Регулирования активной и реактивной мощности синхронного генератора при подключении к сети
DOI: 10.32743/UniTech.2021.82.1-3.21-25
АННОТАЦИЯ
Регулирование активной и реактивной мощности генераторов при подключении к сети всегда было важным вопросом исследований электростанций и электрических сетей для эффективного использования энергии и стабильной работы двигателей. В повседневной жизни потребление электроэнергии в жилых домах постоянно меняется (больше ночью и меньше днем; больше летом и зимой, меньше весной и осенью), поэтому для рационального использования ресурсов и улучшения экономики необходимы мониторинг и регулирование активной мощности в реальном времени. В последнее время большинство приборов, подключенных к сети, являются индуктивными. Поэтому система питания должна загружать много реактивной мощности помимо активной. Согласно статистике, реактивная мощность, потребляемая промышленными предприятиями, необходимая асинхронному двигателю в энергосистеме, составляет 60–65 %, 20–25 % силовых трансформаторов и 10 % приходятся на воздушный электрические сети и другого оборудования [2].
ABSTRACT
The regulation of active and reactive power of generators when connected to the grid has always been an important issue in the research of power plants and electrical networks for efficient use of energy and stable operation of motors. In everyday life, electricity consumption in residential buildings is constantly changing (more at night and less during the day; more in summer and winter, less in spring and autumn), therefore, real-time monitoring and regulation of active power is necessary for rational use of resources and improving the economy.
Most of the loads connected to the mains are inductive lately. Therefore, the power supply system must load a lot of reactive power in addition to active power. According to statistics, the reactive power consumed by industrial enterprises required for an induction motor in the power system is 60–65 %, 20–25 % of power transformers and 10 % for overhead electrical networks and other equipment. The reactive power supplied by the power system is shared among all generators, which raises the problem of how much each generator has to handle and how to regulate the reactive power of the generators. This article analyzes in detail the methods for regulating active and reactive power, the control range, the angular characteristics of power and the electromagnetic ratio of active and reactive power.
Ключевые слова: угол мощности, ток возбуждения, активное регулирование, регулирование реактивной мощности, статическая устойчивость.
Keywords: power angle, excitation current, active regulation, reactive power regulation, static stability.
1. Введение. В этой статье обсуждается, как отрегулировать активную и реактивную мощность после параллельного подключения генератора в основном для бесконечной электросети. Это означает, что изменение режима работы подключаемого генератора практически не может повлиять на изменение напряжения или частоты сети, где они остаются неизменными, т.е. = const и = const. Внутренний процесс анализируется с помощью векторной диаграммы или угла мощности при регулировке. Регулировка активной мощности должна изменить входную мощность первичного двигателя для изменения выходной мощности генератора в соответствии с характеристикой угла мощности. Если изменяется только ток возбуждения генератора, можно регулировать только реактивную мощность генератора.
2. При перевозбуждении выдается индуктивная реактивная мощность, а реакцией якоря является размагничивание; при слабом возбуждении генератор производит емкостную реактивную мощность и реакция якоря может усилиться (также может размагничиваться). Обычный генератор возбуждения выдает только активную мощность с коэффициентом мощности, показанным на рис. 1 [2; 8; 6; 7].
2. Регулирование реактивной мощности синхронного генератора и анализ его работы. Предпосылка анализа заключается в том, что в качестве примера берем двигатель со скрытым полюсом. Эффектом насыщения и сопротивлением якоря пренебрегаем. Тогда сеть рассматривается как бесконечная, напряжение – неизменным, а частота – нормальной.
2.1. Выход без нагрузки на стабильную активную мощность. Когда генератор не выдает активную мощность, потребляемую первичным двигателем, просто компенсируются различные потери и не выводятся электромагнитные потери (без учета потерь в меди статора), поэтому угол мощности δ = 0°, электромагнитная мощность = 0, как показано на рис. 1. В это время, хотя электродвижущая сила поля , напряжение сети U могут присутствовать и есть токовый выход, это реактивный ток. Когда входная мощность первичного двигателя увеличивается, входной крутящий момент увеличивается и ( – крутящий момент без нагрузки). В это время остаточный крутящий момент () действует на вал двигателя, так что ускорение ротора, главное магнитное поле ротора () и прямая ось d опережают эквивалентное статору синтетическое магнитное поле (). Поскольку магнитное поле ограничено частотой сети, скорость вращения остается синхронной, а соответственно, и электродвижущая фаза. Величина опережает вектор напряжения на клеммах генератора на фазовый угол, поэтому δ > 0°, > 0, генератор выдает активный ток наружу, а электромагнитный момент при этом появляется соответствующий к электромагнитному моменту Когда δ увеличивается так, что соответствующий электромагнитный крутящий момент в точности равен остаточному крутящему моменту (), ротор возвращается к синхронной скорости, и генератор работает стабильно под углом δ, как показано на рисунке 1 (B) и 1 (С) [2; 6].
В это время выходная активная мощность генератора равна:
. (1)
Если это явнополюсный синхронный генератор, его угловая характеристика мощности равна:
.
Также можно видеть, что угол мощности – это угол между осью магнитного полюса ротора и осью магнитного полюса воздушного зазора в пространстве и угол между электродвижущей силой возбуждения и напряжением U во времени [1–8].
Рисунок 1. Параллельно с бесконечной электросетью синхронный генератор вырабатывает активную мощность от холостого хода до стабильной выходной мощности
2.2. Регулировка активной мощности при статической и стабильной работе синхронного генератора. Активная мощность синхронного генератора, подключенного к системе большой мощности, регулируется мощностью первичного двигателя. При увеличении мощности первичного двигателя, т.е. вращающего момента первичного двигателя (паровой или гидравлической турбины), увеличивается активная составляющая тока генератора, одновременно с этим увеличивается и угол, что понижает запас устойчивости генератора.
Для того чтобы синхронный генератор не терял запаса устойчивости при увеличении активной мощности, необходимо увеличивать ток возбуждения.Векторная диаграмма генератора с невыпадающими полюсами, например, показана на рисунке 2. Текущий ток можно контролировать с помощью:
; (3)
. (4)
Объяснение. Из рисунка видно, что по мере изменения активной мощности изменяется угол δ, а затем изменяется угол , изменяется I cos, а также изменяется I sin, то есть изменяется величина реактивной мощности, а также может поменяться характер. В частности, когда активная мощность увеличивается, ток возбуждения не изменяется, а активная мощность увеличивается, I cos увеличивается. Тогда увеличивается, затем sin увеличивается, то есть δ увеличивается и уменьшается, ток якоря I увеличивается, а угол коэффициента мощности уменьшается. Следовательно, угол δ мощности фактически отражает угол кручения синтетического магнитного поля статора, и тем больше электромагнитная мощность и электромагнитный момент .
Необходимые условия. Однако входная мощность от первичного двигателя не может быть увеличена без ограничений для увеличения электромагнитной мощности генератора. Для генератора со скрытыми полюсами, когда угол мощности δ достигает 90°, электромагнитная мощность достигает максимального значения . Если входная мощность от первичного двигателя увеличивается, новый баланс не может быть установлен и скорость двигателя будет постоянно увеличиваться и терять шаг и статическую устойчивость [2; 7; 1].
Рисунок 2. Синхронный генератор поддерживает постоянным ток возбуждения для регулировки активной мощности генератора
3. Регулирование реактивной мощности и анализ работы синхронного генератора. Если генератор подключен параллельно к сети в идеальных условиях, указанных выше, при исследовании регулирования реактивной мощности генератора также можно считать, что мощность электросети достаточно велика, а напряжение электросети и частота не изменятся.
3.1. Анализ регулирования тока возбуждения без нагрузки.
Если выходной сигнал первичного двигателя остается неизменным, ток возбуждения увеличивается, он будет в перевозбужденном состоянии, и генератор будет посылать обратный реактивный ток, чтобы вызвать реакцию размагничивания якоря, как показано на рисунке 3 (B).
Ток возбуждения начинает уменьшаться по сравнению с нормальным возбуждением, он будет в недовозбужденном состоянии, и генератор будет посылать опережающий реактивный ток для генерации реакции намагниченного якоря, как показано на рисунке 3 (C) [2; 8; 6; 7; 1].
Рисунок 3. Фазово-векторная диаграмма регулировки тока возбуждения без нагрузки
3.2. Регулировка реактивной мощности при активной нагрузке. Когда генератор нагружен активной нагрузкой и выходная активная мощность остается неизменной, взаимосвязь между током якоря генератора и током возбуждения также может быть проанализирована с помощью векторной диаграммы электродвижущей силы. Учитывая, что напряжение постоянно, а сопротивление не учитывается.
Если тогда:
Когда ток возбуждения регулируется для изменения , ток статора генератора и коэффициент мощности также изменяются соответственно. Из рисунка 3 видно, что векторная диаграмма активного тока I cos постоянная, вектор тока статора в конце траектории представляет собой горизонтальную линию AB, перпендикулярную вектору напряжения . Из формулы (5) и = , изменение вектора в конце и вектор напряжения параллельны прямой линии CD. В соответствии с вышеуказанными условиями на рисунке 4 представлены четыре типичные векторные диаграммы.
В первом случае нагрузка генератора только активной мощностью, без выхода реактивной мощности, минимальный ток статора для нормального возбуждения и cos = 1.
Во втором случае ток возбуждения увеличивается исходя из нормального возбуждения. В это время находится в сверхвозбужденном состоянии. Ток статора () ниже напряжения на клеммах.
В третьем случае ток возбуждения уменьшается на основе нормального возбуждения. В это время находится в недовозбужденном состоянии, а ток статора опережает напряжение на клеммах . В дополнение к активной мощности в сеть двигатель также передает в сеть расширенную емкостную реактивную мощность, что означает, что генератор поглощает индуктивную реактивную мощность из сети.
В четвертом случае необходимо дополнительно уменьшить ток возбуждения, электродвижущая сила еще больше уменьшится, угол мощности и ведущий коэффициент мощности cos будут продолжать увеличиваться, чтобы увеличить значение тока статора. Однако это изменение ограничено. Когда ЭДС холостого хода достигает генератор достигнет предельного состояния стабильной работы из-за предела угла мощности < 90°.
Дальнейшее снижение тока возбуждения не сможет работать стабильно, а также потеряет статическую устойчивость.
Рисунок 4. Векторная диаграмма регулировки тока возбуждения при U = constant и = constant
4. Вывод. Регулирование активной мощности повлияет на изменение реактивной мощности. Когда активная мощность генератора увеличивается, уменьшение реактивной мощности будет вызвано постоянным током возбуждения и напряжением сети.
При регулировке тока возбуждения необходимо изменить реактивную мощность, хотя на значение активной мощности двигателя это не влияет, а ток якоря сначала уменьшается, затем увеличивается.
Если ток возбуждения установлен слишком низким, двигатель может потерять устойчивость и будет вынужден остановиться.
Список литературы:
- Веников В.А. Переходные электромеханические процессы в электрических системах : учебник для электроэнергет. спец. вузов. 4-е изд., перераб. и доп. – М. : Высшая школа, 1985. – 536 с.
- Князевский Б.А., Липкин Б.Ю. Электроснабжение промышленных предприятий : учебник. 2-е изд., перераб. и доп. – М. : Высшая школа, 1979. – 431 с.
- Повышение коэффициента полезного действия в результате изменения магнитодвижущей силы обмоток машин переменного тока / И.К. Исмоилов [и др.] // Проблемы современной науки и образования. – 2019. – № 11-1 (144).
- Проблемы качества электроэнергии в системах электроснабжения / З.З. Туйчиев [и др.] // Проблемы науки. – 2019. – № 10 (46).
- Электрические цепи, содержащие нелинейные элементы, и методы их расчета / Т.К. Жабборов [и др.] // Вестник науки и образования. – 2019. – № 19-2 (73).
- Юрганов А.А. Сравнение российских и зарубежных стабилизаторов режима // Электротехника, энергетика, электроника: сб. докл. науч. конф. – СПб. : СЗПИ, 2000. – С. 30–47.
- Юрганов А.А., Кожевников В.А. Регулирование возбуждения синхронных генераторов. – СПб. : Наука, 1996. – С. 61–88.
- Jicheng Li. Design and application of modern synchronous generator excitation systems / Li Jicheng, Tsinghua University, China. – Hoboken, NJ, USA : Wiley-IEEE Press, 2019.
Что такое активная и реактивная электроэнергия?
Что такое активная и реактивная электроэнергия?
Расчет электрической энергии, используемой бытовым или промышленным электроприбором, обычно выполняется с учетом полной мощности электрического тока, протекающего через измеряемую электрическую цепь. При этом выделяют два показателя, отражающих затраты на полную мощность при обслуживании потребителей. Эти показатели называются активной и реактивной энергией. Кажущаяся мощность — это сумма двух. В этой статье мы постараемся рассказать вам, что такое активная и реактивная электроэнергия и как проверить размер начисленных платежей.
Содержание
- 1 Полная мощность
- 2 Активная электроэнергия
- 3 Понятие реактивной электроэнергии
- 4 Расчет реактивной электроэнергии
- 5 Значение коэффициента при учете потерь
- 6 Расчет стоимости электроэнергии для частных клиентов
- 7 Учет реактивной электроэнергии для предприятий
- 8 Коэффициент реактивной энергии
- 9 Реактивная энергия в многоквартирных домах
- 10 Частные случаи учета реактивной мощности
Полная мощность
По сложившейся практике потребители платят не за полезную мощность, которая используется непосредственно в компании, а за всю мощность, которую продает поставщик. Эти показатели различаются по единицам измерения: полная мощность измеряется в вольт-амперах (ВА), а полезная мощность — в киловаттах. Активное и реактивное электричество используется всеми электроприборами, подключенными к сети.
Активная электроэнергия
Активная составляющая общей мощности выполняет полезную работу и преобразуется в те виды энергии, которые необходимы потребителю. Для некоторых бытовых приборов и бытовых приборов в расчетах активная и полная мощность совпадают. Среди этих устройств — электрические плиты, лампы накаливания, электрические духовки, обогреватели, утюги, гладильные прессы и так далее.
Если в паспорте указана активная мощность 1 кВт, то суммарная мощность такого устройства составит 1 кВА.
Понятие реактивной электроэнергии
Этот вид электричества присущ цепям, содержащим реактивные элементы. Реактивная электроэнергия — это часть общей отпущенной мощности, которая не расходуется на полезную работу.
В цепях постоянного тока понятие реактивной мощности отсутствует. В цепях переменного тока реактивная составляющая возникает только при наличии индуктивной или емкостной нагрузки. В этом случае возникает несоответствие между фазой тока и фазой напряжения. Этот сдвиг фаз между напряжением и током обозначается символом «φ».
При индуктивной нагрузке в цепи наблюдается отставание по фазе, при емкостной — ее преимущество. Таким образом, до потребителя доходит только часть общей мощности, а основные потери происходят из-за ненужного нагрева приборов и устройств в процессе эксплуатации.
Потери мощности возникают из-за наличия индуктивных катушек и конденсаторов в электрических устройствах. Благодаря им в цепи некоторое время накапливается электричество. Впоследствии накопленная энергия возвращается в схему. Устройства, в потреблении энергии которых присутствует реактивная составляющая электричества, включают переносные электроинструменты, электродвигатели и различные бытовые приборы. Это значение рассчитывается с учетом специального коэффициента мощности, называемого cos.
Расчет реактивной электроэнергии
Коэффициент мощности колеблется от 0,5 до 0,9; точное значение этого параметра можно узнать в паспорте на электроприбор. Полная мощность определяется как отношение активной мощности к коэффициенту.
Например, если в паспорте электродрели указана мощность 600 Вт и значение 0,6, то суммарная мощность, потребляемая устройством, составит 600/06, то есть 1000 ВА. При отсутствии паспортов для расчета общей мощности устройства коэффициент можно принять равным 0,7.
Поскольку одна из основных задач существующих энергосистем — обеспечение полезной мощности конечного потребителя, потери реактивной мощности считаются отрицательным фактором, а увеличение этого показателя ставит под сомнение эффективность электрической схемы в целом. Баланс между активной и реактивной мощностью в цепи можно представить в виде забавной картинки:
Значение коэффициента при учете потерь
Чем выше значение коэффициента мощности, тем меньше будут активные потери электроэнергии, а значит, потребленная электроэнергия будет стоить конечному потребителю немного дешевле. Чтобы увеличить значение этого коэффициента, в электротехнике используются различные методы компенсации недостаточных потерь электроэнергии. Компенсирующие устройства — это ведущие генераторы тока, которые сглаживают фазовый угол между током и напряжением. Иногда с той же целью используются конденсаторные батареи. Они включаются параллельно рабочей цепи и используются как синхронные компенсаторы.
Расчет стоимости электроэнергии для частных клиентов
При индивидуальном потреблении активная и реактивная электроэнергия не разделяется в счетах: с точки зрения потребления доля реактивной энергии невелика. Таким образом, частные потребители с потреблением энергии до 63 А оплачивают счет, в котором вся потребленная электроэнергия считается активной. Дополнительные потери в цепи реактивной электроэнергии отдельно не распределяются и не оплачиваются.
Учет реактивной электроэнергии для предприятий
Бизнес и организация — это нечто другое. На заводах-изготовителях и промышленных цехах установлено огромное количество электрооборудования, а в общей поступающей электроэнергии составляет значительная часть реактивной энергии, которая необходима для работы источников питания и электродвигателей. Активная и реактивная электроэнергия, поставляемая предприятиям и организациям, требует четкого разделения и другой формы оплаты. В этом случае основой для регулирования взаимоотношений поставщика электроэнергии и конечных потребителей является стандартный договор. Согласно правилам, изложенным в этом документе, организациям, потребляющим электроэнергию выше 63А, необходимо специальное устройство, обеспечивающее показания реактивной энергии для учета и оплаты.
Сетевая компания устанавливает счетчик реактивной электроэнергии и взимает плату по его показаниям.
Коэффициент реактивной энергии
Как упоминалось выше, активная и реактивная электроэнергия показывается в счетах отдельными строками. Если соотношение объемов реактивной и потребленной электроэнергии не превышает установленную норму, плата за реактивную энергию не взимается. Коэффициент отношения можно указать по-разному, его среднее значение 0,15. При превышении этого порогового значения предприятию-потребителю рекомендуется установить компенсирующие устройства.
Реактивная энергия в многоквартирных домах
Типичным потребителем электроэнергии является многоквартирный дом с главным предохранителем, который потребляет более 63 А. Таким образом, жильцы многоквартирного дома видят в начисленной оплате только всю электроэнергию, поставленную в дом поставщиком. То же правило касается жилищных кооперативов.
Частные случаи учета реактивной мощности
Бывают случаи, когда в многоэтажном доме есть и коммерческие организации, и квартиры. Электроснабжение таких домов регулируется отдельными законами. Например, размер полезной площади может выступать в качестве деления. Если коммерческие организации занимают в многоквартирном доме менее половины полезной площади, плата за реактивную энергию не взимается. В случае превышения порогового процента возникают обязательства по оплате реактивной электроэнергии.
В некоторых случаях жилые дома не освобождаются от уплаты за реактивную энергию. Например, если в здании есть точки подключения лифтов для квартир, плата за использование реактивной электроэнергии взимается отдельно, только для этого оборудования. Владельцы квартир продолжают платить только за активную электроэнергию.
Понимание сущности активной и реактивной энергии позволяет правильно рассчитать экономический эффект от установки различных компенсирующих устройств, снижающих потери от реактивной нагрузки. По статистике такие устройства позволяют увеличить значение cos с 0,6 до 0,97. Таким образом, устройства автоматической компенсации позволяют экономить до трети электроэнергии, поставляемой потребителю. Значительное снижение тепловых потерь увеличивает срок службы устройств и механизмов на производственных площадках и снижает стоимость готовой продукции.
Поделиться:
- Предыдущая записьКадетские училища после 9 класса. Учебные заведения после 9 класса
- Следующая записьИнтернационализация образования — это… Инструменты управления процессом интернационализации в образовании
×
Рекомендуем посмотреть
Adblock
detector
мощность — активная энергия, реактивная энергия или просто энергия?
Могу ли я сказать, что, используя активную мощность, я могу оценить активное потребление энергии двигателем, или активная энергия является чем-то, что широко не используется в качестве термина, особенно в промышленной среде?
Истинная мощность — это фактическое потребление/преобразование энергии, поэтому нет необходимости оценивать ее, если вы ее уже знаете. Активная или истинная энергия, если предположить, что это действительные термины, будет просто количеством энергии, которое должно быть преобразовано в неэлектрическую энергию, а активная / истинная мощность — это скорость преобразования.
Если я могу использовать приведенный выше термин, можно ли вообще не учитывать реактивную энергию? Имеет ли вообще смысл говорить о реактивной энергии?
Я подозреваю, что это сильно зависит от того, что вы делаете. Если это не имеет отношения к вашей задаче, да, вы можете игнорировать это, но если вы обычно спрашиваете, можете ли вы игнорировать коэффициент мощности или что-то в этом роде, ответ — нет.
Что мы обычно имеем в виду, когда говорим об электроэнергии на заводе?
Когда мы говорим об электроэнергии на фабрике или в любой другой системе, мы имеем в виду потенциальную энергию, доступную из-за разницы напряжений, которая вызывает протекание тока для выполнения задач, электрических по своей природе или нет.
Имеем ли мы в виду сумму активной мощности в кВтч?
кВтч, или тысяча ватт-часов, относится к потреблению/преобразованию энергии, которая производится путем умножения скорости преобразования энергии (значения мощности) на период, в течение которого энергия преобразуется, поэтому число в кВтч выражает количество используемой или доступной энергии.
Или мы используем полную мощность для расчета энергии в этом случае?
Хммм, я думаю, вы, возможно, очень туманно представляете себе, что вообще означают сила и энергия. Прежде чем я продолжу, я хотел бы только отметить, что не совсем понятно, о чем вы говорите. Используем ли мы , какой показатель полной мощности в , какой путь , чтобы вычислить какой показатель энергии? На большинство ваших вопросов так же трудно ответить, поэтому я добавлю следующее:
Хммм… Хорошо, я думаю, что небольшое разъяснение могло бы вам все исправить.
Истинная мощность — это мощность, которая фактически «используется» (преобразуется в другую форму энергии и удаляется из цепи в виде тепла, кинетической энергии и т. д.)
Реактивная мощность — это мощность, хранящаяся в реакторах (индукторах и конденсаторах) и возвращается в цепь позже. Хотя эта мощность сама по себе не используется схемой, она может способствовать отводу тепла, поскольку увеличивает ток в частях схемы, когда она «звонит» туда и обратно между реакторами.
Полная мощность — это мощность, которая появляется, когда вы просто измеряете цепь без выделения реактивной части мощности. Какой-то чудак придумал, что отношения между этими фигурами можно выразить с помощью математики, относящейся к сторонам треугольника, как вы видите здесь:
Реактивная энергия, во всяком случае, будет энергией, хранимой реакторами в цепи, а скорость ее передачи/накопления, вероятно, будет реактивной мощностью.
Надеюсь, это поможет.
Контроль коэффициента мощности, балансировка активной и реактивной мощности
Автор: К Специалист по маркетингу 26 ноября 2018 г.
Что такое управление активной и реактивной мощностью и как оно связано с солнечными фотоэлектрическими установками?Активная мощность (Вт) — это реальная мощность или полезная мощность, которую можно использовать для выполнения работы и питания нагрузок (приборов, ламп и т. д.). Реактивная мощность (ВАР) — это воображаемая мощность или полная мощность, которая не выполняет никакой полезной работы, но оказывает значительное влияние на производительность системы, компоненты, стабильность и общую экономичность системы.
При увеличении потребности в мощности ток, потребляемый от линии передачи, высок, что, в свою очередь, снижает напряжение на стороне нагрузки. Когда потребность в мощности низкая, уровень напряжения питания на стороне нагрузки очень высок. Каждый из этих случаев вызовет дисбаланс в системе.
Управление реактивной мощностью является важной частью управления уровнями напряжения в электроэнергетической системе. По сути, реактивная мощность может регулироваться как средство повышения уровней напряжения или поглощаться как средство снижения уровней напряжения.
Солнечная фотоэлектрическая установка представляет собой источник энергии периодического действия, зависящий от колебаний солнечного света в районе, где она установлена. Большинство установленных инверторов настроены на выработку только реальной мощности. Это может быть проблемой для коммерческих сайтов с низким коэффициентом мощности. Если солнечный фотоэлектрический инвертор обеспечивает только реальную мощность, то коэффициент мощности на объекте может значительно снизиться. Это не только вызывает проблемы с регулированием напряжения на объекте, но также может привести к штрафам или дополнительным платежам со стороны коммунальных служб.
Балансировка активной и реактивной мощности наряду с контролем коэффициента мощности обеспечивает большую гибкость эксплуатации и повышенную надежность системы. Управление коэффициентом мощности может принести пользу владельцам и операторам солнечных электростанций за счет увеличения нагрузочной способности и снижения потерь мощности, повышения напряжения и отсрочки модернизации.
Как Solar-Log® может обеспечить управление активной и реактивной мощностью посредством управления коэффициентом мощности для фотоэлектрических солнечных электростанций?
Операторы установки могут устанавливать внутренние параметры на уровне инвертора, которые позволяют инвертору работать с фиксированным коэффициентом мощности или изменять реактивную мощность. Изменение реактивной мощности будет зависеть от уровня генерации или напряжения на клеммах инвертора.
Управление активной мощностью и регулирование реактивной мощности обычно представляет собой серьезную техническую проблему. Большинство инверторов не способны автоматически динамически вводить или поглощать реактивную мощность в ответ на локальные измерения напряжения.
Эта техническая задача упрощается благодаря Solar-Log®. Solar-Log® 1900 PM+ и Solar-Log 2000 PM+ упростили эту задачу благодаря портам ввода-вывода, которые могут принимать и отправлять широкий спектр сигналов от различных сетевых операторов.