Закрыть

Дроссель схема – — » :

Содержание

что это такое, разновидности: электронный, дроссель-трансформатор, схема подключения к лампе дневного света, цветовая маркировка, фото и видео

Ни одна люминесцентная газоразрядная лампа (бытовой или офисный светильник, уличный фонарь) без дросселя работать не будет. Это своеобразный гаситель или ограничитель напряжения, которое подается в колбу газоразрядной лампы. А точнее сказать, на ее электроды. В принципе, с немецкого так это слово и переводится. Но это не единственная функция данного прибора. Еще дроссель создает пусковое напряжение, которое необходимо для образования электрического разряда между электродами. Именно таким образом зажигается люминесцентный источник света. Кстати, пусковое напряжение краткосрочное, длится доли секунды. Итак, дроссель – это прибор, который отвечает и за включение лампы, и за ее нормальную работу.

Дроссель - прибор, отвечающий за нормальную работу лампДроссель – прибор, отвечающий за нормальную работу ламп

Принцип работы

Необходимо сразу оговориться, что в основе принципа работы этого прибора лежит самоиндукция катушки. Если рассмотреть устройство дросселя, то это обычная катушка, которая работает по типу электрического трансформатора. То есть, можно смело применять в разговоре термин дроссель трансформатор. Хотя в конструкции лежит всего лишь одна обмотка.

По сути, катушка – это сердечник из стальных или ферромагнитных пластин, которые изолированы друг от друга. Это делается специально для того, чтобы не образовались токи Фуко, которые создают большие помехи. У такой катушки очень большая индуктивность. При этом она на самом деле выступает мощным сдерживающим барьером при снижении напряжения в сети, а особенно при его сильном росте.

Схема подключенияСхема подключения

Но именно эта конструкция считается низкочастотной. Почему такое у нее название? Все дело в том, что переменный ток, который протекает в бытовых сетях – это широкий диапазон колебаний: от единицы до миллиарда герц и выше. Пределы диапазона очень велики, поэтому чисто условно колебания разделяют на три группы:

  • Низкие частоты, их еще называют звуковые, имеют диапазон колебаний от 20 Гц до 20 кГц.
  • Ультразвуковые частоты: от 20 кГц до 100 кГц.
  • Сверхвысокие частоты: свыше 100 кГц.

Так вот вышеописанная конструкция – это низкочастотный дроссель трансформатор. Что касается высокочастотных приборов, то их конструкция отличается отсутствием сердечника. Вместо них, как основа навивки медного провода, используются пластиковые каркасы или обычные резисторы. При этом сам дроссель трансформатор представляет собой секционную (многослойную) навивку.

По устройству дроссель - это обычная катушка, которая работает по типу электрического трансформатораПо устройству дроссель – это обычная катушка, которая работает по типу электрического трансформатора

Дроссели очень тщательно рассчитываются по задаваемым параметрам, которые будут поддерживать работу ламп дневного света. Особенно это касается начала свечения, где необходимо разрядом пробить газовую среду. Здесь требуется высокое напряжение. После чего прибор, наоборот, становится сдерживающим устройством. Ведь для того, чтобы лампа светилась, большого напряжения не надо. Отсюда и экономичность светильников данного типа.

Сердечник для дросселя

Материал для сердечника также представлен несколькими позициями. Его выбор лежит в основе габаритов самого дросселя. К примеру, магнитный сердечник – это возможность уменьшить размеры дросселя до минимума. При этом показатели индуктивности не изменяются.

Оптимальный вариант для высокочастотных приборов – это сердечники из магнитодиэлектрических сплавов или феррита. Кстати, именно сплавы позволяют использовать сердечники данного типа практически во всех диапазонах.

Сердечники из разных сплавов

Характеристики

Выбирать дроссель трансформатор надо по нескольким характеристикам, главная из которых – индуктивность (измеряется в генри Гн). Но кроме этого еще есть и другие:

  • Сопротивление. Учитывается при постоянном токе.
  • Изменение напряжения (допустимого).
  • Ток подмагничивания, применяется номинальное значение.

Разновидность дросселей

Люминесцентные лампы представлены на рынке большим ассортиментом. И у каждого вида ламп дневного света свой дроссель трансформатор. К примеру, лампа ДРЛ и ДНАТ не могут зажигаться от одного вида дросселя. Все дело в различных параметрах пуска и поддержания горения. Здесь и напряжение отличается, и сила тока.

А вот лампа МГЛ может работать и от дросселя лампы ДРЛ, и от ДНАТ. Но тут есть один момент. Яркость свечения данного источника света будет зависеть от подаваемого напряжения. Да и цветовая температура будет разной.

Внимание! Любой дроссель трансформатор по сроку эксплуатации «переживет» несколько ламп. Конечно, при оговорке, что эксплуатация светильника проводится правильно.

Разновидности дросселейРазновидности дросселей

Но учитывать приходится тот факт, что лампа с годами «стареет». На вольфрамовые электроды люминесцентных ламп дневного света наносится специальная паста из щелочных металлов. Так вот эта паста постепенно испаряется, электроды оголяются, а, значит, повышается напряжение, что приводит к перегреву дросселя. Конечный результат может быть двух вариантов:

  1. Произойдет обрыв обмотки катушки, что приведет к отключению подачи напряжения на электроды.
  2. Произойдет замыкание катушки. А это подключение лампы напрямую к сети переменного тока. Лампа перегорит – это точно, а может и взорваться, что приведет к порче светильника в целом.

Поэтому совет – не стоит ждать, когда лампа сама перегорит. Есть специальный график замены, который определяет производитель, и которого необходимо строго придерживаться. Опытные электрики при проведении профилактических работ обязательно проверяют эти осветительные приборы на параметр напряжения. Если он подходит к пределу нормы, то лампу меняют еще до срока эксплуатации. Лучше заменить недорогую лампу, чем дорогой дроссель трансформатор.

Схема подключения к лампеСхема подключения к лампе

Добавим, что производители сегодня предлагают усовершенствованные системы защиты люминесцентных светильников. В их конструкцию добавили предохранительные автоматы, которые срабатывают при повышении напряжения внутри газоразрядного источника света.

Разделение по назначению

По сути, все дроссели делятся на две основные группы, как и лампы, в которых они устанавливаются.

  1. Однофазные. Их используют в светильниках бытовых и офисных с подключением к сети в 220 вольт.
  2. Трехфазные. Подключаются к сети 380 вольт. К ним относятся лампы ДРЛ и ДНАТ.

По месту установки эти приборы делятся также на две группы:

  1. Встраиваемые. Их еще называют открытыми. Такие дроссели устанавливают в корпус светильника, который защищает его и от влаги, и от пыли, и от ветра.
  2. Закрытые (герметичные, влагозащищенные). У этих приборов есть специальный короб, защищающий их. Такие модели можно устанавливать на улице под открытым небом.

Электронный дроссельЭлектронный дроссель

Электронные аналоги

Основная масса дросселей – это достаточно габаритные приборы. Чтобы уменьшить их размеры, но при этом не изменять параметров, необходимо заменить катушку индуктивности полупроводниковым стабилизатором, который, в принципе, собой представляет высокой мощности транзистор. То есть в конечном итоге получается электронный дроссель.

По сути, установленный транзистор стабилизирует скачки (колебания) напряжения, уменьшают его пульсацию. Но придется учитывать тот факт, что электронный дроссель является все-таки полупроводниковым устройством. Так что в высокочастотных приборах его использовать нет смысла.

Полезные советы

Как и многие электронные приборы, дроссели маркируются в зависимости от своих параметров. Это достаточно сложная аббревиатура, которая неопытным электрикам будет непонятна. Поэтому была введена цветовая маркировка. То есть, на приборе нанесено несколько цветных колец, которые определяют индуктивность устройства. Первых два кольца – это номинальная индуктивность, третье – это множитель, четвертое – это допуск.

Внимание! Если на дросселе всего три цветных кольца, то по умолчанию принимается, что его допуск составляет 20%.    

Цветовая маркировкаЦветовая маркировка

Цветовая маркировка удобна, особенно для тех, кто начинает разбираться в области электрики. С ее помощью можно точно подобрать параметры устанавливаемых приборов (транзистор, электронный дроссель, резистор и так далее).

Заключение по теме

Итак, нами было проведено определение значения дросселя, его устройство, принцип работы и классификация. Как показывает практика, это устройство может работать десятилетиями, если правильно эксплуатировать сам светильник. Даже самые большие скачки напряжения дроссель прекрасно гасит. А, значит, лампа будет светить долго и без проблем.

onlineelektrik.ru

Дроссель переменного тока и его расчёт

Всем доброго времени суток! В прошлой статье я рассказал о дросселях сглаживающих фильтров и изложил принцип их расчёта. Однако такие типы дросселей в бытовой технике применяются не очень часто, так как в маломощных устройствах зачастую эффективнее использовать ёмкостные фильтры. Наиболее часто в электронных устройствах применяют другой вид дросселей – дроссели переменного тока. Об их особенностях, принципах работы и расчёте параметров таких дросселей пойдёт речь в этой статье.

Особенности работы дросселя переменного тока

Дроссель переменного тока, так же как и любой другой дроссель представляет собой катушку индуктивности с ферромагнитным сердечником. Данный тип дросселя включается последовательно с нагрузкой, аналогично сглаживающему дросселю, но в отличие от него, протекающий ток через дроссель переменного тока не имеет постоянного тока подмагничивания. В связи с этим дроссель переменного тока широко применяется в балластных и токоограничительных цепях, мощных антенных и фильтрующих устройствах, а так же в различных импульсных преобразователях напряжения.

В независимости от применения дросселя в схеме его работа основана на зависимости его реактивного сопротивления XL от частоты f протекающего через него тока IH и падении напряжения на дросселе UL

Дроссель переменного тока.

Таким образом, величина напряжения на дросселе UL определяется индуктивностью дросселя L и параметрами тока, протекающего через дроссель: частота тока f и значение тока в цепи IH.

Влияние немагнитного зазора на дроссель

В предыдущих статьях я рассказывал о негативном влиянии насыщения сердечника на снижение магнитной проницаемости μe и индуктивности дросселя L, которые приводят к искажению формы тока протекающего через дроссель.

Форма тока, протекающего через дроссель: для ненасыщенного сердечника (1) и для насыщенного сердечника (2).

На данном рисунке изображено искажение формы тока синусоидального напряжения при работе дросселя на насыщенном и ненасыщенном участке кривой намагничивания. Степень искажения формы напряжения зависит также от отношения реактивного сопротивления дросселя к активному сопротивлению нагрузки XL/RH. То есть при насыщении сердечника, чем меньше данное соотношение, тем меньше степень искажения формы напряжения. Таким образом, введение немагнитного зазора кроме стабилизации величины индуктивности, в широких пределах изменения тока, позволяет пропустить через дроссель переменный ток без значительных изменений.

Кроме вышеописанных факторов, введение немагнитного зазора приводит к некоторым особенностям, которые необходимо учитывать при разработке и изготовлении дросселей с зазором. Основной особенностью является уширение магнитного потока в зазоре.

Уширение магнитного потока в немагнитном зазоре дросселя: стержень дросселя (слева) и его поперечное сечение (справа). Пунктиром обозначены размеры увеличенного сечения вследствие выпучивания магнитного потока.

Данное явление связанно с тем, что в дросселе с зазором магнитный поток выходит за пределы пространства, находящегося между двух концов разрезанного сердечника, поэтому площадь поперечного сечения в немагнитном зазоре как бы увеличивается.

Размеры уширения сечения зависит от длины обмотки дросселя lоб, площади сечения сердечника Se и длины немагнитного зазора lз. Уширение магнитного потока уменьшает магнитное сопротивление цепи и, следовательно, увеличивает индуктивность дросселя. Для учёта уширения магнитного потока и увеличения индуктивности вводится коэффициент выпучивания F, учитывающий уширение магнитного потока в немагнитном зазоре. Поэтому значение индуктивности дросселя будет определятся следующим выражением

Уширение магнитного потока в немагнитном зазоре дросселяУширение магнитного потока в немагнитном зазоре дросселя

где ω – количество витков провода в обмотке,

μ0 – магнитная постоянная, μ0 = 4π*10-7 Гн/м,

μе – эквивалентная (относительная) магнитная проницаемость сердечника,

Sе – эквивалентная площадь поперечного сечения сердечника,

lе – эквивалентная длина магнитной линии сердечника.

lM – длина магнитной линии в сердечнике.

F – коэффициент, учитывающий уширение магнитного потока в зазоре.

Принципы расчёта дросселей переменного тока

Расчёт дросселя переменного тока ведётся аналогично расчёту сглаживающего дросселя, но с учётом начальных условий. Так для дросселя переменного тока определяющими параметрами являются: требуемая индуктивность L, приложенное напряжение UL, частота переменного тока f, перегрев дросселя. Кроме этого необходимо определиться с материалом сердечника дросселя, который определят индукцию насыщения BS и максимальную индукцию в сердечнике Bm, которая для предотвращения насыщения сердечника выбирается из условия

Уширение магнитного потока в немагнитном зазоре дросселяУширение магнитного потока в немагнитном зазоре дросселя

В основе расчётов дросселя переменного тока лежит выражения для определения величина действующего напряжения падающего на дросселе UL

Уширение магнитного потока в немагнитном зазоре дросселяУширение магнитного потока в немагнитном зазоре дросселя

где f – частота переменного тока,

L – индуктивность дросселя,

I – действующее значение тока дросселя.

Тогда с учетом выражения для индуктивности дросселя с замкнутым сердечником и выражения для максимальной индукции в сердечнике напряжение на дросселе будет зависеть от следующих параметров

Уширение магнитного потока в немагнитном зазоре дросселяУширение магнитного потока в немагнитном зазоре дросселя

где μе – эквивалентная магнитная проницаемость сердечника,

μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м,

ω – количество витков обмотки дросселя,

Se – эквивалентное сечение сердечника дросселя,

le – эквивалентная длина магнитного пути сердечника дросселя,

Bm – максимальное значение магнитной индукции сердечника,

ka – коэффициент амплитуды тока (напряжения) дросселя.

Получившееся выражение довольно часто можно встретить под названием основной формулы трансформаторной ЭДС, так как оно устанавливает однозначное соотношение, между ЭДС на зажимах обмотки и числом витков обмотки, при заданной величине магнитной индукции в сердечнике. Тогда при синусоидальном напряжении (коэффициент амплитуды ka ≈ 1,414) выражение принимает следующий вид

Уширение магнитного потока в немагнитном зазоре дросселяУширение магнитного потока в немагнитном зазоре дросселя

Вернёмся к исходному выражению для напряжения на дросселе UL, в котором неоднозначным является параметр – количество витков. Данный параметр кроме всего прочего (величины индуктивности L и магнитной проницаемости μе сердечника) зависит от размеров магнитопровода, а конкретнее от площади окна SO, которое можно вычислить по следующему выражению

Уширение магнитного потока в немагнитном зазоре дросселяУширение магнитного потока в немагнитном зазоре дросселя

где I – действующее значение тока дросселя,

ω – количество витков обмотки дросселя,

kИ – коэффициент использования окна сердечника,

j – плотность тока в проводе обмотки.

Параметры kИ и j выбирают аналогично, как и для дросселя сглаживающего фильтра, то есть коэффициент использования окна сердечника kИ ≈ 0,3, а плотность тока j = 5 А/мм2.

Тогда выражая из данного выражения количество витков провода ω, получим

Уширение магнитного потока в немагнитном зазоре дросселяУширение магнитного потока в немагнитном зазоре дросселя

Получившееся выражение определяет основное расчётное выражение для определения типоразмера сердечника – произведение площадей сердечника SeSO. После преобразования выражения для действующего напряжения на дросселе UL определяем количество витков обмотки ω и величину немагнитного зазора δ

Уширение магнитного потока в немагнитном зазоре дросселяУширение магнитного потока в немагнитном зазоре дросселя

где μе – эквивалентная магнитная проницаемость сердечника,

μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м,

Se – эквивалентное сечение сердечника дросселя,

le – эквивалентная длина магнитного пути сердечника дросселя,

Bm – максимальное значение магнитной индукции сердечника,

ka – коэффициент амплитуды тока (напряжения) дросселя.

Вычисленное количество витков является ориентировочным, так как из-за уширения магнитного потока значение индуктивности оказывается несколько больше при данном количестве витков, что в некоторых случаях является нежелательным. Поэтому необходимо пересчитать витки с учётом коэффициента уширения магнитного потока F

Уширение магнитного потока в немагнитном зазоре дросселяУширение магнитного потока в немагнитном зазоре дросселя

Осталось выбрать сечение обмоточного провода SП

Уширение магнитного потока в немагнитном зазоре дросселяУширение магнитного потока в немагнитном зазоре дросселя

где SO – площадь окна используемого сердечника,

kИ – коэффициент использования окна сердечника,

ω – количество витков обмотки дросселя.

Выбор сечения провода необходимо производить, округлив полученное значение до ближайшего номинала, при этом необходимо учитывать, что на высоких частотах возрастают потери мощности в проводе. Поэтому при достаточно высокой частоте необходимо использовать обмоточный провод, состоящий из нескольких жил, при этом диаметр жилы выбирают исходя из глубины скин-слоя δ

Уширение магнитного потока в немагнитном зазоре дросселяУширение магнитного потока в немагнитном зазоре дросселя

где f – частота переменного тока, протекающего через дроссель,

δ – толщина скин-слоя,

dп – диаметр жилы в обмоточном проводе.

После конструктивного расчёта сердечника и обмотки необходимо проверить тепловой режим работы дросселя – нагрев и перегрев дросселя.

Расчёт дросселя переменного тока

В качестве примера рассчитаем дроссель переменного тока со следующими исходными данными: индуктивность дросселя L = 20 мкГн, частота переменного тока f = 50 кГц, действующее значение тока дросселя Iд = 5 А, температура перегрева ∆Т = 50 °C. Ток, протекающий через дроссель, имеет форму прямоугольных импульсов с коэффициентом заполнения D = 0,5.

В общем случае расчёт сводится к выбору параметров магнитопровода и обмотки, при этом режим работы дросселя должен отвечать заданным условиям, в данном случае, температуре перегрева ∆Т.

1.Выберем типоразмер сердечника соответствующего произведению площадей SeSO. Для этого необходимо дополнительно определить действующее напряжение на дросселе UL, коэффициент амплитуды тока дросселя ka, коэффициент использования окна сердечника kИ, значение максимальной индукции тока дросселя Bm и плотность тока j.

Так как частота тока достаточно высокая, то в качестве материала магнитопровода выберем феррит марки N87, следовательно, Bm = 0,3. Коэффициент использования окна сердечника и плотность тока выберем соответственно kИ = 0,3 и j = 5 А/мм2.

Уширение магнитного потока в немагнитном зазоре дросселяУширение магнитного потока в немагнитном зазоре дросселя

Таким образом, выберем магнитопровод, состоящий из двух половинок типа E 20/10/6 со следующими параметрами: le = 93мм, Se = 32 мм2, SO = 57 мм2, Ve = 2980 мм3, SeSO = 1824 мм4.

Сердечник, состоящий из двух половинок Е 20/10/6, имеет следующие размеры:

L = 20,4 мм, H = 20,2 мм, B = 5,9 мм, h = 14 мм, l0 = 5,9 мм, l1 = 4,1 мм.

2.Определим предварительное число витков обмотки дросселя без учёта эффекта уширения магнитного потока

Сердечник, состоящий из двух половинок Е 20/10/6Сердечник, состоящий из двух половинок Е 20/10/6

Полученный результат округлим до ближайшего целого, таким образом, количество витков примем ω = 15. С учетом этого определим величину немагнитного зазора сердечника δ

Сердечник, состоящий из двух половинок Е 20/10/6Сердечник, состоящий из двух половинок Е 20/10/6

В связи с тем, что прокладка для создания немагнитного зазора прокладывается как между центральными кернами, так и между боковыми, то соответственно толщина прокладки необходимо уменьшить вдвое по сравнению с рассчитанным значением. То есть толщина прокладки должна составлять 0,1…0,12 мм.

В связи с наличием немагнитного зазора происходит уширение магнитного потока и как следствие увеличение индуктивности. Для того чтобы индуктивность дросселя L соответствовала заданной, необходимо пересчитать число витков обмотки ω с учётом коэффициента уширения F

Сердечник, состоящий из двух половинок Е 20/10/6Сердечник, состоящий из двух половинок Е 20/10/6

Таким образом, количество витков примем равным ω = 14. Для окончательного расчёта параметров дросселя определим сечение провода с учётом плотности тока j = 5 А/мм2.

Сердечник, состоящий из двух половинок Е 20/10/6Сердечник, состоящий из двух половинок Е 20/10/6

Как видно сечение провода составляет SП = 1 мм2, данному сечению соответствует провод диаметром dП = 1,12 мм. Так как частота переменного тока дросселя достаточно высокая, то для снижения потерь мощности вследствие скин-эффекта необходимо использовать литцендрат – провод состоящий из нескольких жил. Диаметр жилы dЖ не должен превышать удвоенной толщины скин-слоя ∆

Сердечник, состоящий из двух половинок Е 20/10/6Сердечник, состоящий из двух половинок Е 20/10/6

В связи с этим для обмотки можно использовать провод, скрученный из 9 жил диаметром 0,38 мм, имеющего суммарное сечение SП = 1,02 мм2.

4.Для завершения расчётов необходимо рассчитать температуру перегрева дросселя ∆Т. Для этого необходимо определить потери мощности в обмотке ∆Р1 и в сердечнике ∆Р2, также суммарную площадь охлаждения дросселя.

Мощность потерь в обмотке ∆P1, зависит от удельного сопротивления проводника (qCu = 0,0171 (Ом•мм2)/м), длины обмоточного провода lпр.об и температурного коэффициента сопротивления меди αCu = 0,0038 °C-1.

Сердечник, состоящий из двух половинок Е 20/10/6Сердечник, состоящий из двух половинок Е 20/10/6

где lв.ср. – средняя длина витка обмотки дросселя,

RT – сопротивление провода при температуре перегрева.

Для определения потерь мощности в сердечнике ∆P2 необходимо определить удельные объёмные потери PV при заданной частоте f, рабочей температуре T и максимальной индукции, создаваемой переменным током в дросселе Bm.

По справочным данным для феррита марки N87, при Bm = 300 мТл, f = 50 кГц и T = 70 °C, объемные потери составляют PV ≈ 250 кВт/м3 = 0,25•10-3 Вт/мм3, тогда потери мощности в сердечнике объемом Ve = 2980 мм3 составят

Сердечник, состоящий из двух половинок Е 20/10/6Сердечник, состоящий из двух половинок Е 20/10/6

Рассчитаем площади охлаждения сердечника SС и площадь охлаждения обмотки SO.

Сердечник, состоящий из двух половинок Е 20/10/6Сердечник, состоящий из двух половинок Е 20/10/6

Таким образом, перегрев составляет ∆Т = 48 °С соответствует требуемым условиям, но находится на пределе, поэтому можно порекомендовать снизить максимальное значение индукции Bm путём увеличения количества витков обмотки, или использовать сердечник большего размера.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

www.electronicsblog.ru

Подробно о дросселе для люминесцентных ламп

 

Несмотря на повышение спроса на светодиодные источники света, люминесцентные лампы все еще остаются на пике популярности. Во многом это объясняется относительно небольшой стоимостью осветительного устройства и пускорегулирующего аппарата (далее ПРА), необходимого для его работы. Рассмотрим функциональное назначение и принцип работы последних.

Блок: 1/7 | Кол-во символов: 349
Источник: https://www.asutpp.ru/drossel-dlya-lyuminescentnyx-lamp.html

Разделы статьи

Дроссель для люминесцентных ламп

Независимо от победоносного «наступления» светодиодных ламп ведут, еще очень большое количество светильников с люминесцентными лампами будут работать, пока не выработают свой ресурс. Вдобавок на складах есть хороший запас ламп на смену вышедшим из строя. Скорее всего, переход на полностью светодиодное освещение займет не один десяток лет. И тема эксплуатации и ремонта светильников с газоразрядными ртутными лампами низкого давления (ГРЛНД – именно так по-научному называются люминесцентные лампы) будет еще актуальной очень долго.

Как происходит запуск и работа люминесцентных ламп при помощи дросселя

Для того чтобы понять для чего нужен дроссель стоит кратко рассмотреть устройство люминесцентной лампы, самый распространенный вид которой – это линейная люминесцентная лампа цилиндрической формы. Устройство люминесцентной лампы показано на следующем рисунке

Устройство люминесцентной лампы

Устройство люминесцентной лампы

Линейная люминесцентная лампа – это герметичный цилиндр из тонкого стекла (1) из которого выкачан воздух и закачан инертный газ (чаще всего это аргон) или смесь газов под давлением примерно 400 Па, что в 250 раз меньше атмосферного давления. Именно из-за сниженного давления лампа разбивается с характерным хлопком. Кроме этого, в колбу лампы строго дозировано помещено некоторое количество ртути, которая при таком разрежении находится преимущественно в газообразном виде.

На торцах трубки есть стеклянные ножки (2) в которые вплавлены электроды (3) – по два с каждой из сторон. Между электродами размещается вольфрамовая спираль, которая покрыта специальным химическим соединением – сочетанием оксидов бария, стронция и кальция (BaO, SrO и CaO) и тугоплавкой присадки на основе циркония (ZrO₂ или MgZrO₃). При нагреве этого состава свободные электроны разгоняются до таких скоростей, что способны покинуть кристаллическую решетку и «выпрыгнуть» в окружающее пространство. Такое явление называют термоэлектронной эмиссией, и оно широко используется как в люминесцентных лампах, так и в вакуумных электронных лампах.

На концах трубки сделаны цоколи (5) с контактными штырьками (4) с помощью которых лампа подключается в светильнике. На внутреннюю поверхность колбы лампы нанесен люминофор (9) — галофосфаты кальция или ортофосфаты кальция-цинка. Если люминофор облучать ультрафиолетовым (невидимым для глаз и вредным) излучением, то он начинает излучать свет уже в видимом диапазоне. Именно от состава люминофора и зависит цветовая температура, спектр и цветопередача люминесцентной лампы.

Чтобы понять роль дросселя для люминесцентных ламп, надо посмотреть, как он устроен. Его еще могут называть балластом или ЭмПРА (электромагнитный пускорегулирующий аппарат). Конструктивно дроссель – это катушка индуктивности, намотанная на сердечнике из ферромагнитных сплавов. Он замкнутый подобный трансформаторному, но только с одной обмоткой, выполненной медным эмаль-проводом. Следующий рисунок наглядно показывает «внутренний мир» дросселя для люминесцентных ламп.

Электромагнитный дроссель для люминесцентных ламп после «вскрытия»

Электромагнитный дроссель для люминесцентных ламп после «вскрытия»

Сердечник дросселя не цельный, а набран из отдельных пластин. Это сделано для того, чтобы в нем не возникали под действием переменного магнитного поля вихревые токи Фуко, которые способны сильно разогреть и даже при определенных условиях расплавить металл. Рассмотрим, как подключается люминесцентная лампа, какие происходят процессы при ее запуске и горении и узнаем про роль дросселя в них.

Схема №1: Подключение одной люминесцентной лампы

Схема №1: Подключение одной люминесцентной лампы

Как видно из представленной принципиальной схемы дроссель подключается последовательно лампе. Параллельно лампе подключен стартер с конденсатором C2, а параллельно питающему напряжению также подключен конденсатор C1. Что происходит, когда на такую схему подают сетевое напряжение 220 В?

  • Лампа в «холодном» состоянии не имеет в составе газов свободных зарядов, поэтому имеет очень высокое сопротивление. Поэтому, когда подают напряжение, ток через лампу не течет, а он начинает протекать по цепи стартера.

Устройство стартера для люминесцентных ламп

Устройство стартера для люминесцентных ламп

  • Стартер представляет собой небольшую неоновую лампу (3), в колбе которой находятся пара электродов – один неподвижный (2), а другой подвижный (1) в виде биметаллической пластины. При нагреве она будет изгибаться и приходить в контакт с неподвижным электродом. Каждая из люминесцентных ламп должна иметь свой стартер, подключаемый ей параллельно. Если светильник двухламповый, то он может иметь один дроссель, но стартер индивидуален для каждой. Двухламповый светильник подключают по следующей схеме.

Схема №2: Подключение двух ламп в светильнике с одним электромагнитным дросселем

Схема №2: Подключение двух ламп в светильнике с одним электромагнитным дросселем

  • Из данной схемы видно, что дроссель имеет мощность – не менее, чем сумма мощностей люминесцентных ламп, а стартеры рассчитаны на напряжение не 220 В, а на 127 В, так как лампы включены последовательно. Очень распространенная ошибка при монтаже люминесцентных светильников – это включение не соответствующего стартера. Рабочее напряжение и мощность подключаемых ламп всегда указывается на корпусе стартера.

Вся необходимая информация присутствует в маркировке стартеров

Вся необходимая информация присутствует в маркировке стартеров

  • При подключении люминесцентного светильника к сети ток начинает протекать через дроссель, далее через одну из спиралей катода лампы, затем через тлеющий разряд стартера, потом через спираль другого катода лампа и далее уходить в сеть. Величина силы тока в этом случае небольшая (примерно 30—50 мА). Этого недостаточно для разогрева спиралей катодов, но вполне хватает для поддержания тлеющего разряда стартера, который будет подогревать электроды.
  • Биметаллический электрод в стартере от нагрева изгибается, приходит в контакт с неподвижным электродом. Ток в цепи резко возрастает до примерно 600 мА, так как он будет определяться только сопротивлением дросселя и спиралей катодов лампы. Тлеющий разряд в колбе стартера гаснет и электроды остывают, так как сопротивление контакта ничтожное. Возросший ток приведет к тому, что спирали в лампе нагреются (за 1—2 секунды до 800 °С), при этом интенсивно испуская электроны из-за явления термоэлектронной эмиссии. В результате возле катодов лампы образуется «электронный газ», который будет способствовать пробою и зажиганию разряда.
  • После остывания электродов в колбе стартера биметаллический электрод размыкается и здесь начинается самое интересное. Благодаря явлению самоиндукции при разрыве цепи в дросселе наводится ЭДС (электродвижущая сила) самоиндукции, которая препятствует уменьшению тока в цепи. Причем наводимая ЭДС совпадает по фазе с ЭДС сети, что приводит к резонансному ее скачку до значений выше 1 тысячи вольт, а это вызывает «пробой» газа в колбе лампы и зажигание дуги.

Графическое отображение появления «всплеска» ЭДС самоиндукции в дросселе в момент размыкания электрической цепи

Графическое отображение появления «всплеска» ЭДС самоиндукции в дросселе в момент размыкания электрической цепи

  • Высоковольтный импульс возникшей ЭДС самоиндукции очень непродолжителен по времени, которого может не хватить на запуск лампы. Кроме этого, этот импульс может спровоцировать искровой дуговой разряд в стартере. Для предотвращения этого параллельно лампе стартера установлен конденсатор (C2 на первой схеме). Другой его задачей является увеличение временного промежутка действия ЭДС самоиндукции. Конденсатор, заряжаясь проводит переменный электрический ток, а напряжение на его пластинах возрастает постепенно. Как только напряжение на электродах конденсатора достигнет определенного порогового значения – происходит возникновение дугового разряда в лампе, но искрения электродов стартера при этом не будет.
  • Возле катодов лампы присутствуют эмитированные при разогреве спиралей электроны. Когда на лампе появляется повышенное напряжение, электроны приходят в движение, разгоняются до больших скоростей и при столкновении с атомами инертного газа «выбивают» с внешней орбиты электроны. Образуется большое количество электронов и положительно заряженных ионов инертного газа. Этот процесс ударной электронной ионизации лавинообразно нарастает и в колбе лампы начинает протекать переменный электрический ток.

Процессы, происходящие внутри люминесцентной лампы

Процессы, происходящие внутри люминесцентной лампы

  • Разогнанные электроны сталкиваются в том числе и с атомами ртути, при этом происходит их «возбуждение». Электроны с внутренних орбит после получения «порции» кинетической энергии от «бомбардировки» переходят на внешние орбиты. Но в таком состоянии атом не может существовать долго, поэтому электроны возвращаются на свои «родные» орбиты, но при этом выделяют энергию в виде квантов ультрафиолетового излучения, которые облучают люминофор, а он уже излучает свет в видимом диапазоне.
  • С появлением электрического разряда в колбе лампы резко падает ее электрическое сопротивление. Если этот процесс оставить бесконтрольным, то это приведет к росту тока до недопустимых величин. Ток ограничивает именно дроссель, который имеет и активное (оно незначительное) и реактивное сопротивление. Так как сопротивление лампы падает, то падение напряжения на ней будет недостаточное для того, чтобы в стартере зажегся тлеющий разряд. Специалисты говорят, что лампа шунтирует стартер. Поэтому во время работы исправной лампы он бездействует.
  • Конденсатор C1, подключенный параллельно питающему напряжению, служит для того, чтобы компенсировать реактивную мощность дросселя, так как ток отстает по фазе от напряжения на определенную величину, характеризуемую коэффициентом мощности (cosφ), который указывается на дросселе. О правилах подбора конденсатора C1 мы расскажем ниже.

Сдвиг фазы тока в электромагнитном дросселе на угол φ

Сдвиг фазы тока в электромагнитном дросселе на угол φ

  • Если отключить напряжение питания на светильнике, то разряд в лампе погаснет, все ионизированные атомы опять обретут свои электроны и станут нейтральными – произойдет рекомбинация. Сопротивление в колбе лампы опять вырастет и для ее запуска опять нужно задействовать стартер и дроссель.
Видео: Принцип работы люминесцентной лампы

Достоинства и недостатки электромагнитных дросселей для люминесцентных ламп

Электромагнитные дроссели самыми первыми стали использоваться совместно с люминесцентными лампами. Применяются они и до сих пор. Преимуществами ЭмПРА (балластов) являются:

  • Простота конструкции дросселя и его подключения.
  • Высокая надежность в случае применения с соответствующими лампами.
  • Долговечность – срок службы дросселя составляет не менее 10 лет. В старых светильниках некоторые дроссели работают уже по 40—50 лет.
  • Низкая цена, которая является следствием простоты конструкции.

Эот дроссель 1974 года выпуска до сих пор находится в исправном состоянии

Эот дроссель 1974 года выпуска до сих пор находится в исправном состоянии

Однако, электромагнитные дроссели не лишены и недостатков. К ним можно причислить:

  • Продолжительный по времени процесс запуска лампы. Он составляет примерно 1—10 сек и зависит от степени износа лампы.
  • ЭмПРА сам является потребителем энергии, так как ее часть тратится на разогрев. Потери могут составлять 15—20%. Дроссель может нагреваться до 100°C и выше, что делает его пожароопасным.
  • Небольшой коэффициент мощности (cosφ), который без компенсирующих конденсаторов находится в пределах 0,35—0,50. Это очень мало.
  • Дроссели при работе могут издавать низкочастотный гул дискомфортный для слуха. Особенно это касается низкокачественных и старых ЭмПРА.
  • При работе с электромагнитным дросселем лампы мигают с частотой 100 Гц. Это утомляет зрение и опасно для освещения движущихся механизмов, так как стробоскопический эффект может создать иллюзию их неподвижности.
  • Дроссель хоть и способен сглаживать пульсации напряжения в сети, но только незначительные. При нестабильном напряжении возможно мерцание лампы и повышенная шумность дросселя.
  • Лампы, работающие с ЭмПРА, изнашиваются скорее, чем с современными электронными устройствами запуска.
  • Дроссели имеют большие габариты и значительную массу (до нескольких килограмм).
  • При низких температурах светильники со стартерно-дроссельной схемой подключения могут не зажигаться. Это ограничивает их применение в уличном освещении.

Современные схемы включения люминесцентных ламп предполагают применение электронного балласта, называемого также ЭПРА, что означает Электронный Пускорегулирующий Аппарат. Качественный ЭПРА лишен всех недостатков, характерных для ЭмПРА, но имеет единственный – высокую цену. Этому устройству обязательно будет посвящена отдельная статья на нашем портале.

Как подбирать электромагнитный дроссель

Естественно к какой-то определенной люминесцентной лампе не может подключаться любой дроссель, его надо подбирать по следующим характеристикам:

  • Рабочее напряжение и частота. Для наших электросетей нас должны интересовать дроссели с напряжением 220—240 В и частотой 50 Гц.
  • Мощность дросселя, которая должна соответствовать мощности лампы. Если к ЭмПРА будет подключаться две лампы по Схеме 2, то мощность дросселя должна соответствовать сумме мощностей ламп. Это всегда указывается на маркировке дросселя и чаще всего указывается как типы и количество ламп, так и приведены принципиальные схемы подключения.
  • Ток лампы или группы ламп, который протекает в том числе и через дроссель. Он указывается в Амперах на корпусе дросселя.
  • Коэффициент мощности, который может обозначаться или cosφ, или греческой буквой λ (лямбда). Чем он больше – тем лучше, но в ЭмПРА он редко превышает порог в 0,5, поэтому однозначно требуется конденсаторная компенсация.
  • Превышение температуры дросселя над окружающей температурой Δt(°C) и максимальная температура ЭмПРА, которая при длительной работе не приведет к перегреву и выходу из строя. Эти два показателя регламентируются европейскими нормами EN На дросселе указываются в виде дроби, где в числителе Δt(°C), а в знаменателе максимальная температура.
  • Энергетическая эффективность ПРА, обозначаемая индексом EEI (Energy Efficiency Index), который разделен на 7 классов: A1, A2, A3, B1, B2, C, D. Этот показатель характеризует уровень рассеиваемой мощности на дросселе. Самая малая – классы A1— A3 (A1 – это регулируемые ЭПРА), которые «отданы» электронным ПРА. Средняя – это B1 и B2, и высокая – C, D, которые, кстати, уже запрещены в Европе. Градацию по классам можно увидеть в таблице.

Мощность лампы, ВтПотребляемая мощность (лампа+ПРА) в соответствии с классом, Вт

A1 A2 A3 B1 B2 C D
15 9 16 18 21 23 25 >25
18 10.5 19 21 24 26 28 >28
30 16.5 31 33 36 38 40 >40
36 19 36 38 41 43 45 >45
38 20 38 40 43 45 47 >47
58 29.5 55 59 64 67 70 >70
70 36 68 72 77 80 83 >83
  • Параметры конденсатора, компенсирующего реактивную мощность электромагнитного дросселя. Здесь указывается рабочее напряжение и емкость конденсатора, подключаемого параллельно напряжению питающей сети.

Вся необходимая техническая информация есть в маркировке дросселя

Вся необходимая техническая информация есть в маркировке дросселя

Вся необходимая информация почти всегда указана в маркировке дросселя. Кроме этого, производители светотехнического оборудования публикуют на своих сайтах всю необходимую информацию, которая поможет правильно сочетать люминесцентную лампу (или две лампы) с ЭмПРА. Приведем пример из каталога известного производителя электрооборудования – финской компании Helvar, где указаны рекомендуемые дроссели к лампам T8 различной мощности. Лампы Т8 – являются самыми распространенными, они имеют диаметр колбы 26 мм, а на их цоколе G13 контактные штырьки расположены на расстоянии 13 мм друг от друга. В столбце «Схема №» идет ссылка на выше рассмотренные нами схемы подключения одной или двух люминесцентных ламп через один дроссель.

Электромагнитные дроссели для T8 ламп Helvar, 220 В, 50 Гц, 15-58 Вт

kachestvolife.club

«Электронный дроссель». — Блоки питания — Источники питания

Николай Петрушов

Такое название в последнее время приходится часто встречать в схемах блоков питания ламповых и не ламповых конструкций. Что это такое? давайте поближе познакомимся с особенностями работы «электронного дросселя» и с часто встречающимися ошибками при его сборке и использовании.

Рисунок 1.

В блоках питания ламповых усилителей в последнее время, радиолюбителями довольно широко используются стабилизаторы напряжения, выполненные на полевом транзисторе. Такие стабилизаторы называют ещё «электронный дроссель», «усилитель ёмкости» и даже «виртуальная батарея».
Будем называть его «электронный дроссель», хотя по сути — это обычный стабилизатор с плавающим опорным напряжением, изменяющимся в зависимости от входного, или активный фильтр с функцией задержки подачи напряжения и ничего общего с обычным дросселем (накопителем энергии) и принципом его работы он не имеет.
«Электронный дроссель» можно собирать и на биполярных транзисторах, такие схемы известны ещё с 60-х годов, но на полевых схема имеет гораздо лучшую эффективность, поэтому будем рассматривать здесь «электронный дроссель» на мощных полевых транзисторах.
Рассмотрим обычную схему, гуляющую по сети. См. рисунок 2.

Рисунок 2.
«Электронный дроссель» на IRF830.

У некоторых радиолюбителей эта схема работает, у некоторых нет, почему? Эта схема имеет  свои недостатки, которые сейчас рассмотрим.
Входное напряжение здесь подаётся на С1 через резистор R1 большого сопротивления. Ток стока транзистора практически нулевой и при качественном конденсаторе С1 (с очень маленькой утечкой) он зарядится до уровня напряжения входа, транзистор уйдёт в насыщение и пользы от такого «дросселя» будет мало.
Если конденсатор С1 будет не очень качественный (иметь утечку больше тока заряда R1), то напряжение на затворе транзистора будет меньше входного и схема может работать. Для нормальной работы схемы, напряжение на затворе должно быть меньше входного, минимум на величину пульсаций при номинальном токе нагрузки. Это ещё не учитывается нестабильность напряжения сети.
То есть входное напряжение сначала должно подаваться на делитель напряжения. Этот делитель и определяет разность между входным и выходным напряжением «электронного дросселя». Сделать такой делитель можно, добавив всего одно сопротивление (R3).

Рисунок 3.
«Электронный дроссель» на IRF830. Второй вариант.

На второй схеме ЭД, входное напряжение на конденсатор С1 подаётся с  делителя (R1, R3). Коэффициент такого делителя рассчитывается таким образом, что бы разница между входным и выходным напряжением, для обеспечения нормальной работы ЭД, была 20 — 30 вольт. Сопротивление резистора R1 можно уменьшить, что бы компенсировать ток утечки у конденсатора С1, если он попадётся не очень качественный. Для увеличения времени заряда конденсатора (увеличение времени задержки нарастания выходного напряжения), его ёмкость можно увеличить. Время заряда конденсатора определяется величиной R1 и ёмкостью конденсатора, т.е. постоянная времени заряда.Так, как постоянная времени R1, C1 очень большая (десятки секунд), то;
1) Обеспечивается плавное нарастание выходного напряжения.
2) Быстрые изменения и колебания сети не проходят на выход схемы.
3) Очень качественная фильтрация напряжения, так как на затворе транзистора практически отсутствуют пульсации и в виду наличия у полевого транзистора огромнейшего входного сопротивления и весьма большой крутизны характеристики, на выходе имеем пульсации почти такие же как и на RC-фильтре в цепи затвора.
Рассмотрим назначение элементов схемы;
Резистор R2 подобен «антизвоновому» резистору в цепи сетки лампы выходного каскада, и необходим для предотвращения самовозбуждения транзистора. Его величина выбирается в пределах 1 — 10 кОм. Наличие его обязательно. При монтаже, его лучше припаять непосредственно к выводу транзистора (и стабилитрон VD2 тоже).
Стабилитрон VD2 предназначен для защиты транзистора от переходных процессов и статики. Напряжение его стабилизации выбирается в пределах 14 — 18 вольт. В нормальном режиме работы он заперт. Его можно не ставить, если он уже встроен в транзистор (есть транзисторы со встроенным стабилитроном).
Если у транзистора отсутствует встроенный диод между истоком и стоком, то его необходимо поставить. Он защищает транзистор от обратного напряжения, и если (например при выключении питания) входные конденсаторы разрядились (на схеме не показаны), а выходные ещё нет и напряжение на них больше напряжения входного, то открывается этот диод и конденсаторы на выходе, подключаются через диод к входным и к делителю R1, R3.
Диод VD1 необходим для быстрой разрядки конденсатора С1.

Рассмотрим некоторые особенности монтажа подобных схем.
Транзистор желательно применять в изолированном корпусе. Если корпус транзистора не изолирован, то на радиатор он крепится через изолирующую прокладку (например слюда), а корпус радиатора заземляется.
Антизвоновый резистор и защитный стабилитрон лучше распаять непосредственно на выводах транзистора.
Наличие в схеме «электронного дросселя» не отменяет необходимость в установке конденсаторов после него,которые играют роль источника энергии для быстрых импульсов тока потребления нагрузкой и уменьшают выходное сопротивление источника питания.
«Электронный дроссель», в отличии от обычного дросселя, не является накопителем энергии, и соответственно не применим  (как замена обычному дросселю) в схемах выпрямителей с L-фильтром там, где дроссель отдаёт накопленную энергию.

Хотя бытуют различные мнения у противников «транзисторизации» ламповых схем, вплоть до замены индикаторов на светодиодах — неоновыми лампочками (хотя попадаются неонки с очень большим уровнем шума), скажу однозначно — применение в блоке питания лампового усилителя «электронного дросселя», нисколько не ухудшает его звучание, а в некоторых случаях гораздо его улучшает, позволяя при этом сэкономить габариты и вес любительских конструкций.  

 

 

vprl.ru

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

Согласитесь: лишние приборы, без которых вполне может работать система освещения, покупать и устанавливать ни к чему. К таким устройствам, вызывающим сомнение, относится дроссель для люминесцентных ламп. Вы не знаете, нужен ли он в схеме подключения или без него можно обойтись?

Мы поможем вам разобраться с возникшим вопросом. В статье подробно рассмотрены особенности, назначение дросселя и выполняемые им функции. Приведены фото и схема подключения, которая поможет самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь.

В помощь домашнему мастеру мы подобрали ряд видеороликов, содержащих рекомендации по подключению люминесцентных лампочек, а также по выбору нужного дросселя в зависимости от типа лампы.

Содержание статьи:

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная разновидность, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Галерея изображений

Фото из

Дроссель в импульсных схемах питания

Ограничитель в высокочастотных электрических схемах

Сердечник в виде кольца

Секционная намотка провода

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования имеет индуктивность дросселя. Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.

Электромеханические ПРАЭлектромеханические ПРА

При выборе электромеханического ПРА, который еще называют дросселем или ограничителем тока, имеют значение не только техпараметры, но и репутация производителя – неизвестные китайские фирмы могут предложить ограничитель, реальные характеристики которого значительно ниже заявленных

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Различные типы дросселейРазличные типы дросселей

Различные типы обмоток с разнообразными сердечниками, отличающиеся размерами, формой и внешним видом. Индуктивность конкретного изделия напрямую зависит толщины провода, плотности расположения витков в намотке и их количества, формы сердечника и прочих параметров

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

Изображение дросселя на схемахИзображение дросселя на схемах

На схемах изображение дросселя может отличаться. В цепях подключения люминесцентных лампочек чаще всего можно встретить вариант L6 – обмотка с магнитопроводом ферритовым сердечником

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Подключение лампы через дроссельПодключение лампы через дроссель

Участвуя в схеме розжига разрядной лампочки вместе со стартером, индуктивное сопротивление в виде дросселя ограничивает силу тока в момент подачи напряжения на лампу, а генерация ЭДС самоиндукции в размере 1000 В обеспечивает ее зажигание и стабилизирует горение дуги

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшьстарт из-за ненадежного привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Схема + самостоятельное подключение

Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока. В миниатюрных моделях производитель все эти элементы предусмотрительно встроил в корпус и потребителю остается лишь вкрутить изделие в подходящий патрон светильника/люстры и щелкнуть выключателем.

А для более габаритных изделий потребуется , которая бывает как электромеханического, так и электронного типа. Чтобы ее правильно подсоединить, обеспечив беспроблемную работу прибора, предстоит знать порядок подключения отдельных элементов в электроцепь.

Различные варианты включения лампочкиРазличные варианты включения лампочки

Схема подключения люминесцентной лампочки (EL) с использованием дросселирующего аппарата, где LL – это дроссель, SV – стартер, C1, C2 – конденсаторы

Правда имея схему, но не имея практического опыта по выполнению подобного рода работ, сложно будет справиться с задачей. Более того, если подключение требуется выполнить вне дома – в коридоре учебного учреждения или прочего общественного заведения – то самовольное вмешательство в работу электросети может обернуться проблемами.

Для этого в штате учреждений должен быть электрик, работающий на постоянной основе или же обслуживающий заведение по мере возникновения потребностей в его услугах.

Подключение двух лампочек Подключение двух лампочек

На схеме реализовано подключение двух лампочек люминесцентного типа последовательно. Существенная проблема – если сломается/перегорит одна из них, то вторая тоже работать не будет

Рассмотрим пошаговое подключение двух трубчатых ЛЛ к электросети с использованием стартерной схемы. Для чего понадобится 2 стартера, дросселирующий компонент, тип которого должен обязательно соответствовать типу лампочек.

А также следует обратить внимание на суммарную мощность пускателей, которая не должна превышать этот параметр у дросселя.

Галерея изображений

Фото из

Установка держателей для лампочек

Установка ламп в держатели

Подсоединение короткого проводка к держателю стартера

Проверка работоспособности собранной схемы

Соединение длинным проводом держателя стартера с ЛЛ

Второй конец жилы от стартера крепят ко второму держателю лампы

Соединение первой лампы со второй в одну цепь

Подключение питающего кабеля

При подключении питающего кабеля к светильнику важно помнить, что за ограничение тока отвечает дроссель.

Значит, фазную жилу предстоит подсоединять через него, а на лампочку подключить нулевой провод.

Галерея изображений

Фото из

Вторую жилу от питающего кабеля следует вставить в разъем электромеханического ПРА, который еще называют дросселем. Правильное отверстие выбирают исходя из обозначений, нанесенных на его корпусе

Теперь предстоит заняться дальнейшим формированием цепи, соединив вторую ЛЛ со вторым стартером, а точнее, с его держателем. Для этого нужно взять еще одну короткую жилу и вставить один конец в разъем держателя лампочки, а второй – в отверстие крепления стартера

Аналогичную процедуру предстоит проделать с другой стороны трубчатого люминесцента, тоже используя короткий проводок. Особое внимание следует уделить надежности создаваемого контакта – чтобы ничего не болталось

Осталось завершить формирование цепи, используя еще одну длинную жилу, конец которой предстоит подключить в свободный разъем держателя второй лампочки, а второй – в отверстие дросселирующего компонента

Теперь нужно закрепить все элементы схемы, требуемые для работы собранной системы. Для этого нужно взять 2 стартера, приобретенные заранее. Важно чтобы их тип и мощность соответствовали параметрам ЛЛ

Каждый стартер, который еще называют пускатель, следует поставить в заранее подготовленные держатели, к которым уже успели подсоединить провода. Этот элемент представляет собой небольшую колбу с двумя электродами – жестким и гибким биметаллическим

Второй стартер аналогично крепится в полости держателя, расположенного с противоположной стороны рядом с дросселем. От одного балластного компонента на 36 Вт можно запитать 2 лампочки

Осталось самое интересное – проверить в действии собранную схему, включив питающий кабель в электрическую сеть. Если все выполнено правильно, то две ЛЛ запустятся и начнут светить. В противном случае они никак не отреагируют

Фазную жилу питающего кабеля подсоединяют в дроссель

Соединение второй лампы со вторым стартером

Подсоединение в цепь второй стороны лампы

Соединение второй лампы с дросселем

По одному стартеру для каждой лампочки

Установка пускателей в держатели

Дроссель один на две лампочки

Проверка работоспособности собранной схемы

Подобная схема подключения актуальна для больших осветительных приборов. Что же касается компактных моделей, то они оснащены встроенным механизмом запуска и регулировки – миниатюрным , вмонтированном внутри корпуса изделия.

Компактная люминесцентная лампочкаКомпактная люминесцентная лампочка

В компактной люминесцентной лампочке между цоколем и трубками со смесью газов располагается пускорегулирующий аппарат маленьких размеров. Он отлично справляется с запуском прибора и по сроку службы может значительно выигрывать у других элементов ЛЛ

Перегрев дросселя и возможные последствия

Использование лампочек, у которых вышел срок службы и периодически возникают различные поломки, может обернуться пожаром. О том, как утилизировать отслужившие люминесцентные приборы, подробно .

Избежать возникновения пожароопасной ситуации поможет регулярное инспектирование состояния осветительных приборов – визуальный осмотр, проверка основных узлов.

Перегрев дросселяПерегрев дросселя

К концу службы лампы можно заметить существенный перегрев ПРА – конечно, водой проверять температуру нельзя, для этого следует воспользоваться измерительными приборами. Нагрев способен достигать 135 градусов и выше, что чревато печальными последствиями

При неправильной эксплуатации может произойти взрыв колбы . Мельчайшие частицы в состоянии разлететься в радиусе трех метров. Причем они сохраняют свои зажигательные способности, даже упав с высоты потолка на пол.

Опасность представляет перегрев обмотки дросселя – аппарат состоит из различных типов материалов, каждый из которых имеет свои характеристики. Например, изоляционные прокладки производители пропитывают сложными составами, отдельные элементы которых имеют неодинаковую горючесть и способность к образованию дыма.

Опасность замыкания витков обмоткиОпасность замыкания витков обмотки

Даже семь витков дросселя, в которых случилось замыкание, способны стать пожароопасными. Хотя большую вероятность возгорания представляет замыкание не менее 78 витков – этот факт был установлен опытным путем

Помимо перегрева дросселирующего элемента, существуют и другие ситуации с люминесцентными светильниками, представляющие пожарную опасность.

Это могут быть:

  • проблемы, обусловленные нарушением технологии изготовления ПРА, что повлияло на конечное качество аппарата;
  • плохой материал рассеивателя осветительного прибора;
  • схема зажигания – со стартером или без него пожарная опасность одинакова.

Следует помнить, что к проблемам может привести небрежность при выполнении подключения, плохое качество контактов или составляющих цепи, что чаще всего происходит при использовании совсем дешевых аппаратов, приобретенных у неизвестных производителей.

Добросовестные компании дают гарантию на свою продукцию, а технические параметры приборов, указанные на корпусе или упаковке, соответствуют действительности. Этот факт прямо влияет на срок службы как самого ПРА, так и , с особенностями устройства и работы которых ознакомит рекомендуемая нами статья.

Выводы и полезное видео по теме

Тонкости сборки схемы из двух ЛЛ с последовательным включением:

Видеоролик о том, что такое дроссель и зачем он нужен:

Проверка дросселя на предмет поломки:

О правилах выбора дросселя в зависимости от типа разрядной лампы:

Ознакомившись с назначением и устройством дросселей, используемых для запуска люминесцентных лампочек, можно вооружиться схемой подключения и попытаться реализовать ее самостоятельно. Правда, это актуально для дома.

В общественных учреждениях решение подобных вопросов следует доверить электрикам, имеющим спецдопуск к электромонтажным работам.

Пишите, пожалуйста, комментарии в находящемся ниже блоке, размещайте фото по теме статьи, задавайте вопросы. Расскажите о том, как подбирали и подключали дроссель. Делитесь полезной информацией по аспектам выбора и технологии установки устройства.

sovet-ingenera.com

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

Просмотров: 7

Действительно ли дроссель для люминесцентных ламп является незаменимым элементом, обеспечивающим запуск прибора и его последующее беспроблемное функционирование? Согласитесь, что лишние приспособления, без которых вполне может работать система освещения, покупать и устанавливать ни к чему. Вы сомневаетесь, нужен ли дроссель в схеме подключения или без него можно обойтись?

Мы поможем вам разобраться с возникшим вопросом — в статье подробно рассмотрены особенности, назначение дросселя и выполняемые им функции.

Также приведены тематические фотоматериалы и схема подключения, которая поможет самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь.

В помощь домашнему мастеру мы подобрали ряд видеороликов, содержащих рекомендации по подключению люминесцентных лампочек, по выбору нужного дросселя в зависимости от типа лампы.

Содержание статьи:

  • Назначение и устройство дросселя
    • Назначение балласта в схеме включения
    • Из чего состоит пускорегулятор?
  • Схема + самостоятельное подключение
  • Перегрев дросселя и возможные последствия
  • Выводы и полезное видео по теме

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать.

Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Галерея изображений

Фото из

Дроссель в импульсных схемах питания

Дроссель ограничивает величину переменного тока до нужных параметров. В импульсных схемах питания его назначение – блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение

Ограничитель в высокочастотных электрических схемах

Применяется для реализации высокочастотных электрических схем. Причем в них часто сердечники не используются. Исполнение может быть одно или многослойным

Сердечник в виде кольца

Применение магнитных сердечников неслучайное. Оно позволяет ощутимо уменьшить размер самого дросселя при тех же параметрах индуктивности. На высоких частотах используются ферритовые и магнитодиэлектрические составы. Сердечники в виде кольца позволяют получить большую индуктивность

Секционная намотка провода

В диапазоне длинных и средних волн, чтобы обеспечить требуемые/заданные параметры электроцепи, используется специальное исполнение элемента – секционная намотка провода

Дроссель в импульсных схемах питания

Ограничитель в высокочастотных электрических схемах

Сердечник в виде кольца

Секционная намотка провода

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования люминесцентных источников света имеет индуктивность дросселя.

Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.

Электромеханические ПРА

При выборе электромеханического ПРА, который еще называют дросселем или ограничителем тока, имеют значение не только техпараметры, но и репутация производителя – неизвестные китайские фирмы могут предложить ограничитель, реальные характеристики которого значительно ниже заявленных

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности.

Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Различные типы дросселей

Различные типы обмоток с разнообразными сердечниками, отличающиеся размерами, формой и внешним видом. Индуктивность конкретного изделия напрямую зависит толщины провода, плотности расположения витков в намотке и их количества, формы сердечника и прочих параметров

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

Изображение дросселя на схемах

На схемах изображение дросселя может отличаться. В цепях подключения люминесцентных лампочек чаще всего можно встретить вариант L6 – обмотка с магнитопроводом ферритовым сердечником

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Подключение лампы через дроссель

Участвуя в схеме розжига разрядной лампочки вместе со стартером, индуктивное сопротивление в виде дросселя ограничивает силу тока в момент подачи напряжения на лампу, а генерация ЭДС самоиндукции в размере 1000 В обеспечивает ее зажигание и стабилизирует горение дуги

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшстарт из-за ненадежного стартера привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Схема + самостоятельное подключение

Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока.

В миниатюрных моделях производитель все эти элементы предусмотрительно встроил в корпус и потребителю остается лишь вкрутить изделие в подходящий патрон светильника/люстры и щелкнуть выключателем.

А для более габаритных изделий потребуется пускорегулирующая аппаратура, которая бывает как электромеханического, так и электронного типа.

Чтобы ее правильно подсоединить, обеспечив беспроблемную работу прибора, предстоит знать порядок подключения отдельных элементов в электроцепь.

Различные варианты включения лампочки

Схема подключения люминесцентной лампочки (EL) с использованием дросселирующего аппарата, где LL – это дроссель, SV – стартер, C1, C2 – конденсаторы

Правда, имея схему, но не имея практического опыта по выполнению подобного рода работ, сложно будет справиться с задачей.

Более того, если подключение требуется выполнить вне дома – в коридоре учебного учреждения или прочего общественного заведения – то самовольное вмешательство в работу электросети может обернуться проблемами.

Для этого в штате учреждений должен быть электрик, работающий на постоянной основе или же обслуживающий заведение по мере возникновения потребностей в его услугах.

Подключение двух лампочек

На схеме реализовано подключение двух лампочек люминесцентного типа последовательно. Существенная проблема – если сломается/перегорит одна из них, то вторая тоже работать не будет

Рассмотрим пошаговое подключение двух трубчатых ЛЛ к электросети с использованием стартерной схемы. Для чего понадобится 2 стартера, дросселирующий компонент, тип которого должен обязательно соответствовать типу лампочек.

А также следует обратить внимание на суммарную мощность пускателей, которая не должна превышать этот параметр у дросселя.

 

Галерея изображений

Фото из

Установка держателей для лампочек

Сначала в корпус светильника ставят держатели для ламп – по 2 для каждой. И такие же механизмы для крепления 2 стартеров. Эти детали оснащены разъемами – клеммниками

Установка ламп в держатели

В держатели нужно аккуратно поставить каждую из ЛЛ трубчатого типа, стараясь не разбить колбу. Все действия следует выполнять при отключении светильника от сети

Подсоединение короткого проводка к держателю стартера

Для сборки электроцепи потребуется запастись короткими и более длинными проводками. Короткую жилу предстоит вставить в разъем держателя, предназначенного для стартера

Проверка работоспособности собранной схемы

Второй конец подсоединяют в одно из отверстий крепления первой лампочки люминесцентного типа. Важно обеспечить надежный контакт при этом

Соединение длинным проводом держателя стартера с ЛЛ

Во второе гнездо держателя для первого стартера нужно вставить длинный проводок, хорошо его там зафиксировав. Чтобы жила не мешала, ее следует аккуратно уложить в полости светильника

Второй конец жилы от стартера крепят ко второму держателю лампы

Второй конец этого длинного проводка предстоит поместить и зафиксировать в одном из гнезд второго держателя первой ЛЛ. Причем разъем этот должен быть симметричным отверстию на противоположной стороне лампочки, в котором уже закреплена жила, идущая от стартера

Соединение первой лампы со второй в одну цепь

Теперь предстоит соединить между собой первую ЛЛ со второй. Для этого нужно взять еще один короткий проводок – один его конец крепится в свободном разъеме первой лампочки, а второй подсоединяется в ближайшее отверстие второго держателя ЛЛ

Подключение питающего кабеля

У первой лампочки с обратной стороны остался еще один свободный разъем. Его предстоит использовать, чтобы запитать схему – нужно подключить жилу питающего кабеля, который в дальнейшем будет включаться в электросеть

Установка держателей для лампочек

Установка ламп в держатели

Подсоединение короткого проводка к держателю стартера

Проверка работоспособности собранной схемы

Соединение длинным проводом держателя стартера с ЛЛ

Второй конец жилы от стартера крепят ко второму держателю лампы

Соединение первой лампы со второй в одну цепь

Подключение питающего кабеля

При подключении питающего кабеля к светильнику важно помнить, что за ограничение тока отвечает дроссель.

Поэтому фазную жилу предстоит подсоединять через него, а на лампочку подключить нулевой провод.

Галерея изображений

Фото из

Фазную жилу питающего кабеля подсоединяют в дроссель

Вторую жилу от питающего кабеля следует вставить в разъем электромеханического ПРА, который еще называют дросселем. Правильное отверстие выбирают исходя из обозначений, нанесенных на его корпусе

Соединение второй лампы со вторым стартером

Теперь предстоит заняться дальнейшим формированием цепи, соединив вторую ЛЛ со вторым стартером, а точнее, с его держателем. Для этого нужно взять еще одну короткую жилу и вставить один конец в разъем держателя лампочки, а второй – в отверстие крепления стартера

Подсоединение в цепь второй стороны лампы

Аналогичную процедуру предстоит проделать с другой стороны трубчатого люминесцента, тоже используя короткий проводок. Особое внимание следует уделить надежности создаваемого контакта – чтобы ничего не болталось

Соединение второй лампы с дросселем

Осталось завершить формирование цепи, используя еще одну длинную жилу, конец которой предстоит подключить в свободный разъем держателя второй лампочки, а второй – в отверстие дросселирующего компонента

По одному стартеру для каждой лампочки

Теперь нужно закрепить все элементы схемы, требуемые для работы собранной системы. Для этого нужно взять 2 стартера, приобретенные заранее. Важно чтобы их тип и мощность соответствовали параметрам ЛЛ

Установка пускателей в держатели

Каждый стартер, который еще называют пускатель, следует поставить в заранее подготовленные держатели, к которым уже успели подсоединить провода. Этот элемент представляет собой небольшую колбу с двумя электродами – жестким и гибким биметаллическим

Дроссель один на две лампочки

Второй стартер аналогично крепится в полости держателя, расположенного с противоположной стороны рядом с дросселем. От одного балластного компонента на 36 Вт можно запитать 2 лампочки

Проверка работоспособности собранной схемы

Осталось самое интересное – проверить в действии собранную схему, включив питающий кабель в электрическую сеть. Если все выполнено правильно, то две ЛЛ запустятся и начнут светить. В противном случае они никак не отреагируют

Фазную жилу питающего кабеля подсоединяют в дроссель

Соединение второй лампы со вторым стартером

Подсоединение в цепь второй стороны лампы

Соединение второй лампы с дросселем

По одному стартеру для каждой лампочки

Установка пускателей в держатели

Дроссель один на две лампочки

Проверка работоспособности собранной схемы

Подобная схема подключения актуальна для больших осветительных приборов. Что же касается компактных моделей, то они оснащены встроенным механизмом запуска и регулировки – миниатюрным ЭПРА, вмонтированном внутри корпуса изделия.

Компактная люминесцентная лампочка

В компактной люминесцентной лампочке между цоколем и трубками со смесью газов располагается пускорегулирующий аппарат маленьких размеров. Он отлично справляется с запуском прибора и по сроку службы может значительно выигрывать у других элементов ЛЛ

Перегрев дросселя и возможные последствия

Использование лампочек, у которых вышел срок службы и периодически возникают различные поломки, может обернуться пожаром.

Избежать этой ситуации поможет регулярное инспектирование состояния осветительных приборов – визуальный осмотр, проверка основных узлов.

Перегрев дросселя

К концу службы лампы можно заметить существенный перегрев ПРА – конечно, водой проверять температуру нельзя, для этого следует воспользоваться измерительными приборами. Нагрев способен достигать 135 градусов и выше, что чревато печальными последствиями

При неправильной эксплуатации может произойти взрыв колбы светильника. Мельчайшие частицы в состоянии разлететься в радиусе трех метров. Причем они сохраняют свои зажигательные способности, даже упав с высоты потолка на пол.

Опасность представляет перегрев обмотки дросселя – аппарат состоит из различных типов материалов, каждый из которых имеет свои характеристики.

Например, изоляционные прокладки производители пропитывают сложными составами, отдельные элементы которых имеют неодинаковую горючесть и способность к образованию дыма.

Опасность замыкания витков обмотки

Даже семь витков дросселя, в которых случилось замыкание, способны стать пожароопасными. Хотя большую вероятность возгорания представляет замыкание не менее 78 витков – этот факт был установлен опытным путем

Помимо перегрева дросселирующего элемента, существуют и другие ситуации с люминесцентными светильниками, представляющие пожарную опасность.

Это могут быть:

  • проблемы, обусловленные нарушением технологии изготовления ПРА, что повлияло на конечное качество аппарата;
  • плохой материал рассеивателя осветительного прибора;
  • схема зажигания – со стартером или без него пожарная опасность одинакова.

Следует помнить, что к проблемам может привести небрежность при выполнении подключения, плохое качество контактов или составляющих цепи, что чаще всего происходит при использовании совсем дешевых аппаратов, приобретенных у неизвестных производителей.

Добросовестные компании дают гарантию на свою продукцию, а технические параметры приборов, указанные на корпусе или упаковке, соответствуют действительности. Этот факт прямо влияет на срок службы как самого ПРА, так и разрядной лампочки

Выводы и полезное видео по теме

Тонкости сборки схемы из двух ЛЛ с последовательным включением:

Видеоролик о том, что такое дроссель и зачем он нужен:

Проверка дросселя на предмет поломки:

О правилах выбора дросселя в зависимости от типа разрядной лампы:

Ознакомившись с назначением и устройством дросселей, используемых для запуска люминесцентных лампочек, можно вооружиться схемой подключения и попытаться реализовать ее самостоятельно. Правда, это актуально для дома.

В общественных учреждениях решение подобных вопросов следует доверить электрикам, имеющим спецдопуск к электромонтажным работам.

Facebook

Twitter

Вконтакте

Google+

je7.ru

Дроссель для ДРЛ — устройство и подключение лампы

Потребность общества в осветительных устройствах большой мощности свечения и одновременно экономичных в потреблении электроэнергии, а также долговечных в эксплуатации удовлетворяют производители ламп ДРЛ и других газоразрядных ламп. Их применяют для освещения большой территории, объектов хранения материалов, зданий заводов. Лампа ДРЛ может иметь разброс мощности от 50 до 2 000 ватт, а подключается к однофазной электрической сети с напряжением 220 вольт и частотой 50 герц.

Для чего нужен дроссель?

Дроссель для ДРЛ-ламп применяется для пуска, на рынке есть разные виды осветительных устройств, в которых он используется:

  1. Лампы люминесцентные и ультрафиолетового освещения.

    Ультрафиолетовая лампаУльтрафиолетовая лампа

  2. Разного вида дуговые ртутные осветительные приборы: ДРТ, ДРЛ, ДРИЗ, ДРШ, ДРИ.

    Дуговые ртутные лампыДуговые ртутные лампы

  3. Дуговые натриевые лампы: ДНаМТ, ДНаС, ДНаТ.

    Дуговая натриевая лампаДуговая натриевая лампа

Все осветительные устройства имеют отличия в принципе получения светового потока, есть и другие различия:

  • в их устройстве применяются разные материалы;
  • отличаются наличием химических элементов;
  • внутри колб давление по собственным параметрам каждого осветительного устройства;
  • они различны по мощности и яркости светового потока.

Объединяет эти виды ламп непостоянная величина пускового тока и сопротивления в процессе пуска и дальнейшей работы.

Для того чтобы ограничить величину рабочего тока, в осветительных устройствах этого вида применяют разного вида балласт: ЭПРА, ПРА и ЭмПРА, которые представляют собой катушки индуктивности (дроссели). В момент пуска каждое устройство этого типа имеет высокое значение сопротивления; когда осветительный прибор разжигается, происходит процесс электропробоя в среде инертного газа, которым наполнена лампа (ртутный или натриевый пар), и возникает дуговой разряд.

Схема подключения:

Схема подключения лампы

Розжиг лампы:

Рожзиг лампы

В процессе, когда происходит зажигание лампы, ионизированный газ теряет сопротивление от дугового разряда в несколько десятков раз, и по этой причине возрастает ток, идет выделение тепла. Если не ограничивать величину тока, он мгновенно создаст перегретую газовую среду, что приведет к поломке осветительного устройства, его повреждению изнутри. Для предотвращения этого в цепь прибора освещения включают сопротивление (дроссель).

Физические параметры и схема подключения дросселя

Последовательно включенный дроссель ДРЛ имеет реактивное сопротивление, величина которого зависит от катушки индуктивности: один генри пропускает один ампер тока, когда напряжение – один вольт.

ДроссельДроссель

К параметрам катушки индуктивности относятся:

  • квадрат используемой медной проволоки;
  • количество витков;
  • какой сердечник и величина поперечного сечения магнитопровода;
  • какое электромагнитное насыщение.

Катушка индуктивности имеет активное сопротивление, которое всегда учитывается, когда проводится расчет балласта для каждого типа прибора освещения этого вида с учетом его мощности, от этого зависят габаритные размеры дросселя.

Рассмотрим простую схему включения балласта, когда в конструкции лампы ДРЛ предусмотрены электроды (дополнительные) для процесса возникновения тлеющего разряда, переходящего в электродугу.

Схема подключения лампы ДРЛСхема подключения лампы ДРЛ

В этом случае индуктивность ограничивает величину рабочего тока в осветительном устройстве.

Балласт для люминесцентных ламп

Конструктивно люминесцентный прибор освещения для пуска использует дроссель ПРА, в новых видах этого осветительного устройства применяется ЭПРА, это электронный вид пускорегулирующего аппарата. Задачей этого устройства является сдерживание возрастающего значения тока на одном уровне, который поддерживает необходимое напряжение на электродах внутри осветительного прибора.

Рассмотрим, как работает балласт для люминесцентных светильников. Когда его подключают, в цепи между параметрами напряжения и тока происходит сдвиг фаз, отставание характеризуется коэффициентом мощности, cos φ. Когда рассчитывается активная нагрузка, эту величину надо учитывать, так как при маленьком значении этого параметра нагрузка растет, по этой причине в схему пуска включается и конденсатор, который выполняет компенсационную функцию.

Схема включенияСхема включения

Специалисты по параметрам потери мощности различают несколько исполнений этих осветительных устройств:

  • обычный вид исполнения, с литерой D;
  • пониженный вид исполнения, с литерой B;
  • низкий вид исполнения, с литерой C.

Применение балласта имеет свои положительные моменты:

  • осветительное устройство работает в безопасном режиме, необходимо использовать и стартер для пуска;
  • появляется способность сдерживать значение тока на установленном уровне;
  • световой поток становится намного стабильнее, хотя полностью мерцание убрать нет возможности;
  • стоимость такого исполнения светильника доступна для широкого потребления.

Схема включения люминесцентного прибора освещения через балласт и стартерСхема включения люминесцентного прибора освещения через балласт и стартерПодключения ламп с применением конденсатора с компенсационной функциейПодключение ламп с применением конденсатора с компенсационной функцией

Существует способ подключения люминесцентного прибора освещения без использования балласта, но для этого необходимо в два раза повысить сетевое напряжение с выпрямленным током, а вместо балласта использовать лампу с нитью накаливания. Схема такого включения:

Подключение люминесцентного прибора без использования балластаПодключение люминесцентного прибора без использования балласта

Как самостоятельно сделать дроссель?

Благодаря своим параметрам дуговые приборы освещения мощностью 250 или 125 ватт применяются обществом для освещения следующих помещений:

  • гаражные кооперативы;
  • дачные участки;
  • загородный дом.

Купить устройство освещения этого вида можно в магазине или на рынке, часто возникает проблема, как найти дроссель для ламп ДРЛ, стоимость дросселя может быть выше самой лампы из-за конструктивных особенностей и наличия медной проволоки.

Решить этот вопрос помогут народные идеи изготовления балласта для лампы ДРЛ 250 из других материалов: три дросселя для лампы дневного света при мощности лампы 40 ватт или же два дросселя от лампы дневного света мощностью в 80 ватт. В нашем случае для того чтобы зажечь лампу ДРЛ, используя самодельный балласт, сделанный своими руками, рекомендуется применить два дросселя мощностью 80 ватт и один балласт мощностью 40 ватт, соединение показано на фото.

Подключение лампы ДРЛ с самодельным балластомПодключение лампы ДРЛ с самодельным балластом

Из схемы видно, что все балласты образуют один дроссель, собрать пусковой балласт можно в общий ящик. Важно! Особенное внимание нужно уделить контактам на дросселях, они должны быть надежными, чтобы не нагревались и не искрились.

Как можно запустить ДРЛ-лампу без дросселя?

Существует возможность пуска дугового устройства освещения 250 ватт без балласта, но для этого необходимо применить другую технологию включения прибора. Специалисты рекомендуют вариант покупки специальной лампы ДРЛ 250, у которой есть способность включения без балласта (дросселя), когда в конструкцию лампы добавляется спираль, в задачу которой входит разбавлять световой поток.

Еще народными умельцами применяется способ пуска ламп этого вида с использованием набора конденсаторов, но в этом случае надо точно знать величину получаемого тока. Также применяют пуск ламп ДРЛ с использованием простой лампы, но только при условии, что она имеет одинаковую мощность с ДРЛ-лампой.

lampagid.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о