Заземлитель
Заземлитель — это основной элемент заземляющего устройства. Заземлитель представляет собой одиночный заземляющий электрод или группу электродов (контур заземления), находящихся в электрическом контакте с землей.
Функциональность заземлителя определяется прежде всего сопротивлением заземления, которое должны быть минимально низким. Для этого используются различные методы, в том числе глубинные заземлители.
Глубинный заземлитель
Использование глубинного заземлителя позволяет существенно уменьшить площадь, занимаемую заземлителем на поверхности, а также повысить его эффективность (уменьшить сопротивление заземления), так как электрод(ы) такого заземлителя находится в слоях грунта с меньшим удельным сопротивлением, чем у поверхностных слоев (за счет большей влажности и плотности почвы).
Этот способ строительства заземлителя в прошлом не часто использовался из-за сложности монтажа, где требовалось привлечение специальной строительной техники — буровой установки.
В настоящем, с широким распространением модульного заземления, монтаж глубинных заземлителей стал простым и быстрым без привлечения спецтехники. Простота позволяет производить работы в подвальных помещениях.
Естественный заземлитель
Естественными заземлителями называют металлические сооружения, имеющие контакт с грунтом и которые можно использовать для заземления.
В качестве естественных заземлителей используют например:
- металлические конструкции и арматуру железобетонных конструкций зданий и сооружений, контактирующие с грунтом
- проложенные в земле водопроводные и другие металлические трубопроводы, а также обсадные трубы
Естественные заземлители должны быть связаны с объектом не менее чем двумя заземляющими проводниками, присоединенными к такому заземлителю в разных местах.
В качестве естественных заземлителей нельзя использовать:
- трубопроводы горючих жидкостей, горючих или взрывчатых газов
- трубопроводы, покрытые изоляцией для защиты от коррозии
- трубопроводы канализации и центрального отопления
В тех случаях, когда естественные заземлители отсутствуют либо имеют слишком высокое сопротивление заземления, используют искусственные заземлители.
Искусственный заземлитель
Искусственными заземлителями называются устанавливаемые в земле металлические конструкции, специально предназначенные для целей заземления.
В качестве искусственных заземлителей применяют:
- вертикально погруженные в землю стальные трубы, уголковую сталь, металлические стержни и т. п.
- горизонтально проложенные в земле стальные полосы, круглую сталь и т. д.
Для защиты заземлителя от коррозии используются оцинкованные или омедненные (лучше) электроды. Примером искусственного заземлителя на основе омедненных электродов является модульное заземление ZANDZ.
Необходимость электрически соединять контур заземления молниезащиты, установленной непосредственно на здании, с контуром заземления для электрических установок, прописана в действующих нормативных документах (ПУЭ). Цитируем дословно: «Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими».
Как раз 2-я и 3-я категории являются наиболее распространёнными, в 1-ю категорию входят взрывоопасные объекты к молниезащите которых предъявляются повышенные требования. Тем не менее, наличие оборота «как правило» подразумевает возможность наличия исключений.Современные офисные, а теперь и жилые здания содержат множество инженерных систем жизнеобеспечения. Сложно представить отсутствие систем вентиляции, пожаротушения, видеонаблюдения, контроля доступа и т.д. Естественно, у проектировщиков таких систем есть опасения, что в результате действия молнии “нежная” электроника выйдет из строя. При этом некоторые сомнения у специалистов-практиков вызывает целесообразность соединения контуров двух видов заземлений и возникает желание «в рамках закона» запроектировать электрически не связанные заземления. Возможен ли такой подход и повысит ли он на самом деле безопасность эксплуатации электронных устройств?
Зачем нужно объединение контуров заземления?
При попадании молнии в молниеотвод в последнем возникает короткий электрический импульс напряжением до сотен киловольт. При столь высоком напряжении может произойти пробой промежутка между молниеотводом и металлическими конструкциями дома, в том числе и электрическими кабелями. Последствием этого станет возникновение неконтролируемых токов, которые могут привести к пожару, выходу электроники из строя и даже разрушению элементов инфраструктуры (например, пластиковых водопроводных труб). Опытные электрики говорят: «Дайте молнии дорогу, иначе она найдёт её сама». Вот почему электрическое объединение заземлений обязательно.
По этой же причине ПУЭ рекомендует электрически объединять не только заземления, находящиеся в одном здании, но и заземления территориально сближенных объектов. Под данным понятием подразумеваются объекты, заземления которых настолько сближены, что между ними нет зоны нулевого потенциала. Объединение нескольких заземлений в одно осуществляется, согласно нормам ПУЭ-7, п. 1.7.55, путём соединения заземлителей электрическими проводниками в количестве не менее двух штук. Причем проводники могут быть как естественными (например, металлические элементы конструкции здания), так и искусственными (провода, жёсткие шины и т. п.).
Одно общее или отдельные заземляющие устройства?
К заземлителям для электрических установок и молниезащиты предъявляются разные требования, и это обстоятельство может стать источником некоторых проблем. Заземлитель для молниезащиты должен отвести в землю за короткое время большой электрический заряд. При этом согласно «Инструкции по молниезащите РД 34.21.122-87» нормируется конструктив заземлителя. Для молниеотвода, согласно этой инструкции, требуется не менее двух вертикальных, или лучевых горизонтальных, заземлителей, за исключением 1 категории молниезащиты, когда таких штырей нужно три. Вот почему наиболее распространённый вариант заземления для молниеотвода — два или три штыря длиной около 3 м каждый, соединённых металлической полосой, заглублённой не менее чем на 50 см в землю. При использовании деталей производства ZANDZ такой заземлитель получается долговечным и простым в монтаже.
Совсем другое дело — заземление для электрических установок. В обычном случае оно не должно превышать 30 Ом, а для ряда применений, описанных в ведомственных инструкциях, например, для аппаратуры сотовой связи — 4 Ом или ещё меньше. Такие заземлители представляют собой штыри длиной более 10 м или даже металлические пластины, помещённые на большую глубину (до 40 м), где даже зимой нет промерзания грунта. Создать такой молниеотвод с заглублением двух и более элементов на десятки метров слишком затратно.
Если параметры грунта и предъявляемые к сопротивлению требования позволяют выполнить единое заземление в здании для молниеотвода и заземления электрических установок, нет никаких препятствий его сделать. В остальных случаях делают различные контуры заземления для молниеотвода и электрических установок, но обязательно соединяют их электрически, желательно, в земле. Исключением является использование некоторого специального оборудования особенно чувствительного к помехам. Например, звукозаписывающая аппаратура. Такое оборудование требует отдельного, так называемого, технологического заземляющего устройства, что прямым образом указывается в инструкциях. В таком случае выполняется отдельное заземляющее устройство, которое соединяется с системой уравнивания потенциалов здания через главную заземляющую шину. А, если такое соединение не предусматривается руководством по эксплуатации аппаратуры, то применяются специальные меры по исключению одновременного прикосновения людей к указанной аппаратуре и металлическим частям здания.
Электрическое соединение заземлений
Схема с несколькими заземлениями, соединёнными электрически, обеспечивает выполнение разных, подчас противоречивых, требований к заземляющим устройствам. Согласно ПУЭ, заземления, как и многие другие металлические элементы здания, а также аппаратуры, установленной в нем, должны быть соединены системой уравнивания потенциалов. Под уравниванием потенциалов подразумевается электрическое соединение проводящих частей для достижения равенства потенциалов. Различают основную и дополнительную системы уравнивания потенциалов. Заземления подключаются к основной системе уравнивания потенциалов, то есть соединяются между собой через главную заземляющую шину. Провода, соединяющие заземления с этой шиной, должны подключаться по радиальному принципу, то есть одно ответвление от указанной шины идет только к одному заземлению.
Для того, чтобы обеспечивалась безопасная работа всей системы, очень важно использовать максимально надежное соединение между заземлениями и главной заземляющей шиной, которое не разрушится под действием молнии. Для этого нужно соблюдать нормы ПУЭ и ГОСТ Р 50571.5.54-2013 “Электроустановки низковольтные. Часть 5-54. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов” относительно сечения проводов системы уравнивания потенциалов и их соединения между собой.
Тем не менее, даже очень качественная система уравнивания потенциалов не может гарантировать отсутствие всплесков напряжения в сети при ударе молнии в здание. Поэтому, наряду с грамотно спроектированными контурами заземлений, от проблем спасут устройства защиты от импульсных помех (УЗИП). Такая защита является многоступенчатой и носит селективный характер. То есть на объект должен быть установлен комплект УЗИП, подборка элементов которого — непростая задача даже для опытного специалиста. К счастью, выпускаются готовые комплекты УЗИП для типовых случаев применения.
Выводы
Рекомендация ПУЭ об электрическом соединении всех контуров заземлений в здании является обоснованной и при правильной реализации не только не создает опасность для сложной электронной аппаратуры, а, наоборот, защищает её. В том случае, если аппаратура чувствительна к помехам от молний и требует собственного отдельного заземлителя, можно установить отдельное технологическое заземление в соответствии с прилагаемому к аппаратуре руководству. Система уравнивания потенциалов, объединяющая разрозненные контура заземлений, должна обеспечить надёжное электрическое соединение и во многом определяет общий уровень электробезопасности на объекте, поэтому ей должно быть уделено особое внимание.
Сечение заземляющих электродов
Для обеспечения надежной и долгой работы заземлителей с точки зрения коррозионной и механической стойкости приняты минимальные размеры заземляющих электродов.
Медь
Профиль | Площадь поперечного сечения, мм² | Диаметр, мм | Толщина, мм |
Прямоугольный | 50 | 2 | |
Круглый провод (глубина погружения | 25 | ||
Трос | 25 | 1,8 для каждой проволоки |
|
Трубный | 20 | 2 |
Омеднённая сталь (электролитическое осаждение)
Профиль | Диаметр, мм | Толщина покрытия, мкм |
14 | 100 |
«Чёрная» сталь (без покрытия)
Профиль | Площадь поперечного сечения, мм² | Диаметр, мм | Толщина, мм |
Прямоугольный | 150 | 5 | |
Угловой | 150 | 5 | |
Круглый стержень | 18 | ||
Трубный | 32 | 3,5 |
Нержавеющая сталь
Профиль | Площадь поперечного сечения, мм² | Диаметр, мм | Толщина, мм |
Прямоугольный | 90 | 3 | |
Угловой | 90 | 3 | |
Круглый стержень | 16 | ||
Трубный | 25 | 2 |
Оцинкованная сталь
Профиль | Площадь сечения, мм² | Диаметр, мм | Толщина, мм | Толщина покрытия, мкм |
Прямоугольный | 90 | 3 | 70 | |
Угловой | 90 | 3 | 70 | |
Круглый стержень | 70 | |||
Трубный | 25 | 2 | 55 |
Необходимость электрически соединять контур заземления молниезащиты, установленной непосредственно на здании, с контуром заземления для электрических установок, прописана в действующих нормативных документах (ПУЭ). Цитируем дословно: «Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими». Как раз 2-я и 3-я категории являются наиболее распространёнными, в 1-ю категорию входят взрывоопасные объекты к молниезащите которых предъявляются повышенные требования. Тем не менее, наличие оборота «как правило» подразумевает возможность наличия исключений.
Современные офисные, а теперь и жилые здания содержат множество инженерных систем жизнеобеспечения. Сложно представить отсутствие систем вентиляции, пожаротушения, видеонаблюдения, контроля доступа и т.д. Естественно, у проектировщиков таких систем есть опасения, что в результате действия молнии “нежная” электроника выйдет из строя. При этом некоторые сомнения у специалистов-практиков вызывает целесообразность соединения контуров двух видов заземлений и возникает желание «в рамках закона» запроектировать электрически не связанные заземления. Возможен ли такой подход и повысит ли он на самом деле безопасность эксплуатации электронных устройств?
Зачем нужно объединение контуров заземления?
При попадании молнии в молниеотвод в последнем возникает короткий электрический импульс напряжением до сотен киловольт. При столь высоком напряжении может произойти пробой промежутка между молниеотводом и металлическими конструкциями дома, в том числе и электрическими кабелями. Последствием этого станет возникновение неконтролируемых токов, которые могут привести к пожару, выходу электроники из строя и даже разрушению элементов инфраструктуры (например, пластиковых водопроводных труб). Опытные электрики говорят: «Дайте молнии дорогу, иначе она найдёт её сама». Вот почему электрическое объединение заземлений обязательно.
По этой же причине ПУЭ рекомендует электрически объединять не только заземления, находящиеся в одном здании, но и заземления территориально сближенных объектов. Под данным понятием подразумеваются объекты, заземления которых настолько сближены, что между ними нет зоны нулевого потенциала. Объединение нескольких заземлений в одно осуществляется, согласно нормам ПУЭ-7, п. 1.7.55, путём соединения заземлителей электрическими проводниками в количестве не менее двух штук. Причем проводники могут быть как естественными (например, металлические элементы конструкции здания), так и искусственными (провода, жёсткие шины и т.п.).
Одно общее или отдельные заземляющие устройства?
К заземлителям для электрических установок и молниезащиты предъявляются разные требования, и это обстоятельство может стать источником некоторых проблем. Заземлитель для молниезащиты должен отвести в землю за короткое время большой электрический заряд. При этом согласно «Инструкции по молниезащите РД 34.21.122-87» нормируется конструктив заземлителя. Для молниеотвода, согласно этой инструкции, требуется не менее двух вертикальных, или лучевых горизонтальных, заземлителей, за исключением 1 категории молниезащиты, когда таких штырей нужно три. Вот почему наиболее распространённый вариант заземления для молниеотвода — два или три штыря длиной около 3 м каждый, соединённых металлической полосой, заглублённой не менее чем на 50 см в землю. При использовании деталей производства ZANDZ такой заземлитель получается долговечным и простым в монтаже.
Совсем другое дело — заземление для электрических установок. В обычном случае оно не должно превышать 30 Ом, а для ряда применений, описанных в ведомственных инструкциях, например, для аппаратуры сотовой связи — 4 Ом или ещё меньше. Такие заземлители представляют собой штыри длиной более 10 м или даже металлические пластины, помещённые на большую глубину (до 40 м), где даже зимой нет промерзания грунта. Создать такой молниеотвод с заглублением двух и более элементов на десятки метров слишком затратно.
Если параметры грунта и предъявляемые к сопротивлению требования позволяют выполнить единое заземление в здании для молниеотвода и заземления электрических установок, нет никаких препятствий его сделать. В остальных случаях делают различные контуры заземления для молниеотвода и электрических установок, но обязательно соединяют их электрически, желательно, в земле. Исключением является использование некоторого специального оборудования особенно чувствительного к помехам. Например, звукозаписывающая аппаратура. Такое оборудование требует отдельного, так называемого, технологического заземляющего устройства, что прямым образом указывается в инструкциях. В таком случае выполняется отдельное заземляющее устройство, которое соединяется с системой уравнивания потенциалов здания через главную заземляющую шину. А, если такое соединение не предусматривается руководством по эксплуатации аппаратуры, то применяются специальные меры по исключению одновременного прикосновения людей к указанной аппаратуре и металлическим частям здания.
Электрическое соединение заземлений
Схема с несколькими заземлениями, соединёнными электрически, обеспечивает выполнение разных, подчас противоречивых, требований к заземляющим устройствам. Согласно ПУЭ, заземления, как и многие другие металлические элементы здания, а также аппаратуры, установленной в нем, должны быть соединены системой уравнивания потенциалов. Под уравниванием потенциалов подразумевается электрическое соединение проводящих частей для достижения равенства потенциалов. Различают основную и дополнительную системы уравнивания потенциалов. Заземления подключаются к основной системе уравнивания потенциалов, то есть соединяются между собой через главную заземляющую шину. Провода, соединяющие заземления с этой шиной, должны подключаться по радиальному принципу, то есть одно ответвление от указанной шины идет только к одному заземлению.
Для того, чтобы обеспечивалась безопасная работа всей системы, очень важно использовать максимально надежное соединение между заземлениями и главной заземляющей шиной, которое не разрушится под действием молнии. Для этого нужно соблюдать нормы ПУЭ и ГОСТ Р 50571.5.54-2013 “Электроустановки низковольтные. Часть 5-54. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов” относительно сечения проводов системы уравнивания потенциалов и их соединения между собой.
Тем не менее, даже очень качественная система уравнивания потенциалов не может гарантировать отсутствие всплесков напряжения в сети при ударе молнии в здание. Поэтому, наряду с грамотно спроектированными контурами заземлений, от проблем спасут устройства защиты от импульсных помех (УЗИП). Такая защита является многоступенчатой и носит селективный характер. То есть на объект должен быть установлен комплект УЗИП, подборка элементов которого — непростая задача даже для опытного специалиста. К счастью, выпускаются готовые комплекты УЗИП для типовых случаев применения.
Выводы
Рекомендация ПУЭ об электрическом соединении всех контуров заземлений в здании является обоснованной и при правильной реализации не только не создает опасность для сложной электронной аппаратуры, а, наоборот, защищает её. В том случае, если аппаратура чувствительна к помехам от молний и требует собственного отдельного заземлителя, можно установить отдельное технологическое заземление в соответствии с прилагаемому к аппаратуре руководству. Система уравнивания потенциалов, объединяющая разрозненные контура заземлений, должна обеспечить надёжное электрическое соединение и во многом определяет общий уровень электробезопасности на объекте, поэтому ей должно быть уделено особое внимание.
Смотрите также:
Искусственные заземлители — что это такое и для чего они нужны?
Что представляют собой искусственные заземлители
В роли искусственного заземлителя выступает проводник, изготовленный из стали, зарытый в грунт в горизонтальном или вертикальном положении. В некоторых случаях используют целую группу подобных проводников, которые соединяют между собой. В таком случае, искусственный заземлитель получается сложным. Если же электроды образует контур, то это будет заземляющий контур.
Я не буду рассказывать чем отличаются друг от друга вертикальный и горизонтальный заземлитель, наверное и так понятно. Однако очень важно, чтобы проводники (см. след. страницу), образующие собой заземлитель или заземляющий контур, находились на требуемой глубине.
На какую глубину поместить горизонтальный искусственный заземлитель
По моему опыту, горизонтальный заземлитель лучше всего прокладывать на глубине примерно 0,5 м. Если же почва рыхлая, то глубину лучше всего увеличить до 1 м. Его следует применять в том случае, когда верхний слой почвы в состоянии обеспечить требуемую проводимость электрического тока.
Как правило, подобные искусственные заземлители устанавливаются с помощью специальной техники. Еще хочу добавить, что верхние слои грунта зачастую способны сильнее сопротивляться току, по сравнению с более глубокими.
Немаловажная деталь, у горизонтальных , сопротивление значительно выше, по сравнению с вертикальным. Поэтому, я вам советую, при проведении электромонтажа применять вертикальный искусственный заземлитель. Лучше всего применять вертикальные глубинные электроды, так как они способны добраться до хорошо проводящих ток слоев грунта.
Как подобрать размеры искусственных заземлителей
Лично я применяю минимально допустимые размеры:
- круглая сталь — диаметр 10 мм;
- круглая оцинкованная сталь — диаметр 6 мм;
- угловая сталь — толщина 4 мм;
- общее сечение для заземлителей с присоединенной к ним системой защиты от молний — 160 мм;
- полосовая сталь — 4 мм, в случае, если сечение составляет 48 мм в кв;
- бракованные трубы — толщина стенок 3,5 мм.
Но такие размеры используйте, если условиями коррозии можно пренебречь. Для того, чтобы искусственный заземлитель надежно функционировал долгое время, например, 40-50 лет, для его изготовления нужно брать материал гораздо большей толщины, чем указанное минимальное значение. Если у вас грунт влажный, увеличьте диаметр в два раза минимального значения.
Как устанавливать в грунте искусственный заземлитель
От заземляемой части электроустановки горизонтальные лучи заземляющего устройства (см. также след. страницу) должны расходиться в противоположных направлениях. Если этих лучей не два, а больше, располагайте их под углом друг к другу. Это делают с той целью, чтобы как можно большая площадь земли использовалась рационально. Учтите, если потенциалы на поверхности земли распределятся не равномерно, вокруг заземлителя будут создаваться опасные напряжения. Хотите выравнять потенциалы, заземлитель делайте в форме сетки, которая должна быть сделана из горизонтальных элементов. Соединяйте их с помощью сварки.
Надеюсь, я смог вам рассказать, в общих чертах, что такое искусственные заземлители. Если эта статья вам будет полезна, значит не зря я поделился своим опытом. Много полезных советов можете найти, если загляните на карту сайта.
Также посмотрите статью об естественных заземлителях.
Добавить отзыв
Искусственный интеллект воображает инопланетные миры в компьютерном научно-фантастическом фильме
Технологии и наука
Энтони Катбертсон
Аниматор Джулиус Хорстуис использовал искусственный интеллект для создания научно-фантастического мира. Юлиус ХорстуисТехнологии и наука Искусственный интеллект ИИ Фильм Инопланетяне
«Ленивый аниматор» показал, как могли бы выглядеть футуристические фильмы, если бы искусственный интеллект взял на себя работу режиссера.
Цифровой аниматор Джулиус Хорстуис создал научно-фантастический фильм в жанре фэнтези, используя фракталы — бесконечно сложные узоры, которые создаются с помощью непрерывной петли обратной связи. В его последнем короткометражном фильме « Fraktaal » фрактальные узоры использовались для автоматического создания инопланетной цивилизации и ландшафта.
Инопланетные миры, созданные искусственным интеллектом, сделаны с использованием фракталов. Юлиус Хорстуис«Я позаимствовал эстетику из научно-фантастических фильмов и выделил ее во что-то, что, как я надеюсь, будет стимулировать воображение к его собственному космическому путешествию», — сказал Хорстуис.
«Так получилось, что я ленивый аниматор. Используя фракталы, я могу создавать целые миры, не рисуя и не моделируя ничего. Эти формы прячутся в формулах, они существуют в математической реальности, все, что мне нужно сделать исследовать эти миры и заставить их открыться».
vimeo.com/video/240563157″ webkitallowfullscreen=»»>Мир, выглядящий как антиутопия, был создан с помощью программы под названием Mandelbulb 3D, которая позволяет пользователям создавать 3D-рендеринг окружающей среды, включающей «освещение, цвет, зеркальность, глубину резкости, тени и эффекты свечения», согласно веб-сайту программы. .
Fraktaal — не первый фильм Horsthuis, в котором используются фракталы. Он следует за серией «фрактальных короткометражек», созданных искусственным интеллектом. Единственное, чего не хватает короткометражкам, так это сюжета, впрочем, это не выходит за рамки возможностей современного ИИ.
Программа Shelley, созданная MIT Media Lab, недавно привлекла к себе внимание благодаря автономному написанию коротких рассказов ужасов. Шелли использовала информацию из раздела Reddit под названием r/nosleep, где пользователи публикуют короткие страшилки.
Подробнее: Эти ужасные истории, созданные искусственным интеллектом, просто кошмары.
Другие творческие алгоритмы искусственного интеллекта включают композитора музыки, созданного Aiva Technologies, который создает музыкальные композиции с помощью процесса, который компания описывает как «инновации через случайность».
Генеральный директор Aiva Technologies Пьер Барро сказал Futurism на прошлой неделе: «С точки зрения Айвы, вдохновение строится на обширном обучении 15 000 произведений симфонической музыки, написанных Моцартом, Бетховеном, Бахом и другими великими композиторами».0003
«Инновационная часть приходит через случайность, так как системы, которые мы создаем, по своей природе являются стохастическими. И, по замыслу, они очень хороши в инновациях, потому что могут очень быстро опробовать множество очень разных идей.»
Запрос на перепечатку и лицензирование, внесение исправлений или просмотр редакционных правил
спутник Земли | Определение и факты
Sputnik 1
Смотреть все СМИ
- Ключевые люди:
- Вернер фон Браун Цянь Сюэсэнь Уильям Хейворд Пикеринг Валентин Петрович Глушко
- Похожие темы:
- спутник солнечной энергии ветра Телстар Спутник науки и техники Космос Ландсат
Просмотреть весь связанный контент →
Разобраться в функционировании искусственных спутников, проблеме перенаселенности и о том, как космический мусор представляет угрозу космическим путешествиям
Посмотреть все видео к этой статьеСпутник Земли , также называемый искусственным спутником , искусственный объект выведен на временную или постоянную орбиту вокруг Земли. Космический корабль этого типа может быть как с экипажем, так и без экипажа, причем последний вариант является наиболее распространенным.
Идея искусственного спутника в орбитальном полете была впервые предложена сэром Исааком Ньютоном в его книге Philosophiae Naturalis Principia Mathematica (1687). Он указал, что пушечное ядро, выпущенное с достаточной скоростью с вершины горы в направлении, параллельном горизонту, прежде чем упасть, пролетит вокруг Земли. Хотя объект будет стремиться упасть к поверхности Земли из-за силы гравитации, его импульс заставит его опускаться по изогнутой траектории. Большая скорость вывела бы его на стабильную орбиту, как у Луны, или вообще отвела бы его от Земли.
Викторина «Британника»
Наука: правда или вымысел?
Вас увлекает физика? Устали от геологии? С помощью этих вопросов отделите научный факт от вымысла.
4 октября 1957 года, почти через три столетия после того, как Ньютон выдвинул свою теорию, Советский Союз запустил первый спутник Земли, «Спутник-1». Мир. Соединенные Штаты вывели на орбиту свой первый спутник «Эксплорер-1» три месяца спустя (31 января 19 г.58). Исследователь, хотя и намного меньше, чем спутник, был оснащен инструментами для обнаружения радиации и обнаружил самый внутренний из двух радиационных поясов Ван Аллена, зону электрически заряженных солнечных частиц, окружающую Землю.
С момента этих первоначальных усилий более 70 различных стран вывели на орбиту более 5000 спутников Земли. По состоянию на 2017 год на орбите находится более 2000 спутников, большинство из которых принадлежат России или США. Спутники сильно различаются по размеру и конструкции: от небольших «пикоспутников» весом менее килограмма до Международной космической станции, космической лаборатории, которая является домом для шести астронавтов и имеет массу более 400 тонн. Они одинаково разнообразны по функциям. Научные спутники в основном используются для сбора данных о поверхности и атмосфере Земли, а также для астрономических наблюдений. Метеорологические спутники передают фотографии облачности и измерения других метеорологических условий, которые помогают в прогнозировании погоды, в то время как спутники связи передают телефонные звонки, радио- и телевизионные программы, а также передачу данных между отдаленными частями мира.