует на алюминий и может восстанавливаться с образованием малых частиц меди. Эти медные частицы, в свою очередь, могут вызывать локальную питтинговую коррозию алюминия [3].

Ближе к контакту – больше коррозия

Ускоренная гальваническая коррозия обычно наиболее интенсивна вблизи мест соединения двух металлов; с удалением от мест соединения ее интенсивность уменьшается. Существенное влияние на скорость коррозии оказывает величина отношения площади поверхности катода, контактирующей с электролитом, к площади незащищенной поверхности анода. Желательно иметь малое отношение площади катода к площади анода.

Как избежать гальванической коррозии

  1. Выбирать в пару алюминию или его сплаву металл, который как можно более ближе к нему в гальваническом ряду для рассматриваемой коррозионной среды (см. рисунок 10).
  2. Применять «катодный» крепеж. Избегать комбинаций с неблагоприятным (большим) отношением площадей катода к аноду (рисунок 3).
  3. Обеспечивать полную электрическую изоляцию двух соединяемых металлов. Это может быть выполнено с помощью изолирующих прокладок, втулок, шайб и т.п. (рисунок 12).
  4. Если применяется окраска, всегда нужно красить катод. Если покрасить только анод, любая царапина на нем даст неблагоприятное отношение поверхностей катода к аноду и приведет к коррозии царапины.
  5. Увеличивать толщину анода или устанавливать в соединение заменяемые массивные прокладки из анодного металла.
  6. По возможности размещать гальванический контакт вне коррозионной среды.
  7. Избегать резьбовых соединений из металлов, образующих гальваническую пару. Заменять их паяными или сварными соединениями.
  8. Если возможно, применять ингибиторы коррозии, например, в системах с циркуляцией жидкости, которая может играть роль электролита для гальванической коррозии.
  9. В случаях, когда металлы должны оставаться в электрическом контакте через наружную электрическую цепь, нужно разнести их как можно дальше друг от друга для увеличения сопротивления жидкой цепи (электролита).
  10. При необходимости и там, где это возможно, применять катодную защиту с цинковым или магниевым жертвенными анодами.
  11. В наиболее агрессивных средах только цинк, кадмий и магний могут быть в контакте с алюминием без возникновения гальванической коррозии. Заметим, что применение кадмиевых покрытий в значительной степени ограничено из-за их экологической небезопасности.

Рисунок 11 [1]

Рисунок 12 [1]

Источники:

  1. TALAT 5104.
  2. Corrosion of Aluminum and Aluminum Alloys. Edited by J.R. Davis. – ASM International, 1999.
  3. Corrosion of Aluminium / Christian Vargel – ELSEVIER, 2004
  4. TALAT 1252

Допустимые и недопустимые контакты металлов. Популярные метрические и дюймовые резьбы

Электронику часто называют наукой о контактах. Многие знают, что нельзя скручивать между собой медный и алюминиевый провода. Медная шина заземления или латунная стойка для платы плохо сочетаются с оцинкованными винтиками, купленными в ближайшем строительном супермаркете. Почему? Коррозия может уничтожить электрический контакт, и прибор перестанет работать. Если это защитное заземление корпуса, то прибор продолжит работу, но будет небезопасен. Голая алюминиевая деталь вообще может постепенно превратиться в прах, если к ней приложить даже низковольтное напряжение.

Доступные нам металлы не ограничиваются только медью и алюминием, существуют различные стали, олово, цинк, никель, хром, а также их сплавы. И далеко не все они сочетаются между собой даже в комнатных условиях, не говоря уже о жёстких атмосферных или морской воде.

В советских ГОСТах было написано почти всё о допустимых контактах металлов, но если изучение чёрно-белых таблиц из 1000 ячеек мелким шрифтом утомляет, то правильный ответ на «медный» вопрос — нержавейка, либо никелированная сталь, из которой, кстати, и сделан почти весь «компьютерный» крепёж. В эпоху чёрно-белого телевидения были другие понятия об удобстве интерфейса, поэтому для уважаемых читателей (и для себя заодно) автор приготовил цветную шпаргалку.

И, раз уж зашла речь о металлообработке, заодно автор привёл таблицу с популярными в электронике резьбами и соответствующими свёрлами, отобрав из объёмных источников наиболее релевантное по тематике портала. Не все же здесь слесари и металлурги, экономьте своё время.

Преамбула

Да, в век 3D-печати популярность напильника с лобзиком несколько потускнела. Но клетка Фарадея для РЭА по-прежнему является преимуществом, не забываем и про защитное заземление. Да, для печати корпусов РЭА уже доступен электропроводный (conductive) ABS-пластик, но судя по источнику, его удельное сопротивление примерно в миллион раз больше меди. Дескать, пыль уже не липнет, но для заземления всё равно многовато. Напечатать же стальные детали корпуса ПК в домашних условиях пока никак невозможно, да мы и алюминий-то с оловом никак не освоим…

Что же делать? Нашему брату приходится действовать методом Микеланджело, используя для творчества вместо каменной глыбы купленные в DIY-магазине заготовки, либо вообще старые корпуса ПК. Работая как-то с корпусом от старого сервера IBM из шикарной миллиметровой стали, автор впал в ступор, потому что имеющаяся резьба была крупнее М3, но мельче #6-32 (позже выяснилось, что это М3,5). Зачем вообще понадобилось в 2003-м году использовать метизы М3,5, останется загадкой, но о существовании дробной метрической резьбы автор даже не подозревал.

UPD
Для моддеров, кстати, рынок предлагает новые, удобные инструменты арсенала домашней мастерской, и про один из них (осциллорез) я рассказываю в отдельной публикации. Арсенал принадлежностей прекрасно дополнит более привычные циркулярные мини-пилы (aka «дремели»), а отсутствие эффекта «запрессовки зубьев» упростит обработку вязких металлов типа меди и алюминия. Инструмент лёгкий, не такой неуклюжий и опасный, как «болгарка». Можно пилить металл практически на уровне носа и без риска получить рубящий удар от заклинившего или осколок от «взорвавшегося» диска. А так бывает в красочно описанных уважаемыми читателями случаях с УШМ: 300-граммовый блин «болгарки» делает 200 оборотов в секунду, потребляя до 2кВт электричества, и требует чуть ли не костюм сапёра. Работающий же осциллорез травматологи упирают себе пильной стороной прямо в ладонь, чтобы успокоить пришедшего на снятие гипсовой повязки пациента… Впрочем, вернёмся к нашим металлам.

Допустимые и недопустимые контакты металлов по ГОСТ 9.005-72

DISCLAIMER: Предоставляется «как есть». Если уважаемый читатель занимается моделизмом, автомобилизмом или робототехникой, в ГОСТе также приведены: Таблица №2 для жестких и очень жестких атмосферных условий, Таблица №3 для контактов, находящихся в морской воде. Ниже я предлагаю выдержку из Таблицы №1 для средних атмосферных (т.е. комнатных) условий. Буква «А» означает «ограниченно допустимый в атмосферных условиях», подробности в самом ГОСТе.

Кликабельно (спасибо, НЛО):

UPD:
Ещё цветные шпаргалки (благодарю greatvovan):
для средних атмосферных условий
для жестких и очень жестких атмосферных условий

Пара слов о металлах

Металлурги, поправляйте, если что не так. Коррозия очень объёмная и сложная тема, и я не претендую на полноту её освещения. Я лишь даю выборочные зарисовки, чтобы сформировать у читателя нужные ассоциативные ряды.Оцинковка

Оцинкованная сталь — основная рабочая лошадка народного хозяйства. В виде различных метизов «оцинковка» встречается в магазинах стройматериалов гораздо больше, чем, например, «премиумная» нержавейка. Фабричные корпуса ПК, технологические ящички и шкафчики для оборудования чаще всего выполнены из оцинкованной холоднокатанной стали толщиной порядка 1мм (чем дешевле корпус, тем тоньше лист). «Оцинковка» достаточно прочна и хорошо проводит ток, в промышленности требуется заземление. Если разрезать корпус, то под слоем краски какого-нибудь унылого RAL7035 будет тончайшее цинковое покрытие, а под ним, скорее всего, та самая углеродистая холоднокатанная сталь. Лично у меня нет причин не доверять ГОСТ 9.005-72, поэтому после колхозинга фабричных изделий вообще не рекомендую делать электрический контакт на месте среза стали, лучше постарайтесь сберечь цинковое покрытие. А порезы и шрамы можно закрасить из балончика того же унылого RAL7035 (только заплати €10 и попробуй его найти ещё). Я пользовался автомобильной эмалью нейтрального белого или чёрного цвета (флакончик с кисточной, €2 в любом автомагазине).


АлюминийАлюминий и его сплавы бывают анодированные (с защитным слоем) и обычные (неанодированные). Алюминий легко обрабатывать в домашних условиях, но помните о коррозии. Не используйте голый алюминий в качестве проводника даже с низковольтным напряжением, иначе ток медленно обратит деталь в прах. Обработанным в мастерской алюминиевым и дюралюминиевым деталям показана полная эквипотенциальность (наведённые полями токи вроде бы по фиг, заземлять тоже можно). Алюминий совместим с цинковым покрытием, но для контакта с медью, «голой» или никелированной сталью требуется оловянная «прокладка». Ограниченно допустим контакт алюминия с нержавейкой в атмосферных условиях. Для простоты можно принять, что при контакте с другими металлами и покрытиями алюминий будет корродировать сам по себе, без помощи внешнего электричества.

Витая пара из омедненного алюминия (Copper Clad/Coated Aluminium, CCA) — это отдельная история, в домашних условиях кабель всё равно не производится.


Медь

Медь мягкая и довольно неаппетитно окисляется на воздухе, поэтому изделия из меди заключают в герметичную оболочку или лакируют. Латунные бляхи солдатских ремней и стойки для электронных печатных плат лучше сопротивляются окислению и выглядят аппетитнее позеленевшей меди, особенно если их периодически полировать (я про бляхи, конечно). При этом ни медь, ни её сплав с цинком (латунь) «не дружат» с чистым цинком и его покрытиями. Зато медь совмещается с хромом, никелем и нержавейкой. А если вы держите в руках какую-нибудь клемму, то она наверняка из лужёной (покрытой оловом) меди.


Олово

Олово мягкое, но зато стойкое к коррозии (в комнатных условиях) и электрически совместимое почти со всеми, кроме чугуна, низколегированных и углеродистых сталей, магния. Не стоит паять оловом и бериллий, будьте внимательны при сборке домашнего ядерного реактора. Олово используют, чтобы из недопустимого электрического контакта получить допустимый, т.е. в качестве «прокладки». Клеммы из лужёной меди — отличный пример.
UPD:
На холод изделие выносить нельзя, а при минусовых температурах лучше не эксплуатировать вообще.


Никель

Никелем покрыты блестящие «компьютерные» винтики. Такое покрытие совместимо с медью и бронзой, латунью, оловом, хромом и нержавеющей сталью. Никель несовместим с цинком и алюминием (для алюминия лучше контакт с нержавеющей сталью, см. ниже).


Нержавейка

Нержавеющая сталь — королева металлов сталей: прочная, пластичная, стойкая к коррозии, электропроводная, круто выглядит. Слишком тугая, чтобы резать и гнуть её дома в промышленных масштабах. Хромистые и хромисто-никелевые нержавейки электрически плохо совместимы с цинком и «голой» сталью, зато дают надёжный контакт с медью без помощи олова. Алюминий, а также азотированная, оксидированная и фосфатированная низколегированная сталь ограниченно совместимы при стандартных атмосферных условиях. Нержавейка марки А2 не «магнитится», но существуют и нержавеющие стали с магнитными свойствами. Магнитные свойства не влияют на коррозионную стойкость нержавеющей стали.

Пара слов про case modding

Если вы занимались сборкой ПК, то наверняка знаете, что болтики для монтажа приводов CD/DVD, «ноутбучных» дисков 2.5" и флоппи-дисководов (ха-ха) используют метрическую резьбу M3. В корпусах ПК и жёстких дисках 3.5" используется более грубая дюймовая резьба #6-32 UNC. Почему? Мягкий металл любит более грубую резьбу, к тому же адепты дюймовой системы пока лидируют на рынке технологий. Стойка 19" использует (вы не поверите) дюймы в качестве основной меры, однако для монтажа оборудования я встречал только оцинкованные клетевые шайбы и винты с метрической резьбой М6. Дюймово-метрический дуализм в технологиях…

Обустройство своей инженерной кухни я начал с того, что купил защитные очки, набор качественных свёрл по металлу, небольшой вороток и метчики на резьбы M3 и #6-32 UNC, а заодно M4 и M6. Плашки не понадобились.

Популярые виды резьбы, используемой в компьютерной технике
ГОСТ 19257-73 рекомендует использовать следующие диаметры свёрл для металлов. Наверное, стоит учитывать и количество метчиков в наборе: чем твёрже материал, тем больше необходимость в «предварительных» метчиках. У меня их по три штуки, два «грубых» и один «финишный». А как правильно, кстати?

UPD
А как правильно — читайте комментарии, на публикацию-таки зашли мастера слесарного дела, только я не успел отсортировать всю информацию. Пользователь golf2109 любезно принёс сюда прямо из мастерской два правых столбца таблицы для обозначения того, как мягкость (вязкость) металла влияет на диаметр отверстия под резьбу, благодарю за поддержку.

Диаметр резьбы Стандартный шаг, мм Диаметр сверла, мм
ГОСТ Fe Al
M2 0.4 1,6 1.5* (-0.1)
M2,5 0.45 2.0 1.8* (-0.2)
M3 0.5 2.5 2.3 (-0.2)
M3.5 0.6 2.9 2.7* (-0.2)
M4 0.7 3.3 3.2 3.0 (-0.3)
M5 0.8 4.2 3.9 (-0.3)
M6 1.0 5.0 4.9 4.6 (-0.4)
M8 1.25 6.8 6.7 6.3 (-0.5)
M10 1.5 8.5 8.0 (-0.5)
#6-32 UNC 0.794 2.85 2.7* 2.5* (-0.35)

* Я рискнул прикинуть калибры двух дополнительных свёрл для стали и алюминия там, где по ним у меня нет данных в источниках. Обратите внимание, резьба #6-32 UNC по наружному диаметру находится между M3 и M4, а по шагу резьбы вообще ближе к M5.

UPD
Если сверлите что-то толще миллиметрового листа, читайте спойлер про СОЖ.

про СОЖ

Довольно большое значение и при сверлении, и при нарезании резьб имеет смазка и охлаждение обрабатываемых деталей и инструмента. Настоятельно рекомендую при подаче сверла не спешить и пользоваться техническими жидкостями. Режущая кромка сверла легко перегревается от сухой детали, и получается металлический отпуск. Поверьте, такой отпуск не нужен: он вызывает необратимые изменения в структуре металла и деградацию его прочностных свойств (сверло тупится гораздо быстрее, чем должно). Что делать? Вот несколько советов, которые автор встречал в разных местах.
Не сверлите большим сверлом сразу, разбейте операции примерно по 3мм: т.е. отверстие 10мм сперва проходим 3мм, потом 6мм.
Хорошенько отметьте отверстие керном. Одолжите у ребёнка пластилин, сделайте бортик вокруг планируемого отверстия так, чтобы получился мини-бассейн размером с монету. Если под рукой нет *вообще ничего*, хорошенько смешайте ложку подсолнечного масла с ложкой жидкого мыла и налейте в этот мини-бассейн, хуже не будет. Но если нужно просверлить насквозь, скажем, гирю 16кг, погуглите книгу народных рецептов «сож своими руками». Желаю всем начинающим удачной пенетрации: как говорится, берегите ваши свёрла-метчики смолоду, ведь их ждут новые идеи и интересные изобретения!

На известной китайской площадке можно приобрести «пальцевые» винтики (thumb screw), причём и на #6-32, и на M3. Материал и цвет разный.

Источники

» ГОСТ 9.005-72. Единая система защиты от коррозии и старения. Машины, приборы и другие технические изделия. Допустимые и недопустимые контакты металлов. Общие требования.
» ГОСТ 19257-73. Отверстия под нарезание метрической резьбы. Диаметры.
» Unified Coarse Thread ANSI B1.1 (резьбы UNC ANSI B1.1).

Коррозия алюминия и меди в жилах кабеля - Leonardo Energy

Коррозия - обычно определяемая как разрушение металлов в результате комбинированного воздействия кислорода, воды, других металлов и солей - это хорошо известное явление разложения, которое при некоторых обстоятельствах может быть «опасным для жизни».

Коррозия под воздействием кислорода

Алюминий легко окисляется на воздухе. Вокруг металла быстро образуется прочно прикрепленный твердый внешний слой электроизоляционного оксида [1].Медь также окисляется на воздухе, но в гораздо меньшей степени. Образующийся оксид относительно мягкий и, в отличие от алюминия, является проводящим, хотя и не таким проводящим, как основной металл.

Гальваническая коррозия

Гальваническая коррозия [2] может возникнуть, когда разнородные металлы находятся в контакте друг с другом и электролитом. Для алюминия, химически активного металла в гальванической серии, это наиболее частая причина коррозии. Когда алюминий контактирует с более катодным материалом, он действует как расходный анод и становится подверженным коррозии.Медь, которая является относительно благородным металлом, обычно не подвержена гальванической коррозии.

Последствия коррозии

Коррозия может стать опасной по двум основным причинам:

  • Потеря материала и, как следствие, потеря жизненно важных функций алюминиевого проводника и ламинированного алюминиевого покрытия, что неизбежно приводит к выходу из строя.
  • Введение дополнительного сопротивления, приводящего к выделению тепла и, в конечном итоге, к отказу.Это особенно важно при выборе разъема.

Коррозия: алюминий по сравнению с медью

Коррозия алюминия обычно считается серьезной проблемой, хотя все еще ведутся работы, чтобы полностью понять механизм, его влияние на надежность [3] и разработать соответствующие методы защиты. Однако, особенно при подготовке стыков к алюминиевым проводам, следует обращать внимание на разъем, чтобы избежать окисления.Слой оксида должен быть удален, и часто можно нанести ингибирующее оксид соединение соединение для уменьшения окисления.

Для меди коррозия не является проблемой. Медь устойчива к большинству органических химикатов и может бесконечно работать в большинстве промышленных сред. Зеленый налет может образоваться после длительного пребывания в атмосфере, но это функция защитной пленки поверхности и не указывает на вредное воздействие. На самом деле в защите меди нет необходимости, даже если она используется в морских установках, когда она подвергается воздействию соленой атмосферы.

Список литературы

1. Р. Франк, К. Мортон: Сравнительные испытания на коррозию и токовый разрыв медных и алюминиевых электрических соединителей, Конференция по промышленным приложениям IEEE 2005.

2. А. Мак: Коррозия стали, алюминия и меди в электротехнике, публикация General Cable.

3. С. Пелиссу, Дж. Кот, Р. Сэвидж, С. Сен-Антуан: Влияние корродированных проводников на характеристики экструдированных кабелей среднего напряжения, Jicable 03.

Руководство по архитектурному дизайну: основы - архитектурные аспекты

Выветривание, коррозия, окрашивание, подложка, припой, герметики

Одним из наиболее важных вопросов, связанных с использованием меди, является химическая реакция между медью и другими материалами.Химические реакции вызывают коррозию, появление пятен и даже зеленую патину, которая со временем образуется на медных поверхностях.

Выветривание и патинирование:

Процесс окисления, придающий меди характерную зеленую патину, является результатом воздействия кислой атмосферы. Следовательно, этот процесс идет быстрее в некоторых городских, морских и промышленных районах, где существуют более высокие концентрации загрязняющих веществ. Когда кислая влага попадает на открытые медные поверхности, она вступает в реакцию с медью с образованием сульфата меди.Кислота нейтрализуется во время реакции с медью. Эта патина в конечном итоге покрывает поверхность и плотно прилегает к ней, обеспечивая тем самым защитный слой от дальнейшего атмосферного воздействия.

Цветовая диаграмма при естественном атмосферном воздействии - типичная для влажного промышленного климата, временной интервал варьируется

Коррозия:

Все металлы обладают свойством, называемым благородством. Это мера устойчивости металла к коррозии при контакте с другим металлом. Большая относительная разница в благородстве между двумя контактирующими металлами указывает на больший потенциал коррозии. Таблица 1.3A ранжирует наиболее распространенные металлы, используемые в строительстве, по возрастанию благородства, называемого гальваническим числом.

Таблица 1.3A. Благородство обычных металлов
  1. Алюминий
  2. Цинк
  3. Сталь
  4. Утюг
  5. Нержавеющая сталь - Актив
  6. Олово
  7. Свинец
  8. Медь
  9. Нержавеющая сталь - Пассивный

Когда разнородные металлы контактируют друг с другом в присутствии электролита, возникает гальваническое воздействие, приводящее к ухудшению качества металла с более низким гальваническим числом.Электролитом может быть дождевая вода, текущая с одной поверхности на другую, или влага из воздуха, содержащая достаточно кислоты, чтобы заставить ее действовать как электролит.

Поскольку медь имеет одно из самых высоких гальванических чисел или благородство среди активных металлов, она не будет повреждена при контакте с любым из них. Однако при прямом контакте это вызовет коррозию других металлов. Решение состоит в том, чтобы предотвратить такой прямой контакт с использованием разделительных материалов, таких как специальные краски или прокладки.

В большинстве случаев нет необходимости изолировать медь от свинца, олова или нержавеющей стали. Основными металлами, вызывающими озабоченность с точки зрения прямого контакта, являются алюминий и цинк. Железо и сталь обычно не представляют проблемы, если их масса не меньше или равна массе меди.

Если для изоляции используются краски или покрытия, они должны быть совместимы с обоими металлами. Между медью и алюминием можно использовать битумные грунтовки или грунтовки на основе хромата цинка. Любой из них или красная свинцовая грунтовка могут быть эффективными для отделения меди от железа и других черных металлов.

Лента или прокладки из непоглощающих материалов или герметиков - эффективные методы отделения меди от всех других металлов. В зонах с сильным воздействием следует использовать свинец или аналогичные уплотнительные материалы, за исключением меди и алюминия.

Независимо от метода, используемого для отделения металлов, не следует допускать попадания смывки с медных поверхностей на открытый алюминий. Следы солей меди в стирке могут ускорить коррозию алюминия.

Другой тип коррозии, поражающий медь, вызван потоком кислой воды, сконцентрированной на небольшом участке меди.Этот тип, часто называемый «эрозионной коррозией», возникает, когда дождь падает на не медную крышу, такую ​​как черепица, шифер, дерево или асфальт. Кислая вода не нейтрализуется, поскольку течет по инертному материалу. Когда вода, собранная на большой поверхности, отводится или собирается относительно небольшой медной гидроизоляцией или желобом, медь может испортиться до того, как на ней появится защитная патина. Другой тип коррозии возникает на краю капель инертного кровельного материала, проводящего воду в медный желоб или долину.Если черепица опирается непосредственно на медь, коррозионный эффект усиливается, поскольку влага удерживается по краю за счет капиллярного действия, что приводит к «линейной коррозии». Решение состоит в том, чтобы приподнять нижний край черепицы с помощью косой полосы или обеспечить заменяемую армирующую полосу между черепицей и медью.

Окрашивание:

Омывание водой медных поверхностей может иметь дополнительное воздействие. Влага, соприкасающаяся с медными поверхностями, склонна собирать небольшие количества солей меди.Когда эта влага контактирует с пористым материалом, таким как мрамор или известняк, она абсорбируется. Когда влага испаряется, она оставляет после себя соли меди в виде пятен на этих материалах. Зеленое пятно особенно заметно на светлых поверхностях.

Такое состояние не возникает при проливных дождях или подобных быстрых стоках, так как время пребывания влаги на меди невелико и соли меди улавливаются мало. Окрашивание происходит из-за медленного оттока влаги, содержащей медь.

Есть несколько способов уменьшить окрашивание или его визуальное воздействие. Двумя распространенными методами являются: сбор сточных вод в желобах и их отвод от здания через водосточные трубы; а также конструкция кромок капель толщиной не менее одного дюйма, что помогает уменьшить количество содержащейся в меди влаги, которая вступает в контакт с материалом ниже. Покрытие прилегающей поверхности пористого материала прозрачным силиконовым герметиком может уменьшить образование пятен за счет минимизации количества влаги, поглощаемой поверхностью.

Выбор подложки:

Подготовка подложки, на которую будет наноситься медь, частично зависит от выбранной подложки и области применения меди. Однако всегда следует принимать во внимание ряд соображений.

При выборе подложки ключевым моментом является способ крепления меди. Для всех применений, в которых для прикрепления меди или планок к основной конструкции используются гвозди или винты, требуется гвоздь, полоски для гвоздей внутри палубы или деревянные блоки в определенных местах.К таким применениям относятся крыши со стоячим фальцем, крыши с обрешеткой, крыши с плоским фальцем, непрерывные кромочные полосы и планки, а также оклады вокруг проходов в крыше.

Независимо от используемого метода крепления, структурная целостность основы не должна быть нарушена. Он должен удерживать крышу при устойчивых расчетных ветровых условиях, а также соответствовать всем другим необходимым нормам и стандартам.

Наиболее распространенной подложкой для меди является дерево, обычно фанера от 1/2 до 3/4 дюйма.Пиломатериалы должны быть высушены в печи и уложены с правильными стыками и ровной гладкой поверхностью. Рекомендуется дать дереву выветриться в течение нескольких дней после укладки. В этот период его следует защищать от дождя, позволяя ему приспосабливаться к температуре и уровню влажности воздуха, пока он не встанет на место.

В последнее время появилось много разработок в области обработки фанеры и пиломатериалов с антипиреновой обработкой (FRT). В большинстве этих продуктов используется древесина или фанера, пропитанная под давлением химическими солями в водном растворе для предотвращения горения.Многие из этих солей вызывают коррозию меди, а также других металлов и материалов. Если выщелачивание этих солей приведет их к контакту с медью, произойдет коррозия. Это особенно вероятно в районах с высокой влажностью, если происходит конденсация, или если вода попадает во время строительства или позже. Любые участки, где может накапливаться соленая влага, а затем испаряться, тем самым увеличивая концентрацию солей, ускоряют процесс коррозии. Для получения полного и обновленного отчета о огнестойкой фанере и коррозии свяжитесь с CDA.

Другие материалы, используемые в качестве подложки для меди, включают: бетон, кирпич, кирпичную кладку, терракоту и штукатурку. Приведенные выше рекомендации применимы и к этим материалам. Гладкие, сухие поверхности, совместимость с медью и обеспечение крепежа - все это необходимо для приемлемого основания.

Подготовка основания:

Применение листовой и полосовой меди в строительстве неизбежно требуется для обеспечения определенного уровня сопротивления проникновению воды. Следует избегать всего, что может вызвать проколы или отверстия в медной мембране.Медные крыши, долины и облицовка желобов всегда следует укладывать на гладкую, сухую, устойчивую поверхность без выступающих шляпок гвоздей или других дефектов. Движение основания должно компенсироваться правильно спроектированными компенсаторами.

В таких случаях на основание необходимо нанести одобренную подкладку, обычно пропитанную войлоком. Войлок действует как подушка для медных листов. Между медью и подложкой следует вставить лист строительной бумаги размером с канифоль.Это предотвратит соединение между двумя поверхностями, которое в противном случае ограничило бы тепловое движение меди. Единственными исключениями из этого требования являются приложения, в которых медь не должна двигаться, даже при термической нагрузке. Например, непрерывные планки и краевые планки прибиваются гвоздями, обычно в шахматном порядке из гвоздей на 3 дюйма в центре, чтобы ограничить движение.

Припой и герметики:

При строительстве из меди традиционно использовался припой для обеспечения водонепроницаемости и усиления стыков и швов.Используемый припой представляет собой обычный припой 50-50 оловянно-свинцовый стержень для меди без покрытия. Для тех, кто предпочитает бессвинцовую установку, доступны альтернативные припои на основе олова. Припой обычно наносят на механически скрепленные или формованные жесткие соединения. Паяные швы и стыки постоянные; они должны длиться всю жизнь меди. Следует избегать непрерывных и длинных участков паяных швов, чтобы ограничить поломку под напряжением.

В процессе выветривания цвет припоя меняется с блестящего на матовый. Открытый припой в готовых соединениях можно уменьшить с помощью слепой пайки.В этой технике припой наносится на заднюю или скрытую кромку медных поверхностей.

Альтернативой припою, где не требуется его дополнительная прочность, является использование герметиков. Швы, заполненные герметиком, успешно использовались для кровельных покрытий со стоячим фальцем и обрешеткой, где уклоны крыши составляют менее трех дюймов на фут. Герметики также можно использовать в соединениях, которые в первую очередь предназначены для компенсации теплового движения меди.

Используемые герметики должны быть протестированы производителем и признаны совместимыми с медью.Многие эластомерные полиуретановые, силиконовые, бутиловые, полисульфидные или другие герметики на неорганической или резиновой основе показали приемлемые характеристики. Замечено, что герметики на основе акрила, неопрена и нитрила активно разъедают медь. Поэтому использование таких герметиков не рекомендуется.

Реакция алюминия на медь при электролизе | Education

Электролиз включает в себя управление химическими реакциями на основе их электрического потенциала.Реакция между двумя элементами в электролитической ячейке является окислительно-восстановительной, или окислительно-восстановительной, реакцией. Элемент, который восстанавливается, получает электроны, а элемент, который окисляется, теряет электроны. Характер этой реакции зависит от свойств задействованных элементов.

Электрические потенциалы в реакциях

Когда элементы приобретают или теряют электроны, происходит изменение электрического потенциала. Это можно измерить в электрон-вольтах. Реакция в электролитической ячейке не является спонтанной.Другими словами, это не происходит естественным образом. Вместо этого в систему должна подаваться электрическая энергия, чтобы вызвать реакцию. Это отличается от реакции в гальваническом элементе, который производит электрическую энергию. В таком случае электрический потенциал положительный. В электролитической ячейке электрический потенциал отрицательный.

Алюминий и медь

Чтобы определить поведение алюминия и меди в электролитической ячейке, необходимо рассматривать потенциалы каждого из элементов отдельно.Индивидуальные реакции восстановления или окисления называются полуреакциями. В полуреакции алюминия ион алюминия имеет положительный заряд три. Когда он уменьшается, он получает три электрона. Потенциал этой полуреакции составляет -1,66 электрон-вольт. В медной полуреакции ион меди имеет положительный заряд два. Когда он уменьшается, он получает два электрона. Потенциал этой полуреакции составляет 0,34 электронвольта. Два требования к электролитической ячейке - это протекание окислительно-восстановительной реакции и отрицательный потенциал.Если алюминий окислен, потенциал составляет 1,66 электрон-вольт. Если медь окисляется, потенциал составляет -0,34 электронвольта. Следовательно, для окислительно-восстановительной реакции с отрицательным потенциалом необходимо восстанавливать алюминий и окислять медь. Потенциал этой реакции составляет -2,00 электрон-вольта.

Катод, анод и электролит

В электрохимических ячейках катод - это место, где происходит восстановление. Анод - это место, где происходит окисление. Следовательно, в электролитической ячейке из алюминия и меди алюминий будет восстанавливаться на катоде, а медь окисляться на аноде.Типичный электрохимический элемент имеет ионный раствор, называемый электролитом. Точная природа этого раствора может варьироваться, но он должен содержать ионы обоих элементов, часто разделенных барьером. Ионы из раствора будут восстановлены на катоде до твердого алюминия. На аноде из меди будут образовываться ионы.

Применения

Электролиз имеет множество практических и промышленных применений. Например, его используют для очистки алюминия. В этом случае алюминий получают из руды, называемой бокситами.Электролитическая ячейка, используемая в этом процессе, обычно не имеет медного анода. Вместо этого анод обычно делают из углерода. Электролиз также используется в гальванике. При гальванике реакция восстановления на катоде вызывает образование слоя металла, обычно поверх другого материала.

Ссылки

Ресурсы

Биография писателя

Серм Мурмсон - писатель, мыслитель, музыкант и многие другие. Он имеет степень бакалавра антропологии Чикагского университета.Его заботы включают такие вещи, как категории, язык, описания, репрезентация, критика и труд. Профессионально пишет с 2008 года.

Контакты разнородных металлов | Американская ассоциация гальванизаторов

Дом " Дизайн и изготовление » Рекомендации по дизайну » Контакт разнородных металлов

Сталь

, оцинкованная горячим способом, хорошо подходит для использования в различных средах и в различных конструкциях, и иногда она контактирует с различными металлами, включая, среди прочего, нержавеющую сталь, алюминий, медь и сталь, устойчивую к атмосферным воздействиям.

Когда два разных металла контактируют в коррозионной среде, один из металлов подвергается ускоренной гальванической коррозии, в то время как другой металл остается гальванически защищенным.

Металлы, расположенные рядом друг с другом в гальванической серии, мало влияют друг на друга. Как правило, по мере того, как расстояние между металлами в серии увеличивается, коррозионное воздействие на металл, находящийся выше в серии, также увеличивается.

Относительные площади поверхности контакта разнородных металлов также важны для определения того, какой металл проявляет ускоренную коррозию.Нежелательно иметь большую поверхность катода в контакте с относительно небольшой поверхностью анода.

Гальваническая коррозия возникает, когда два разных металла контактируют в коррозионной среде: один из металлов испытывает повышенную скорость коррозии. Контактирующие металлы образуют биметаллическую пару из-за их различного сродства (или притяжения) к электронам. Это различное сродство создает электрический потенциал между двумя металлами, позволяя течь току.

Металл более высокого уровня в гальваническом ряду металлов, анод, обеспечивает защиту металла нижнего ряда, катода.

Как видно из гальванической серии, цинк защищает низкую сталь.

Что касается соприкасающихся поверхностей двух металлов, хотя ток коррозии, протекающий между катодом и анодом, не зависит от площади, скорость проникновения на аноде зависит от плотности тока. Таким образом, большая площадь анода в контакте с относительно небольшой площадью катода обычно не является проблемой. Несмотря на это, условия окружающей среды остаются решающими факторами скорости коррозии.

Таблица 1: Влияние биметалла на оцинкованную сталь в различных областях применения

Химия с минимальными затратами ресурсов, Часть 1 | Chem13 News Magazine

Преамбула

С 2003 года я работаю волонтером в Королевском университете Пномпеня в Камбодже, как во время летних каникул, так и во время двух отпусков по стипендии.Мои студенты изучают химию в университете и посещают практические демонстрационные семинары. Многие из тех, кто посещает мои семинары, станут учителями химии в государственных школах, а спрос на место настолько высок, что проводится лотерея. Кафедра химии ежегодно предоставляет мне двух помощников-волонтеров, и с их помощью я провел практические демонстрационные семинары в трех региональных педагогических центрах для более чем 110 преподавателей-стажеров. Был очень восторженный отклик на просьбы о проведении еще многих семинаров как от стажеров, так и от региональных тренеров.

Эти стажеры-преподаватели не хотят демонстраций, в которых используются дорогостоящие реактивы, и не хотят «ярких» демонстраций, в которых нет основополагающей химии. Поэтому я сосредоточился на использовании местных бесплатных / недорогих материалов для преподавания химии в школах, которые часто не имеют водопровода, электричества, научных лабораторий или принадлежностей.

В этой серии, в которой я надеюсь, что другие внесут свой вклад, я представлю некоторые эксперименты, которые, как я считаю, возможны даже в самых отдаленных районах развивающейся страны.Что меня особенно интересует, так это то, что одна демонстрация может выполнять несколько ролей. Один такой случай я описал в статье несколько лет назад. 1 Демо, о котором я расскажу, является еще одним примером.

DEMO .... Алюминий проигрывает меди

2

Алюминиевая фольга и сульфат меди (II) - два продукта, которые легко доступны на камбоджийских рынках. 3 Для этой демонстрации лучше подходит хлорид меди (II), если он доступен; однако, если используется сульфат меди (II), необходимо добавить ложку поваренной соли.

Слабо скомканный шарик из алюминиевой фольги (15 см × 30 см) помещают примерно в 300 мл 1 моль л раствора -1 хлорида меди (II) (или такой же концентрации сульфата меди (II) с ложкой столовой соль). В течение нескольких минут можно увидеть, как частицы меди начинают формироваться на алюминиевом шаре, видно пузырение, и реакционный сосуд становится очень горячим. В течение часа замечается большое количество меди.

Прежде всего, эту реакцию можно использовать, чтобы очень наглядно проиллюстрировать одиночную реакцию замещения (замещения) и предоставить хороший пример уравновешивания химического уравнения:

2Al (т.) + 3CuCl 2 (водн.) → 2AlCl 3 (водн.) + 3Cu (т.)

Реакция является иллюстрацией ряда активности, и в качестве расширения можно вывести чистое ионное уравнение:

2Al (s) + 3Cu 2+ (водн.) → 2Al 3+ (водн.) + 3Cu (s)

И, исходя из чистого ионного уравнения, можно развить окислительно-восстановительную концепцию, согласно которой реакция может быть представлена ​​как две полураакции, включающие восстановление и окисление:

Al (тв.) → Al 3+ (водн.) + 3e -

Cu 2+ (водн.) + 2e - (водн.) → Cu (s)

Как показано на фотографии ниже, еще одно расширение заключается в использовании реакции для иллюстрации принципов ограничения реагента путем проведения параллельных реакций, одна с избытком иона меди (II), а другая - с избытком металлического алюминия.

Фото: реакция металлического алюминия с ионом меди (II). Левый стакан с избытком иона меди (II). Правый стакан с избытком металлического алюминия.

Дополнительные пояснения

Для более углубленного изучения химии можно количественно оценить окислительно-восстановительный процесс, сравнивая потенциалы восстановления двух металлов:

Al 3+ (водн.) + 3e - → Al (т. Е.) E o = -1.66 В

Cu 2+ (водн.) + 2e - → Cu (s) E o = +0,34 В

Отдать:

Al (тв.) → Al 3+ (водн.) + 3e - E o = +1,66 В

Cu 2+ (водн.) + 2e - → Cu (s) E o = +0,34 В

Сумма:

2Al (s) + 3Cu 2+ (водн.) → 2Al 3+ (водн.) + 3Cu (s) E o = +2.00 В

Спонтанная реакция.

Почему стакан становится горячим? У термохимии есть ответ. Мы можем записать две полуреакции в терминах энтальпии образования:

Al (s) → Al 3+ (водн.) + 3e - ΔfH o = −538 кДж моль −1

Cu (т) → Cu 2+ (водн.) + 3e - ΔfH o = +65 кДж моль −1

Таким образом, реальной движущей силой реакции является очень экзотермическое образование акватированного иона алюминия.

На первый взгляд это кажется неожиданным, учитывая, что в газовой фазе трехкратная ионизация атома алюминия невероятно эндотермична. Ответ заключается в том, что в водном растворе существует крошечный ион алюминия с высоким зарядом, окруженный шестью молекулами воды, [Al (OH 2 ) 6 ] 3+ (водн.). Частично отрицательные (δ-) атомы кислорода каждой из шести молекул воды чрезвычайно сильно притягиваются к иону алюминия 3+ (возможность ввести полярность ковалентных связей и ион-дипольных взаимодействий).Таким образом, образование ионов в воде является сильно экзотермическим, и, как следствие, общая реакция экзотермична.

Вследствие экзотермичности, поскольку любое изменение энтропии невелико (газы не образуются и не расходуются), реакция имеет отрицательное (спонтанное) изменение свободной энергии и соответствующую положительную (спонтанную) чистую E o (как показано выше) .

Тайна хлорид-иона

В качестве расширения этого эксперимента можно показать, что не происходит реакции алюминия с сульфатом меди (II) до тех пор, пока в раствор не будет добавлен хлорид-ион.Таким образом, ион хлорида должен играть активную роль в процессе в качестве катализатора. Так что, на первый взгляд, можно оставить все как есть.

Однако, согласно теории столкновений, химические реакции обычно происходят, когда два вещества взаимодействуют одновременно (для некоторых реакций необходимы столкновения трех тел). В общем ионном уравнении, написанном выше, два атома алюминия и три иона меди (II) взаимодействуют вместе. Таким образом, на поверхности алюминия должна происходить серия стадий реакции.

Хотя поверхностные реакции часто бывают сложными, необходимость хлорид-ионов, кажется, дает ключ к разгадке.Было предложено несколько гипотез, большинство из которых маловероятны. 4 Одно из объяснений, которое ранее не рассматривалось, относится к процессу реакции, в котором ион меди (II) будет прилипать к поверхности металлического алюминия. Первым вероятным шагом будет восстановление меди (II) до меди (I) на алюминии. Но соединения меди (I) очень нерастворимы, и слой оксида или сульфата меди (I), возможно, может образоваться на поверхности алюминия, препятствуя дальнейшей реакции.Однако в присутствии хлорид-иона образуется растворимый ион дихлоридкупрата (I), [CuCl 2 ] - (водн.), Что позволяет постепенному продолжению восстановления до металлической меди (0).

Проблема пузыря

Как отмечалось выше, добывается небольшое количество газа. Объяснение заключается в том, что раствор иона меди (II) является слабокислым и, следовательно, существует небольшая доля окисления алюминия ионами водорода:

2Al (т.) + 6H + (водн.) → 2Al 3+ (водн.) + 3H 2 (г)

Это хорошее объяснение - насколько это возможно.Учителя, вероятно, оставят объяснение на этом этапе. Но всегда может быть очень любопытный студент, который захочет узнать, почему и как ион меди (II) является кислым. Ответ сводится к тому факту, что водный ион меди (II) также окружен молекулами воды, но гораздо слабее, чем молекулы вокруг иона алюминия. Ион водорода (или, точнее, ион гидроксония) может быть потерян в равновесии, которое лежит намного левее, но при этом производит достаточно иона гидроксония, чтобы вызвать небольшую часть реакции:

[Cu (OH 2 ) 6 ] 2+ (водн.) + H 2 O (л) ⇌ [Cu (OH 2 ) 5 (OH)] + (водн. ) + H 3 O + (водн.)

Комментарий

Эта реакция, в которой используются легкодоступные материалы, может быть использована в качестве основного для целого ряда химических процессов.Однако углубиться в химию не так просто, как можно было бы подумать! Тем не менее, для учителя химии будет мудро иметь базу знаний, выходящую за рамки основ, подготовленные для тех экстраординарных студентов, которые хотят понять, как и почему.

PART 2 содержит две демонстрации с использованием алюминиевых банок, гидроксида натрия, сульфата меди (II) и поваренной соли, которые обычно доступны на рынке.

Благодарности

Geoff Rayner-Canham, Grenfell Campus, Memorial University, Corner Brook NL, Канада, благодарит за сотрудничество со мной в разработке концептуальной основы и актуальности демонстраций.

Список литературы

  1. М. Хаубен и Г. Райнер-Канхам, «Реакция в мешке: объяснения для демонстрации эндотермического / экзотермического газообразования», Chem 13 News , страницы 14-15 (февраль 1996 г.).
  2. https://www.flinnsci.com/media/622135/95000.pdf
  3. Сульфат меди (II) имеет множество применений, чаще всего в качестве фунгицида и альгицида в сельском хозяйстве. См .: https://en.wikipedia.org/wiki/Copper(II)_sulfate#As_a_herbicide.2C_fungicide_and_pesticide
  4. Одно из часто цитируемых объяснений состоит в том, что ион хлорида реагирует с поверхностным слоем оксида алюминия над металлическим алюминием с образованием тетрахлоридоалюминатного иона, [AlCl 4 ] - (водн.) Иона, открывая реактивную поверхность металла для восстановления ионы меди (II).Однако это кажется маловероятным, частично из-за того, что концентрация хлорид-иона не должна быть особенно высокой для протекания реакции, однако для образования комплекса требуется высокая концентрация хлорид-иона. Что еще более важно, это противоречит здравому смыслу, поскольку лодки с алюминиевым корпусом, похоже, не реагируют на морскую воду.

Эксперимент «Битва металлов» - MEL Chemistry

В химии, как и в жизни, постоянная конкуренция. Некоторые металлы вытесняют другие из своих связей.В этом красочном эксперименте мы покажем вам главное правило перемещения металлов на примере «битвы» между алюминием и медью.

Реактивы и оборудование:

  • фольга алюминиевая;
  • сульфат меди (II);
  • натрия хлорид;
  • вода дистиллированная;
  • стакан.

Пошаговая инструкция

Сначала сделайте небольшую чашку из алюминиевой фольги и поместите в стакан.Затем налейте в эту чашку синий раствор сульфата меди (II) и прозрачный раствор хлорида натрия. Раствор станет зеленым. Через несколько секунд начнется бурная реакция с выделением газа и красно-коричневым осадком на поверхности алюминиевой фольги. Постепенно слой алюминиевой фольги распадается, а оставшийся раствор капает через появившееся отверстие.

Описание процессов

Алюминий не реагирует с раствором медного купороса, так как его поверхность защищена прочной оксидной пленкой.При смешивании растворов сульфата меди (II) и хлорида натрия образуется комплексная соль хлорида меди (II), которая окрашивает раствор в зеленый цвет.

CuSO₄ + 4NaCl ⇆ Na₂ [CuCl₄] + Na₂SO₄

Хлорид-ионы могут разрушить оксидную пленку, в результате чего алюминий начинает взаимодействовать одновременно с катионами меди и молекулами воды:

2Al + 6H₂O → 2Al (OH) ₃ + 3H₂

3Cu²⁺ + 2Al → 3Cu + 2Al³⁺

Алюминий вытесняет медь из связи, поскольку алюминий является более активным металлом в электрохимическом ряду металлов, чем медь.Таким образом выделяются красная металлическая медь и газообразный водород. Эта реакция протекает очень интенсивно и с выделением тепла.

Правила техники безопасности

Перед проведением эксперимента наденьте резиновые перчатки и защитные очки.

Внимание! Вещества этого эксперимента токсичны и очень опасны для вашего здоровья. Не пытайтесь повторить это дома. Только под профессиональным контролем.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *